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ABSTRACT
We present ThermalSense, a method for dynamically detect-
ing and predicting thermal comfort by using thermographic
imaging to look for the physiological markers of vasodilation
or vasoconstriction. We describe how ThermalSense can be
used to infer how to control heating and cooling systems and
reduce energy use while maintaining comfort.

We evaluate ThermalSense using a study involving thirty in-
dividuals over five weeks in an office building. Our study
shows that, on around 40% of occasions, the HVAC system
could have expended less energy to achieve comfort. It fur-
ther demonstrates that thermographic imaging can be used to
infer whether heating or cooling must be activated to maintain
comfort, with an accuracy of 94-95%.
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INTRODUCTION
Thermal regulation of buildings is important for safety and
comfort, and at the same time represents a significant pro-
portion of worldwide energy use. For example, in residen-
tial buildings in the US, it accounts for 48% of total energy
use [1], or 61% in Canada and the UK [3, 29]. In nearly all
thermal regulation systems, human comfort is represented in
the control loop by using a “set point” air temperature, which
the system tries to match by heating or cooling as necessary.

However, it has long been known that human thermal comfort
relies on many other factors. Fanger’s seminal work on the
Predicted Mean Vote (PMV) metric [8] utilized six quantities:
air temperature, relative humidity, air velocity, mean radiant
temperature, clothing level and metabolism level. Radiant
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Figure 1: Thermographic images of the same person when
(a) they want it to be warmer, and (b) they want it to be
cooler, showing detectable differences. Mean temperatures:
(a) palm: 30.9 oC, forehead: 34.8 oC, cheek: 32.5 oC. (b)
palm: 34.3 oC, forehead: 35.1 oC, cheek: 34.9 oC

heat can, for example, cause people to feel warmer on a sunny
day when the walls and furniture warm up and re-radiate heat,
even if the air temperature is the same. Metabolism levels can
also cause people’s thermal sensation to differ [14].

It is well-known that people are comfortable in a range
of temperatures at any given time. The commonly-used
ANSI/ASHRAE-55 standard allows for air temperature dif-
ferences of up to 3 oC in office spaces while maintaining oc-
cupant comfort [6]. In our own study (reported later), the



median range of air temperatures reported as “comfortable”
was 1.4 oC.

The motivation for this work is to find a new method by which
heating and cooling systems can be controlled, which mini-
mizes energy use while maintaining comfort. To do this, we
need to sense whether the occupant would be comfortable at
a less energy-intensive temperature (i.e., colder if the heating
is on, or warmer if cooling is on), at any given time.

To achieve this, we decided to explore using thermographic
imaging of people to look for physiological signs of feeling
warm or cool. The human body uses cutaneous vasodila-
tion and vasoconstriction to help regulate internal tempera-
ture, bringing more blood to the skin surface to cool the body
down, and vice versa to preserve warmth. This can be de-
tected by using long-wave infra-red (thermographic) imag-
ing cameras, as illustrated in Figure 1. We call this approach
“ThermalSense.”

The main contributions of this paper are:
1. Algorithms for dynamically estimating occupants’ real-
time thermal preferences using thermographic imaging and
machine learning.
2. A study (with 698 data samples over 5 weeks spanning 30
individuals) and analysis into how occupants reported their
dynamic thermal sensations and thermal comfort preferences,
which also showed that, on around 40% of occasions, en-
ergy could be saved if realtime thermal preferences were used
rather than using standard air temperature based control.
3. A further analysis (based on the same study) that demon-
strated that ThermoSense (e.g. based on Fanger’s PMV fac-
tors). ThermalSense achieved an accuracy of 94-95% at pre-
dicting whether heating/cooling should be actuated to main-
tain comfort while minimizing energy use.

RELATED WORK
Early, seminal work in predicting thermal preferences was
done by P.O. Fanger [8], whose Predicted Mean Vote (PMV)
uses six primary factors known to affect thermal sensation
- air temperature, relative humidity, radiant temperature, air
speed, clothing insulation and metabolic rate. This was not
designed for a realtime sensing scenario, but instead for of-
fline analysis.

PMV uses a 7-point thermal sensation scale ranging from -
3 (cold) to +3 (hot) where 0 (neutral) is assumed to be the
most desirable level. However, other work [19] has identified
that people often do not interpret “neutral” as most comfort-
able/desirable, and often prefer non-neutral temperatures.

To add further complexity, more recent work has highlighted
how the relationship between thermal sensation and thermal
comfort is by no means immutable. People adapt to their en-
vironment, both using immediate remedies such as wearing a
sweater, and also through changing their expectations of what
constitutes “comfortable” [2, 26, 5].

