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Abstract

We present Centiman, a system for high performance, elas-

tic transaction processing in the cloud. Centiman provides

serializability on top of a key-value store with a lightweight

protocol based on optimistic concurrency control (OCC).

Centiman is designed for the cloud setting, with an archi-

tecture that is loosely coupled and avoids synchronization

wherever possible. Centiman supports sharded transaction

validation; validators can be added or removed on-the-fly in

an elastic manner. Processors and validators scale indepen-

dently of each other and recover from failure transparently to

each other. Centiman’s loosely coupled design creates some

challenges: it can cause spurious aborts and it makes it dif-

ficult to implement common performance optimizations for

read-only transactions. To deal with these issues, Centiman

uses a watermark abstraction to asynchronously propagate

information about transaction commits through the system.

In an extensive evaluation we show that Centiman pro-

vides fast elastic scaling, low-overhead serializability for

read-heavy workloads, and scales to millions of operations

per second.

Categories and Subject Descriptors H.2.4 [Database Man-

agement]: Systems—Concurrency, Transaction processing,

Distributed databases

Keywords optimistic concurrency control, elastic transac-

tion processing, sharded validation

1. Introduction

Transaction processing has long been a cornerstone of

database functionality, and it remains so today, in the era

of the cloud. Notwithstanding the popularity of key-value
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stores [1, 2, 21, 25, 39] that prioritize maximum scalability

and do not support multi-item transactions, there is a lot of

interest in supporting ACID transactions in the cloud.

The cloud setting introduces new challenges for data

management due to a distributed, loosely coupled infras-

tructure [44]. Storage is sharded and/or replicated, and the

nodes performing the processing are separate from the stor-

age system. Each component may fail independently; we

need to handle this with efficient recovery and/or migration

of work. In addition, as workloads grow and shrink, a cloud-

based transactional solution should scale elastically. Finally,

the proposed solution should be easy to deploy on the com-

modity cloud, so it should make minimum demands on the

APIs of the components that form its building blocks.

We have seen a large effort from the research commu-

nity to support transactions in the cloud and in distributed

systems more generally. Various tradeoffs have emerged: for

example, there are systems which provide weaker consis-

tency guarantees than serializability in order to gain scal-

ability benefits [10, 42, 43, 53]. Among systems that sup-

port strong consistency guarantees, some restrict the type of

transactions permitted [59, 60], or partition data and support

ACID semantics only within a partition, with weaker guar-

antees provided across partitions [11, 24, 34, 35, 46].

In this paper, we present Centiman: a transaction process-

ing solution that is designed for the cloud. Centiman pro-

vides full ACID guarantees and supports millions of opera-

tions per second without restricting the permitted transaction

types or semantics. It is simple to deploy on commodity in-

frastructure on top of any existing key-value store. Finally,

Centiman allows elastic scaling for every component of the

system (data storage, processing, validation).

Centiman maintains transactional guarantees using a vari-

ant of the optimistic concurrency control (OCC) protocol

[37], which is justifiably popular in distributed transaction

processing [11, 17, 18, 22, 28, 46, 47] due to its low over-

head in the low-contention setting [5].

The distinguishing feature in Centiman is that validation

is sharded and proceeds in parallel on a set of validators that

can grow or shrink as needed. Thus, in a multi-tenant setting,

small tenants can use one validator and reap the advantages



of locality while large tenants can scale out elastically. Under

normal operation, the only points of synchronization in the

system are the start of validation (to ensure that transactions

enter validation in timestamp order), and the point where a

processor responsible for a transaction collects all the val-

idators’ outcomes and combines them into a single commit

or abort decision. All other phases proceed asynchronously.

In particular, the writes of a transaction can be propagated

to storage asynchronously and interleave with the reads and

writes of other transactions. Moreover, the validators never

need to communicate with each other.

This loosely coupled design does come with challenges.

The first is spurious aborts. Validators do not know the

global outcome of the validation; even if a transaction aborts,

an individual validator may believe it to have committed.

The validator will thus validate future transactions against

it, potentially detecting false conflicts.

The second challenge relates to read-only transactions. In

normal OCC, we can allow such transactions to bypass val-

idation if we ensure that they read a consistent snapshot of

the database [7, 38]. Because Centiman does not require a

transaction’s writes to be installed to storage atomically, it is

difficult to ensure that a transaction reads a recent and con-

sistent snapshot of the database. Thus, the above optimiza-

tions are harder to implement.

Both of the above issues could be solved with synchro-

nization; we could communicate abort decisions to the val-

idators and we could require transactional guarantees on the

installation of writes to storage. However, this would intro-

duce additional points of blocking. Instead, we use a wa-

termark abstraction to asynchronously disseminate through

the system information about which transactions have com-

mitted and completed writing to storage, and consequently

which records in storage are “stable.” This addresses both

issues without introducing points of blocking in the system.

Watermarks allow validators to learn about aborted transac-

tions and maintain their state more precisely, and we can use

them to bypass validation for read-only transactions in cer-

tain cases. The watermarking technique is applicable beyond

Centiman to improve performance in other OCC systems.

In the Centiman system, we make the following spe-

cific contributions. First, we show how to perform sharded

OCC validation with minimum system-wide synchroniza-

tion through the use of watermarks. Second, we explain how

to implement watermark-based OCC validation in a cloud

setting that supports elastic scaling. Finally, we present an

extensive experimental evaluation of our implemented sys-

tem. The system scales to over 230 thousand transactions

per second for a variant of the TPC-C benchmark and over 4

million transactions per second for the TATP workload when

running on commodity Amazon EC2 nodes.

In the remainder of this paper, we introduce the overall ar-

chitecture of Centiman (Section 2) and our watermark-based

sharded validation approach (Section 3). We discuss the sys-
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Figure 1: Centiman System Architecture

tem implementation (Section 4), present our experimental

evaluation (Section 5), discuss related work (Section 6) and

finally conclude and discuss future work (Section 7).

2. The Centiman system

In this section we describe the architecture of Centiman at a

high level and outline the life cycle of a transaction.

2.1 System architecture

Centiman contains the following main components: a data-

store, a transaction processing subsystem consisting of pro-

cessors and validators, a global master, and clients that issue

transactions as shown in Figure 1.

The datastore is a key-value store that may be partitioned

and/or replicated. Both the partitioning and replication are

transparent to Centiman. The datastore may be an external,

third-party datastore. We require a particular get/put API, as

described below. If the datastore does not support it natively,

the API can be implemented as a layer between the datastore

and the transaction processing subsystem.

We refer to the key-value pairs in the datastore as records.

Every record is associated with a version, which is the times-

tamp of the transaction that wrote this update.

Centiman requires the following datastore API:
• put(key,value, timestamp) where timestamp is the iden-

tifier of the transaction making the write. This updates

the record as follows. If timestamp is smaller than the

current version for the record, the request is ignored as

the write is stale (a higher-timestamped transaction has

already updated the record). Otherwise, the system sets

the value to value and the version to timestamp.
• get(key). This returns (value,version), where version is

as explained above.

We also require that each processor has a way to deter-

mine when a write to the datastore has been installed [6].

A write to record with key key by transaction i is installed

when it is guaranteed that every subsequent get(key) request

returns a value with version equal to or greater than i. The

moment when a write is installed may be when the put call



returns, or at a later time if the system uses asynchronous

replication and allows the put to return before a write is

available everywhere.

