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We show that both discrete and continuous time-translation symmetry can be broken in the pre-
thermal regime of quantum systems that eventually thermalize. We prove a theorem that states that
such “time crystals” persist until times that are nearly exponentially-long in the couplings and, in
driven systems, the drive frequency. After this thermalization time, the time-translational symmetry
breaking oscillations fade away. However, during the time interval prior to that, a time crystal can
exist even without disorder, and its properties are encapsulated by a field theory analogous to that of
equilibrium spontaneous symmetry-breaking phases. When coupled to a cold bath, the pre-thermal
regime could potentially persist to infinite time. Similar conclusions hold for topological phases of
driven systems.

I. INTRODUCTION

The concept of spontaneous symmetry breaking forms
an integral part of our understanding of emergent phases
of matter. Ferromagnets spontaneously break spin-
rotation symmetry, crystals spontaneously break trans-
lation symmetry, and superfluids spontaneously break
global gauge symmetry. But what about time-translation
symmetry? This symmetry is arguably the most funda-
mental symmetry of all, since, for example, the notion of
“thermal equilibrium” implicitly assumes a system that
is invariant with respect to time-translation. This makes
it hard to imagine, at least initially, how it could be spon-
taneously broken. Nevertheless, the term “time crystal”
has been coined to refer to a system in which time trans-
lation is spontaneously broken1–9. However, the origi-
nal model of Ref. 1 proved to be unsatisfactory for ex-
hibiting time crystal behavior4. Later, no-go theorems
were proven that seemed to rule out the possibility of
a time crystal, at least for particular definitions of time
crystal6,10.

Eventually, however, it was realized11 that in
periodically-driven (Floquet) systems, time translation
symmetry can indeed be spontaneously broken. In Flo-
quet systems, time-translation symmetry has already
been explicitly broken down to a discrete subgroup Z due
to the time-dependent, but periodic, external drive. This
discrete time translation symmetry can then be sponta-
neously broken down even further, Z → NZ. In such
systems, the system is driven at frequency ν but, for any
physical initial state, the expectation values of observ-
ables oscillate at fractional frequency ν/N for infinitely
long times (in the thermodynamic limit). Such systems
have been dubbed Floquet time crystals. Armed with
this understanding, the models of Refs. 12–15 can be
re-interpreted as examples of Floquet time crystals; the
free-fermion models of Ref. 16 and 17 also map to Floquet
time crystals under a Jordan-Wigner transformation. For
an alternative view of such systems that focuses on spon-
taneous breaking of other symmetries of the Floquet op-
erator, see Refs. 13–15.

The Floquet time crystals of Refs. 11, 13–15 had strong

quenched disorder in order to ensure that they exhib-
ited many-body localization (MBL)18–28. In the ab-
sence of fine-tuning to integrable points12, MBL seems
to be a necessary condition to find a Floquet time crys-
tal in which the oscillations persist to infinitely-large
times29–33, because without MBL a driven isolated many-
body system will generically absorb energy from the
drive and heat to an infinite temperature state at large
times34–36 (the “heating problem”), and this state is
clearly invariant under time translations. However, re-
lying on MBL has some drawbacks. In experimental
realizations, it might be difficult to achieve sufficiently
strong disorder. Furthermore, MBL is stable only in iso-
lated systems and will be destroyed by any coupling to
an environment37–45.

A loophole in this heating problem was pointed out in
Refs. 46–50, and numerically observed in Refs. 51–53: At
frequencies ν that are large compared to all local energy
scales in the instantaneous Hamiltonian, the time-scale
t∗ at which an isolated system heats to infinite temper-

ature scales nearly exponentially, t∗ ∼ eO(ν/ln3ν). This
raises the hope of finding “pre-thermal” Floquet time
crystals in which the oscillations persist until the very
late time t∗. Unfortunately, it can be shown that pre-
cisely in this limit when ν is larger than all local energy
scales in the instantaneous Hamiltonian, the state of the
system in the pre-thermal epoch t � t∗ is described by
by a time-invariant steady state ρ ≈ 1

Z e
−βD, where D

is a quasi-local time-independent Hamiltonian. This ex-
cludes the occurence of novel Floquet phenomena such as
Floquet time crystals. Here we will show, however, that
this limit is overly restrictive. Indeed, we will see that
pre-thermalization – by which we mean that the heating
time scales as t∗ ∼ eO(α/lncα) for some large parame-
ter α and some c ≥ 0 – can also occur in certain cases
where the drive frequency ν is not large compared to
all local energy scales in the instantaneous Hamiltonian.
This is closely related to results in Ref. 47, in which pre-
thermalization results were proven for stationary systems
as a consequence of a separation of energy scales.