In our study (to be described later), we ask participants both
about their current thermal sensation and their comfort at that
temperature as well as other temperatures. This allows us to
compare with findings from the literature, and also to ensure

that our analysis addresses the differences between thermal
sensation and comfort.

There are existing systems that aim to adapt temperature dy-
namically. Neurothermostat [25] is early work in this area,
which tries to learn an occupant’s behavior in changing ther-
mostats, and then automate this control on the user’s be-
half. Thermovote [7] brings humans more directly into the
loop, using participant feedback on whether people are feel-
ing hot/cold/neutral to decide how they want to adjust tem-
peratures to improve occupant comfort.

SPOT [13] and its successor SPOT+ [12] (with room occu-
pancy prediction ability) try to customize the PMV equation
for a person by determining an offset from the comfort which
would be experienced by the mean population in a building.
It uses multiple sensors deployed in a room to determine all
six parameters of PMV, and thereby develop a personalized
equation for PMV.

Huang et. al explored the idea of using off the shelf sensors in
wearable devices to monitor the PMV factors, as well as new
factors such as sweat and activity level [17]. They postulated
that ASHRAE scale of thermal sensation did not consider the
comfort of a person at non-neutral sensations, and therefore
defined their own scale which considered comfort as well as
sensation.

A study conducted in Iran in summer and winter seasons, pre-
dicted the thermal sensation experienced by visitors in an out-
door location [20]. They measured factors such as air temper-
ature, radiant heat, air velocity and relative humidity. Other
than microclimatic factors, they also captured demographic
factors, such as gender, reason to visit the place, clothing in-
sulation etc.

More research in this area, as well as some recent commercial
products, focuses on the problem of ensuring that the HVAC
system is only active when people are around. Some work
in this area uses occupancy sensors in the home, e.g. Lu et.
al. [23], PreHeat [31] and Koehler et. al. [21]. Other work
by Gupta et. al. [15] uses GPS from a user’s smartphone to
predict future occupancy. Google’s Nest and similar products
have brought occupancy-reactive heating to the commercial
market.

THERMALSENSE APPROACH
ThermalSense aims to automatically and dynamically opti-
mize for both energy saving and comfort through dynami-
cally sensing thermal comfort preferences. Figure 2 illus-
trates how such dynamic sensing can allow an HVAC system
to both avoid comfort “mistakes” as people’s thermal comfort
goals change over the course of a day, and save energy by not
heating or cooling beyond what is necessary for comfort. In
contrast, a constant-air-temperature system must target a con-
servative temperature close to the average of the comfortable
range, if changes in this range are not sensed.

We use thermographic imaging of skin temperatures to infer
not only how comfortable people are currently, but also pre-
dict how comfortable they would be if it were slightly warmer
or slightly cooler.



Figure 2: If an HVAC system can keep the temperature at
the edge of the comfortable range at all times, energy can be
saved compared to a constant air temperature approach, while
also maintaining comfort.

We now describe the physiology behind how skin temper-
atures (as illustrated in Figure 1) are indicative of thermal
comfort. The human body uses thermal regulation techniques
to heat and cool itself, in order to maintain a constant core
temperature. In addition to other methods such as sweating
and thermogenesis (e.g., shivering), a key method employed
by the body is widening or narrowing blood vessels in the
skin [16].

Vasodilation, i.e. widening of blood vessels, causes increased
blood flow in the skin, allowing the body to radiate heat. Con-
versely, vasoconstriction decreases blood flow in the skin, and
reduces heat loss. The state of vasodilation and vasoconstric-
tion in the extremities of the human body are considered to be
indicative of the thermal state of the body [27]. Furthermore,
previous work has reported that a person’s thermal comfort
can be related to their skin temperatures [11, 10, 32].

DATA COLLECTION
To explore the feasibility of using thermographic images in
this way, we conducted a data collection-based study with
offline analysis. The data gathered included sensor measure-
ments and also captured realtime thermal preferences through
surveys.

We conducted the data collection with participants working
in an office building in the UK for 5 weeks during summer.
Using an office building rather than a home environment, al-
lowed us to get data from 30 participants over this period.
While some studies of thermal comfort are done in highly
controlled and varied climate chambers, our focus was on in-
situ and realtime thermal preferences that an occupant expe-
riences as part of a normal temperature-regulated indoor en-
vironment.