Clients issue transactions to the system. Whenever a

client issues a transaction, it communicates with a specific

processor and the transaction remains associated with that

processor for the duration of its lifetime. During the life cy-

cle of the transaction, the processor issues the transaction’s

read requests to the datastore, caches its writes in a pri-

vate workspace, assigns each transaction a timestamp, sends

validation requests to one or more validators, issues write

requests to the storage if necessary, and replies to the client.

The validators perform a variant of optimistic concur-

rency control (OCC) validation [37]. Each validator A is re-

sponsible for a subset of the data, as defined by a subset KA

of the overall key space. This partitioning does not necessar-

ily coincide with the partitioning at the datastore.

The global master monitors system performance, coordi-

nates elastic scaling, and handles failure recovery.

2.2 Transaction life cycle

The transaction life cycle follows the OCC model [37]. Ev-

ery transaction has a read phase when it reads from the data-

store and writes to a private workspace, a validation phase

when the system determines whether the transaction may

commit, and – if validation was successful – a write phase

when the transaction’s writes are installed in the datastore.

Whenever the transaction needs to read a record, the pro-

cessor issues an appropriate get(key) request to the storage.

The get returns a pair (value,version). The processor adds

(key,version) to the read set of the running transaction.

Whenever the transaction needs to write a record with

key key, the processor buffers the write in a local private

workspace, and adds key to the write set of the transaction.

When a transaction is ready to commit, the processor as-

signs it a timestamp i. As soon as a transaction’s timestamp

is assigned, it is ready for validation. The validation process

makes use of the read and write sets collected during execu-

tion; we denote them by RS(i) and WS(i) respectively.

Validation for each transaction happens at one or more

validators and is carried out in timestamp order. That is,

a validator will only process a transaction with timestamp

i after it has validated (its portion of) all transactions with

timestamp j < i. We discuss possible ways of implementing

timestamps and timestamp-order validation in Section 4.1.

When a transaction with timestamp i enters the validation

phase, each participating validator receives the timestamp i

and the appropriate portion of i’s read set and write set. For-

mally, validator A receives i, RSA(i) = {(a,v) ∈ RS(i) | a ∈
KA} and WSA(i) = {b ∈WS(i) | b ∈ KA}.

At each validator A, RSA(i) is used to validate only i itself

and discarded after validation. WSA(i) may be needed in

order to validate subsequent transactions with timestamps

j > i and is thus cached at the validator. The validation

algorithm itself is described in Section 3.

1: procedure VALIDATE(i, RSA(i), WSA(i))
2: for (key,v) ∈ RSA(i) do

3: for j ∈ (v, i) do

4: Get WSA( j) from WriteSets(A)
5: if key ∈WSA( j) then

6: return abort

7: end if

8: end for

9: end for

10: WriteSets.add(WSA(i)))
11: return commit

12: end procedure

Figure 2: Naı̈ve algorithm for validating transaction with

timestamp i at validator A.

When each validator completes validating its portion of

transaction i, it communicates its decision to the proces-

sor responsible for i. If the processor receives “commit” re-

sponses from all participating validators, it determines that

the transaction will commit, otherwise (it receives an “abort”

response or a timeout from at least one validator) it deter-

mines the transaction will abort.

If the transaction aborts, there is no further action taken

and the transaction is complete. If the transaction commits,

the processor sends to the datastore a put request for every

write in WS(i). These put requests may interleave with put

and get requests from other transactions. Once all the writes

are installed in the datastore, the transaction is complete.

3. Validation in Centiman

In this section, we present the main conceptual contribution

of Centiman: sharded validation with watermarks. We be-

gin with a general discussion of sharded validation (3.1), in-

troduce watermarks (3.2), show how watermarks allow cer-

tain read-only transactions to bypass validation (3.3), and de-

scribe the protocol for elastic scaling of validators (3.4). The

validation algorithm we present guarantees serializability; it

can be adapted to enforce snapshot isolation [15] instead.

3.1 Sharded Validation

We begin with a naı̈ve sharded validation algorithm for vali-

dating a transaction with timestamp i, shown in Figure 2.

Validation proceeds in timestamp order. Thus when val-

idating i, every validator A involved has available the write

sets of all previous transactions, i.e. it knows WSA( j) for all

j < i. These are stored in a buffer called WriteSetsA.

The algorithm processes each of i’s reads in sequence

(Lines 2-9). For each read that saw version v of a record

with key key, it examines the write sets of all transactions

j where v < j < i (Lines 3-8). If any such transaction j

wrote to the same record (with key key), then validation fails

(Line 6). Intuitively, i read a stale version of the record as it

should have seen j’s write instead. If validation is success-



ful, WSA(i) is added to WriteSetsA for future validation of

transactions with timestamps greater than i.

As explained earlier, the processor responsible for the

transaction collects responses from all participating valida-

tors. It allows the transaction to commit and install writes if

and only if all participating validators reply commit.

The correctness of this algorithm follows from the fact

that it is a sharded version of the classic algorithm for OCC

validation given in [37]. For correctness of that classic algo-

rithm, it is required that a write by transaction i never over-

writes a write by transaction j, j > i. In [37] this is done by

forcing the validation and write phases of each transaction to

occur in a critical section. In our case we do so by ensuring

that the storage rejects all writes to a record r by transaction

i if a version j > i is already installed for r.

As the system runs, WriteSetsA grows and may impose a

nontrivial storage overhead at the validator. There are known

truncation-based strategies to deal with this problem [37].

However, overly aggressive truncation may cause unneces-

sary aborts. Consider Line 3 in Figure 2. Suppose a trans-

action has read a very old version of some record, but the

version is still current as the record is infrequently updated.

Then the interval (v, i) is very large, and it may be that for

some j in that interval WSA( j) has been garbage collected. A

conservative approach has no choice but to abort that trans-

action. Alternately, if we know a bound on the time window

within which the write of a committed transaction is guar-

anteed to become persistent in storage, we can use a more

precise approach. We can garbage collect write sets of trans-

actions when their writes are guaranteed to be persistent, and

adjust the validation algorithm accordingly. However, it is

not always possible to obtain such timing information, espe-

cially in a cloud setting.

The algorithm in Figure 2 is correct in that it never allows

a violation of serializability; however, it may cause spurious

aborts. Suppose transaction i passes validation at validator A

but fails validation at validator B. Then validator A will add

WSA(i) to WriteSetsA, “polluting” WriteSetsA with the write

set of a transaction that did not actually commit. When val-

idating a subsequent transaction j, the validator may detect

an overlap between WSA(i) and RSA( j) and fail validation,

even though the conflict between i and j is spurious.

Garbage-collecting write sets partially addresses this

problem as write sets of aborted transactions “age out” from

the system. However, if the garbage collection is not agres-

sive the aging out is slow, and if it is aggressive we expect a

higher abort rate due to missing state, as explained above.

The alternative solution is to eliminate spurious aborts by

broadcasting commit decisions back to the validators. Do-

ing this synchronously would reduce the number of spurious

aborts to zero, but requires blocking and is incompatible with

our goal of a loosely-coupled system. Instead, we dissemi-

nate this information asynchronously using watermarks.