In this paper, we will explicitly construct models that
display robust Floquet time crystal behavior in a pre-
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thermalized regime. In the driven versions of these mod-
els, one local coupling strength is large and the others
are small; the drive frequency is large compared to the
small couplings, and the parameter α is the ratio of the
drive frequency to the largest of the small local couplings.
The term in the Hamiltonian with large coupling must
take a special form, essentially that of a symmetry gen-
erator, that allows it to avoid heating the system. In
fact, our methods are not restricted to Floquet systems.
We can also construct undriven systems that sponta-
neously break continuous time-translation symmetry in
a pre-thermal regime, thus evading the no-go theorem of
Ref. 10. In these un-driven systems, one of the couplings
is much larger than the others, and α is the ratio of the
large coupling to the largest small couplings, as in the
static systems considered in Ref. 48.

Because we have lifted the requirement of MBL, it is
conceivable that our pre-thermal time crystals models
can be robust even in the presence of coupling to an en-
vironment. In fact, as we will argue, we expect that the
pre-thermal Floquet time crystals can actually be stabi-
lized by coupling to a sufficiently cold thermal bath, such
that the system remains in the pre-thermal regime even
at infinite time.

Our methods can also be applied to other Flo-
quet phases of matter. The classification of many-
body symmetry-protected topological (SPT)54–72 and
symmetry-enriched topological (SET) phases73–79 is en-
riched in the Floquet context compared to the stationary
case, because one needs to take into account the discrete
time translation symmetry80–83. So far, the new Floquet-
SPT and Floquet-SET phases have only been constructed
in MBL systems, because of the heating problem. How-
ever, we will argue that all of these phases (even the
ones without a stationary analog) can exist as long-lived
states in a pre-thermalized regime, with a lifetime on the
order of the nearly exponentially-large heating time t∗.
These phases can also be stabilized by coupling to a cold
thermal bath.

II. RESULTS ON PRE-THERMALIZATION

Several works46–50 have now demonstrated that many-
body systems driven at very high frequency ν exhibit
a pre-thermalized regime for times much less than the

heating time t∗ ∼ eO(ν/[log ν]3). Specifically, Ref. 47 con-
structs an approximate representation of the Floquet evo-

lution operator as Uf ≈ Ũf = exp(−iTHeff), where Heff

is a quasi-local Hamiltonian, and Ũf well describes the
dynamics at stroboscopic times t = nT � t∗. However,
these results are not sufficient to allow us to find a Flo-
quet time crystal, or non-stationary Floquet SPT, in the
pre-thermalized regime; if the dynamics are described (at
stroboscopic times) by a time-independent local Hamilto-
nian, then we will never find any phases that do not exist
in stationary systems. Indeed, it was argued in Ref. 11
that in Floquet time crystals, no such quasi-local effective

Hamiltonian Heff exists. Similarly, one can show that in
a Floquet SPT without a stationary analog, a quasi-local
effective Hamiltonian potentially exists, but it cannot be
made symmetry-respecting.

However, as was already found in Ref. 46, high fre-
quency driving is not a necessary condition to achieve
pre-thermalization; it can also be achieved as a conse-
quence of a separation of energy scales. Accordingly, we
will consider a time-dependent Hamiltonian of the form
H(t) = H0(t) + V (t), where H0(t) and V (t) are periodic
with period T . We assume that λT � 1, where λ is the
local energy scale of V . We further assume that H0(t)
has the property that it generates a trivial time evolution
over N time cycles: U0(NT, 0) = U0(T, 0)N = 1, where

U0(t2, t1) = T exp

(
−i
∫ t2

t1

H0(t)

)
dt, T = time-ordering.

(1)
We claim that such a time evolution will exhibit pre-
thermalizing behavior for λT � 1/N even if the local
energy scale of H0(t) is comparable to 1/T . In other
words, such a system exhibits pre-thermalizing behavior
when the frequency is large compared some of the cou-
plings (those in V (t)) but not others (those in H0(t)), as
promised in the introduction.

An easy way to see that this claim is true is to work in
the interaction picture (treating V as the “interaction”).
Then we see that the time evolution of the total Hamil-
tonian H(t) over N time cycles is given by

U(NT, 0) = T exp

(
−i
∫ NT

0

V int(t)dt

)
, (2)

where V int(t) = U0(0, t)†V (t)U0(0, t) is the representa-
tion of V (t) in the interaction picture, and U0(0, NT ) = 1
ensures that the time evolution operator Eq. (2) is the
same in the interaction and Schrödinger pictures. If we
rescale time as t→ t/λ, then Eq. (2) describes a system
being driven at the large frequency ν = 1/(λNT ) by a
drive of local strength 1, which by the results of Refs. 46–
50 will exhibit pre-thermalizing behavior for ν � 1.