The office was equipped with a HVAC system which was op-
erational for the full period, i.e. maintaining a controlled air
temperature. This environment was a deliberately difficult
one for our approach — it would have been much easier to
infer that people want cooling when they are in a hot room
rather than in one kept at a comfortable standard temperature.
However, what ThermalSense aims to do is to enable small

1. Please consider for five seconds,
and then indicate how you feel:
Hot, Warm, Slightly Warm, Neutral,
Slightly Cool, Cool, Cold

2. On a scale of 1-5, how comfortable are you
a. At the current temperature
b. If it were a bit warmer
c. If it were much warmer
d. If it were a bit cooler
e. If it were much cooler

3. Please list all clothes that you are wearing

Figure 3: Survey conducted each time thermographic read-
ings were taken

changes to air temperature in an HVAC-controlled environ-
ment, that maintain comfort but reduce energy use. This moti-
vates studying an environment which is already under HVAC
control.

We recruited participants who worked in the same building,
through email and direct contact, offering a 25 GBP gift card
as gratuity. There were 30 participants, 24 male and 6 female,
from three different floors of a five-story office building, 9
with individual offices who had the ability to adjust the of-
fice temperature to their preference, and 21 with shared office
spaces which used a fixed shared setpoint. One of the authors
of the paper was a participant. All participants were aware
of our overall idea to use thermographic imaging to estimate
comfort, but we did not show the participants their own ther-
mographic images.

We visited participant’s workspaces twice per working day,
once in the morning, once in the afternoon, over a period
of 5 weeks. At each visit, if the participant was available,
we verbally conducted a short survey about thermal sensation
and thermal comfort, and we recorded sensor data concerning
ambient conditions as well as thermographic images - details
below.

We collected a total of 700 responses across all participants.
The median number of responses per participant was 24, the
minimum was 8 and the maximum was 33. At the end of the
study, we conducted exit interviews in which we asked the
participants to reflect more deeply upon their perception of
thermal comfort.

The survey, shown in Figure 3, was designed and refined
through pilot deployments to take under 1 minute to com-
plete, to avoid interrupting the participants’ work too much.
The first question concerned thermal sensation using the
ANSI/ASHRAE 55 standard, which is a seven point scale
ranging from Cold to Hot. The second question of the sur-
vey looked at thermal comfort, both at the current temperature
and also warmer or cooler temperatures. The third question of
the survey allowed us to measure the clothing insulation level,
based on a database [24], as used in Fanger’s PMV equation.



1. Please explain briefly what “how you feel”
means to you and how do you determine your
response? (For example, do you focus
internally on your body on specific
body parts (if so which?), or externally
on your perception of the environment, or both?)

2. Specifically, with the word “neutral”, do you
interpret this as the most comfortable temperature
for you, or do you interpret this to mean that the
environment is at a neutral temperature.

3. If your response to the previous question is
the latter, which point on the scale of
(Hot, Warm, Slightly Warm, Neutral,
Slightly Cool, Cool, Cold), do you think
you are typically most comfortable at?

Figure 4: Post-study survey

Since participants were sitting when we visited them, we used
the standard metabolic level of 1.0 MET.

We also measured air temperature and humidity (with a Sil-
icon Labs Si7020 sensor), and radiant temperature (with the
thermographic camera discussed later), which are again fac-
tors well known to influence thermal comfort and form part
of Fanger’s PMV equation. We did not measure air velocity
with every sample since initial experiments showed that the
air velocity was low and constant - we used a constant 0.1
m/s2 for air velocity.

Finally, during each visit we recorded various body tempera-
tures for participants. We used a FLIR A655sc thermographic
camera, which has a 640x480 resolution and a sensitivity of
0.05oC, with the T198065 80o field-of-view lens. We took
two thermographic images of the participant — one showing
the backs of their hands and another showing the front of their
hands (see Figure 5).

In future, in an integrated solution, we envisage a computer
vision system would determine when someone was present
and then to sample automatically from the right body loca-
tion, either make use of the thermographic image alone, or an
RGB or depth image from an additional camera. However,
for this study, since we did not know which body part tem-
peratures would be most informative for our application, we
used a manual approach.

To choose which body part temperatures to measure, we con-
ducted a pilot study with 4 participants where we controlled
the ambient temperature and got them to change clothing and
their metabolic level as well (with an exercise bike). Based on
this preliminary study and also on the regions of the body that
are visible when wearing normal indoor clothing, we chose to
capture the body regions shown in Figure 5, specifically 7 fa-
cial regions: forehead, cheeks (x 2), lips, jaw (includes lips),
upper neck and lower neck, and 6 hand regions: center of

Figure 5: Body regions where thermographic data was col-
lected: forehead, cheeks, lips, jaw (including lips), upper
neck, lower neck, palm core, palm (includes palm core), and
back-of-hand (not shown in figure).

palm (x 2), palm (which includes center of palm) (x 2), and
back of hand (x 2). The initial experiments showed us that
the nose region was not useful.

