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Abstract. We examine the efficacy of tactics for de-
fending password-protected networks from guessing at-
tacks, taking the viewpoint of an enterprise administra-
tor whose objective is to protect a population of pass-
words. Simple analysis allows insights on the limits of
common approaches, and reveals that some approaches
spend effort in “don’t care” regions where added pass-
word strength makes no difference. This happens either
when passwords do more than enough to resist online at-
tacks while falling short of what’s needed against offline
attacks, or when so many accounts have fallen that an
attacker gains little from additional compromises. Our
review of tools available to improve attack-resistance
finds, for example, that compelling returns are offered by
password blacklists, throttling and hash iteration, while
current password composition policies fail to provide
demonstrable improvement in outcomes against offline
guessing attacks.

1 Introduction

Suppose a system administrator is tasked with defending
a corporate, government or university network or site.
The user population’s passwords are targeted by attack-
ers seeking access to network resources. Passwords can
be attacked by guessing attacks—online or offline—and
by capture attacks, i.e., by non-guessing attacks. How to
choose among password-attack mitigations is a practical
question faced by millions of administrators. Little ac-
tionable guidance exists on how to do so in a principled
fashion. Sensible policies must consider how to protect
the population of user accounts. What is the best mea-
sure of the strength of a population of passwords? Is a
good proxy for the overall ability of the network to resist
guessing attacks the average, median, strongest or weak-
est password? Slogans such as suggesting that all pass-

∗Aug.24, 2016. This is the author’s copy for personal use. A version
of this paper will appear in C.ACM, Nov.2016.

words should be “as strong as possible” are too vague to
guide action—and also suggest that infinite user effort is
both available and achievable.

2 The compromise saturation point

Network compromise thought experiment. To begin,
consider an administrator who observes unusual behav-
ior on his network and suspects that some accounts have
been compromised. If he thinks it’s just a few accounts,
and can identify them, he might just block access to
those. However, if he can’t be sure that an account is
compromised until he sees suspicious activity, it is hard
to figure out the magnitude of the problem. Should he
block access to all accounts and trigger a system-wide
reset? If only a few accounts have been compromised,
perhaps not; if half of them have, he almost certainly
should. What about a 1% compromise rate, or 5% or
10%? At what point is global reset the right answer?

Suppose our hypothetical administrator resets all ac-
counts. There still remains the question: How were the
credentials obtained in the first place? If the door that led
to the compromise remains open (e.g., undetected key-
loggers on several machines) then nothing improves after
a system-wide credential reset. On the other hand, if the
credentials were compromised by guessing, then a reset
(at least temporarily) helps, and a change in the policies
that allowed vulnerable passwords might be in order. But
even if he concludes that password guessing was the at-
tack channel, was it online guessing? Or, somehow, did
the attacker get hold of the password hash file and suc-
ceed with an offline guessing attack?

When attacks on passwords succeed, the specific at-
tack channel is not necessarily clear—it is not obvious
whether the compromised accounts had weak passwords,
were spear-phished or were drive-by download victims.
Further, if it is not known which accounts have fallen, it
may be best to reset all of them—even those not com-
promised. To facilitate more precise reasoning, let α
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be the fraction of credentials under attacker control—
whether or not yet exploited. Thus, when α = 0.5, half
of the accounts (passwords) have already fallen to an at-
tacker. At that point, would the administrator consider
the network only 50% compromised, or fully overrun?
This depends of course on the nature of the network in
question. If a compromised account never has implica-
tions for any other account, then we might say that the
damage grows more-or-less linearly with α. However,
for an enterprise network a compromised account almost
certainly has snowballing effects [3]: a single creden-
tial might give access to many network resources, so that
the damage to the network grows faster than α (a pos-
sible curve is shown in Fig.1). At α = 0.5, a system is
arguably completely over-run. For many enterprise envi-
ronments in this scenario, there would be few if any re-
sources that the attacker can’t access; in many social net-
works, the network value would approach zero, as spam
would probably render things unusable; access to (prob-
ably well under) 50% of email inboxes likely yields a
view to almost all company email, as an attacker requires
access to only one of the sender or recipient(s) of each
message.