On the other hand, since the above argument for pre-
thermalization required coarse-graining the time period
from T to NT , it prevents us from identifying time-
crystalline or Floquet-SPT order in the original drive.
In order to proceed further, we will need to analyze
U(T, 0) itself, rather than U(NT, 0). Such an analysis
leads us to a generalization of the results of Abanin et
al.47. A more precise version of our theorem will be
given momentarily, and the proof will be given in Ap-
pendix A; the theorem essentially states that there exists
a time-independent local unitary rotation U such that

Uf ≈ Ũf = U†(Xe−iDT )U , where X = U0(T, 0) is the
time evolution of H0 over one time cycle, and D is a
quasi-local Hamiltonian that commutes with X. The dy-
namics at stroboscopic times are well-approximated by

Ũf for times t � t∗, where t∗ = eO(1/(λT [log(1/λT )]3)).
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This result combines ideas in Ref. 47 about (1) the high-
frequency limit of driven systems and (2) approximate
symmetries in systems with a large separation of scales.
Recall that, in the high-frequency limit of a driven sys-
tem, the Floquet operator can be approximated by the
evolution (at stroboscopic times) due a time-independent
Hamiltonian, Uf ≈ exp(−iTHeff). Meanwhile, in a static
system with a large separation of scales, H = −uL+D0,
where u is much larger than the couplings in D0 but
[L,D0] 6= 0, Ref. 47 shows that there is a unitary transfor-
mation U such that UHU† ≈ −uL+D where [L,D] = 0,
i.e. the system has an approximate symmetry generated
by U†LU . Our theorem states that a periodic Hamil-
tonian H(t) = H0(t) + V (t), with H0(t) satisfying the
condition given above, can be approximated, as far as
the evolution at stroboscopic times is concerned, by a bi-
nary drive that is composed of two components: (1) the
action of H0(t) over one cycle, namely U0(T, 0) and (2) a
static Hamiltonian that is invariant under the symmetry
generated by U0(T, 0).

The preceding paragraph summarizes the physical
meaning of our theorem. A more precise statement of
the theorem, although it is a bit more opaque physically,
is useful because it makes the underlying assumptions
manifest. The statement of the theorem makes use of an
operator norm ‖O‖n that measures the average over one
Floquet cycle of the size of the local terms whose sum
makes up a Hamiltonian; the subscript n parametrizes
the extent to which the norm suppresses the weight of
operators with larger spatial support. An explicit defini-
tion of the norm is given in Appendix A. The theorem
states the following.

Theorem 1. Consider a periodically-driven system with
Floquet operator:

Uf = T exp

(
−i
∫ T

0

H(t)dt

)
(3)

where H(t) = H0(t) + V (t), and X ≡ U0(0, T ) satisfies
XN = 1 for some integer N . We assume that H0(t) can
be written as a sum H0(t) =

∑
i hi(t) of terms acting

only on single sites i. Define λ ≡ ‖V ‖1. Assume that

λT ≤ γκ2
1

N + 3
, γ ≈ 0.14. (4)

Then there exists a (time-independent) unitary U such
that

U Uf U† = X T exp

(
−i
∫ T

0

[D + E + V (t)]dt

)
(5)

where D is local and [D,X] = 0; D,E are independent
of time; and

‖V ‖n∗ ≤ λ
(

1

2

)n∗
(6)

‖E‖n∗ ≤ λ
(

1

2

)n∗
(7)

The exponent n∗ is given by

n∗ =
λ0/λ

[1 + log(λ0/λ)]3
, λ0 =

(κ1)2

72(N + 3)(N + 4)T
(8)

Furthermore,

‖D − V ‖n∗ ≤ µ(λ2/λ0), µ ≈ 2.9, (9)

where

V =
1

NT

∫ NT

0

V int(t)dt

=
1

N

N−1∑
k=0

X−k

(
1

T

∫ T

0

V int(t)dt

)
Xk.

(10)

The proof is given in Appendix A. The statement of
the theorem makes use of a number κ1. It is chosen so
that ‖H‖1 is finite; the details are given when the norm
is given in Appendix A.