1: for (key,v,w) ∈ RSA(i) do

2: for j ∈ (MAX(w,v), i) do

3: Get WSA( j) from WriteSets(A)
4: if WSA( j) /∈WriteSets(A) then

5: return abort

6: end if

7: if key ∈WSA( j) then

8: return abort

9: end if

10: end for

11: end for

Figure 3: Innermost loop of the watermark-based algorithm

for validating transaction with timestamp i at validator A; re-

places Lines 2-9 of the algorithm in Figure 2

3.2 Validation with watermarks

Watermarks are metadata that propagate through the system

information about the timestamp of the latest completed

transaction. In classical OCC, where the validation and write

phases are in a critical section, it is relatively easy to obtain

this information; we now explain how our watermarks help

to obtain it in a sharded and asynchronous setting.

In Centiman, when a transaction reads a record r from

storage and receives the pair (value,version), the processor

computes a watermark w, which has the following property:

Property 3.1. If record r has watermark w at time t, then

at time t all transactions with timestamp i ≤ w have either

already installed their writes on r or will never make any

writes to r.

Intuitively, this says that any update to r made by a trans-

action with timestamp less than w has been reflected in the

read. The processor computes the watermark at the time of

the read and stores it in the read set together with the key and

version. Thus read sets now contain triples (key,v,w) where

v is the version and w the watermark.

We explain how the watermarks can be computed in Sec-

tion 4.2. Once they are available, we can use them in valida-

tion by modifying Lines 2-9 of the naı̈ve algorithm to those

shown in Figure 3. We can now start checking write sets after

MAX(v,w) rather than after v. Correctness of the new algo-

rithm follows from the correctness of the original algorithm

and from Property 3.1.

Watermarks reduce spurious aborts without the need for

extra communication because the write sets of aborted trans-

actions eventually “age out” and fall below the watermark,

thus they are never considered in validation again.

Watermarks can also inform the validator garbage collec-

tion strategy. It is safe to garbage collect WS(i) once all read

watermarks of all in-flight and future transactions will be

greater than i. If we garbage collect WS(i) more aggressively

than that, in certain cases the validator will have insufficient

state to guarantee the absence of a conflict and must conser-

vatively reply with an abort (Lines 4-6).



3.3 Local check for read-only transactions

Read-only transactions present a special opportunity for op-

timization in OCC. If we ensure that they read a consistent

snapshot of the database, then they do not require validation

[7, 38]. In Centiman, we do not require transaction writes

to be installed atomically; thus, ensuring that a transaction

reads a consistent snapshot is not trivial. However, in certain

cases we can retroactively determine that a read-only trans-

action saw a consistent snapshot; if we can determine this

at the processor, the transaction does not need to be sent to

the validators. Our watermarks allow the processor to run a

simple, conservative check on read-only transactions; if the

check passes, the transaction can commit immediately. If the

check fails, the transaction undergoes normal validation.

To explain our check, we define the following:

Definition 3.2. For a timestamp i, we say that a datastore

is at snapshot i if no version of any record with a timestamp

j ≤ i will ever be installed in the future, and no version of

any record with a timestamp k > i exists in the datastore.

Definition 3.3. We say that a transaction reads at snapshot

i if all the reads that it performs see the same values and

versions as they would in a datastore at snapshot i.

It is possible for a transaction to read at snapshot i even

if the datastore is not at snapshot i, as long as the transaction

sees the “correct” versions for the records it actually reads.

If a transaction T runs in Centiman and we can determine

that there exists some i such that T reads at snapshot i,

then T can safely bypass validation. We present a simple,

conservative algorithm to detect such situations in Figure

4. The basic idea is as follows; suppose the read set of T

includes a triple (key,v,w). Suppose v ≤ w. Then we can

define an interval [v,w], which intuitively represents a subset

of the time frame during which the version T read is the

most current installed version in the system. Our algorithm

is based on computing such an effective interval for every

record T has read and checking whether the intersection of

all these intervals is nonempty.

The algorithm in Figure 4 can be run when the full read

set RS(T ) is available, or incrementally as the read set grows.

For every triple (key,v,w) in the read set, it inspects the ver-

sion v and the watermark w (Lines 3-9). If v ≤ w, it deter-

mines the interval [v,w] and adds it to the running intersec-

tion of intervals (Lines 4-5). Otherwise it adds [v,v] to the

intersection (Line 6). Finally, it returns true if and only if

the running intersection interval is nonempty after the entire

read set is processed (Line 10).

The algorithm returns true if and only if T can read at

snapshot c for any c in the final Interval. This correctness

property follows from the way the Interval was constructed.

Suppose the final Interval = [a,b] and we have a ≤ c ≤ b.

Consider any record in RS(T ), and suppose T read that

record at version v and watermark w. We need to argue that

the version T saw is the same as in a datastore at snapshot

1: procedure LOCALCHECK(RS(T ))
2: Interval← (−∞,∞)
3: for (key,v,w) ∈ RS(T ) do

4: if v≤ w then

5: Interval← Interval∩ [v,w]
6: else

7: Interval← Interval∩ [v,v]
8: end if

9: end for

10: return (Interval 6= /0)
11: end procedure

Figure 4: Local check for determining whether a read-only

transaction T read at snapshot i for some i.

c. However, we know that no transaction with timestamp

between v and b writes to the record (since either b ≤ w or

b = v). As v≤ c≤ b, the desired property follows.

3.4 Elastic validator scaling

Centiman is designed so that the functionality at each layer –

the datastore, the processors and the validators – can scale by

adding more nodes and/or migrating workload as necessary.

At the storage level, we assume that scaling is handled by

the datastore itself. Processors can be added to and removed

from the system in a straightforward manner. We next de-

scribe our protocol for validator scaling.

Fundamentally, validator scaling (up or down) and val-

idator migration require the same action in the system: we

need to change the way the key space is partitioned among

a set of validators. The global master monitors the system

load, decides when to perform scaling and/or migration, and

decides on the new key space partitioning.

We now describe how to scale up validators. Scaling

down and migration are similar. Any new validator nodes

register themselves with the global master and connect to all

processors. Next, the global master decides on the new key

space partitioning. It informs all processors to send valida-

tion requests based both on the old and the new partitioning.

The system is now in a transitional period where valida-

tors operate both under the old and the new partitioning, and

issue validation decisions under both. However, the authori-

tative decisions are the ones made under the old partitioning.

When a validator is operating under the new partitioning,

it may not always have sufficient state to validate transac-

tions (Figure 3 Lines 4-6); in this case, it replies either with

“abort” or with a special message saying “unknown.”

Initially the validation decisions made under the old and

the new partitioning may be different. It is possible that the

global decision is “commit” under the old partitioning but

“abort” under the new partitioning because at least one val-

idator has not yet built up sufficient state. However, the re-

verse can never happen: the decision under the new partition-

ing is always at least as conservative as the decision under

the old partitioning. As time passes and the validators accu-



mulate state under the new partitioning, the decisions made

under both partitionings converge.

At a suitable point, the global master decides to switch

to the new partitioning exclusively. It can make this decision

based on the convergence of the validation decisions under

both partitionings – for example, switch over when no dis-

agreement in the validation decisions has occurred for a spe-

cific period of time. Alternately, individual validators could

notify the master that they have accumulated sufficient state

to switch over, e.g. using the watermark as an indicator.

