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ABSTRACT
Typical retrieval systems have three requirements: a) Accurate re-
trieval i.e., the method should have high precision, b) Diverse re-
trieval, i.e., the obtained set of points should be diverse, c) Retrieval
time should be small. However, most of the existing methods ad-
dress only one or two of the above mentioned requirements. In this
work, we present a method based on randomized locality sensitive
hashing which tries to address all of the above requirements simul-
taneously. While earlier hashing approaches considered approxi-
mate retrieval to be acceptable only for the sake of efficiency, we
argue that one can further exploit approximate retrieval to provide
impressive trade-offs between accuracy and diversity. We extend
our method to the problem of multi-label prediction, where the goal
is to output a diverse and accurate set of labels for a given document
in real-time. Moreover, we introduce a new notion to simultane-
ously evaluate a method’s performance for both the precision and
diversity measures. Finally, we present empirical results on several
different retrieval tasks and show that our method retrieves diverse
and accurate images/labels while ensuring 100x-speed-up over the
existing diverse retrieval approaches.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Selection Process];
G.1.6 [Optimization]: [Quadratic and Integer programming]; G.3
[Probability and statistics]: [Probabilistic algorithms]

General Terms
Algorithms, Retrieval Performance

Keywords
Randomness, Approximation, Hash Functions, Diversity

1. INTRODUCTION
Nearest neighbor (NN) retrieval is a critical sub-routine for ma-
chine learning, databases, signal processing, and a variety of other
disciplines. Basically, we have a database of points, and an input
query, the goal is to return the nearest point(s) to the query using
some similarity metric. As a naïve linear scan of the database is

infeasible in practice, most of the research for NN retrieval has fo-
cused on making the retrieval efficient with either novel index struc-
tures [6, 41] or by approximating the distance computations [3, 17].
That is, the goal of these methods is: a) accurate retrieval, b) fast
retrieval.

However in practice, NN retrieval methods [12, 21] are expected
to meet one more criteria: diversity of retrieved data points. That
is, it is typically desirable to find data-points that are diverse and
cover a larger area of the space while maintaining high accuracy
levels. For instance, when a user is looking for flowers, a typical
NN retrieval system would tend to return all the images of the same
flower (say lilly). But, it would be more useful to show a diverse
range of images consisting of sunflowers, lillies, roses, etc. In this
work, we propose a simple retrieval scheme that addresses all of the
above mentioned requirements, i.e., a) accuracy, b) retrieval time,
c) diversity.

Our algorithm is based on the following simple observation: in
most of the cases, one needs to trade-off accuracy for diversity.
That is, rather than finding the nearest neighbor, we would need
to select a point which is a bit farther from the given query but
is dissimilar to the other retrieved points. Hence, we hypothesis
that approximate nearest neighbors can be used as a proxy to en-
sure that the retrieved points are diverse. While earlier approaches
considered approximate retrieval to be acceptable only for the sake
of efficiency, we argue that one can further exploit approximate
retrieval to provide impressive trade-offs between accuracy and di-
versity.

To this end, we propose a Locality Sensitive Hashing (LSH) based
algorithm that guarantees approximate nearest neighbor retrieval in
sub-linear time retrieval and superior diversity. We show that the
effectiveness of our method depends on randomization in the de-
sign of the hash functions. Further, we modify the standard hash
functions to take into account the distribution of the data for better
performance. In our approach, it is easy to see that we can obtain
higher accuracy with poor diversity and higher diversity with poor
accuracy. Therefore, similar to precision and recall, there is a need
to balance between accuracy and diversity in the retrieval. We keep
a balance between accuracy and diversity and try to maximize the
harmonic mean of these two criteria. Our method retrieves points
that are sampled uniformly at random to ensure diversity in the re-
trieval while maintaining reasonable number of relevant ones. Fig-
ure 1 contrasts our approach with the different retrieval methods.

The main contribution of this paper can be summarized as follows:
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(a) Accurate, Not diverse (b) Not Accurate, diverse (c) Accurate, diverse

Figure 1: Consider a toy dataset with two classes: class A (◦) and class B (�). We show the query point (?) along with ten points (•,�)
retrieved by various methods. In this case, we consider diversity to be the average pairwise distance between the points. a) A conventional
similarity search method (e.g: k-NN) chooses points very close to the query and therefore, shows poor in diversity. b) Greedy methods offer
diversity but might make poor choices by retrieving points from the class B. c) Our method finds a large set of approximate nearest neighbors
within a hamming ball of a certain radii around the query point and also ensuring the diversity among the points.

1. We formally define the diverse retrieval problem and show
that in its general form is NP-hard and that also the existing
methods are computationally expensive.

2. While approximate retrieval is acceptable only for sake of
efficiency, we argue that one can further exploit approximate
retrieval to provide impressive trade-offs between accuracy
and diversity.

3. We propose hash functions that characterizes the locality sen-
sitive hashing to retrieve approximate nearest neighbors in
sub-linear time and superior diversity.

4. We extend our method to diverse multi-label prediction prob-
lem and show that our method is not only orders of magni-
tude faster than the existing diverse retrieval methods but also
produces accurate and diverse set of labels.

2. RELATED WORK
2.1 Optimizing Relevance and Diversity
Many of the diversification approaches are centered around an opti-
mization problem that is derived from both relevance and diversity
criteria. These methods can be broadly categorized into the follow-
ing two approaches: (a) Backward selection: retrieve all the rele-
vant points and then find a subset among them with high diversity,
(b) Forward selection: retrieve points sequentially by combining
the relevance and diversity scores with a greedy algorithm [4, 10,
15, 44]. Most popular among these methods is MMR optimiza-
tion [4] which recursively builds the result set by choosing the next
optimal selection given the previous optimal selections.