Unpacking the theorem a bit in order to make contact
with the discussion above, we see that it states that there
is a time-independent unitary operator U that trans-
forms the Floquet operator into the form Xe−iDT with
[D,X] = 0 and local D, up to corrections that are expo-
nentially small in n∗ ∼ 1/(λT [ln(1/λT )]3). These “error
terms” fall into two categories: time-independent terms
that do not commute with X, which are grouped into
E; and time-dependent terms, which are grouped into
V (t). Both types of corrections are exponentially-small in
n∗. Since they are exponentially-small ‖E‖n∗ , ‖V ‖n∗ ∼
(1/2)

n∗ , these terms do not affect the evolution of the sys-
tem until exponentially-long times, t∗ ∼ eCn∗ (for some
constant C). It is not possible to find a time-independent
unitary transformation that exactly transforms the Flo-
quet operator into the form Xe−iDT because the system
must, eventually, heat up to infinite temperature and the
true Floquet eigenstates are infinite-temperature states,
not the eigenstates of an operator of the form Xe−iDT

with local D. In the interim, however, the approximate
Floquet operator Xe−iDT leads to Floquet time crystal
behavior, as we will discuss in the next Section.

The proof of Theorem 1 constructs U and D through
a recursive procedure, which combines elements of the
proofs of pre-thermalization in driven and undriven sys-
tems given by Abanin et al. 47.

In the case of pre-thermal undriven systems, the theo-
rem we need has essentially already been given in Ref. 47,
but we will restate the result in a form analogous with
Theorem 1, which entails some slightly different bounds
(however, they are easily derivable using the techniques
of Ref. 47).

Theorem 2. Consider a time-independent Hamiltonian
H of the form

H = −uL+ V, (11)



4

where e2πiL = 1. We assume that L can be written as
a sum L =

∑
i Li of terms acting only on single sites i.

Define λ ≡ ‖V ‖1, and assume that

λ/u ≤ γκ2
1, γ ≈ 0.14. (12)

Then there exists a local unitary transformation U such
that

UHU† = −uL+D + V̂ (13)

where [L,D] = 0 and V̂ satisfies

‖V̂ ‖n∗ ≤ λ
(

1

2

)n∗
(14)

where

n∗ =
λ0/λ

[1 + log(λ0/λ)]3
, λ0 =

uκ2
1

144
. (15)

Furthermore,

‖D − 〈V 〉‖n∗ ≤ µ(λ2/λ0), µ ≈ 2.9, (16)

Here, we have defined, following Ref. 47, the sym-
metrized operator 〈V 〉 according to

〈V 〉 ≡
∫ 2π

0

dθ

2π
eiLθ V e−iLθ (17)

which, by construction, satisfies [L, 〈V 〉] = 0.

III. PRE-THERMALIZED FLOQUET TIME
CRYSTALS

A. Basic Picture

The results of the previous section give us the tools
that we need to construct a model which is a Floquet
time crystal in the pre-thermalized regime. Our approach
is reminiscent of Ref. 15, where the Floquet-MBL time
crystals of Ref. 11 were reinterpreted in terms of a sponta-
neously broken “emergent” Z2 symmetry. Here, “emer-
gent” refers to the fact that the symmetry is in some
sense hidden – its form depends on the parameters on
the Hamiltonian in a manner that is not a priori known.
Furthermore, it is not a symmetry of the Hamiltonian,
but is a symmetry of the Floquet operator.

In particular, suppose that we have a model where we
can set X =

∏
i σ

x
i . (Thus N = 2). We then have

Uf ≈ Ũf = U†(Xe−iDT )U , where the quasi-local Hamil-
tonian D by construction respects the Ising symmetry
generated by X. This Ising symmetry corresponds to an
approximate “emergent” symmetry UXU† of Uf (“emer-
gent” for the reason stated above and approximate be-

cause it an exact symmetry of Ũf , not Uf , and therefore is
approximately conserved for times t� t∗.) Suppose that

D spontaneously breaks the symmetry X below some fi-
nite critical temperature τc. For example, working in two
dimensions or higher, we could have D = −J

∑
〈i,j〉 σ

z
i σ

z
j

plus additional smaller terms of strength which break in-
tegrability. We will be interested in the regime where the
heating time t∗ � tpre−thermal, where tpre−thermal is the
thermalization time of D.