All password-based systems must tolerate some
compromise; passwords will be keylogged, cross-site
scripted and spear-phished, and a network unable to han-
dle this will not be able to function in a modern threat
environment. As an attacker gains more and more cre-
dentials in an enterprise network, she naturally reaches
some saturation point after which the impact of addi-
tional fallen credentials is negligible, having relatively
little effect on the attacker’s ability to inflict harm. The
first credential gives initial access to the network, the
second, third and fourth solidify the beachhead, but the
benefit brought by each additional credential decreases
steadily. The gain is substantial when k is small, less
when large: the second password guessed helps a lot
more than the hundred-and-second.

Let αsat be the threshold value at which the attacker
effectively has control of the password-protected part of
the system, in the sense that there is negligible marginal
gain from compromising additional credentials. That is,
if an attacker had control of a fraction αsat of account
credentials, there are very few resources that she could
not access; so the difference between controlling αsat
and (αsat + ε) is negligible. In what follows, our main
focus is enterprise networks, to consider possible values
for αsat.

There are a variety of tools that attackers can use, once
they have one set of credentials, to get others. Phish-
ing emails that originate from an internal account are far
more likely to deceive coworkers. Depending on the at-
tacker’s objective, a toehold in the network may be all
that she requires. The 2011 attack on RSA [1] (which

forced a recall of all SecurID tokens) began with phish-
ing emails to [13] “two small groups of employees” none
of whom were “particularly high profile or high value
targets.” Dunagan et al. [3], in examining a corporate
network of over 100k machines, found that 98.1% of
machines allowed an outward snowballing effect allow-
ing compromise of 1,000 additional machines. Edward
Snowden was able to compromise an enormous fraction
of secrets on the NSA network starting from just one ac-
count [14]. Given that RSA and the NSA (organizations
that we might expect to have above average security stan-
dards) experienced catastrophic failures caused by hand-
fuls of credentials in attacker hands, we suggest a reason-
able upper bound on the saturation point for a corporate
or government network is αsat ≈ 0.1; saturation likely
occurs at much lower values.

It seems likely that enterprises will have the lowest
values of αsat; at consumer web-services, compromise
of one account has less potential to affect the whole
network. As stated earlier, our focus is here on en-
terprise; nonetheless we suggest that damage probably
grows faster than linearly at web-sites also. For example,
online accounts at a bank should have minimal cross-
over effects, but at 25% compromise all confidence in
the legitimacy of transaction requests and the privacy of
customer data is likely lost.

For guessing attacks, the most easily guessed pass-
words fall first. Thus it is the weakest passwords that
determine αsat: the number of guesses that it takes to
gather a cumulative fraction αsat of accounts is what it
takes to reach the saturation point. Since the attacker’s
ability to harm saturates once she reaches αsat, the ex-
cess strength of the remaining (1-αsat) of user passwords
is wasted. For example, the strongest 50% of passwords
might indeed be very strong, but from a system-wide
viewpoint, that strength will only come into play when
the other 50% of credentials have already been compro-
mised (and the attacker already has the run of everything
that is password-protected in the enterprise network).

In summary: password strength, or guessing resis-
tance, is not an abstract quantity to be pursued for its own
sake. Rather, it is a tool that we use to deny an attacker
access to network resources. There is a saturation point,
αsat, where the network is so thoroughly penetrated that
additional passwords gain the attacker very little; resis-
tance to guessing beyond that point is wasted since it de-
nies the attacker nothing. Thus, there’s a “don’t care”
region after that saturation level of compromise, and for
enterprise networks it appears quite reasonable to assume
that αsat is no higher than 0.1. At that level it is not sim-
ply the case that the weakest 10% of credentials are most
important, but that the excess strength of the remaining
90% is largely irrelevant to the administrator’s goal of
system-wide defense. Of course there may be secondary
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Figure 1: The fraction of network resources under at-
tacker control grows faster than the fraction of creden-
tials compromised. For example, given half of a system’s
credentials, an attacker likely effectively has access to all
resources. For enterprise networks, we expect the satu-
ration threshold, αsat, where the network is completely
penetrated, is likely under 0.1.

benefits to an individual user in having their password
withstand guessing even after αsat has been exceeded.
For example, if re-used at another site the user still has a
significant stake in seeing the password withstand guess-
ing. Since our focus is on the administrator’s goal of
protecting a single site, this is not part of our model.