Recent works [32, 35] have shown that natural forms of diversifi-
cation arise via optimization of rank-based relevance criteria such
as average precision and reciprocal rank. It is conjectured that
optimizing n − call@k metric correlates more strongly with di-
verse retrieval. More specifically, it is theoretically shown [32] that
greedily optimizing expected 1 − call@k w.r.t a latent subtopic
model of binary relevance leads to a diverse retrieval algorithm that
shares many features to the MMR optimization. However, the ex-
isting greedy approaches that try to solve the related optimization
problem are computationally more expensive than the simple NN,
rendering them infeasible for large scale retrieval applications.

Complementary to all the above methods, our work recommands
diversity in retrieval using randomization and not optimization. In
our work, instead of finding exact nearest neighbors to a query, we
retrieve approximate nearest neighbors that are diverse. Intuitively,

our work parallels with these works [32, 35], and generalizes to
arbitrary relevance/similairty function. In our findings, we theo-
retically show that approximate NN retrieval via locality sensitive
hashing naturally retrieve points which are diverse.

2.2 Application to multi-label prediction
A typical application of multi-label learning is automatic image/video
tagging [5, 38], where the goal is to tag a given image with all the
relevant concepts/labels. Other examples of multi-label instance
classification include bid phrase recommendation [1], categoriza-
tion of Wikipedia articles etc. In all cases, the query is typically an
instance (e.g., images, text articles) and the goal is to find the most
relevant labels (e.g., objects, topics). Moreover, one would like the
labels to be diverse.

For instance, for a given image, we would like to tag it with a small
set of diverse labels rather than several very similar labels. How-
ever, the given labels are just some names and we typically do not
have any features for the labels. For a given image of a lab, the
appropriate tags might be chair, table, carpet, fan etc. In addition to
the above requirement of accurate prediction of the positive labels
(tags), we also require the obtained set of positive labels (tags) to
be diverse. That is, for an image of a lab, we would prefer tags like
{table, fan, carpet}, rather than tags like {long table, short table,
chair}. The same problem can be extended to several other tasks
like document summarization, wikipedia document categorization
etc. Moreover, most of the existing multi-label algorithms run in
time linear in the number of labels which renders them infeasible
for several real-time tasks [39, 42]; exceptions include random
forest based methods [1, 29], however, it is not clear how to extend
these methods to retrieve diverse set of labels.

In Section 4.3, we propose a method that extends our diverse NN
retrieval based method to obtain diverse and sub-linear (in the num-
ber of labels) time multi-label prediction. Our method is based on
the LEML method [42] which is an embedding based method. The
key idea behind embedding based methods for multi-label learning
is to embed both the given set of labels as well as the data points
into a common low-dimensional space. The relevant labels are then
recovered by NN retrieval for the given query point (in the embed-
ded space). That is, we embed each label i into a k-dimensional
space (say yi ∈ Rk) and the given test point is also embedded in
the same space (say xq ∈ Rk). The relevant labels are obtained by
finding yi’s that are closest to xq . Note that as the final prediction
reduces to just NN retrieval, we can apply our method to obtain
diverse set of labels in sub-linear time.



2.3 Evaluation Measures
The need for diversity is not limited to retrieval and there has been
significant research in many applications [8, 20, 28]. In practice,
diversity is a subjective phenomenon [26]. For example, in active
learning [8], a diversity measure based on Shannon‘s entropy is
used. Probabilistic models like determinental point processes [13,
22] evaluate the diversity using real human feedback via Amazon‘s
Mechanical Turk. Structured SVM based framework [43] measures
diversity using subtopic coverage on manually labelled data.

Thus, the evaluation measures used to assess the performance of
different methods are also different. In our work, the definition of
what constitutes diversity varies across each task and is clearly de-
scribed. As mentioned above, we use harmonic mean between ac-
curacy and diversity as the main performance measure. We believe
that this performance measure is suitable for several applications
and helps us empirically compare different methods.

Paper Organization: First, we formalize the diverse retrieval prob-
lem in Section 3. We then present our diverse retrieval methods
based on locality senstive hash functions in Section 4. We also
present diverse multi-label prediction method in Section 4.3. We
describe our performance measure and experimental setup in Sec-
tion 5. Then, in Section 6, we provide empirical results on two
different (image and text) applications. Finally, we present our con-
clusions in Section 7.

3. DIVERSE RETRIEVAL OPTIMIZATION
Given a set of data points X = {(x1, y1), . . . , (xn, yn)} where
xi ∈ Rd, yi is a label and a query point q ∈ Rd, the goal is two-
fold: a) retrieve a set of points Rq = {xi1 , . . . , xik} such that a
majority of their labels correctly predicts the label of q. b) The set
of retrieved points Rq is “diverse”. Note that, in this work we are
only interested in finding k points that are relevent to the query. We
formally start with the two definitions that are empirically success-
ful and are widely used measures for similarity and diversity in the
context of retrieval:

DEFINITION 1. For a given two points, dis-similarity is de-
fined as the distance between the two points, say x and y, i.e.,
DisSim(x, y) = ‖x− y‖22

DEFINITION 2. For a given set of points, diversity is defined
as the average pairwise distance between the points of the set, i.e.,
Div(Rq) =

