

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Block
Editor

Microsoft

Touch
Develop

Microsoft

PXT

Microsoft

Java
Script

Code

Kingdoms

C /
C++

ARM

mbed

Python

PSF

+friends

runtime

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Managed Types

 C is a great language for building software that works with hardware…
 as it gives a lot of power to its users.

 Higher level languages are great for building applications
 as they make it easy, robust and simple for the user.

Memory Management is a key distinction. e.g. take some classic C code:

void

doSomething(char *text)

{

…

}

char *s = malloc(10);

strcpy(s, “hello”);

doSomething(s);

who is responsible for

freeing the data?

Managed Types

 Modern high level languages assume this is handled by their runtime - so we do!

 Commonly used data types (strings, images, packets) all have their own data type

 Uses reference counting to track when the data is used (simpler, but similar principle to JVM, CLR)

 Transparent to users and high level languages. Feels like a higher level language…

void

doSomething(ManagedString text)

{

…

}

ManagedString s = “hello”;

doSomething(s);

Managed Types

 Higher level languages can then more easily map onto the runtime.

 It also provides a clean, easy to use API for C/C++ users:

ManagedString s, t, message, answer;

s = “hello”;

t = “world”;

message = s + “ “ + t;

answer = “The answer is:” + 42;

if (message == answer)

…

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Eventing and the Message Bus

 Many languages support the concept of events.

 This is also something that kids find familiar from visual languages such as Scratch.

 And something that lends itself to embedded systems too… e.g.

Eventing and the Message Bus

 The micro:bit runtime contains a simple yet powerful extensible eventing model

 Events are themselves a very simple managed type.

 Contain two numeric values: a source and a value.

 Every component in the runtime has a unique ID – the source of an event.

 Each component can then create ANY value with that ID as a source at any time:

MicroBitEvent e(MICROBIT_ID_GESTURE, MICROBIT_ACCELEROMETER_EVT_SHAKE);

#define MICROBIT_ID_GESTURE 27

#define MICROBIT_ACCELEROMETER_EVT_SHAKE 11

Eventing and the Message Bus

 The MessageBus then delivers events to any code that registers an interest.

 Functions can be either plain C functions, or C++ methods.

 Wildcard values can also be used to capture lots of events at once.

 There’s also a matching ignore function in case you want to stop receiving events.

void onShake(MicroBitEvent e)

{

// do something cool here!

}

int main()

{

uBit.messageBus.listen(MICROBIT_ID_GESTURE, MICROBIT_ACCELEROMETER_EVT_SHAKE, onShake);

}

Eventing and the Message Bus

 The MessageBus then delivers events to any code that registers an interest.

 Functions can be either plain C functions, or C++ methods.

 Wildcard values can also be used to capture lots of events at once.

 There’s also a matching ignore function in case you want to stop receiving events.

void onGesture(MicroBitEvent e)

{

if (e.value == MICROBIT_ACCELEROMETER_EVT_SHAKE) …

}

int main()

{

uBit.messageBus.listen(MICROBIT_ID_GESTURE, MICROBIT_EVT_ANY, onGesture);

}

Eventing and the Message Bus

 The MessageBus then delivers events to any code that registers an interest.

 Functions can be either plain C functions, or C++ methods.

 Wildcard values can also be used to capture lots of events at once.

 There’s also a matching ignore function in case you want to stop receiving events…

void onEvent(MicroBitEvent e)

{

if (e.source == MICROBIT_ID_GESTURE) …

}

int main()

{

uBit.messageBus.listen(MICROBIT_ID_ANY, MICROBIT_EVT_ANY, onEvent);

}

Eventing and the Message Bus

 The runtime generates a range of events application can build on.
 Users can also define their own events easily… just numbers!

#define MICROBIT_ACCELEROMETER_EVT_TILT_UP 1

#define MICROBIT_ACCELEROMETER_EVT_TILT_DOWN 2

#define MICROBIT_ACCELEROMETER_EVT_TILT_LEFT 3

#define MICROBIT_ACCELEROMETER_EVT_TILT_RIGHT 4

#define MICROBIT_ACCELEROMETER_EVT_FACE_UP 5

#define MICROBIT_ACCELEROMETER_EVT_FACE_DOWN 6

#define MICROBIT_ACCELEROMETER_EVT_FREEFALL 7

#define MICROBIT_ACCELEROMETER_EVT_SHAKE 11

#define MICROBIT_BUTTON_EVT_DOWN 1

#define MICROBIT_BUTTON_EVT_UP 2

#define MICROBIT_BUTTON_EVT_CLICK 3

#define MICROBIT_BUTTON_EVT_LONG_CLICK 4

#define MICROBIT_BUTTON_EVT_HOLD 5

#define MICROBIT_BUTTON_EVT_DOUBLE_CLICK 6

#define MICROBIT_RADIO_EVT_DATAGRAM 1

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Fiber Scheduler: Providing Concurrent behaviour…

…or at least apparently concurrent behaviour!