3 The online-offline chasm: too much and
not enough

We next consider the difference between online and of-
fline guessing. In online attacks an attacker checks
guesses against the defender’s server, i.e., submitting
guesses to the same server as legitimate users. In offline,
she uses her own hardware resources, including net-
worked or cloud resources and machines equipped with
graphical processing units (GPUs) optimized for typi-
cal hash computations required to test candidate guesses.
Thus offline attacks can test many orders of magnitude
more guesses than online attacks, whether or not online
attacks are rate-limited by system defenses. We consider
online and offline guessing attacks separately.

An online attack is always possible against a web-
facing service, assuming that it’s easy to obtain or gen-
erate valid account userids. An offline attack is possi-
ble only if the attacker gains access to the file of pass-
word hashes (in order to verify correctness of guesses
offline)—and in this case, an offline attack is necessary
only if that file has been properly salted and hashed, oth-
erwise simpler attacks are possible [6], e.g., rainbow ta-
bles for unsalted hashed passwords.

There is an enormous difference between the strength

required to resist online and offline guessing attacks.
Naturally, the probability of falling either to an online
or offline attack decreases gradually with the number of
guesses a password will withstand. A hundred guesses
per account might be easy for an online attacker, but a
thousand somewhat harder, and so on; at some point on-
line guessing is no longer feasible. Similarly, at some
point the risk from an offline attack begins to gradually
decrease. Let T0 be a threshold representing the maxi-
mum number of guesses expected from an online attack,
and T1 correspondingly the minimum number of guesses
expected from a credible offline attack. (The asymmetry
in these definitions is intentional, to provide a conser-
vative estimate in reasoning about the size of the gap.)
Then a password withstanding T0 guesses is safe from
online guessing attacks, while one that doesn’t withstand
T1 guesses certainly won’t survive offline attacks. Our
own previous work [6] suggests T0 ≈ 106 and T1 ≈ 1014

are reasonable coarse estimates, giving a gap eight or-
ders of magnitude wide (see Fig.2); we emphasize how-
ever that the arguments herein are generic, regardless of
the exact values of T0 and T1. While estimates for T1 in
particular are inexact, depending as they do on assump-
tions about attacker hardware and strategy (a previous
estimate [6] assumed 4 month’s of cracking against one
million accounts using 1000 GPUs each doing a billion
guesses per second), clearly T1 vastly exceeds T0.

A critical observation is that for a password P whose
guessing-resistance falls between T0 and T1, incremen-
tal effort which fails to move it beyond T1, is wasted in
the sense that there is no guessing attack to which the
original P falls, that the stronger password resists—since
guessing attacks are either online or offline, with no con-
tinuum in between. Passwords in this online-offline gap
are thus in a “don’t care” region in which they do both
too much and not enough: too much if the attack vec-
tor is online guessing, and not enough if it is offline.
Once a password will withstand T0 guesses, to stop ad-
ditional attacks, any added strength must be sufficient to
move to the right of T1. While both online and offline
attacks are countered by guessing-resistance, the amount
needed varies enormously. In practical terms, distinct
defences are required to stop offline and online attacks.
This online-offline chasm then gives us a second “don’t
care” region, besides that defined by αsat.