∑
a,b ‖xia − xib‖

2
2

With the above definitions, our goal is to find a subset of k points
which are both relevent to the query and diversified among them-
selves. Although it is not quite clear on how relevance and diver-
sity should be combined, we adopt a reminiscent [24] of the gen-
eral paradigm in machine learning of combining loss functions that
measures quality(e.g., training error, prior, or “relevance”) and a
regularization term that encourages desirable properties (e.g. smooth-
ness, sparsity, or “diversity”). To this end, we define the following
optimization problem.

min λΣni=1αi‖q − xi‖2 − (1− λ)Σijαiαj‖xi − xj‖2

s.t. Σni=1αi = k; ∀i ∈ {1, . . . n}αi ∈ {0, 1}
(1)

where λ ∈ [0, 1] is a parameter that defines the trade-off between
the two terms, and αi takes the value 1 if xi is present in the

result and 0 if it is not included in the retrieved result. With-
out loss of generality, we assume that xi, q are normalized to unit
norm, and with some simple substitutions like α = [α1, . . . αn],
c = −[qTx1, . . . , q

Txn], G be gram matrix with Gij = xTi xj , the
above objective is equivalent to

min λcTα+ αTGα

s.t. αT 1 = k;α ∈ {0, 1}n
(2)

From now on, we refer to the diverse retrieval problem in the form
of the optimization problem in Eq.(2). Finding optimal solutions
for the quadratic integer program in Eq.(2) is NP-hard [40]. Usually
QP relaxations [31, 18] (which are often called linear relaxations),
where integer constraints are relaxed to interval constraints, are ef-
ficiently solvable.

min λcTα+ αTGα

s.t. αT 1 = k; 0 ≤ α ≤ 1
(3)

In this work, we consider the following simple approach1 to solve
Eq.(2): We first remove the integrality constraint on the variables
i.e., allow variables to take on non-integral values to obtain a quadratic
optimization program in Eq.(3). Now, we find the optimal solution
to the quadratic program in Eq.(3). Note that the optimal solution
to the relaxed problem is not necessarily integral. Therefore, we se-
lect the top k values from the fractional solution and report it as the
integral feasible solution to Eq.(2). Although, this method yields a
good solution to Eq.(2) i.e., obtains accurate and diverse retrieval,
solving the QP Relaxation is much more time consuming than the
existing solutions (see Table 1 for more details). Therefore, it is of
greatest interest to look for computationally efficient solutions for
the diverse retrieval problem.

To this end, the existing approaches i.e., greedy methods [4, 10,
15, 44] for Eq.(1) and the QP relaxation method for Eq.(2) suffer
from two drawbacks: a) Running time of the algorithms is very
high as it is required to recover several exact nearest neighbors. b)
The obtained points might all be from a very small region of the
space and hence the diversity of the selected set might not be large.
c) Computation of the gram matrix may require an unreasonably
large amount of memory overhead for large datasets. In this work,
we propose a simple approach to overcome the above three issues.

4. METHODOLOGY
To find nearest neighbors, the basic LSH algorithm concatenates a
number of functions h ∈ H into one hash function g ∈ G. Infor-
mally, we say thatH is locality-sensitive if for any two points a and
b, the probability of a and b collide under a random choice of hash
function depends only on the distance between a and b. Several
such families are known in the literature, see [2] for an overview.

DEFINITION 3. (Locality-sensitive hashing): A family of hash
functionsH : Rd → {0, 1} is called (r, ε, p, q )-sensitive if for any
a, b ∈ Rd{

Prh∈H[h(a) = h(b)] ≥ p, if d(a, b) ≤ r
Prh∈H[h(a) = h(b)] ≤ q, if d(a, b) ≥ (1 + ε)r

Here, ε > 0 is an arbitrary constant, p > q and d(., .) is some
distance function.
1We refer to this method with QP-Rel in our experimental evalua-
tions as one of our baselines.



In this work, we use `2 norm as the distance function and adopt the
following hash function:

h(a) = sign(r · a) (4)

where r ∼ N (0, I). It is well known that h(a) is a LSH function
w.r.t `2 norm and it is shown to satisfy the following:

Pr(h(a) 6= h(b)) =
1

π
cos−1

(
a · b

‖a‖2‖b‖2

)
. (5)

Our approach is based on the following high-level idea: perform
randomized approximate nearest neighbor search for q which se-
lects points randomly from a small disk around q. As we show
later, locality sensitive hashing with standard hash functions actu-
ally possess such a quality. Hence, the retrieved set would not only
be accurate (i.e. has small distance to q) but also diverse as the
points are selected randomly from the neighborhood of q. In our
algorithm, we retrieve more than the required k neighbors and then
select a set of diverse neighbors by using a greedy method. See
Algorithm 1 for a detailed description of our approach.

Algorithm 1: LSH with random hash functions (LSH-Div)

Input: X = {x1 . . . , xn}, where xi ∈ Rd, a query q ∈ Rd and k
an integer.

1 Preprocessing: For each i ∈ [1 . . . L], construct a hash function,
gi = [h1,i, . . . , hl,i], where h1,i, . . . , hl,i are chosen at random
fromH. Hash all points in X to the ith hash table using the
function gi

2 R← φ
3 for i← 1 to L do
4 Perform a hash of the query gi(q)
5 Retrieve points from ith hash table & append toRq
6 Sq ← φ
7 for i← 1 to k do
8 r∗ ← argmin(r∈Rq)(λ‖q − r‖

2 − 1
i
Σs∈Sq‖r − s‖2)

9 Rq ←Rq \ r∗
10 Sq ← Sq ∪ r∗

Output: Sq , k diverse set of points

The algorithm executes in two phases: i) perform search through
the hash tables, line(2-4), to report the approximate nearest neigh-
bors, Rq ⊂ X and ii) perform k iterations, line(6-9), to report a
diverse set of points, Sq ⊂ Rq . Throughout the algorithm, several
variables are used to maintain the trade-off between the accuracy
and diversity of the retrieved points. The essential control vari-
ables that direct the behaviour of the algorithm are: i) the number
of points retrieved from hashing, |Rq| and ii) the number of diverse
set of points to be reported, k. Here, Rq can be controlled at the
design of hash function, i.e., the number of matches to the query is
proportional to n

1
1+ε . Therefore, line 7 (can be optional) is critical

for the efficiency of the algorithm, since it is an expensive compu-
tation, especially when |Rq| is very big, or k is large. More details
of our algorithm are discussed in section 4.4.