Switching over to the new partitioning requires synchro-

nization between the master and all processors. Once the

switch is made, the old partitioning is “forgotten”; proces-

sors send validator requests only under the new partitioning.

Validators do not need to be notified of the switch; they just

stop receiving validation requests under the old partitioning.

The validator scaling protocol only introduces two sources

of overhead. First, during the transitional period, twice the

normal number of validation requests is sent for a portion of

the data. Second, the system requires global synchronization

to finalize the switch to the new partitioning. However, no

state needs to be moved between validators.

4. Implementing sharded validation

We now discuss three important aspects of implementing

Centiman’s sharded validation: timestamp-order validation

(4.1), watermarks (4.2), and failure recovery (4.3).

4.1 Timestamps and timestamp-order validation

In our validation algorithm (3.1), transactions must be times-

tamped at the processor and validated in timestamp order.

Processors can assign timestamps based on physical sys-

tem time, using technologies like the TrueTime API [22] or

Logical Physical Clocks [36]. Alternately, each processor

can just assign monotonically increasing timestamps from

a set of integers that is unique to the processor.

Each validator maintains a sliding time window that starts

in the past and ends at the present. The window is defined

either in physical time or in logical “time”, depending on the

timestamps. The assumption is that validation requests for

transactions with timestamps within the window may still

be “in flight” to the validator, but for timestamps before the

window all validation requests are available.

The validator buffers arriving validation requests. It pro-

cesses them by repeatedly advancing the sliding window;

any requests that move outside the window are processed

in timestamp order. If the validator receives a request with

a timestamp before the current sliding window, it responds

with an “abort.” Thus it is possible that some transactions

will abort because their validation requests do not reach a

validator in time. However, as long as we deploy Centiman

on dedicated machines and use a fast network with a low,

predictable latency, we can tune the validator time window

to minimize the number of such aborts.

If the timestamps are not based on physical time, some

extra logic may be required on the processor side. For in-

stance, a processor that is idle for some time or a new pro-

cessor that joins the system must communicate with the val-

idators to “catch up” its timestamps to the rest of the system.

4.2 Implementing watermarks

Every time a record is read, the processor needs to compute

a watermark for the record that satisfies Property 3.1. Cen-

timan runs an approximate, conservative watermark compu-

tation algorithm which makes use of the fact that Property

3.1 is downward-closed: if for a given record r the integer w

has the property, so does any w′ ≤ w. That is, we can use ap-

proximate watermarks which are not “as large as possible,”

but still allow correct validation.

Suppose the set of all processors in the system is P . In

Centiman, each processor P ∈P maintains a local proces-

sor watermark WP. The meaning of WP is that every trans-

action associated with P with timestamp i≤WP has already

completed (aborted or committed and installed all writes).

Denote minP∈PWP as WG. By construction, it is guaranteed

that every transaction with timestamp j≤WG has completed.

Thus at any given time WG satisfies Property 3.1 for any

record r, because no transaction below WG will install any

more writes to any record in the datastore.

Each processor periodically recomputes its local water-

mark, and caches information about the other processors’ lo-

cal watermarks. The cached information must be refreshed

periodically, for example using a gossip protocol [26]. To

compute a watermark for a read, each processor uses the

minimum of its own local watermark and the cached wa-

termarks of other processors; this is smaller than or equal to

WG, so it also satisfies Property 3.1.

The frequency of recomputing and disseminating the lo-

cal processor watermarks are tunable parameters. Updating

watermarks more often is more expensive, but reduces the

number of spurious aborts and allows more read-only trans-

actions to pass the local check from Section 3.3.

4.3 Failure recovery

We now explain how to recover from processor and validator

failures in Centiman. We assume that the datastore uses

existing techniques to achieve fault-tolerance [25] and that

the global master is implemented using robust infrastructure

such as Apache Zookeeper [4]. We also assume that the

processor and validator nodes are fail-stop.

Each processor node maintains a write-ahead log to en-

able a redo of writes to the datastore. Because no writes

are performed until validation is complete, no undo logging

is needed. On receiving a transaction T from a client, the

processor makes an init log entry for T and writes it asyn-

chronously (without forcing). Before sending validation re-

quests to validators, it asynchronously logs the write set of

T . After hearing from all validators, it decides either to com-

mit or to abort T and logs the decision for T ; the log entry



includes the timestamp of T . If the decision is to commit,

the processor forces the log, and subsequently informs the

client of the commit decision and sends the write set to the

datastore. When the writes have been installed, the processor

makes a completed log entry for T asynchronously. To re-

cover a failed processor, we read the log and redo the writes

of any transaction T for which the log contains a commit

decision but no completed entry.

From the perspective of the validators and/or other pro-

cessors, a processor failure is transparent; the only negative

consequences are a delay in installing certain writes to stor-

age and aborts of transactions for which the processor had

not yet reached a decision to commit. In particular, it is pos-

sible that the processor fails after it reaches a decision to

commit but before it forces the commit log entry; in this

case, upon recovery, the transaction will be aborted. This

does not violate correctness because the client will not yet

have received a commit response. The validators will believe

that T has committed, which may lead to spurious aborts;

however, this problem will resolve itself with time.

It is not necessary to log the processor watermarks (Sec-

tion 4.2); upon recovery, the processor can simply set its lo-

cal processor watermark to the highest timestamp of the last

transaction for which it has a commit log entry once it deter-

mines that the writes of this transaction have been installed.

Validators do not require logging for recovery even

though they maintain state (i.e. transaction write sets). When

a validator fails, we need to abort all transactions with pend-

ing validation requests at that validator - this will happen

automatically if the processor uses timeouts when waiting

for responses. To recover from a validator failure, we add a

new validator to take the place of the failed one and use a

variant of our protocol from Section 3.4 where the old and

the new partitioning are identical and the switch between

them happens immediately. Note that a validator failure is

transparent to all other validators and processors.

5. Experiments

In this section, we present an experimental evaluation of

Centiman. We investigate the following questions:
• How do spurious aborts (Section 3.1) affect the system,

with and without watermarks?
• How does the system behave when we scale elastically

by adding a new validator as discussed in Section 3.4?
• How effective is the local check for read-only transac-

tions (Section 3.3)? How many read-only transactions

bypass validation in workloads with a different mix of

read-only and updating transactions?
• How well does the system scale and perform under load?

5.1 Implementation details

We implemented the system in about 20K LOC in C++,

including the logic for the processor, storage, validator, a

synthetic benchmark, and TPC-C and TATP benchmarks.

Each processor node is implemented as a single worker

thread that multiplexes concurrent transactions up to the

node’s concurrency level. We simulate each storage node

with an in-memory hash table. The put operation returns

after the update is stored in the hash table and is available

for reads. Each validator caches the write sets of transactions

that pass its validation in a fixed size buffer implemented as

an in-memory hash table.

Each processor assigns consecutive integers as times-

tamps, using the processor ID to break ties. If a validator

has at least one pending request from each processor, it re-

peatedly handles the lowest-numbered request, otherwise it

waits. To handle ‘holes’ due to a processor which is slow,

failed or just does not communicate with this particular val-

idator, there is a bound on the number of permitted pend-

ing requests at a validator. If this bound is exceeded, the

validator processes the lowest-numbered pending request,

in effect forcibly advancing the timestamp window. In our

experiments, the processors are deployed on homogeneous

hardware, and execute transactions at similar speed. Thus,

forcibly advancing the window is a rare event.