4 The “don’t care” region: pushing on
string

The compromise saturation point and the online-offline
chasm each imply regions where there is no return on
effort. The marginal return on effort is zero for im-
proving any password which starts in the zone greater
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Figure 2: Don’t care regions where there is no return for increasing effort. T0 is the threshold above which online
attacks cease to be a threat. T1 is the threshold below which passwords almost surely will not survive credible offline
attacks. αsat is the threshold fraction of compromised accounts at which an attacker effectively has control of system
resources. Examples for these parameters might be T0 = 106, T1 = 1014, αsat = 0.1.

than T0 yet remains less than T1, and for passwords with
guessing-resistance above the αsat threshold. Fig.2 illus-
trates this with shaded areas denoting the “don’t care”
regions. A password withstanding T1 − ε guesses has
the same survival properties as one surviving T0 + ε—
both survive online, but fall to offline attack, i.e., equiv-
alent outcomes. From the administrator’s point of view,
the strongest password in the population, i.e., having the
most guessing-resistance (the password at α = 1.0) is
similar to one at αsat +ε , in that both fall after the at-
tacker’s capability to harm is already saturated.

In summary, shaded regions denote these areas where
there is no return-on-effort for “extra strength”: 1) pass-
words whose guessing-resistance lies within the online-
offline gap; and 2) passwords beyond where an attacker
is gaining little from additional credentials. The size of
the “don’t care” region naturally depends on the partic-
ular values of αsat, T0 and T1 but in all cases the shape
of the password distribution (as defined by the colored
curves in Fig.2) matters only in the areas below αsat AND
(left of T0 OR right of T1). An important observation
is that, under reasonable assumptions, the “don’t care”
regions cover a majority of the design space. The rela-
tively small unshaded regions are shown in Fig.2; outside
of these regions changes to the password distribution ac-
complish nothing (at least from the administrator’s view-
point). To anchor the discussion, based on what we know
of enterprise networks and attacker abilities, we’ve of-
fered estimates of αsat = 0.1,T0 = 106, and T1 = 1014,

but choosing different values doesn’t alter the conclu-
sion that in large areas of the guess-resistance versus
credentials-compromised space, changing the distribu-
tion of user-chosen passwords improves little of use; it
causes no direct damage, but like pushing on string, is
ineffective (and wasteful in energy).

To understand the consequences, Fig.2 also depicts
guessing-resistance of three hypothetical password dis-
tributions. The blue (top) and green (middle) curves di-
verge widely on the right side of the figure—for a fixed
number of guesses, far fewer green-curve accounts will
be compromised than from the blue-curve distribution.
The green-curve might appear better since those pass-
words are much more guess-resistant than those from the
blue curve. Nonetheless they have identical attack sur-
vival outcomes since their divergence between T0 and T1
has minimal effect on performance against online or of-
fline attacks, and divergence above αsat happens only af-
ter the attacker’s capacity for harm has already plateaued.
The red (lower) curve shows a distribution that might sur-
vive an offline attack, as the curve lies below αsat even at
the number of guesses that an offline attacker might de-
liver. The enormous difficulty of getting users to choose
passwords that will withstand offline guessing, and the
waste that results unless almost all of them do has also
been argued by Tippett [11]. We re-emphasize that αsat,
T0 and T1 are site and implementation dependent vari-
ables. We examine below how an administrator can vary
them to decrease the size of the “don’t care” zone.
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5 What should an administrator optimize?

Ideally, a system’s population of passwords would with-
stand both online and offline attacks. For this, the frac-
tion of accounts compromised must be lower than αsat at
T1 guesses (and ideally much lower, since an offline at-
tacker may be able to go well beyond the expected min-
imum T1). Unfortunately, recent work shows that user-
chosen passwords don’t even approach this, even when
stringent composition policies are enforced. For exam-
ple, Mazurek et al. [10] found that 48% of CMU pass-
words (which had a length-8 and 4-out-of-4 character
sets policy in place) fell within 1014 guesses. On examin-
ing eight different password-creation policies, Kelley et
al. [8] found that none kept the cumulative fraction of ac-
counts compromised below 10% by 1011 guesses. Thus,
if we believe that an attacker’s control saturates by the
time a fraction αsat = 0.1 of accounts is compromised,
and that an offline attack can mount at least T1 = 1011

guesses per account, then there is little hope of resisting
offline attack. That is, with these assumed values of αsat
and T1, an attacker who gains access to the hashed pass-
word file will have all the access she needs, no matter
how far outside her reach the remaining fraction (1-αsat)
of passwords lie.