4.1 Diversity in Randomized Hashing
An interesting aspect of the above mentioned LSH function in Eq.(5)
is that it is unbiased towards any particular direction, i.e., Pr(h(q) 6=
h(a)) is dependent only on ‖q − a‖2 (assuming q, a are both nor-
malized to unit norm vectors). But, depending on a sample hyper-
plane r ∈ Rd, a hash function can be biased towards one or the

other direction, hence preferring points from a particular region.
Interestingly, we show that if the number of hash bits is large, then
all the directions are sampled uniformly and hence the retrieved
points are sampled uniformly from all the directions. That is, the
retrieval is not biased towards any particular region of the space.
We formalize the above observation in the following lemma.

DEFINITION 4. (Hoeffding‘s Inequality [25]) LetZ1, . . . , Zn
be n i.i.d. random variables with f(Z) ∈ [a, b] . Then for all
ε ≥ 0, with probability at least 1− δ we have

P [‖ 1

n

n∑
i=1

f(Zi)− E(f(Z))‖] ≤ (b− a)

√
log( 2

δ
)

2n

LEMMA 4.1. Let q ∈ Rd and let Xq = {x1, . . . , xm} be unit
vectors such that ‖q − xi‖2 = ‖q − xj‖2 = r, ∀i, j. Let p =
1
π

cos−1(1 − r2/2). Also, let r1, . . . , r` ∼ N (0, I) be ` random
vectors. Define hash bits g(x) = [h1(x) . . . h`(x)] ∈ {0, 1}1×`,
where hash functions hb(x) = sign(rb · x), 1 ≤ b ≤ `. Then, the
following holds ∀i:

p−

√
log( 2

δ
)

2l
≤ 1

l
||g(q)− g(xi)||1 ≤ p+

√
log( 2

δ
)

2l

That is, if
√
l � 1/p, then hash-bits of the query q are almost

equi-distant to the hash-bits of each xi.

PROOF. Consider random variable Zib, 1 ≤ i ≤ m, 1 ≤ b ≤ `
where Zib = 1 if hb(q) 6= hb(xi) and 0 otherwise. Note that Zib
is a Bernoulli random variable with probability p. Also, Zib, ∀1 ≤
b ≤ ` are all independent for a fixed i. Hence, applying Hoeffding’s
inequality, we obtain the required result.

Note that the above lemma shows that if x1, . . . , xm are all at dis-
tance r from a given query q then their respective hash bits are also
at a similar distance to the hash bits of q. That is, assuming random-
ization selection of the candidates from a hash bucket, probability
of selecting any xi is almost the same. That is, the points selected
by LSH are nearly uniformly at random and are diverse.

4.2 Randomized Compact Hashing
In Algorithm 1, we obtained hash functions by selecting hyper-
planes from a normal distribution. The conventional LSH approach
considers only random projections. Naturally, by doing random
projection, we will lose some accuracy. But we can easily fix this
problem by doing multiple rounds of random projections. How-
ever, we need to perform a large number of projections (i.e. hash
functions in the LSH setting) to increase the probability that simi-
lar points are mapped to similar hash codes. A fundamental result
of Johnson and Lindenstrauss Theorem [19] says that O( lnn

ε2
) ran-

dom projections are needed to preserve the distance between any
two pair of points, where ε is the relative error.

Therefore, using many random vectors to generate the hash tables
(a long codeword), leads to a large storage space and a high com-
putational cost, which would slow down the retrieval procedure. In
practice, however, the data lies in a very small dimensional sub-
space of the ambient dimension and hence a random hyper-plane
may not be very informative. Instead, we wish to use more data



driven hyper-planes that are more discriminative and separate out
neighbors from far-away points. To this end, we obtain the hyper-
planes r using principal components of the given data matrix. Prin-
cipal components are the directions of highest variance of the data
and captures the geometry of the dataset accurately. Hence, by us-
ing principal components, we hope to reduce the required number
of hash bits and hash tables required to obtain the same accuracy in
retrieval.

That is, given a data matrix X ∈ Rd×n where i-th column of X
is given by xi, we obtain top-α principal components of X using
SVD. That is, let U ∈ Rd×α be the singular vectors corresponding
to the top-α singular values of X . Then, a hash function is given
by: h(x) = sign(rTUTx) where r ∼ N (0, I) is a random α-
dimensional hyper-plane. In the subsequent sections, we denote
this algorithm using LSH-SDiv.

Many learning based hashing methods [23, 34, 37] are proposed in
literature. The simplest of all such approaches is PCA Hashing [36]
which chooses the random projections to be the principal directions
of the data directly. Our algorithm LSH-SDiv method is different
from PCA Hashing in the sense that we still select random direc-
tions in the top components. Note that the above hash function has
reduced randomness but still preserves the discriminative power by
projecting the randomness onto top principal components ofX . As
shown in Section 6, the above hash function provides better nearest
neighbor retrieval while recovering more diverse set of neighbors.