All the system components (validators, processors and

storage nodes) batch their outgoing messages and send them

periodically (every 10ms) to manage the network overhead.

If an application setting requires lower latency, or if the

10ms latency causes a high conflict rate, the batching and

sending frequency can be increased. Our experiments on

TPC-C show that our choice of batching frequency does not

cause problems even with a non-trivial workload that has

reasonably high contention.

We conduct four sets of experiments, focusing on spuri-

ous aborts, elastic scaling, read-only local check, and scal-

ability. For the first three sets of experiments we use up to

12 machines; for the last set, we use up to 108 machines. All

the results we show are averages over three runs. Differences

between runs were not significant, so error bars are omitted.

5.2 Spurious aborts

As discussed in Section 3.1, spurious aborts arise due to

write sets of transactions that pass validation locally but

abort globally. At the validator where validation was suc-

cessful, the WriteSets buffer is polluted by the write sets

of this transaction. Subsequent transactions validated against

this polluted WriteSets may abort due to spurious conflicts.

We examine the frequency of spurious aborts under a

naı̈ve truncation-based approach to validator state manage-

ment and under our watermarking scheme. In the naı̈ve ap-

proach, we use a “sliding window” scheme and we store 10

(B10), 20 (B20), 30 (B30), and 60 (B60) seconds’ worth of

past write sets in the validator buffer.

It may happen that during validation we need to examine

a version from a transaction j which is not found in the

buffer. In this case, we assume that the read saw the most

recent version of the record and that there is no conflict.

Since our experimental focus is on spurious aborts only, we
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set up our experiments so that the above assumption always

holds, i.e., so that there are no “spurious commits.”

We run all experiments on Amazon EC2 m3.xlarge nodes

with 4 vCPUs, 15 GiB RAM and a high performance net-

work. We use a database with one million records, with 8-

byte keys and values. Each transaction performs 4 reads and

4 writes to records that are chosen uniformly at random. The

concurrency level of each processor is 250. We do not over-

load the system, so the throughput is determined by the pro-

cessor speed. We observed a throughput of about 11K trans-

actions per second in all our runs.

Figure 5 shows the abort rate of the system with a config-

uration of 2 processors, 2 storage nodes, and 4 validators. As

time passes, the WriteSets buffers at the validators become

more polluted. The abort rate therefore increases with time

until it reaches a plateau; the position of the plateau rises

with increased buffer size, due to a larger number of spuri-

ous conflicts. With a buffer size of 60 seconds, eventually

almost all transactions abort. If we use a smaller number of

validators the lines look similar but shift slightly downward.

As expected, our watermark-based approach alleviates

the problem, as write sets from aborted transactions “age

out” faster and spurious conflicts become less frequent. Fig-

ure 6 shows the abort rate when each processor updates its

local watermark every 1 (W1), 1K (W1K), 10K (W10K),

and 100K (W100K) transactions. The number of validators

varies from 2 to 4 (V2, V3, V4).

When the processor updates its local watermark after ev-

ery transaction completes, we observe the fewest spurious

aborts. We can use this as an approximation of the true abort

rate. As shown in Figure 6, it is less than 1%. This confirms

that the aborts observed under the naı̈ve approach are indeed

spurious. With lower watermark update frequencies, we see

the rate of aborts increase due to spurious aborts; however,

even updating the processor watermark every 10K transac-

tions is sufficient to keep the spurious abort rate very low.

Watermarking allows us to perform precise and safe val-

idator garbage collection which correctly handles “outlier”

scenarios as described previously, where a write by a trans-

action takes a very long time to reach storage. Figure 7 illus-

trates this idea by measuring the watermark lag, i.e. the max-

imum observed difference between the watermark of some

read in a transaction and the timestamp of the transaction.

Time
V1 to V2 V2 to V3 V3 to V4

P O N P O N P O N

Before 8 8 0 8 4 0 8 2.7 0

During 12 8 4 10.7 4 2.7 10 2.7 2

After 8 4 4 8 2.7 2.7 8 2 2

Table 1: Number of keys in validation requests per transaction

for processor (P), and processed per transaction for old valida-

tor (O), and new validator (N).

The figure shows this maximum watermark lag observed

each second over a period of 120 seconds. The watermarks

are updated every 10K transactions.

In the first 60 seconds, we run all transactions normally;

the watermark lag is close to the watermark update fre-

quency. Next, we introduce outliers to simulate slow stor-

age updates. Every 20 seconds, a transaction waits due to a

simulated slow write response from the storage. Until this

transaction finishes, the processor is not able to advance its

watermark, and the read watermarks of other in-flight trans-

actions remain low. Figure 7 shows the effect of the outliers

when the storage wait time is set to be 5 (L5) and 10 (L10)

seconds. While the outlier is waiting, the watermark lag in-

creases. When the outlier completes, the watermark is up-

dated, and the lag drops sharply. Introducing an outlier does

not appreciably increase the rate of aborts in the system, as

few transactions conflict with the outlier.

5.3 Elastic scaling

Next, we examine how the system behaves during elastic

validator scaling, as discussed in Section 3.4. The major

overhead of this scaling process is the duplicate validation

requests that processors need to send for a portion of the

key space. However, this overhead decreases as the number

of validators increases. For example, consider our workload

where each transaction involves 8 keys. Suppose we use uni-

form partitioning, and when scaling from k to k+ 1 valida-

tors we shift 1
k×(k+1) of all keys from each old validator to

the new validator. Then the overhead is as shown in Table 1.

The table shows the total number of keys in validation re-

quests per transaction at the processor (P) and the number

of keys processed per transaction at the old (O) and new (N)

validators, before, during, and after the scaling.
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Figure 10: Spurious abort rate

We run our scaling experiments over a period of 180

seconds; we fix 2 processors and 2 storage nodes, and use up

to 4 validators. We start with either 1, 2, or 3 validators and

add a new validator (V12, V23 and V34 respectively). The

scaling begins at the 60th second and finishes at the 120th

second. The watermarks are updated every 10K transactions.

Figure 9 shows the percentage of transactions for which

the new validator cannot guarantee a safe commit - i.e., those

which it must “abort” due to insufficient state (the word abort

is in quotes as the decisions of the new validator are not

authoritative at this stage). As expected, there is a sharp peak

when the scaling starts. The peak disappears within seconds,

and the new validator is ready to take over. With a suitable

mechanism to detect when the new validator is ready, the

system can switch to the new configuration very quickly.

Figure 8 and Figure 10 show the abort rate and spurious

abort rate during scaling. Both the abort rate and the spurious

abort rate increase slightly after the scaling. When we scale

from 1 validator to 2 validators, the spurious aborts suddenly

appear once the scaling is complete. This is because no

spurious aborts are possible with a single validator.

5.4 Local check for read-only transactions

Next, we investigate how many read-only transactions can

be pre-validated with a local check at the processor and

bypass validation (Section 3.3), how many of the read-only

transactions that fail the local check actually abort, and how

the local check affects throughput and latency.