What then should an organization seek to do? It is
ideal if passwords robustly withstand both online and of-
fline attacks, as is the case for the lower curve in Fig.2.
However, striving for this but falling short wastes user ef-
fort and accomplishes nothing. In Fig.2, all effort above
and beyond that necessary to withstand online attack is
completely wasted in the two upper curves. An orga-
nization that tries to withstand offline attacks but fails to
have at least a fraction 1−αsat of users survive T1 guesses
fares no better than one that never made the attempt (and
does worse if we assume that user effort is a scarce re-
source [5]. The evidence of recent cracking work on
real distributions [10, 8] suggests that this is the fate
of more-or-less all organizations that allow user-chosen
passwords (unless we believe that αsat ≈ 0.1 is unreason-
ably low or T1 ≈ 1014 is unreasonably high). Thus, the
argument “stronger passwords are always better,” while
deeply ingrained, appears untrue. Stronger passwords
lower the cumulative fraction of accounts compromised
at a given number of guesses (i.e., push the curves in
Fig.2 lower). However, changes that occur within the
shaded “don’t care” regions happen when it no longer
matters and do not improve outcomes.

It follows that a reasonable objective is to maximize,
within reasonable costs, guessing-resistance across the
system’s set of passwords at the expected online and of-
fline number of guesses, subject to the constraint that the
fraction of compromised accounts stays below αsat. That
is, so long as α < αsat, the lower α is at T0 (resp. T1)

the better the resistance to online (resp. offline) attacks.
For α > αsat, improvements which do not reduce α be-
low αsat are unrewarded. Focussing as it does on a sin-
gle site, we remind readers that the additional benefit of
withstanding guessing to users who have re-used their
password at other sites are not captured in this model.

6 What can an administrator control?

What tools does an administrator have to reach these
goals? The outcome will be influenced by the values αsat,
T0, and T1 and the shape of the cumulative password dis-
tribution. We show these various forces in Fig.3.

The value of the compromise saturation point αsat is
largely determined by the network topology and might
be relatively difficult to control or change in a given en-
vironment. Basic network hygiene and adherence to se-
curity principles (e.g., principles of least privilege, isola-
tion and containment), can help minimize damage when
intrusion occurs. Of course, these defenses are also ef-
fective against intrusions that do not involve password
guessing. We assume that these defenses will already
be in force, and in the rest of the section concentrate on
measures that mostly affect password guessing attacks.

Improving T0: There aren’t many reasons for any au-
thentication system to allow hundreds of thousands of
distinct guesses on a single account. In cases of actual
password forgetting it is unlikely that the legitimate user
types more than a dozen or so distinct guesses. Mech-
anisms that limit the number of online guesses (thus re-
ducing T0) include various throttling mechanisms (rate-
limiting) and IP address blacklisting. The possibility of
denial of service attacks can usually be dealt with by IP
address whitelisting. (We mean, not applying the throt-
tling triggered by new IP addresses to known addresses
from which a previous login succeeded; wrong guesses
from that known address should still be subject to throt-
tling.) A simple easily-implemented throttling mecha-
nism may suffice for many sites. When denial of service
attacks are a possibility, more complex mechanisms may
be necessary, perhaps including IP address white- and
blacklisting, and methods requiring higher effort from
site administrators. Such defensive improvements should
come without additional burdens of effort and inconve-
nience to users. Together with password blacklisting
(discussed below), throttling may almost completely shut
down generic online guessing attacks.

