CoopNet: Cooperative Networking

Venkat Padmanabhan Microsoft Research

September 2002

Collaborators

- MSR Researchers
 - Phil Chou
 - Helen Wang
- MSR Intern
 - Kay Sripanidkulchai (CMU)

Outline

- CoopNet
 - motivation and overview
 - web content distribution
 - streaming media content distribution
 - multiple description coding
 - multiple distribution trees
 - related work
 - summary and ongoing work
- Other networking projects at MSR

Motivation

- A flash crowd can easily overwhelm a server
 - often due to news event of widespread interest ...
 - ... but not always (e.g., Webcast of birthday party)
 - can affect relatively obscure sites (e.g., election.dos.state.fl.us, firestone.com, nbaa.org)
 - site becomes unreachable precisely when popular!
 - affects Web content as well as streaming content
 - infrastructure-based CDNs aren't for everyone
 - too expensive even for big sites (e.g., CNN)
 - uninteresting for CDN to support small sites
- Goal: solve the flash crowd problem without requiring new infrastructure!

Cooperative Networking

- CoopNet complements client-server system
 - client-server operation in normal times
 - P2P content distribution invoked on demand to alleviate server overload
 - clients participate only while interested in the content
 - server still plays a critical role

CoopNet Tradeoffs

- Avoids dependence on expensive CDN infrastructure
 - but no performance "guarantees"
- P2P network size scales with load
- Availability of resourceful server simplifies many P2P tasks
 - but is the server a potential bottleneck?

Flash Crowd Characteristics

Where is the bottleneck?

- Disk?
 - no, most requests are for popular content
 - MSNBC: 90% of requests were for 141 files
- · CPU?
 - perhaps for dynamic content
 - a single server node can pump out > 1 Gbps
- Network?
 - yes, most likely close to the server
 - 65% of servers have bottleneck bandwidths of less than 1.5 Mbps (Stefan Saroiu, U.W.)

Outline

- CoopNet
 - motivation and overview
 - web content distribution
 - streaming media content distribution
 - multiple description coding
 - multiple distribution trees
 - related work
 - summary and ongoing work
- Other networking projects at MSR

CoopNet for Web Content

- Server maintains a cache of recent client IP addresses
- When overloaded, it redirects new clients to old ones that have the content
- Huge bandwidth savings (100X)
 - 200 B redirect instead of 20 KB page

Operation of CoopNet

Operation of CoopNet

Operation of CoopNet

Issues

- Peer selection
 - network proximity: BGP prefix, delay-based coordinates
 - matching peer bandwidth
- Server bottleneck
 - large # of CoopNet peers \Rightarrow large volume of redirects
 - small # of CoopNet peers \Rightarrow server remains overloaded
 - CoopNet still beneficial, but initial redirect can take long
 - solution: initial search in peer group
 - high locality \Rightarrow small group size suffices
 - greatly simplifies distributed search
 - fall back to server-based redirect upon miss
- Privacy

Alternative approaches

- Proxy caching
 - deployment barriers
 - not effective when clients are scattered across the Internet
- Commercial CDNs (e.g., Akamai)
 - not cost-effective for small sites
- P2P system of servers (e.g., Backslash)
 - feasible in practice?

Outline

- CoopNet
 - motivation and overview
 - web content distribution
 - streaming media content distribution
 - multiple description coding
 - multiple distribution trees
 - related work
 - summary and ongoing work
- Other networking projects at MSR

CoopNet for Live Streaming

- More likely that server will be overwhelmed
- Key issue: robustness
 - peers are not dedicated servers \Rightarrow potential disruption due to:
 - node departures and failures
 - higher priority traffic
 - traditional application-level multicast (ALM) falls short

Traditional Application-level Multicast

26

CoopNet Approach to Robustness

- Add redundancy in data...
 - multiple description coding (MDC)
- ...and in network paths
 - multiple, diverse distribution trees

Multiple Description Coding

MDC

- Unlike layered coding, there isn't an ordering of the descriptions
- Every subset of descriptions must be decodable
- Modest penalty relative to layered coding

Multiple Description Coding

- Simple MDC:
 - every Mth frame forms a description
- More sophisticated MDC combines:
 - layered coding
 - Reed-Solomon coding
 - priority encoded transmission
 - optimized bit allocation

