

Microsoft Research Faculty Summit 2016

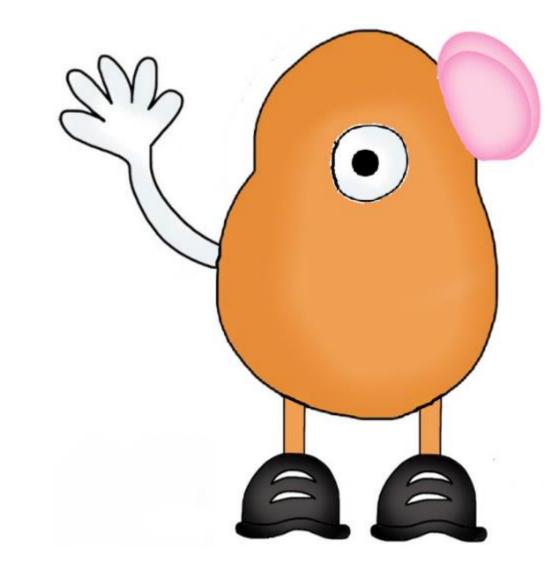
SPATIAL AUDIO FOR AUGMENTED REALITY

Mark Billinghurst mark.billinghurst@unisa.edu.au

July 14th 2016

Augmented Reality

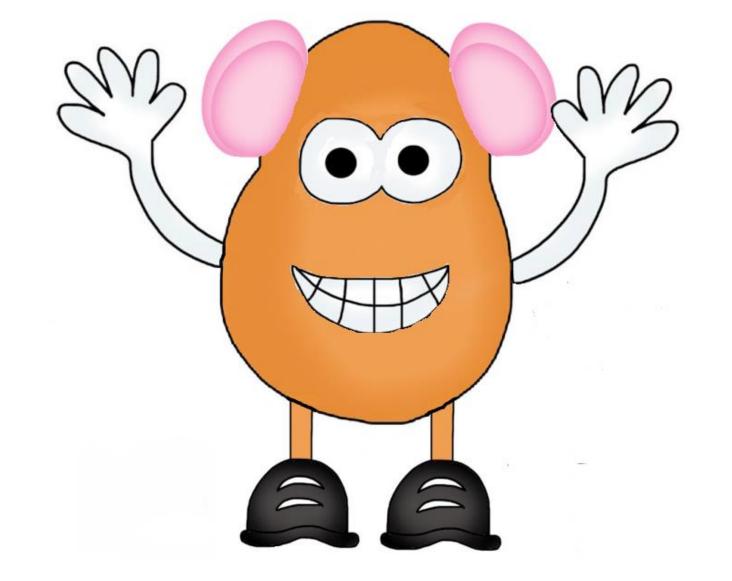
- I. Combines Real and Virtual Images
 - Both can be seen at the same time
- 2. Interactive in real-time
 - The virtual content can be interacted with
- 3. Registered in 3D


• Virtual objects appear fixed in space

Pokemon GO ..

• Handheld AR, touch input, GPS/compass sensors

How We Look to Pokemon GO ...



Hololens

- Head Mounted Augmented Reality
 - Speech, gesture input, stereo view

How We Look to Hololens

2 Eyes + 2 Ears = AR Spatial Interface

- Visual interface
 - See through HMD has ~ $30^{\circ} 90^{\circ}$ Field of View
- Audio interface
 - Binaural headphone has 360° Field of Hearing

Wearable Spatial Audio Interfaces

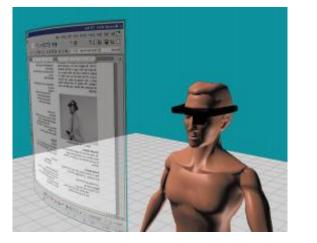
Previous research

- Audio only interfaces
 - Navigation, visually disabled, gaming. mobile UI
- Little work in Hybrid Interfaces
 - Small wearable display + spatial AR

Benefits of Adding Spatial Audio to AR

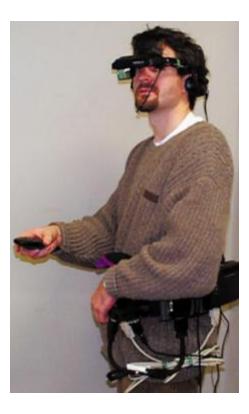
Cognitive

- More information display without additional cognitive load
 - Different visual/auditory systems
- Information
 - Simultaneous information display using multiple modalities
 - Use appropriate modality for information