Another potential region for thermal annotation were the fin-
gertips. This was based on the ideas proposed by Humphrey
et al. [18], in which they suggested that fingertip tempera-
tures along with radiant temperature was highly correlated to
the thermal sensation reported by participants. However, ac-
cording to a report by Wang et al. [32], these temperatures
vary substantially among people expressing the same thermal
sensation, exceeding 10oC among people feeling neutral or
cooler than neutral. They suggested that this variability might
limit the accuracy of any method that uses fingertip tempera-
ture as a predictor of thermal sensation or comfort. Therefore,
we decided to leave out the fingertip regions.

For the captured thermographic images, which comprise a
temperature per pixel, we used FLIR’s Research IR software
offline to manually annotate each region as a rectangular area
and obtain the min, max, mean, range, and standard deviation
of temperatures across the rectangle. These were later used
as features input into our machine learning classifications, as
discussed in the next section.

Finally, we conducted a short interview at the end of our
study, as shown in Figure 4. This allowed us to find out how
the participants related their responses to the thermal sensa-
tion and thermal comfort questions; as others have found [19],
a “Neutral” thermal sensation is not always regarded as most
comfortable. We also asked how people evaluated their ther-
mal comfort, as we wanted to see if we could correlate this
with the body part temperatures that we measured.

THERMAL COMFORT DYNAMICS
The first step in our investigation is to explore how thermal
comfort changes over time and how it relates to thermal sen-
sation. As previously stated, thermal sensation and thermal
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Figure 6: Thermal comfort ratings at current thermal sensa-
tion. A 5/5 rating indicates maximum comfort, and 1/5 rating
indicates least comfort. Participants did not always equate a
neutral sensation with high comfort, or a non-neutral sensa-
tion with low comfort.

comfort have a complex relationship and it is important to
validate that our participants’ responses are reasonable, and in
line with previous findings, so we can rely on them in training
and evaluating our thermographic imaging approach.

We began by analyzing the survey responses. Table 1 shows
the number of responses received per thermal sensation.
There were no reports of either ‘Hot’ or ‘Cold’ thermal sensa-
tion, which was no surprise given that the HVAC system was
operating normally, and under 6% of responses were “Cool”
or “Warm”.

Relating thermal comfort (survey question 2) to thermal sen-
sation (survey question 1), Figure 6 shows the ratings re-
ceived for the current thermal sensation on a scale of 1 to 5,
where 1 being least comfortable, and 5 being most comfort-
able. Our participants showed differences in interpretation
between sensation and comfort, consistent with past studies
in this area [19].

Thermal Sensation # of Responses
Cool 9
Slightly Cool 91
Neutral 363
Slightly Warm 204
Warm 31

Table 1: Number of times each thermal sensation was re-
ported.

In a further analysis, we combined the data from the comfort
and sensation scores in order to identify the range of thermal
sensations which led to maximum comfort. This range often
consisted of more than one sensation level because the max-
imum comfort score could be given to both e.g. the current
temperature and also to a slightly cooler temperature. For the

9 13 1 20 12 29 23 5 25 17 22 2 4 19 18 28 6 21 11 16 14 24 3 30 27 15 10 8 26 7 

Participant ID

0

10

20

30

40

50

60

70

80

90

100

%
 o

f 
R

e
s
p

o
n

s
e

s

Prefer cooler than neutral

Comfortable with neutral

Prefer warmer than neutral

Figure 7: Participants often preferred cooler-than-neutral or
warmer-than-neutral thermal sensations, and also varied their
preference over time

purposes of this extrapolation we assumed that ”a bit warmer”
on question 2 equated to one point on the thermal sensa-
tion scale (e.g. moving upward from “Neutral” to “Slightly
warm”). Note that this assumption is not relied on by other
analyses in this paper.

Factor % of participants
Whole Body 40
Head 30
Torso 17
Arms 40
Legs/Feet 17
Least Comfortable Part 7
Environment 7

Table 2: Factors considered by participants in determining
their thermal sensation

This analysis is illustrated in Figure 7, which shows that
participants often associated maximum comfort with a non-
neutral thermal sensation. Furthermore, their preferences
were not consistent; most participants varied between desir-
ing warmer-than-neutral or cooler-than-neutral, though many
were biased towards one over the other.