To simplify the analysis, we use a workload that consists

of a mix of one-shot read-only and write-only transactions.

Read-only transactions may abort due to inconsistent reads.

Write-only transactions always commit.

Our system has three configurations: bypass, nobypass,

and novalid. In bypass, read-only transactions are checked

locally and only sent to validators if the local check fails.

Thus, a read-only transaction that passes the local check

completes in one round trip; other transactions require two

round trips. In nobypass, the local check optimization is

disabled; all transactions are sent to validators and require

two round trips. In novalid, transactions commit without

validation, so consistency of the database is not guaranteed.

Thus, novalid is a baseline showing the raw performance

of the storage and serves only to show the overhead of en-

forcing strong consistency.

The database contains 100K key-value pairs. Each key

and value is 8 bytes. Every transaction contains 10 key-value

pairs in its read or write set. Each processor node can issue

at most 500 transactions concurrently. The watermarks are

updated every 10K transactions. We run 4 storage nodes,

4 processors, and 2 validators on Amazon EC2 m1.xlarge

instances. Each instance has 4 vCPUs, 15GiB memory, and

a 1Gb/s network.

In Figure 11, we show what happens as we increase the

percentage of write-only transactions. The line ReadOnly

shows the percentage of read-only transactions in the sys-

tem - this is simply 100% minus the percentage of write-

only transactions. The ReadOnlyCommit line shows what

percentage of the read only transactions commit, and the

Bypass line shows what percentage of the read-only trans-

actions pass the local check and bypass validation.

When the workload is read-heavy, most transactions com-

mit without validation. 86% of all the read-only transactions

pass the local check for read-heavy workloads, and this rate

is always more than 58% . In addition, a read-only transac-

tion is sent to validators only if it is likely to abort. In work-

loads with 30% or more write-only transactions, more than

60% of the read-only transactions that fail the local check

abort upon validation.

Figure 12 shows the throughput of the system in novalid,

bypass, and nobypass mode. In bypass, when the work-

load is read-heavy, most read-only transactions complete

in one round trip, so the performance is closer to that of

novalid. As the number of write-only transactions in-

creases, the throughput of bypass drops closer to that of

nobypass, because more transactions require two round

trips (write-only transactions and read-only transactions that

fail the local check). Transaction latency exhibits a simi-

lar pattern, as shown in Figure 13. The average latency of

read-only transactions in bypass is comparable to that in

novalid for a read-heavy workload, and increases with the

fraction of write-only transactions.

Our results demonstrate that the local check optimization

is a powerful and low-overhead optimization that is espe-

cially worthwhile for read-heavy workloads.

5.5 Scalability on synthetic data

In this set of experiments, we use synthetic workloads to

benchmark Centiman’s performance and scalability.



 20

 40

 60

 80

 100

10% 20% 30% 40% 50% 60% 70% 80% 90%

R
at

io
 (

%
)

Write-only Transaction (%)

ReadOnly
ReadOnlyCommit
Bypass

Figure 11: The percent of read-only trans-

actions, its commit rate and bypass rate

 100

 200

 300

 400

 500

10% 20% 30% 40% 50% 60% 70% 80% 90%

T
h

ro
u

g
h

p
u

t 
(K

)

Write-only Transaction (%)

NoBypass
Bypass
NoValid
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Figure 13: Transaction latency in bypass,

nobypass, and novalid mode

Workload Update-ReadOnly Distribution

high-update 50%-50% uniform

medium-update 25%-75% uniform

low-update 10%-90% uniform

high-skewed 50%-50% power law (a=4)

medium-skewed 50%-50% power law (a=2)

Table 2: Synthetic dataset workloads. Each workload is a mix of

updating and read-only transactions. Each updating transac-

tion updates 50% of the data. Skewed workloads follow power

law distribution P[X = x] = x−a.

We generate five workloads with different update rates

and data access patterns, as shown in Table 2. Each work-

load has a mix of updating transactions (that perform writes)

and read-only transactions. Each updating transaction writes

half the data it accesses, e.g. a transaction of size 8 reads 4

records and writes 4 records. Each transaction accesses be-

tween 8 and 24 records. For high-update, medium-update,

and low-update workloads, all data accesses follow a uni-

form distribution; for skewed workloads, they follow a

power law distribution. The database consists of 64 million

records, each with a 64-byte key and a 4-byte value. Since

the value size is irrelevant for validator nodes, we chose a

small value size to reduce the work at processor and storage

nodes. The watermarks are updated every 10K transactions.

To stress the validator nodes and to simplify the analysis,

the local-check optimization for read-only transactions is

turned off, so all transactions go through validator nodes.

We run Centiman on Amazon EC2 high CPU medium

instances. Each instance has 5 EC2 Compute Units, 1.7GiB

memory, and a 1Gb/s network. We stress the validator nodes

with a sufficient number of storage and processor nodes

(with a maximum of 20 storage nodes and 20 processors).

The load on a validator node depends on the number of

validation operations (conflict checks), the per-transaction

processing overhead, and the cost of network message traf-

fic. As the number of validator nodes grows, the cost of con-

flict checks is shared among them. However, since a trans-

action can be split to multiple validators, the per-transaction

overhead is not reduced linearly. In addition, as we add more

processors, each validator node has more network connec-

tions, and receives and sends more messages, so the over-

head of networking increases.

Figure 14 shows the throughput of Centiman under a

high-update workload. As expected, the throughput of the

system increases sublinearly with the number of validator

nodes. In addition, the throughput falls with increasing trans-

action size. The latter effect is not prominent, since larger

transactions result in lower overhead for per-transaction pro-

cessing and networking at the validator node. The through-

put for medium-update and low-update workloads is similar

to the high-update case. For skewed workloads, the through-

put is slightly lower as we see more aborts.

Figure 15, Figure 16 and Figure 17 show the abort rate

of low-update, medium-update, and high-update workloads.

The abort rate increases with more validators, mostly due

to feeding more concurrent transactions into the system to

stress the validators. As in Section 5.2, the effect of spurious

aborts is negligible. In addition, workloads with larger trans-

actions have higher abort rates. As the size of the transaction

increases, each transaction accesses more records and thus

has a higher chance of conflicts. Skewed workloads demon-

strate similar patterns, but with higher abort rates.

5.6 Scalability on TPC-C and TATP

Our last set of experiments explores how Centiman scales

and how well the read-only local check optimization works

on realistic benchmarks. To achieve this, we implement two

transactions (New Order and Payment) of the TPC-C bench-

mark and the TATP benchmark.

For both benchmarks, we run Centiman on Amazon EC2

high CPU extra large instances. Each instance has 20 EC2

Compute Units (8 virtual cores with 2.5 EC2 Compute Units

each), 7GiB memory and 1 Gb/s network. We load the sys-

tem with enough clients to stress the validator nodes (with a

maximum of 50 storage nodes and 50 processors). The wa-

termarks are updated every 10K transactions.

TPC-C Benchmark. TPC-C is a traditional OLTP bench-

mark that represents a high-update workload of medium-

size transactions. It has five types of transactions. Two of

those transactions, New Order and Payment, which amount

to 87.6% of the total transaction mixture, are required to run

at serializability. Since the other three transaction types may

run over a multi-version database at a relaxed level of consis-

tency, we stress Centiman on a mix of New Order and Pay-

ment transactions at a 1:1 ratio. Each transaction makes 16
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workload
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Figure 19: Throughput of TATP bench-

mark

reads and 15 writes on average. Since all transactions update

the database, the local check optimization is not applicable.