Improving T1: A password must withstand a certain
number of guesses to have any hope of withstanding
credible offline attacks. A lower bound T1 on this num-
ber may vary depending on the defenses put in place, and
can be very high. For example, if an attacker can make
ten billion guesses per second on each of one thousand
GPUs [7] then in a four month period he can try about
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Figure 3: Defensive elements aiming to improve guessing-resistence. (1) αsat (the point at which attacker control
saturates) can be raised by implementation of basic security principles such as least-privilege and compartmentaliza-
tion. (2) T0 (the maximum number of online guesses) can be reduced by throttling mechanisms. (3) T1 (the minimum
number to be expected from an offline attack) can be reduced by iterated hash functions. (4) The cumulative fraction
of accounts that have fallen at a given number of attacker guesses can be reduced (pushing the blue curve down) by
improving the guessing-resistance of user-chosen passwords, e.g., to the left of T0 by password blacklisting, and by
password composition policies generally. Changing αsat, T0 and T1 alter the size of shaded “don’t care” regions.

T1 = 1014 guesses against each of one million accounts
[6]. Furthermore, technology advances typically aid at-
tackers more than defenders; few administrators will re-
place hardware every year, while attackers can be as-
sumed to have access to the latest resources. This moves
T1 to the right—as computing speeds and technology ad-
vance, and customized hardware gives attackers further
advantages. Since the hardware is controlled by the at-
tacker, little can be done to directly throttle offline guess-
ing. However, an effective way to reduce the number
of trials per second is to use a slow hash, i.e., one that
consumes more computation. The most obvious means
is hash iteration [12]; recent research is also exploring
the design of hash functions specifically designed to be
GPU-unfriendly.

For example, ignoring the counter-acting force of
speed gains due to advancing technology, an iteration
count of n = 104 reduces T1 from 1014 to 1010. Even
with iteration it is hard to move T1 all the way left to
T0 to make the online-offline chasm disappear. Lim-
its on further increasing n arise from the requirement
that the time to verify legitimate users must be tolera-
ble to both the users (wait time) and system hardware;
e.g., n might allow verifying 100 legitimate users/sec
(10ms per user). If 10ms is a tolerable delay an at-
tacker with access to 1000 GPUs can compute a total

of 1000×4×30×24×60×60/10−2 ≈ 1012 guesses in
4 months. Directing this effort at 100 accounts would
mean that each would have to withstand a minimum of
T1 = 1010 guesses. Since these are conservative assump-
tions, it appears challenging to decrease T1 below this
point.

Note that, as technology evolves, the number of hash
iterations can easily be increased, invisibly to users and
on-the-fly—by updating the stored password hashes in
the system-side file to reflect new iteration counts [12].
Among the appealing aspects of iterated hashing, it is
long-known as an effective defensive tool, and costs are
borne system-side rather than by user effort. However,
hash iteration is not a miracle cure-all—for a password
whose guess-resistance is 106, online throttling is still
important; an online attacker who could test one pass-
word every 10ms (matching the system rate noted above)
will succeed in 104s = 2hr 47min.

Eliminating offline attacks altogether: The empha-
sis on encouraging users to choose stronger passwords
can obscure the fact that offline attacks are only a risk
when the password hash file “leaks” (a euphemism for
“is somehow stolen”) or otherwise becomes available to
an attacker. Any means or mechanisms that prevent the
file from leaking entirely remove the need for individual
passwords to withstand an offline attack. Since we de-
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fined T1 as the minimum number of guesses a password
must withstand to resist an offline attack, any such mech-
anism effectively reduces T1 to zero. One particularly
appealing such mechanism is discussed next.

HARDWARE SECURITY MODULES (HSMS). A
properly used HSM eliminates the risk of the hash file
leaking [6], or equivalently eliminates the risk of a de-
cryption key (or backup thereof) leaking in the case that
the means used to protect the information stored system-
side to verify passwords is reversible encryption. In such
a proper HSM architecture, rather than the one-way hash
of salted passwords, what is stored is a message authen-
tication code (MAC) computed over the password using
a secret key. When a password candidate is presented for
verification, the candidate plus the corresponding MAC
from the system file are provided as HSM inputs. The
HSM holds the system secret key used to compute the
MAC; importantly, this secret key is by design never
available outside the HSM. Upon receiving the (MAC,
candidate password) input pair, the HSM independently
computes a MAC over the input candidate, compares it
to the input MAC, and answers yes (if they agree) or no.
Stealing the password hash file—in this case a password
MAC file—is now useless to the offline attacker, because
the HSM is needed to verify guesses. In other words, of-
fline attacks are no longer possible.