4.3 Diverse Multi-label Prediction
We now present an extension of our method to the problem of
multi-label classification. Let X = {x1, . . . , xn}, xi ∈ Rd and
Y = {y1, . . . , yn}, where yi ∈ {−1, 1}L be L labels associated
with the i-th data point. Then, the goal in the standard multilabel
learning problem is to predict the label vector yq accurately for a
given query point q. Moreover, in practice, the number of labels L
is very large, so we require our prediction time to scale sublinearly
with L.

In this work, we build upon the LEML method proposed by [42]
that can solve multi-label problems with a large number of labels
and data points. In particular, LEML learns matrices W,H s.t.
given a point q, its predicted labels is given by yq = sign(WHTx)
whereW ∈ RL×k andH ∈ Rd×k and k is the rank of the parame-
ter matrixWHT . Typically, k � min(d, L) and hence the method
scales linearly in both d and L. For instance, its prediction time is
given by O((d+ L) · k).

However, for several widespread problems, the O(L) prediction
time is quite large and makes the method infeasible in practice.
Moreover, the obtained labels from this algorithm can all be very
highly correlated and might not provide a diverse set of labels which
we desire.

We overcome both of the above limitations of the algorithm us-
ing the LSH based algorithm introduced in the previous section.
We now describe our method in detail. Let W1,W2, . . . ,WL be
L data points where Wi ∈ R1×k is the i-th row of W . Also,
let HTx be a query point for a given x. Note that the task of
obtaining α positive labels for given x is equivalent to finding α
largest Wi · (HTx). Hence, the problem is the same as near-
est neighbor search with diversity where the data points are given
by W = {W1,W2, . . . ,WL} and the query point is given by
q = HTx.

Algorithm 2: LSH based Multi-label Classification
Input: Train data: X = {x1, . . . , xn}, Y = {y1, . . . , yn}. Test data:

Q = {q1, . . . , qm}. Parameters: α, k.
[W, H]=LEML(X , Y , k);
Sq = LSH-SDiv(W,HT q, α), ∀q ∈ Q;
ŷq = Majority({yi s.t. xi ∈ Sq}), ∀q ∈ Q;
Output: ŶQ = {ŷq1 , . . . , ŷqm}

We now apply our LSH based methods to the above setting to ob-
tain a “diverse” set of labels for the given data point x. Moreover,
the LSH Theorem by [14] shows that the time of retrieval is sub-
linear in L which is necessary for the approach to scale to a large
number of examples. See Algorithm 2 for the pseudo-code of our
approach.

4.4 Algorithmic Analysis
As discussed above, locality sensitive hashing is a sub-linear time
algorithm for approximate near(est) neighbor search that works by
using a carefully selected hash function that causes objects or doc-
uments that are similar to have a high probability of colliding in
a hash bucket. Like most indexing strategies, LSH consists of two
phases: hash generattion, where the hash tables are constructed and
querying, where the hash tables are used to look up for points sim-
ilar to the query. Here, we briefly comment on the algorithmic and
statistical aspects which are important for the suggested algorithms
in the previous sections.

Hash Generation: In our algorithm, for l specified later, we use
a family G of hash functions g(x) = (h1(x), . . . , hl(x)), where
hi ∈ H . For an integer L, the algorithm chooses L functions
g1, . . . , gL from G, independently and uniformly at random. The
algorithm then createsL hash arrays, one for each function gj . Dur-
ing preprocessing, the algorithm stores each data point x ∈ X into
bucket gj(x) for all j = 1, . . . , L. Since the total number of buck-
ets may be large, the algorithm retains only the non-empty buckets
by resorting to standard hashing.

Querying: To answer a query q, the algorithm evaluates g1, . . . , gL,
and looks up the points stored in those buckets in the respective
hash arrays. For each point p found in any of the buckets, the al-
gorithm computes the distance from q to p, and reports the point p
if the distance is at most r. Different strategies can be adopted to
limit the number of points reported to the query q, see [2] for an
overview.

Accuracy: Since, the data structure used by LSH scheme is ran-
domized: the algorithm must output all points within the distance r
from q, and can also output some points within the distance (1+ε)r
from q. The algorithm guarantees that each point within the dis-
tance r from q is reported with a constant (tunable) probability.
The parameters l and L are chosen [16] to satisfy the requirement
that a near neighbors are reported with a probability at least (1−δ).
Note that the correctness probability is defined over the random bits
selected by the algorithm, and we do not make any probabilistic as-
sumptions about the data distribution.

Diversity: In lemma 4.1, if the number of hash bits is large i.e, if√
l � 1/p, then hash-bits of the query q are almost equi-distant

to the hash-bits of each point in xi. Then all the directions are
sampled uniformly and hence the retrieved points are uniformly
spread in all the directions. Therefore, for reasonable choice of the



parameter l, the proposed algorithm obtains diverse set of points,
Sq and has strong probabilistic guarantees for large databases of
arbitrary dimensions.

Scalability: The time for evaluating the gi functions for a query
point q isO(dlL) in general. For the angular hash functions chosen
in our algorithn, each of the l bits output by a hash function gi
involves computing a dot product of the input vector with a random
vector defining a hyperplane. Each dot product can be computed
in time proportional to the number of non-zeros ζ rather than d.
Thus, the total time isO(ζlL). For an interested reader, see that the

Theorem 2 of [7] guarantees that L is at most O(N
1

(1+ε) ), where
N denotes the total number of points in the database.