The terminals and the data are randomly distributed

over processor and storage nodes. Since we don’t simu-

late ’think-time’ in the benchmark, conflicts are frequent

due to hotspots. We distribute a few records, i.e. WARE-

HOUSE YTD and DISTRICT YTD, over each terminal

to avoid conflicts. We also vertically partition the WARE-

HOUSE, DISTRICT, and CUSTOMER tables to avoid false

conflicts due to updates to different fields of a row.

Figure 18 shows the throughput of the TPC-C workload

as we vary the number of validator nodes. The blue line

shows the overall throughput of the system; this increases

to over 230K transactions per second with 8 validator nodes.

The gray line shows the throughput per validator in each sys-

tem configuration. In an ideal scale-up scenario this would

remain constant; in our case, the decrease is very slight.

Even with 8 validators, the per-validator throughput is 89%

of what it was with 2 validators.

The number of concurrent transactions (the number of

terminals) scales with the size of the database (the number

of warehouses) as required by the benchmark specification,

so the abort rate is stable (less than 3%) in all cases. Most

of those aborts are due to conflicting updates to the STOCK

table in New Order transactions. Spurious aborts are rare.

TATP Benchmark. The Telecommunication Application

Transaction Processing (TATP) benchmark [3] is an open

source workload designed specifically for high-throughput

applications. It represents a read-heavy, conflict-rare, key-

value store like workload. It uses 4 tables and 7 transac-

tion types. The workload consists of read-only and updating

transactions. We use the default transaction mix, i.e. 80%

read-only and 20% updating transactions. On average, each

transaction issues 1.65 reads and 0.18 writes.

Figure 19 shows the throughput of the system with and

without the local check optimization. We achieve over a mil-

lion transactions per second with 4 validator nodes, and over

4 million with the local check optimization. Since the read-

only transactions in the workload issue one single-row read,

all of them bypass validation, so the local check optimization

gives a huge throughput boost. The system scales well and

the single-node throughput of 4 validators reaches 86% of

that of 2 validator nodes. Because the database scales with

the number of processors as required by the specification,

the abort rate is similar (less than 1%) for all the tests.

6. Related Work

Systems with weaker guarantees than full ACID Key-

value stores are the dominant system of the NoSQL move-

ment, which embraces lightweight transaction semantics and

weak consistency models. A typical key-value store supports

single key-value pair operations at eventual consistency, pro-

viding excellent throughput, scalability, availability, and re-

liability [2, 21, 25, 39]. These systems have been success-

ful for many use cases; however, for applications with non-

trivial transaction logic, development using key-value stores

can be difficult.

Other systems support transactions but explore weaker

consistency models, e.g. causal consistency [43], session

consistency [56], application-specific consistency models [9,



10, 14, 42] or the “classical” lower isolation levels like

snapshot isolation [47] and parallel snapshot isolation [53].

Our work differs from the above in supporting full ACID-

style serializability, or snapshot isolation if preferred.

Systems with partition-based guarantees The next group

of systems that support distributed transactions make use of

data partitioning [11, 23, 24, 35, 46, 55] by sharding data to

multiple machines, and either relax consistency for transac-

tions that span partitions, or perform more expensive cross-

machine transactions for stronger consistency. These sys-

tems best fit applications where the data is easy to shard

and transactions can be distributed accordingly. The perfor-

mance of such systems is sensitive to how well the data is

partitioned, and achieving a good partitioning may not be

easy. Some follow-up work addresses those issues [24, 34,

50, 54] through clustering and online re-partitioning.

Centiman is different from the above in that the data

partitioning has no impact on transactional guarantees, but

does help performance by enabling sharded validation.

Systems with strong consistency guarantees Spanner [22]

is a locking based system with optimizations for read-only

transactions and snapshot isolation in a multi data center en-

vironment. It uses special hardware to implement the True-

Time API, which provides accurate physical clock time. We

have explained (Section 4.1) that TrueTime or Logical Phys-

ical Clocks [36] can be used to implement our timestamps.

Hyder [17, 19] is a shared-data system designed for flash

storage. It uses a log-structured database with a novel vali-

dation algorithm [18] to implement OCC. Essentially, Hyder

employs a centralized validation design, where each node in

the system performs validation of all the transactions inde-

pendently, and reaches the same database state. Hekaton [27,

40] is a high performance single machine main memory

system. It avoids all the complications of a distributed sys-

tem, and achieves high throughput by optimizing in-memory

OCC and B+ trees. Calvin [59] is a transaction scheduling

and data replication layer for partitioned databases. It uses

deterministic locking to reduce the contention costs asso-

ciated with distributed transactions. It is best for applica-

tions where transactions can perform all their reads at once;

otherwise, the deterministic locking protocol becomes pro-

hibitively complicated. Omid [30] uses snapshot isolation

with client-side replication of transaction metadata for scal-

ability. Yet other approaches [29, 45, 49, 62] enhance con-

currency by performing analysis on transaction code prior

to execution. There have also been calls to rethink transac-

tion processing architecture at a more fundamental level to

eliminate unscalable communication [33].

The above systems represent a broad spectrum of archi-

tectural choices; however, most of them do not explicitly

satisfy the desiderata for a cloud system: loosely coupled

components and elasticity. Deuteronomy [41] is designed for

elasticity, although the system still has a single monolithic

TC (transaction component) rather than the multiple proces-

sors and validators of Centiman. Centiman is thus unique in

privileging modularity at all levels of the system for easy

scale-up without sacrificing strong consistency guarantees.

Optimistic Concurrency Control OCC [37] was proposed

as an alternative to locking-based approaches and its per-

formance has been studied extensively [8, 13, 31, 52]. Hy-

brid schemes combine the benefits of OCC and permissive

locking [32, 57, 58, 61]. There has been a large number of

extensions/adaptations of OCC to the distributed context [5–

7, 20, 28, 38, 48, 51]. Among these, the systems most closely

related to Centiman are Jasmin [38], although it does not use

watermarks or support elastic scale-up like Centiman does,

and the interval-based validation technique in [20], which is

similar to our read-only transaction optimization. There is

more recent work on OCC systems that combine partitioned

validation with a shared log [12, 16]; the key distinguishing

feature of Centiman is its simplicity, which makes it easy to

scale each component independently.

7. Conclusion and Future Work

We have introduced Centiman, a high performance scalable

OLTP system that provides serializability guarantees. Centi-

man uses OCC with sharded validation and is designed for

a loosely-coupled cloud architecture; it can be deployed on

top of an existing key-value store and its components scale

elastically with the application’s demands. Centiman avoids

synchronization where possible and uses watermarks to mit-

igate the resulting challenges of spurious aborts and diffi-

culties in optimizing for read-only transactions. An in-depth

experimental study demonstrates the performance and scal-

ability of the system.