Another interesting scheme to mitigate offline attacks
was proposed by Crescenzo et al. [2]. It bounds the
number of guesses that can be made by restricting the
bandwidth of the connection between the authentication
server and a specially constructed hash-server (which re-
quires a very large collection of random bits). This limits
an attacker to online guessing since, by design, the con-
nection is too small to support the typical guessing rate
an offline attacker needs, or to allow export of any file
that would be useful to an offline attacker.

Improving the password distribution: Finally, we
consider changes to the password distribution as a means
of improving outcomes. Recall that the curves in Fig.2
represent the cumulative fraction of accounts compro-
mised as a function of the number of guesses-per-
account. In general it has been thought that the lower
this cumulative fraction the better; a great deal of effort
has gone into coercing users to choose “stronger” pass-
words (thus pushing the cumulative distribution curve
downward, in one or more of the three regions induced
by T0 and T1). However, as has been explained, lower
is of tangible benefit only outside of the “don’t care” re-
gion: improvements to the curve inside the “don’t care”
region have negligible effect on outcomes in any attack
scenario.

First, note that tools to influence the cumulative distri-
bution are mostly indirect: it is users who choose pass-
words, not administrators. For example, by some com-

bination of education campaigns, password policies and
password meters, administrators may try to influence this
curve towards “better” passwords. However, the cumu-
lative distribution is ultimately determined by user pass-
word choice; if users ignore advice, do the minimum to
comply with policies, or aren’t motivated by meters, then
efforts to lower the curve may have little impact.

Second, note that many policy and education mech-
anisms are unfocused, in the sense that they cannot be
targeted at the specific part of the cumulative distribu-
tion where they make most difference (and away from
the “don’t care” region where they make none). Even if
they succeed, exhortations to “choose better passwords”
aren’t concentrated at one part of the curve or another;
if all users respond to such a request by improving their
passwords marginally, the related effort of 90% of users
is still wasted for an enterprise where αsat = 0.1. We
now examine common approaches to influencing pass-
word choices in this light.

PASSWORD BLACKLISTING. Attackers exploit the
fact that certain passwords are common. Thus, explicitly
forbidding passwords known to be common can reduce
risk. Blacklists concentrate at the head of the distribu-
tion, blocking the choice of most common passwords.
For example, a user who attempts to choose “abcdefg” is
informed that this is not allowed and is asked to choose
another. Certain large services do this; Twitter black-
listed 380 common passwords after an online guess-
ing incident in 2009, and Microsoft applied a blacklist
of several hundred to its online consumer properties in
2011. With improvements of password crackers, and
the recent wide availability of passwords lists, blacklists
need to be longer.

A blacklist of, say 106 common passwords, may help
bringing guessing resistance to the 105 level. A natural
concern with blacklists is that users may not understand
why particular choices are forbidden. Kelley et al. [8]
examine the guessing resistance of blacklists of various
sizes, but the question of how long one can be before
the decisions appear capricious is an open one. Koman-
duri et al. [9] pursue this question with a meter that dis-
plays, as a user types, the most likely password com-
pletion. A further unknown is the improvement achieved
when users are told their password choice is forbidden. It
appears statistically unlikely that all of the users who ini-
tially selected one of Twitter’s 380 blacklisted passwords
would collide again on so small a list when making their
second choice, but we are not aware of any measure-
ments of the dispersion achieved. A promising recent
practical password strength estimator is zxcvbn [15]; it
can also be used to help blacklisting.

Observe that blacklists are both direct and focused:
they explicitly prevent choices known to be bad rather
than relying on indirect measures, and they target those
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making bad choices, leaving the rest of the population
unaffected. Using a blacklist appears one of the simplest
measures to meaningfully improve the distribution in re-
sisting online attacks.