Multiple Distribution Trees

Tree diversity provides robustness to node failures

MDC Analysis

- Key parameters:
 - number of nodes (N)
 - number of descriptions (M)
 - out-degree of each node
 - repair time
 - node departure rate
- Two scenarios of interest
 - large N, high churn \Rightarrow multiple node failures in repair interval
 - small N, stable \Rightarrow occasional, single node failures

Tree Management

- Goals:
 - short and wide trees
 - efficiency
 - diversity
 - quick join and leave processing
 - scalability
- CoopNet approach: centralized protocol anchored at the server
 - single point of failure...
 - ...but server is source of data anyway

Basic Tree Management Protocol

- Nodes inform server of their arrival and departure
- Server tracks node capacity and tells new nodes where to join
 - high up in the tree but randomized
 - fan out of server is typically much larger
- Each node monitors its packet loss rate and takes action when loss rate becomes too high
- Simple, scales to 1000+ joins/leaves per sec.

Optimizations

- Achieving efficiency and diversity
 - cluster nodes into super nodes using delaybased coordinates (akin to GeoPing)
 - logical topology matches physical topology at the macroscopic level
- Migrate "stable" nodes to higher levels in the tree

Achieving Efficiency and Diversity

Performance Evaluation

- MSNBC access logs from Sep 11, 2001
- Live streaming
 - ~18,000 simultaneous clients
 - ~180 joins/leaves per second on average; peak rate of ~1000 per second
 - ~70% of clients tuned in for less than a minute
- On-demand streaming
 - 300,000 requests in a 2-hour period

Live Streaming

- Key questions
 - how beneficial is MDC?
 - does well is diversity preserved as trees evolve?
 - how does repair time impact performance?

Based on MSNBC traces from Sep 11

40

CoopNet for On-demand Streaming

- Distributed streaming of multiple descriptions
- Improves robustness and load distribution

On-demand Streaming

- Key results:
 - server bandwidth requirement drops from
 20 Mbps to 300 Kbps
 - peer bandwidth requirement:
 - average over all peers is 45 Kbps
 - average over active peers is 465 Kbps
 - storage requirement at a peer is less than 100 MB
 - probability of finding peer in the same BGP prefix cluster is under 20%

CoopNet Transport Architecture

Outline

- CoopNet
 - motivation and overview
 - web content distribution
 - streaming media content distribution
 - multiple description coding
 - multiple distribution trees
 - related work
 - summary and ongoing work
- Other networking projects at MSR

Related Work

- Infrastructure-based CDNs
 - Akamai, Digital Island
- P2P CDNs
 - Pseudo-serving, PROOFS, Backslash
 - SpreadIt, Allcast, vTrails
- Application-level multicast
 - ALMI, Narada, Scattercast
 - Bayeux, Scribe
- Multi-path content delivery
 - Byers et al. 1999, Nguyen & Zakhor 2002, Apostolopoulos et al. 2002

Summary

- Client-server applications can benefit from selective use of peer-to-peer communications
- Availability of server simplifies system design
- Web content
 - high degree of locality
 - server-based redirection plus small peer group
- Streaming content
 - robustness to dynamic membership is the key challenge
 - MDC with multiple, diverse distribution trees improves robustness in peer-to-peer media streaming
 - centralized tree management is efficient and can scale

Ongoing Work

- Prototype implementation
- Dealing with client heterogeneity for live streaming
 - combine MDC with layering
- More info:

research.microsoft.com/~padmanab/projects/CoopNet

Papers at IPTPS '02 and NOSSDAV '02

Outline

- CoopNet
 - motivation and overview
 - web content distribution
 - streaming media content distribution
 - multiple description coding
 - multiple distribution trees
 - related work
 - summary and ongoing work
- Other networking projects at MSR

Networking Research at MSR

- Internet measurement and performance
 - Passive Network Tomography
 - IP2Geo: Internet Geography
 - PeerMetric: broadband network performance
- Peer-to-Peer networking
 - Herald: scalable event notification system
 - CoopNet: P2P content distribution
- Wireless networking
 - UCoM: energy-efficient networking
 - Mesh Networks: multi-hop wireless access network

PeerMetric

- Goal: characterize broadband network performance
 - DSL, cable modem, satellite, etc.
- P2P as well as client-server performance
- Deployment on ~25 distributed nodes underway
 - none in Atlanta volunteers welcome!
- Joint work with Karthik Lakshminarayanan (MSR intern from Berkeley)

Mesh Networks: Capacity is the Key Challenge

4 nodes are active, 2 packets in flight (example courtesy of Victor Bahl)