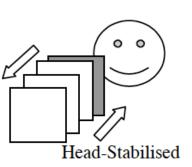

Interface

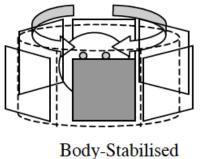
- Overcome limitations of limited visual display
 - Small screen size, Divided attention
- Increase interface design options

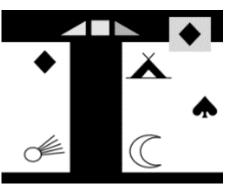
Example AR Applications of Spatial Audio


- Information Presentation
 - Wearable information space (Billinghurst 1999)
 - Attention Redirection (Barde 2016)
- Remote Collaboration
 - Wearable AR conferencing (Billinghurst 1998)
 - Hyrid conferencing spaces (Bleeker 2013)
- Location Based Audio
 - High Street Stories (Lee 2013)
- Authoring/Annotation
 - Audio Stickies (Langlotz 2013)
 - Augmented Sound Reality (Dobler 2002)

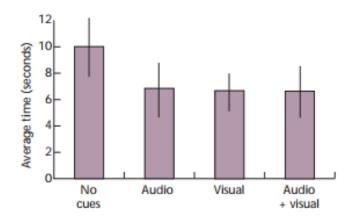
Wearable Information Spaces (1998)

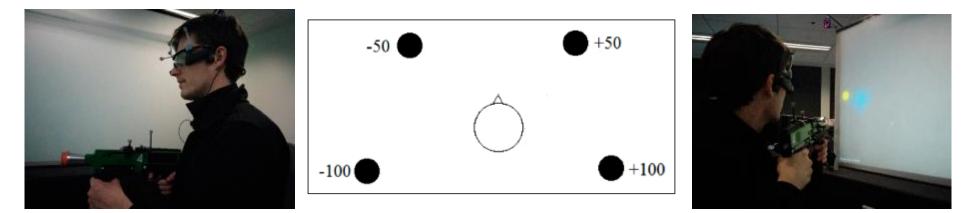

- Exocentric wearable information space
 - See through HMD
 - Wearable computer
 - Spatial audio/visual cues
 - Body stabilized information displays




Billinghurst, M., Bowskill, J., Dyer, N., & Morphett, J. (1998). Spatial information displays on a wearable computer. *IEEE Computer Graphics and Applications*, *18*(6), 24-31.

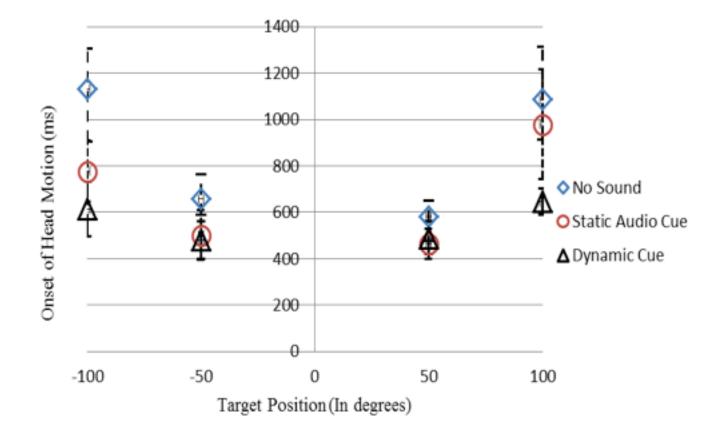
User Evaluation




- Task
 - Finding target icon on pages of icons
- Conditions
 - Head stabilized vs. body stabilized
 - Additional spatial audio/visual cues for guidance

Results

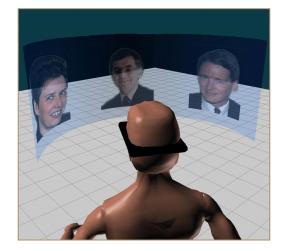
- Body stabilized 30% faster performance
- Spatial audio reduces search time by further 35%
- No difference between spatial audio/visual cues


Attention Redirection (2016)

- Use dynamic spatial audio cues to direct attention
 - Audio moving in direction of target position
- Experimental Test
 - Divided attention task (wearable screen, projection screen)
 - Use no cue, static audio, dynamic moving spatial cue
 - Directing user attention to one of four target positions