COMPOSITION POLICIES. Composition policies at-
tempt to influence user-chosen passwords by mandating
a minimum length and the inclusion of certain charac-
ter types—a typical example being “length-8 and use
three of the four character sets {lowercase, uppercase,
digits, special characters}”. Certain policies may help
improve guess-resistance in the 105 to 108 range. How-
ever, for what we have suggested as the reasonable values
αsat = 0.1 and T1 = 1014, the evidence strongly suggests
that none of the password composition policies in com-
mon use or seriously proposed [10, 8] can help; for these
to become relevant, one must assume that an attacker’s
ability to harm saturates much higher than αsat = 0.1,
or that he can manage far fewer than T1 = 1014 offline
guesses. Thus, such policies fail to prevent total pene-
tration of the enterprise network. Their ineffectiveness is
perhaps the reason why a majority of large web services
avoid onerous policies [4].

Note that composition policies are indirect: the con-
straints they impose are not themselves the true end ob-
jectives, but it is hoped that they result in a more de-
fensive password distribution. This problem is com-
pounded by the fact that whether the desired improve-
ment is achieved is concealed from an administrator: the
justifiably recommended practice of storing passwords
as salted hashes means that the password distribution is
obscured, as well as any improvements caused by poli-
cies. Composition policies are also unfocused in that
they affect all users rather than being directed specifi-
cally where they may matter most. A policy may greatly
impact user password choice and still have little impact
on outcome—e.g., if all of the change in the cumulative
distribution happens inside the “don’t care” region.

7 Concluding remarks

In summary, password strength, which actually means
guessing-resistance, is not a universal good to be pur-
sued for its inherent benefits—it is useful only to the
extent that it denies things to adversaries. When we
consider a population of accounts there are large ar-
eas where increased guessing-resistance accomplishes
nothing—either because passwords fall between the on-
line and offline thresholds, or because so many accounts
have already fallen that attacker control has already sat-
urated. If increases in password guessing-resistance
were free this would not matter, but they are typically
achieved at great cost in user effort—for example, there
is a void of evidence that current approaches based on
password composition policies significantly improve de-

fensive outcomes, and strong arguments that they waste
much user effort. This thus creates risk of a false sense
of security.

It is common to assume that users must choose pass-
words that will withstand credible offline attacks. How-
ever, if we assume that an offline attacker can mount
T1 = 1014 guesses per account, and has all the access she
needs by the time she compromises a fraction αsat = 0.1
of accounts, we must acknowledge that trying to stop of-
fline attacks by aiming user effort towards choosing “bet-
ter passwords” is unachievable in practice. The compo-
sition policies in current use seem so far from reaching
this target that their use appears misguided. This is not to
say that offline attacks are not a serious threat. However,
it appears that enterprises that impose stringent password
composition policies on their users suffer the same fate as
those that do not. If the hashed password file leaks, bur-
dening users with complex composition policies doesn’t
alter the fact that a competent attacker likely gets access
to all the accounts she could possibly need. Nudging
users in the “don’t care” region (where most passwords
appear to lie) is simply waste.

The best investments to defend against offline attacks
appear to involve measures transparent to users. Iteration
of password hashes lowers the T1 boundary; however,
even with very aggressive iteration we expect that at
least 1010 offline guesses remain quite feasible for
attackers. Use of message authentication codes (MACs),
i.e., keyed hash functions, instead of regular (unkeyed)
password hashes, provides effective defence against
offline attacks which exploit leaked hash files—provided
that the symmetric MAC key is not also leaked. One
method of protecting MAC keys is hardware security
modules (HSMs) as discussed—though more expensive
than software-only defences, they can entirely eliminate
offline attacks. Online guessing attacks, in contrast,
cannot be entirely eliminated, but effective defences
include password blacklists and throttling—and there ap-
pear few barriers to implementing these simple defences.
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[5] D. Florêncio, C. Herley, and P. van Oorschot. Pass-
word Portfolios and the Finite-Effort User: Sus-
tainably Managing Large Numbers of Accounts.
USENIX Security 2014, pages 575–590.
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