In future work, we plan to explore alternatives in the sys-

tem design space, such as eliminating spurious aborts by

having the validators share state with each other or by having

the processor broadcast commit decisions back to the valida-

tors. We also plan to extend Centiman to use OCC for low-

contention settings and other protocols in high-contention

settings [61], and to apply watermarking to other OCC-based

systems. In addition, we would like to create a practical im-

plementation of the system on top of a real key-value store,

and see how this performs compared to other commercial

distributed transaction processing systems.
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rent certifications by intervals of timestamps in distributed

database systems. IEEE Trans. Software Eng., 13(4):409–419,

1987.

[21] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,

P. Bohannon, H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni.

PNUTS: Yahoo!’s hosted data serving platform. PVLDB, 1(2):

1277–1288, 2008.

[22] J. C. Corbett et al. Spanner: Google’s globally-distributed

database. In OSDI, pages 261–264, 2012.

[23] S. Das, A. El Abbadi, and D. Agrawal. ElasTraS: An elastic

transactional data store in the cloud. In HotCloud, 2009.

[24] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable

data store for transactional multi key access in the cloud. In

SoCC, pages 163–174, 2010.

[25] G. DeCandia et al. Dynamo: amazon’s highly available key-

value store. In SOSP, pages 205–220, 2007.

[26] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,

S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic

algorithms for replicated database maintenance. In PODC,

pages 1–12, 1987.

[27] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal,

R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL

server’s memory-optimized OLTP engine. In SIGMOD, pages

1243–1254, 2013.

[28] R. Escriva, B. Wong, and E. G. Sirer. Warp: Lightweight

multi-key transactions for key-value stores. Technical re-

port, Cornell University, Ithaca, NY, USA, 2013. URL

http://rescrv.net/pdf/warp-tech-report.pdf.

[29] J. M. Faleiro and D. J. Abadi. Rethinking serializable mul-

tiversion concurrency control. CoRR, abs/1412.2324, 2014.

URL http://arxiv.org/abs/1412.2324.

[30] D. G. Ferro, F. Junqueira, I. Kelly, B. Reed, and M. Yabandeh.

Omid: Lock-free transactional support for distributed data

stores. In ICDE, pages 676–687, 2014.

[31] R. E. Gruber. Optimism vs. locking: A study of

concurrency control for client-server object-oriented

databases. Technical report, Massachusetts Institute

of Technology, Cambridge, MA, USA, 1997. URL

http://dspace.mit.edu/handle/1721.1/10762.

[32] M. Herlihy. Apologizing versus asking permission: Optimistic

concurrency control for abstract data types. ACM Trans.

Database Syst., 15(1):96–124, 1990.

[33] R. Johnson, I. Pandis, and A. Ailamaki. Eliminating unscal-

able communication in transaction processing. The VLDB

Journal, 23(1):1–23, Feb 2014.

[34] E. P. C. Jones, D. J. Abadi, and S. Madden. Low overhead

concurrency control for partitioned main memory databases.

In SIGMOD, pages 603–614, 2010.

[35] R. Kallman et al. H-Store: a high-performance, distributed

main memory transaction processing system. PVLDB, 1(2):

1496–1499, 2008.

[36] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and

M. Leone. Logical physical clocks. In OPODIS, pages 17–32,

2014.



[37] H. T. Kung and J. T. Robinson. On optimistic methods for

concurrency control. ACM Trans. Database Syst., 6(2):213–

226, 1981.

[38] M. Lai and W. K. Wilkinson. Distributed transaction manage-

ment in Jasmin. In VLDB, pages 466–470, 1984.

[39] A. Lakshman and P. Malik. Cassandra: a decentralized struc-

tured storage system. Operating Systems Review, 44(2):35–

40, 2010.

[40] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Pa-

tel, and M. Zwilling. High-performance concurrency control

mechanisms for main-memory databases. PVLDB, 5(4):298–

309, 2011.

[41] J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao.

Deuteronomy: Transaction support for cloud data. In CIDR,

pages 123–133, 2011.

[42] C. Li, D. Porto, A. Clement, J. Gehrke, N. M. Preguiça, and

R. Rodrigues. Making geo-replicated systems fast as possible,

consistent when necessary. In OSDI, pages 265–278, 2012.

[43] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.

Don’t settle for eventual: scalable causal consistency for wide-

area storage with COPS. In SOSP, pages 401–416, 2011.

[44] D. B. Lomet, A. Fekete, G. Weikum, and M. J. Zwilling.

Unbundling transaction services in the cloud. In CIDR, 2009.

[45] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more

concurrency from distributed transactions. In OSDI, pages

479–494, 2014.

[46] S. Patterson, A. J. Elmore, F. Nawab, D. Agrawal, and A. El

Abbadi. Serializability, not serial: Concurrency control and

availability in multi-datacenter datastores. PVLDB, 5(11):

1459–1470, 2012.

[47] D. Peng and F. Dabek. Large-scale incremental processing

using distributed transactions and notifications. In OSDI,

pages 251–264, 2010.

[48] E. Rahm. Design of optimistic methods for concurrency

control in database sharing systems. In ICDCS, pages 154–

161, 1987.

[49] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch,

N. Foster, and J. Gehrke. The homeostasis protocol: Avoiding

transaction coordination through program analysis. In Pro-

ceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, Melbourne, Victoria, Australia, May

31 - June 4, 2015, pages 1311–1326, 2015.

[50] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq,

and U. F. Minhas. Accordion: Elastic scalability for database

systems supporting distributed transactions. PVLDB, 7(12):

1035–1046, 2014.

[51] M. K. Sinha, P. D. Nanadikar, and S. L. Mehndiratta. Times-

tamp based certification schemes for transactions in dis-

tributed database systems. In Proceedings of the 1985 ACM

SIGMOD International Conference on Management of Data,

Austin, Texas, May 28-31, 1985., pages 402–411, 1985.

[52] X. Song and J. W. S. Liu. Maintaining temporal consistency:

pessimistic vs. optimistic concurrency control. Knowledge

and Data Engineering, IEEE Transactions on, 7(5):786–796,

Oct 1995.

[53] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional

storage for geo-replicated systems. In SOSP, pages 385–400,

2011.

[54] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,

N. Hachem, and P. Helland. The end of an architectural era

(it’s time for a complete rewrite). In VLDB, pages 1150–1160,

2007.

[55] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,

A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store: Fine-

grained elastic partitioning for distributed transaction process-

ing. In VLDB, 2014.

[56] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,

M. Theimer, and B. B. Welch. Session guarantees for weakly

consistent replicated data. In PDIS, pages 140–149, 1994.

[57] A. Thomasian. Concurrency control: Methods, performance,

and analysis. ACM Comput. Surv., 30(1):70–119, 1998.

[58] A. Thomasian. Distributed optimistic concurrency control

methods for high-performance transaction processing. IEEE

Trans. Knowl. Data Eng., 10(1):173–189, 1998.

[59] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and D. J.

Abadi. Calvin: fast distributed transactions for partitioned

database systems. In SIGMOD, pages 1–12, 2012.

[60] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy

transactions in multicore in-memory databases. In ACM

SIGOPS, pages 18–32, 2013.

[61] P. S. Yu and D. M. Dias. Analysis of hybrid concurrency

control schemes for a high data contention environment. IEEE

Trans. Softw. Eng., 18(2):118–129, Feb. 1992.

[62] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and

J. Li. Transaction chains: achieving serializability with low

latency in geo-distributed storage systems. In SOSP, pages

276–291, 2013.