These observations were further backed up in the exit sur-
vey (Figure 4). Question 1 of the survey asks the participant
to elaborate on what thermal sensation meant to them and
how they determined their response - whether they focused
on their body or the perceived environment (air temperature).
About 93% of the participants referred to the thermal per-
ception of their individual body parts, while 7% of the par-
ticipants referred to their perception of the environment, to
determine their thermal sensation. Table 2 shows a summary
of what percentage of participants refer to each of the factors
for determining thermal sensation. The total exceeds 100%
because some participants referred to more than one factor to
make this determination.



Thermal Sensation # of Participants
Neutral 19
Cooler than neutral 4
Warmer than neutral 6
Depends on activity 1

Table 3: Preferred thermal sensation reported during exit in-
terview.

Many of the participants referred to thermal discomfort felt at
very specific parts of the body, such as arms and legs. P1 says,
“I would use my own temperature, not the environment. It
probably was slightly disproportionately focused on my arms
and head, since thats where I notice heat the most, but it was
more of a general sense of how I was hot.”. P12 says, “I focus
on my arms and legs. If they are feeling chilled, then I feel
“slightly cool”, if they are feeling warm, then I feel “slightly
warm”. If neither, then I feel neutral”.

Some participants generally based their responses on whether
they felt extreme thermal discomfort in any part of the body.
P15 says, “There’s always variations in how different parts
of my body feel, so usually when I think of how I feel overall,
I consider what the least-comfortable part of my body feels
like, so my answer tends to be a bit biased in that direction
(i.e.: if my hands are really cold, my answer will likely be that
Im slightly cool for example)”. P23 says, “I think I would say
“cold” if I feel cold on any part of my body (e.g. if either feet
or head are feeling cold, I would say I am feeling cold). Anal-
ogously, for feeling warm. If nothing is out of the ordinary,
(I’d say) neutral”.

Some participants used discomfort felt at different parts of
the body for determining cold sensation vs. warm sensation.
P28 says, “I guess (I used) my body to decide. At this time of
your survey since I wear shorts and sandals my legs and feet
feel the cold first (so thats where I focus for cold) and my face
for heat. Not sure what happens if I have a hot face and cold
feet”.

While, some participants focused on individual parts of the
body, others took a more holistic view in making this deter-
mination. P3 says, “it involved considering how my body, on
the whole, felt temperature wise. It was a somewhat internal
sense, though it did not rely on any body part in particular.
I somewhat found myself thinking about my “core” body, if
anything. It was almost entirely focused on my body, though
not the environment around it”. P17 says, “I mostly focus on
how warm my body feels, from my waist upwards specifically.
When I am too warm I usually feel it around my shoulders,
chest, back, face etc, so that is where I pay most attention to
first, to gauge how I actually feel”. P2 says, “I am generally
trying to think how I feel in my body but then often cold hands/
arms will sway me from neutral to slightly cool. Otherwise its
generally body temperature”.

A small minority of the participants also considered their per-
ception of the room temperature. P6 says, “I think I focus on
body parts and sort of the external environment as well. I
think about how my hands and feet feel I guess because they
are the extremities and then how my skin feels in general, es-
pecially on my arms and face as they are usually uncovered.

I also think about what the temperature in the room is but to a
lesser extent than the body parts mentioned”. P14 says, “It is
always about the perceived temperature differential between
me and the environment (I am aware that this is not objec-
tively true but this is the perception I use)”.

As can be seen in Table 3, 11 out of 30 participants stated
that they preferred non-neutral thermal sensations. Partici-
pant P1 reported, “I definitely prefer being slightly cool... I
interpreted question 1 as asking my temperature, not my com-
fort level.” Participant P3 said, “I typically think of myself
as most comfortable at Warm. In context of the last ques-
tion, this means that I am more comfortable if my body feels
‘warm’ than if it feels ‘neither warm nor cold.’”. Another
participant preferred different thermal sensations depending
on what they doing. P15 says, “If I’m coding or trying to get
something done, I’ll often like it to be a bit cooler, so I don’t
fall asleep and stay alert... Whereas if Im more in the mood
to waste some time online, etc., I’ll like it to to be warmer”.

In conclusion for the above analysis, we have validated that
our participants’ responses seem to be in line with recent
work (e.g. [19]) in differing between their approach to ther-
mal sensation and thermal comfort. Through the rest of this
paper, we focus on the participants’ responses concerning
thermal comfort - both currently and if cooler or hotter - and
regard them as the ground truth that we need to predict.

Variability in comfortable temperatures
We analyzed how thermal comfort changes with air tempera-
ture. Figure 8 shows box plots for each participant of the air
temperature distributions when the current temperature was
reported as delivering maximum comfort (green), and when
it was not (yellow).