Barde, A., Ward, M., Helton, W., & Billinghurst, M. (2016). Attention Redirection Using Binaurally Spatialised Cues Delivered Over a Bone Conduction Headset. *HFES 2016*

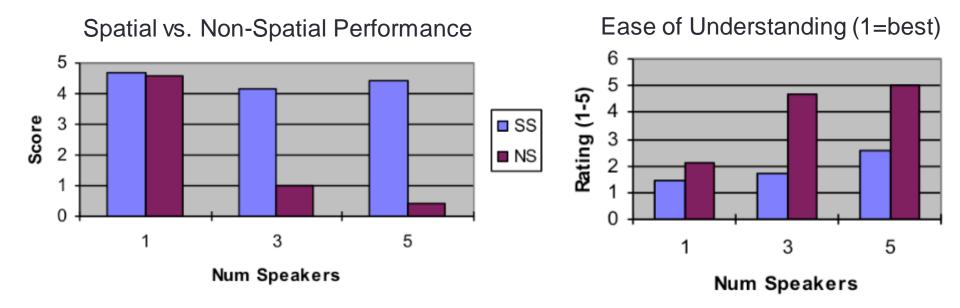
Experimental Results



- Dynamically moving audio cue significantly reduces onset time
 - 30-40% faster than static audio cue for targets out of view
 - Up to 50% faster than no audio cue

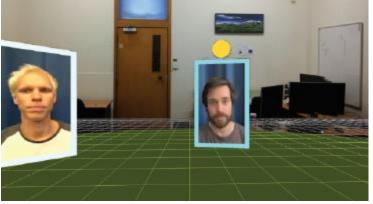
Wearable AR Conferencing (1998)

Concept

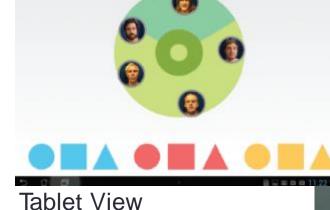

- mobile video conferencing
- spatial audio/visual cues
- body-stabilized data
- Implementation
 - see-through HMD
 - head tracking
 - static images, spatial audio

Billinghurst, M., Bowskill, J., Jessop, M., & Morphett, J. (1998). A wearable spatial conferencing space. In *Wearable Computers, 1998. Digest of Papers. Second International Symposium on (pp. 76-83). IEEE.*

User Evaluation


Speaker discrimination task

- 1,3,5 speakers saying almost same phrase at same time
- Spatial vs. non-spatial cues


Results

- Spatial performance significantly better, more higher rated
- Even simple spatial visual cues (radar display) produced improvement

Using HHD and HMD (2013)

HMD AR View

- Use tablet to interact with AR conf. people
- Exo-centric view of conference space
- AE Spatial audio gives sense of direction

Bleeker, T., Lee, G., & Billinghurst, M. (2013). Ego-and Exocentric interaction for mobile AR conferencing. In *Mixed and Augmented Reality (ISMAR), 2013 IEEE International Symposium on* (pp. 1-6). IEEE.

Location Based - High Street Stories (2013)

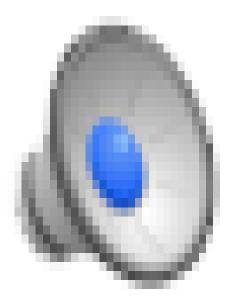
2009

2011

2016

Christchurch 2011 earthquake

- Destroyed High Street, historical heart of city
- High Street Stories
 - Mobile AR app with minimal visual cues
 - Geolocated spatial audio cues stories from locals
 - See http://www.highstreetstories.co.nz/