 Take this simple example again. What behaviour would you expect?

 Given that show string will scroll the given text on the 5x5 matrix display…

Fiber Scheduler: Providing Concurrent behaviour…

 Fibers can be created at any time, and execute independently

 By design, a non pre-emptive scheduler to reduce potential race conditions.

 Fibers can sleep, or block on events on the MessageBus

 Anytime there’s nothing to do… processor enters a power efficient sleep

void doSomething()

{

while(1)

{

uBit.display.print(‘A’);

uBit.sleep(100);

}

}

void doSomethingElse()

{

while(1)

{

uBit.display.print(‘B’);

uBit.sleep(100);

}

}

Fiber Scheduler: Providing Concurrent behaviour…

 A RAM optimised thread scheduler for Cortex processors.

 We adopt a stack duplication approach

 Keeps RAM cost of fibers low, at the expense of CPU time

 Each fiber typically costs ~200 bytes.

 Event handlers (by default) run in their own fiber*

 Effectively decoupling kids’ code from nasty interrupt context code.

 Functions (e.g. scroll text) can block the calling fiber until the task completes…

 …and event handlers can safely execute users code without risk of locking out the CPU…

 …so our blocks program can simply and efficiently translate to this:

* Act ually, t his is a f ib. We use a novel technique called f ork-on-block to only cr eat e fiber sif the code inside an event handler at tempt s t o blocks t he fiber … but that’s for anot her day!

Fiber Scheduler: Providing Concurrent behaviour…
void onButtonA()

{

uBit.display.scroll(“hello”);

}

void onButtonB()

{

uBit.display.scroll(“goodbye”);

}

// Then in your main program...

uBit.messageBus.listen(MICROBIT_ID_BUTTON_A, MICROBIT_BUTTON_EVT_CLICK, onButtonA);

uBit.messageBus.listen(MICROBIT_ID_BUTTON_B, MICROBIT_BUTTON_EVT_CLICK, onButtonB);

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Device Drivers
 Each hardware component is supported by a corresponding C++ software

component:

 MicroBitAccelerometer

 MicroBitButton

 MicroBitMultiButton

 MicroBitCompass

 MicroBitDisplay

 MicroBitIO

 MicroBitLightSensor

 MicroBitRadio

 MicroBitSerial

 MicroBitStorage

 MicroBitThermometer

Device Drivers
 Complexity of fine grained initialization too great for most high level languages…

 So we wrap the common set of components together:

MicroBit uBit;

int main()

{

// initialise runtime

uBit.init();

// code!

uBit.display.scroll(“Hello World!”);

}

Memory Footprint
 micro:bit has 16Mhz Nordic nrf51822 CPU (32 bit Cortex M0)

 256 KB FLASH memory, 16KB SRAM…

micro:bit runtime

Nordic

Soft Device

BLE Bootloader 16 KB

98 KB

FLASH MEMORY SRAM MEMORY

Nordic

Soft Device

stack 2 KB

8 KB

ARMmbed/Nordic-sdk 2 KB

1.5 KB

User data 2.5 KB

micro:bit runtime

ARMmbed/Nordic-sdk 20 KB

~50 KB

User data ~72 KB

Power Efficiency

http://www.reuk.co.uk/wordpress/microbit-battery-capacity/

Nordic nrf51-sdk

ARM mbed

micro:bit runtime

Bluetooth Profile

Applications

Device DriversScheduler

Message Bus Managed Types

Bluetooth Profile
 Each driver component also mapped as RESTful Bluetooth API…

 MicroBitAccelerometerService

 MicroBitButtonService

 MicroBitMagnetometerService

 MicroBitLEDService

 MicroBitIOPinService

 MicroBitTemperatureService

 MicroBitEventService

 UARTService

 DeviceFirmwareUpdate

 Keyboard HID (coming soon)

 iBeacon/Eddystone (coming soon)

Bluetooth Profile

© Martin Woolley Bluetooth SIG

http://bluetooth-mdw.blogspot.co.uk/p/bbc-microbit.html
https://play.google.com/store/apps/details?id=com.bluetooth.mwoolley.microbitbledemo

MicroBitRadio
Simple, raw packet communications…

MicroBitRadio

http://lancaster-university.github.io/microbit-docs/

https://developer.mbed.org/platforms/Microbit/

https://codethemicrobit.com/

https://www.microbit.co.uk/

@microbitruntime lancaster-university/microbit-dal

Wanna go

play?