For some participants such as P2, P4 and P27, a single con-
stant air temperature could be found which results in maxi-
mum comfort nearly all or all of the time. However, in most
cases, air temperature-based control is insufficient. In other
words, the same air temperature can be reported at different
times to be maximum-comfort, or to be less-than-maximum-
comfort.

POTENTIAL FOR ENERGY SAVING
If we refer back to Figure 2, we can see various kinds of
performance states of an HVAC system. One simple perfor-
mance indicator is whether the air temperature is inside the
green band, i.e. comfort is achieved. Comfort mistakes can
take two forms: one where too little energy was used (e.g.,
not heating enough in winter), and where too much energy
was used (e.g. over-heating in winter). Even when comfort-
able, any energy used beyond that required to get to the edge
of the green band (i.e., the red and blue lines on the figure)
can be regarded as wasted energy.

With this categorization in mind, Figure 9 shows the thermal
preferences exhibited during the study, through the viewpoint
of both a cooling requirement (e.g. in a hot country/summer),
and a heating requirement (e.g. in a cold country/winter).

The top segment refers to situations where the HVAC system
got it right — the participant was comfortable, and would not



Figure 8: Box-plots of air temperatures where the participant reported maximum comfort versus air temperatures where the
participant reported that comfort would be improved at a lower or higher temperature.
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Figure 9: Potential energy savings based on the participant
responses in the study
be as comfortable if less energy would have been expended.
The second-from-top segment refers to situations where the
system spent too little energy, i.e. not enough to achieve com-
fort. The second-from-bottom segment refers to situations
where over-cooling or over-heating was done, i.e. too much
energy was spent and comfort was not maintained. The bot-
tom segment refers to conditions where the participant was
comfortable, but they would also have been comfortable if
less energy were spent.

The bottom two segments combined represent instances
where energy could have been saved. These sum to just under
40% for cooling, and just above 40% for heating. This shows
that there is a huge opportunity to do better than existing ap-
proaches, if real-time thermal comfort preferences could be
measured.

Because of the nature of the data collection study, we do
not attempt to translate these identified saving opportunities
into actual energy numbers. This would depend not only on
whether the system was heating or cooling, but also on how
extreme the outside temperatures are.

ESTIMATION OF THERMAL PREFERENCES
We now evaluate the ability of ThermalSense to determine
real-time thermal preference. As previously described with
reference to Figure 5, we collected thermal images cover-
ing 13 body regions and for each region extracted 5 features:
max, min, mean, range and standard deviation. We also in-
clude air temperature as a feature in all analyses, since this
is easy to measure and already measured by existing HVAC
systems.

To evaluate ThermalSense, we focus on predicting the neces-
sity of energy expenditure: should the HVAC system now per-
form energy consumption, or can it avoid doing so. As such,
the classification tasks are binary classifications where the re-
sponses that fall into the second-from-top segment in Figure 9
form one class (where energy must be used or discomfort
will occur) and all other response types form the other class
(where energy does not currently need to be used to maintain
comfort). As the classes are unbalanced, we oversample the
minority class [4].

For the machine learning algorithm we selected Rotation
Forests [30], which is a classifier ensemble method based on
Random Forest. We chose this as ensemble methods based on
Random Forests have been shown to achieve high classifica-
tion accuracy in a variety of datasets [9]. We also tried using
random forests, kNN, decision trees and SVM classifiers, and
these all performed worse; we do not report detailed compar-
isons due to space constraints. Results are obtained using
10-fold cross-validation.

We compared six approaches:

1. The modal class. This provides a baseline that a “best
guess” would achieve. When participant ID is not pro-
vided, this is 50% since we balance the classes. When
participant ID is provided, this is not 50% since individ-
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against alternative approaches, for classifying whether to in-
crease energy use or not. Analysis is done for both cooling
(e.g. summer) and heating, and both with the participant ID
and without. AT = air temperature, RH = relative humidity,
Clo = clothing insulation, RT = radiant temperature.

ual participants’ responses are not balanced, and so a “best
guess” can be more accurate.

2. Fanger’s equation [8], which estimates thermal sensation,
given air temperature, radiant temperature, relative humid-
ity, clothing level, metabolic level and air velocity (the lat-
ter two being regarded as constant in this study).

3. Machine learning with air temperature and relative humid-
ity only - i.e., using the same sensors as might be used in a
standard thermostat.

4. Machine learning with Fanger’s equation factors - air tem-
perature, relative humidity, clothing level and radiant tem-
perature.