5. EXPERIMENTAL SETUP
We demonstrate our approach applied to the following two tasks:
(a) Image Category Retrieval and (b) Multi-label Prediction

In the case of image retrieval task, we are interested in retrieving
diverse images of a specific category. In our case, each of the image
categories have associated subcategories (e.g.. flower is a category
and lilly is a subcategory) and we would like to retrieve the relevant
(to the category) but diverse images that belong to different sub-
categories. The query is represented as a hyperplane that is trained
(SVM [33]) offline to discriminate between positive and negative
classes.

Next, we apply our diverse retrieval method to the multi label clas-
sification problem; see previous section for more details. Our ap-
proach is evaluated on LSHTC2 dataset containing Wikipedia text
documents. Each document is represented with the help of a set
of categories or class labels. A document can have multiple labels
and we are interested in predicting a set of categories to a given
document. We model this problem as retrieving a relevant set of
labels from a large pool of labels. In this case, we retrieve labels
that match the semantics of the document and also have enough
diversity among them.

5.1 Evaluation Criteria
In both these experiments, our goal is two-fold: 1) improve diver-
sity in the retrieval and 2) demonstrate speedups of the our pro-
posed algorithms. We now present formal metrics to measure per-
formance of our method on three key aspects of NN retrieval: (i)
accuracy (ii) diversity and (iii) efficiency. We characterize the per-
formance in terms of the following measures:

• Accuracy: We denote precision at k (P@k) as the measure
of accuracy of the retrieval. This is the proportion of the
relevant instances in the top k retrieved results. In our results,
we also report the recall and f-score results when applicable,
to compare the methods in terms of multiple measures.

• Diversity: For image retrieval, the diversity in the retrieved
images is measured using entropy as D =

Σmi=1si log si
logm

,
where si is the fraction of images of ith subcategory, and
m is the number of subcategories for the category of interest.
For multi label classification, the relationships between the
labels is not a simple tree. It is better captured using a graph
and the diversity is then computed using drank [27]. Drank

2http://lshtc.iit.demokritos.gr/LSHTC3_CALL

captures the extent to which the labels of the documents be-
long to multiple categories.

• Efficiency: Given a query, we consider retrieval time to be
the time between posing a query and retrieving images/labels
from the database. For LSH based methods, we first load all
the LSH hash tables of the database into the main memory
and then retrieve images/labels from the database. Since, the
hash tables are processed offline, we do not consider the time
spent to load the hash tables into the retrieval time. All the
retrieval times are based on a Linux machine with Intel E5-
2640 processor(s) with 96GB RAM.

5.2 Combining Accuracy and Diversity
Tradeoffs between accuracy and efficiency in NN retrieval have
been studied well in the past [3, 17, 30, 41]. Many methods com-
promise on the accuracy for better efficiency. Similarly, empha-
sizing higher diversity may also lead to poor accuracy and hence,
we want to formalize a metric that captures the trade-off between
diversity and accuracy.

To this end, we use (per data point) harmonic mean of accuracy
and diversity as overall score for a given method (similar to f-
score providing a trade off between precision and recall). That is,
h − score(A) =

∑
i

2·Acc(xi)·Diversity(xi)
Acc(xi)+Diversity(xi)

, where A is a given
algorithm and xi’s are given test points. In all of our experiments,
parameters are chosen by cross validation such that the overall h-
score is maximized.

6. EMPIRICAL RESULTS
6.1 Image Category Retrieval
For the image category retrieval, we consider a set of 42K images
from imageNet database [9] with 7 synsets (categories) (namely
animal, bottle, flower, furniture, geography, music, vehicle) with
five subtopics for each. Images are represented as a bag of visual
words histogram with a vocabulary size of 48K over the densely
extracted SIFT vectors. For each categorical query, we train an
SVM hyperplane using LIBLINEAR [11]. Since, there are only
seven categories in our dataset, for each category we created 50
queries by randomly sampling 10% of the images. After creating
the queries, we are left with 35K images which we use for the
retrieval task. We report the quantitative results in Table 1 by the
mean performance of all 350 queries. A few qualitative results on
this dataset are shown in Figure 3.

We conducted two sets of experiments, 1) Retrieval without using
hash functions and 2) Retrieval using hash functions, to evaluate
the effectiveness of our proposed method. In the first set of exper-
iments, we directly apply the existing diverse retrieval methods on
the complete dataset. In the second set of experiments, we first se-
lect a candidate set of points by using the hash functions and then
apply one of these methods to retrieve the images.

We hypothesize that using hash functions in combination with any
of the diverse retrieval methods will improve the diversity and the
overall performance (h-score) with significant speed-ups. To val-
idate our hypothesis, we evaluate various diverse retrieval meth-
ods in combination with our hash functions as described in Al-
gortihm 1. It can be noted that lines 6-10 in Algorithm 1 can
be replaced with various retrieval methods and can be compared
against the methods without hash functions. In particular, we show
the comparison with the following retrieval methods: the k-nearest

http://lshtc.iit.demokritos.gr/LSHTC3_CALL


Table 1: We show the performance of various diverse retrieval methods on the ImageNet dataset. We evaluate the performance in terms of
precision(P), sub-topic recall(SR) and Diversity(D) measures at top-10, top-20 and top-30 retrieved images. Numbers in bold indicate the
top performers. NH corresponds to the method without using any hash function. Notice that for all methods, except Greedy, LSH-Div and
LSH-SDiv hash functions consistently show better performance in terms of h-score than the method with NH. Interestingly, we also have the
top performers best in terms of retrieval time.

precision at 10 precision at 20 precision at 30

Method Hash Function P SR D h time
(sec) P SR D h time

(sec) P SR D h time
(sec)