Location Based Information

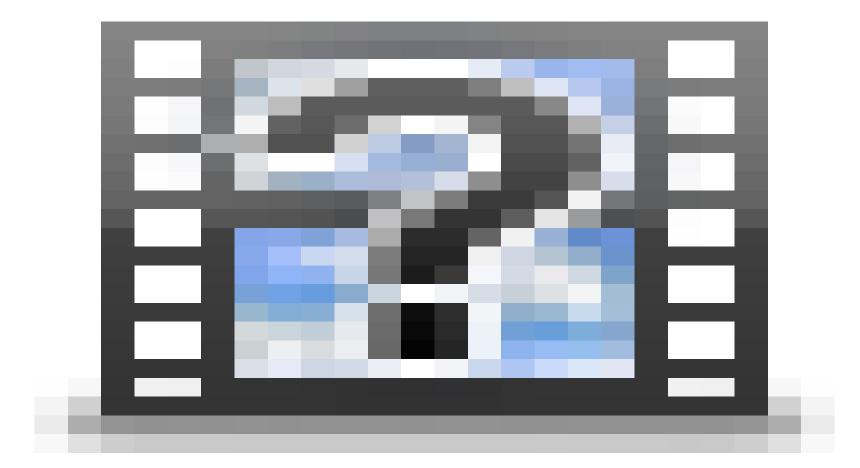
High Street Stories Interface

- Map + AR View (GPS, compass interface)
- Virtual tags showing geo-located stories
- Spatial audio browsing based on viewpoint
- Click to play complete story, view images

Demo Video

Authoring - Audio Stickies (2013)

- Mobile AR browser
 - Outdoor AR, GPS/compass tracking, panorama tracking
- User's can add spatial audio annotations
 - Precise placement of spatial audio notes

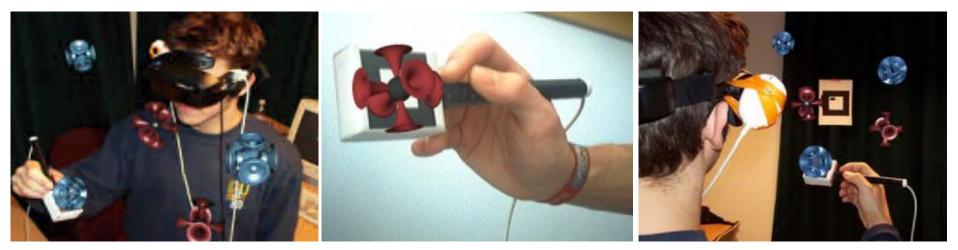

Langlotz, T., Regenbrecht, H., Zollmann, S., & Schmalstieg, D. (2013). Audio stickies: visually-guided spatial audio annotations on a mobile augmented reality platform. In *Proceedings of the 25th Australian computerhuman interaction conference: augmentation, application, innovation, collaboration* (pp. 545-554). ACM.

Building Annotation

- Use mobile AR to view virtual buildings on site
 - View alternative AR designs
- Viewer can add audio comments
 - Simple tap and record interface
- Users can browse audio notes of others
 - Only play audio clips when in view

Demo Video

User Feedback


30 users tried system

- 4 AR buildings viewed and commented on
- Tested in two cities (Dunedin, Graz)

Main feedback

- Audio annotations seen as very useful
- System easy to learn and use
- Usable in noisy natural environment
- Spatial audio supported discrimination between notes
- Audio clutter an issue

Augmented Sound Reality (2002)

- Wearable interface for placing spatial audio cue
 - Virtual icons representing audio cues
 - 3D stylus for direct manipulation of sound sources
 - Viewing on stereo video see-through HMD
 - Spatial audio playback

Dobler, D., Haller, M., & Stampfl, P. (2002). ASR: augmented sound reality. In ACM SIGGRAPH 2002 conference abstracts and applications (pp. 148-148). ACM.

Lessons Learned

- Spatial audio helps with information presentation
 - Out of view information, multimodal presentation
- Spatial audio can direct user attention
 - Dynamic audio cues
- Spatial audio cues can improve AR conferencing
 - Speaker discrimination, localization, social presence
- Tools can be developed for spatial audio authoring
 - Recording, manipulation audio cues
- Spatial audio enables richer AR experiences
 - Engages more sensors, reduces cognitive load

Directions for Future Research

User interface metaphors

- How to interaction with hybrid interfaces?
- How to present information between modalities?
- Collaborative Interfaces
 - Using spatial audio for sharing communication cues
 - Recording and sharing spatial audio
- Applications/Tools
 - Which AR applications should use spatial audio?
 - AR spatial audio development tools
- Technology
 - Using headphones vs. bone conducting transducers/other tech.
 - Spatial audio algorithms (individual HRTF vs. generic HRTF, etc)

Conclusions

• AR is becoming commonly available

- · Handheld, head mounted
- Spatial audio can significantly improve AR experience
 - User interface
 - Information presentation
 - Remote collaboration
- However there are still significant areas for research
 - User interface, algorithms, collaboration, applications, etc

www.empathiccomputing.org

mark.billinghurst@unisa.edu.au