5. Machine learning with body temperatures as described
above and air temperature (ThermalSense).

6. Machine learning with everything: body temperatures and
Fanger’s equation factors.

We perform the above comparison for four scenarios — both
with and without the participant ID being provided to the
machine learning algorithm during training and testing, and
modeling both a cooling-oriented situation (e.g., in summer)
and a heating-oriented situation.

Figure 10 shows the accuracy obtained comparing the vari-
ous methods and scenarios described. Fanger’s PMV equa-
tion performs similar to or worse than the modal value. Us-
ing air and humidity data alone performs badly (<65% accu-
racy) when the participant ID is not known, but much better
(>90%) when it is known. In other words, simply know-
ing the ID of the person present as well as having per-person
training results a significant improvement.
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Figure 11: Accuracy of classifying whether to use energy or
not based on ThermalSense with data from various parts of
the body (and air temperature).

Machine learning based on factors used in Fanger’s PMV
equation can do better still, with accuracy of 72%-74% with-
out person ID and person-specific training and 91%-92% with
person ID/training.

ThermalSense performs well. Without the participant ID,
it achieves 94%-96% accuracy in predicting whether energy
consumption is necessary to maximize comfort. With partic-
ipant ID, the accuracy improves only by a tiny amount if at
all. This is very heartening as it implies that our approach can
work without person identification while the system is oper-
ating. This can also have privacy advantages (though the use
of thermal imagery is still something that requires a careful
consideration of privacy and data security). The use of rela-
tive humidity, clothing level and radiant temperatures in addi-
tion to body temperatures also does not improve the accuracy
much further, only by 0.5%-1%. This is again good, because
clothing insulation level in particular is difficult to infer.

However, ThermalSense does require training data for the in-
dividual being sensed. While our cross-validation did not mix
training and test sets, data from each person was present in
the training set and the test set. When using different people
for training sets and test sets, ThermalSense’s performance
dropped to 63% (cooling) and 68% (heating) as compared to
the 94%-96% achieved with prior training on each individual
— but without realtime person ID.

Body Regions
One barrier to using thermographic imaging for HVAC con-
trol is in the need to capture thermal information about spe-
cific body parts. In our study, we explored the most com-
monly visible body parts in office environments, namely re-
gions of the face and hands, and achieved an overall accuracy
of around 95%.

To further understand if these regions are all necessary to
achieve this accuracy, we re-ran the analysis using subsets
of the thermographic data. As Figure 11 shows, when split
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Figure 12: Accuracy of classifying whether to use energy or
not based on ThermalSense using data from facial regions (in-
dividual and combinations), and air temperature.

into regions, the face (5 regions) outperforms the neck (2 re-
gions), the rear of the hand (1 region) or the palm of the hand
(2 regions). Accuracy of using facial features alone stands at
94%-95%, compared to 94-96% for all regions combined.

Figure 12 further breaks down the regions of the face and
looks at them individually and in combination. Among indi-
vidual sections of the face, we observe that the use of temper-
ature features from cheek performs much better than the other
three regions. However, no subset of the regions performs
within 1% of all facial regions combined, for both heating
and cooling conditions.

In summary, we have shown a 94-95% classification accuracy
for predicting whether an HVAC system must expend energy
or not to maintain comfort, and that this can be achieved us-
ing thermographic data from only an individual’s face, and
without knowing that individual’s identity at runtime. This is
very encouraging.

DISCUSSION
While encouraging, our investigation is also limited in many
ways. We had only 30 participants, who were all in only one
geographic location and using one HVAC system (which was
a commercial one in a five-storey office building, rather than a
smaller office or domestic system). The data collection period
was only 5 weeks, during a specific season of the year (sum-
mer). The study would clearly benefit from being repeated
with variation in the above aspects.

Furthermore, we did not build a closed-loop system, so we
cannot demonstrate or quantify actual energy or comfort im-
provements at this stage. In the rest of this section we
will elaborate further on the challenges of turning the Ther-
malSense approach and offline evaluation into a closed-loop
system.

Building out a real system
One stage of a real system which we did not explore in this
study is automatic segmentation of the thermographic images
- we relied on manual segmentation during this investigatory
phase. However, now that we know that we only need to
track the head of a person to determine their thermal comfort
preference, we can use known vision techniques that can track
faces using only thermographic imaging [22, 28, 34].

ThermalSense’s inferences are based on occupants’ predic-
tions of their thermal comfort level if it were “slightly”
warmer or cooler. This raises a few questions. Firstly, how
accurate are our occupants’ predictions — they may occa-
sionally be wrong. Second, how much is “slightly” and does
this differ per-participant? If a closed-loop system were built,
the system could learn this during a training period, by ob-
serving how reported preferences change as the temperature
is changed.