NH 1.00 0.60 0.53 0.66 0.621 0.99 0.72 0.60 0.73 0.721 0.99 0.79 0.65 0.77 0.845
NN LSH-Div 0.97 0.79 0.76 0.84 0.112 0.93 0.93 0.86 0.89 0.137 0.89 0.98 0.91 0.90 0.179

LSH-SDiv 0.98 0.76 0.73 0.83 0.181 0.95 0.89 0.85 0.89 0.183 0.92 0.95 0.89 0.90 0.106
NH 1.00 0.73 0.69 0.81 0.804 0.99 0.79 0.70 0.81 0.793 0.99 0.88 0.77 0.86 0.901

Rerank LSH-Div 0.93 0.80 0.76 0.83 0.142 0.92 0.93 0.86 0.88 0.146 0.87 0.98 0.90 0.88 0.214
LSH-SDiv 0.95 0.79 0.76 0.84 0.154 0.94 0.91 0.85 0.89 0.179 0.90 0.95 0.88 0.89 0.203
NH 0.95 0.75 0.71 0.80 5.686 0.98 0.86 0.77 0.85 11.193 0.97 0.90 0.80 0.87 17.162

Greedy [10] LSH-Div 0.89 0.80 0.76 0.81 1.265 0.68 0.88 0.81 0.72 2.392 0.53 0.89 0.80 0.62 4.437
LSH-SDiv 0.91 0.78 0.76 0.82 0.986 0.69 0.88 0.80 0.73 2.417 0.52 0.88 0.80 0.61 3.537
NH 0.92 0.73 0.68 0.77 5.168 0.95 0.86 0.75 0.83 10.585 0.96 0.90 0.76 0.84 16.524

MMR [4] LSH-Div 0.91 0.77 0.73 0.80 1.135 0.91 0.92 0.85 0.87 2.378 0.87 0.97 0.89 0.88 3.828
LSH-SDiv 0.92 0.78 0.75 0.81 1.102 0.93 0.91 0.84 0.88 2.085 0.89 0.96 0.88 0.88 4.106
NH 1.00 0.74 0.69 0.81 704.9 1.00 0.82 0.73 0.84 947.09 1.00 0.87 0.76 0.86 1137.19

QP-Rel LSH-Div 0.93 0.80 0.77 0.83 0.487 0.92 0.94 0.86 0.88 0.499 0.86 0.98 0.90 0.88 0.502
LSH-SDiv 0.97 0.78 0.74 0.83 0.447 0.96 0.89 0.82 0.88 0.464 0.93 0.95 0.86 0.89 0.473

neighbor (NN), the QP-Rel method and the diverse retrieval meth-
ods like Backward selection (Rerank), Greedy [15], MMR [4]. In
Table 1, we denote NH as Null Hash i.e, without using any hash
function, LSH-Div with the random hash function and LSH-SDiv
with the (randomized) PCA hash function.

We can see in Table 1, that our hash functions in combination with
various methods are superior to the methods with NH. Our exten-
sions based on LSH-Div and LSH-SDiv hash functions out-perform
in all cases with respect to the h-score. Interestingly, LSH-Div and
LSH-SDiv with NN report maximum h-score than any other meth-
ods. This observation implies that diversity can be preserved in
the retrieval by directly using standard LSH based nearest neighbor
method. We also report a significant speed up even for a moder-
ate database of 35K images. Readers familiar with LSH will also
agree that our methods will enjoy better speed up in presence of
larger databases and higher dimensional representations.

In Table 1 the greedy method with our hash functions reports very
low precision at top-20 and top-30 retrievals. This indicates that
the greedy method may sometimes pick points too far from the
query and might report images that are not relevant to the query.
This observation is illustrated with our toy dataset in Figure 1.
Notice that the existing diverse retrieval methods with NH report
diverse images, but they are highly inefficient with respect to the
retrieval time. Especially, the QP-Rel method also needs unrea-
sonable memory for storing the gram matrix. To avoid any mem-
ory leaks, we partitioned the images into seven (number of cate-
gories) blocks and evaluated the queries independently i.e., when
the query is flower, we only look at the block of flower images
and retrieve diverse set of flowers. Although the QP-Rel method
acheives better diversity, it is still computationally very expensive.
Having such clear partitions is highly impractical and not feasible
for other task/large datasets. We therefore, omit the results using
QP-Rel method on the multi-label prediction task.

6.2 Multi-label Prediction
We use one of the largest multi-label datasets, LSHTC, to show the
effectiveness of our proposed method. This dataset contains the
wikipedia documents with more than 300K labels. To avoid any
bias towards the most frequently occurring labels, we selected only
the documents which have at least 4 or more labels. Thus, we have
a data set of 754K documents with 259K unique labels. For our
experiment, we randomly divide the data in 4:1 ratio for training
and testing respectively. We use the large scale multi label learning
(LEML) [42] algorithm to train a linear multi-class classifier. This
method is shown to provide state of the art results on many large
multi label prediction tasks.

In Table 2, we report the performance of the label prediction with
LEML and compare with our methods that predict diverse labels ef-
ficiently. Since, the number of labels for each document varies, we
used a threshold parameter to limit the number of predicted labels
to the documents. We selected the threshold by cross validating
such that it maximizes the h-score. The precision and recall values
corresponding to this setting are shown in the table. We also show
the f-score computated as the harmonic mean of precision and re-
call in each case.