Cooling and heating systems have actuation latency, and this
can be significant (e.g. up to hours for under-floor heat-
ing). What we have shown is the ability of ThermalSense to
make accurate instantaneous recommendations, but the per-
formance under realistic latencies must be further evaluated.

One of the key questions in implementing such a sys-
tem would be — where should thermographic camera(s) be
placed. If the system is used to control the HVAC for a of-
fice room, then deploying the camera in a way that can track
the face of a person when they are at their desk might be
sufficient. However, in other spaces such as homes, place-
ment is not as easy. It is unclear whether one would need
enough cameras to afford a continuous view of each user [33]
or whether it would be sufficient to place a smaller number of
cameras in key areas, and rely on extrapolation between times
that users were sensed. Furthermore, spaces are often shared
among multiple occupants, and this raises difficulties for both
thermographic measurement and temperature control.

As far as the cost of individual thermal cameras is concerned,
the prices are currently prohibitive - many thousands of dol-
lars. This has recently been decreasing though they are still
expensive compared to e.g. webcams. For example, the
Melexis MLX90621 is a 16x4 pixel thermographic sensor
costing under USD60, while the FLIR One is a 160x120 ther-
mographic camera accessory for a phone costing USD250. It
is reasonable to extrapolate that in future thermographic cam-
eras may be affordable enough deploy widely.

Privacy is a concern with ThermalSense, as is the case
with any other camera based system. However since Ther-
malSense only needs simple temperature features from the
facial regions of a person, it may be appropriate to immedi-
ately extract this data from each frame and discard the orig-
inal image, which may go some way to alleviating privacy
concerns.

While the performance of ThermalSense currently relies on
per-participant training (though not realtime participant iden-
tification), further work can look into how this can be mini-
mized or eliminated, e.g. by using a large training set based
on hundreds or thousands of individuals.



User Interface
The proposed system removes the need to have manually-
controlled setpoint temperatures, since thermographic image
sensing is used instead. This is in contrast to work such as
PreHeat [31] which removes the need to have manually con-
trolled HVAC operation timings, using occupancy sensing.
The combination of the two means that an HVAC system with
no user controls could be implemented. Of course, the user
should be in ultimate control and overriding UI mechanisms
need to be provided to allow the user to handle exceptional
situations or cases where predictions are wrong.

By using thermographic imaging, ThermalSense somewhat
changes the expectation with regards to energy saving behav-
iors. For example, with our proposed system, in winter you
would never need to put on a sweater because the room would
warm up sufficiently if you were not wearing one. This could
cause people to be less aware of their energy usage, and cause
higher energy use. The user interface must be carefully de-
signed to avoid such effects.

On the other hand, for the conscious consumer who does form
the habit of putting on a sweater at home in winter, our pro-
posed system would automatically adjust, without requiring
manual control. In this sense, actions such as exercising or
wearing more/less clothing are treated as “natural” user inter-
face inputs, without needing to separately inform the HVAC
system of how to respond.

CONCLUSION
ThermalSense is a new approach for determining thermal
comfort using thermographic imaging, and therefore to en-
able the control of HVAC systems in order to minimize en-
ergy use while maintaining comfort, and also removing the
need to manually control the preferred air temperature. Peo-
ple feel comfortable in a range of temperatures, and the aim of
this paper has been to discover if the ThermalSense approach
can not just determine current thermal comfort, but also pre-
dict whether energy could be saved because the user would
still be comfortable at a less energy-intensive temperature.

Using data gathered in a 30-participant, 5-week trial in an
office building, we found that around 40% of the time there
were opportunities to save energy compared to a static air-
temperature-based setpoint. We demonstrated that Ther-
malSense can predict with high accuracy whether it is neces-
sary to actuate the HVAC system to maintain comfort. Specif-
ically, for a cooling-oriented environment our accuracy was
94%, while in a heating-oriented environment it was 96%,
using temperatures measured on hands, neck and face. Using
just facial features, which may be easier to sense in real de-
ployments, its accuracy drops only to 94-95%. While Ther-
malSense currently requires per-person training, it does not
require realtime identification of the occupant. ThermalSense
outperformed alternative approaches based on air tempera-
ture, relative humidity, radiant temperature, occupant identity,
and occupant clothing level.

Future work in this area includes validating this result in other
scenarios (e.g. different climates, building types), and turn-
ing this proof-of-concept into a closed-loop system, which

will require computer vision to locate and segment faces in
thermal images and integration into an HVAC control system.
With further effort in these areas, we hope the ThermalSense
approach can reduce HVAC energy consumption while main-
taining or improving thermal comfort.
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