In LSHTC3 dataset, the labels are associated with a category hier-
archy which is cyclic and unbalanced i.e., both the documents and
subcategories are allowed to belong to more than one other cate-
gory. In such cases, the notion of diversity i.e., the extent to which
the predicted labels belong to multiple categores can be estimated
using drank [27]. Since, the category hierarchy graph is cyclic, we
prune the hierarchy graph to obtain a balanced tree by using the
BFS traversal. The diversity of the predicted labels is computed as
the drank score on this balanced tree. In Table 2, we report the over-
all performance of a method in terms of h-score i.e., the precision
and the drank score.



Table 2: Results on LSHTC3 challenge dataset with LEML, MMR,
PCA-Hash, LSH-Div and LSH-SDiv methods. LSH-SDiv method
significantly outperforms both LEML, MMR, PCA-Hash and LSH-
Div methods in terms of overall performance, h-score as well as the
retrieval time.

Method P R f-score D h time (msec)
LEML [42] 0.304 0.196 0.192 0.827 0.534 137.1
MMR [4] 0.275 0.134 0.175 0.865 0.418 458.8
PCA-Hash 0.265 0.096 0.121 0.872 0.669 5.9
LSH-Div 0.144 0.088 0.083 0.825 0.437 7.2
LSH-SDiv 0.318 0.102 0.133 0.919 0.734 5.7

As can be seen from Table 2, the LSH-Div method shows a reason-
able speedup but fails to report many of the accurate labels i.e., has
low precision. Since, the LSHTC3 dataset is highly sparse in a large
dimension, random projections generated by LSH-Div method are
a bit inaccurate and might have resulted in poor accuracy.

The proposed LSH-SDiv approach significantly boosts the accu-
racy, since, the random vectors in the hash function are projected
onto the principal components that capture the data distribution ac-
curately. The results shown in table are obtained by using 100 ran-
dom projections for both LSH-Div and LSH-SDiv hash functions.
For the LSH-SDiv method, we project the random projections onto
the top 200 singular vectors obtained from the data points.

Clearly, LSH-SDiv based hash function improves the diversity within
the labels and outperforms LEML, MMR, PCA-Hash and LSH-Div
methods in terms of overall performance (h-score). In summary, we
obtain a speed-up greater than 20 over LEML method and greater
than 80 over MMR method on this dataset. Note that, we omit-
ted the results with greedy method as they failed to report accurate
labels in this task.

6.3 Discussions
In this section, we focus on showing the trade-offs between accu-
racy, diversity and run-time. Figure 2 illustrates the performance
on LSHTC3 dataset with respect to the parameter ε. In the figure
we show the performance obtained when 100 random projections
are selected for the LSH-Div method. For the LSH-SDiv method
we project the 100 random projections onto the top-200 singular
vectors obtained from the data. Notice that the conventional LSH
hash function considers only random projections and fails to five
good accuracy. As discussed in Section 4.1, a large number of ran-
dom projections are needed to retrieve accurate labels, which would
slow down the retrieval procedure.

In contrast, the LSH-SDiv method can successfully preserve the
distances i.e., report accurate labels by projecting onto a set of
β principal components if the data is embedded in β dimensions
only. Similarly, if the β + 1-th singular value of the data matrix
is σβ+1 then the distances are preserved upto that error and has no
dependence on say ε that is required by standard LSH hash func-
tion. Hence, LSH-SDiv based technique typically requires much
smaller number of hash functions than the standard LSH method
and hence, is much faster as well (see Table 1 and Table 2).

Our empirical evidences from the above experiments confirm that
we have a high precision for the image category retrieval scenario,
a low precision for the multi-label prediction scenario. We demon-
strated that the proposed algorithm is effective and robust, since, it

improves diversity even when retrieving relevant results is difficult.
Moreover, our algorithm can adopt to the data distribution while
still retrieving accurate and diverse results. Our approach comes
with an additional advantage of being more efficient computation-
ally, which is crucial for large datasets.

7. CONCLUSIONS
In this paper, we present an approach to efficiently retrieve diverse
results based on randomized locality sensitive hashing. We argue
that standard hash functions retrieve points that are sampled uni-
formly at random in all directions and hence ensure diversity by
default. We show that, for two applications (image and text), our
proposed methods retrieve significantly more diverse and accurate
data points, when compared to the existing methods. The results
obtained by our approach are appealing: a good balance between
accuracy and diversity is obtained by using only a small number
of hash functions. We obtained 100x-speed-up over existing di-
verse retrieval methods while ensuring high diversity in retrieval.
The proposed solution is an highly efficient with theoretical guar-
antees for the sub-linear retrieval time and therefore, the algorithms
are interesting and should make more useful and attractive for all
practical purposes.

8. FUTURE WORK
We believe that other approximate nearest neighbor retrieval algo-
rithms like Randomized KD-Trees also encourage diversity in the
retrieval. In our case, the rigorous theory of locality senstive hash-
ing functions naturally supports its performance in relevance, di-
versity and retrieval time. Note that the random hash functions
designed in our methods are only geared to maintain spread among
points with very high probability. While doing so, the algorithm
has no way of knowing which solutions are diverse and which are
not diverse. Therefore, for these methods, the task of providing
any guarantees of the true solution to the diverse retrieval problem
is challenging. With this respect, it would be interesting to examine
the existence of approximation guarantees to the optimal solution.
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Figure 3: In the plot, we show qualitative results for seven example queries from the ImageNet database. Top-10 retrieved images are shown
for three methods: the first column with the simple NN method, the second coloum with Greedy MMR method, and the third coloumn with
the proposed LSH-SDiv method. The images marked with dotted box are the incorrectly retrieved images with respect to the query. Notice
that the greedy method fails to retrieve accurate retrieval for some of the queries. Our method, consistently retrieves relevant images and
simultaneouly shows better diversity. (Image best viewed in color.)
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