Now consider the time evolution |ψ(t)〉, starting from
a given short-range correlated state |ψ(0)〉. We also de-

fine the rotated states |ψ̃(t)〉 = U|ψ(t)〉. At stroboscopic

times t = nT , we find that |ψ̃(nT )〉 = (Xe−iDT )n|ψ̃(0)〉.
Since (Xe−iDT )2 = e−2iDT , we see that at even multiples

of the period, t = 2nT , the time evolution of |ψ̃(t)〉 is de-
scribed by the time-independent Hamiltonian D. Thus,
we expect that, after the time tpre−thermal, the system
appears to be in a thermal state of D at temperature

τ . Thus, |ψ̃(2nT )〉〈ψ̃(2nT )| ≈ ρ̃, where ρ̃ is a thermal
density matrix for D at some temperature τ , and the ap-
proximate equality means that the expectation values of
local observables are approximately the same. Note that
for τ < τc, the Ising symmetry of D is spontaneously
broken and ρ̃ must either select a nonzero value for the
order parameter M2n = 〈σzi 〉ρ̃ or have long-range corre-
lations. The latter case is impossible given our initial
state, as long-range correlations cannot be generated in
finite time. Then, at odd times t = (2n+ 1)T , we have

|ψ̃((2n+ 1)T )〉〈ψ̃((2n+ 1)T )| ≈ (Xe−iDT )ρ̃(eiDTX)
(18)

= Xρ̃X (19)

(since ρ̃ commutes with D.) Therefore, at odd times, the
order parameter

M2n+1 = 〈σzi 〉Xρ̃X = −M2n. (20)

Thus, the state of the system at odd times is different
from the state at even times, and time translation by T
is spontaneously broken to time translation by 2T .

The above analysis took place in the frame rotated
by U . However, we can also consider the expectation
values of operators in the original frame, for example

〈ψ(t)|σzi |ψ(t)〉 = 〈ψ̃(t)|U†σzi U|ψ̃(t)〉. The rotation U is
close to the identity in the regime where the heating time
is large84, so σzi has large overlap with U†σzi U and there-
fore will display fractional frequency oscillations. We re-
call that the condition for fractional frequency oscilla-
tions in the pre-thermalized regime is that (a) D must
spontaneously break the Ising symmetry X up to a finite
critical temperature τc; and (b) the energy density with
respect to D of U|ψ(0)〉 must correspond to a tempera-
ture τ < τc. In Figure 1, we show the expected behavior
at low temperatures τ and contrast it with the expected
behavior in a system which is not a time crystal in the
pre-thermal regime.
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Short
Time

Prethermal Long
Time

(a) Time crystal

Short
Time

Prethermal Long
Time

(b) Non-time crystal

FIG. 1. The expected time dependence of 〈σz
i 〉 at stroboscopic times, starting from a state which is low-temperature with

respect to UDU† (for example, for a state with all spins polarized in the z direction.), in (a) the pre-thermal time crystal phase,
and (b) the non-time crystal pre-thermal phase.

B. Example: periodically-driven Ising spins

Let us now consider a concrete model which realizes
the behavior descrived above. We consider an Ising fer-
romagnet, with a longitudinal field applied to break the
Ising symmetry explicitly, and driven at high frequency
by a very strong transverse field. Thus, we take

H(t) = H0(t) + V, (21)

where

H0(t) = −
∑
i

hx(t)σxi (22)

V = −J
∑
〈i,j〉

σzi σ
z
j − hz

∑
i

σzi , (23)

and we choose the driving profile such that∫ T

0

hx(t)dt =
π

2
, (24)

ensuring that the “unperturbed” Floquet operator U0 im-
plements a π pulse, X =

∏
i σ

i
x, and we can set N = 2.

(If the driving does not exactly implement a π pulse, this
is not a significant problem since we can just incorporate
the difference into V .) This implies that hx ∼ 1/T , and
we assume that hz . J � 1/T .

Then by the results of Section II (with J playing the
role of λ here), we find a quasi-local Hamiltonian D =
V + 1

TO((JT )2), where

V =
1

2T

∫ 2T

0

Vint(t)dt. (25)

In particular, in the case where the π pulse acts instan-
teously, so that

hx(t) =
π

2

∞∑
k=−∞

δ(t− kT ), (26)

we find that

V = −J
∑
〈i,j〉

σzi σ
z
j (27)

(this Hamiltonian is integrable, but in general the higher
order corrections to D will destroy integrability.) More
generally, if the delta function is smeared out so that the
π pulse acts over a time window δ, the corrections from
Eq. (27) will be at most of order ∼ Jδ/T . Therefore,
so long as δ � T , then in two dimensions or higher, the
Hamiltonian D will indeed spontaneously break the Ising
symmetry up to some finite temperature τc, and we will
observe the time-crystal behavior described above.

C. Field Theory of the Pre-Thermal Floquet Time
Crystal State

The universal behavior of a pre-thermal Floquet time
crystal state can be encapsulated in a field theory. For
the sake of concreteness, we derive this theory from the
model analyzed in the previous section. The Floquet op-
erator can be written, up to nearly exponential accuracy,
as:

Uf ≈ U(Xe−iDT )U† (28)

Consequently, the transition amplitude from an initial
state |ψi〉 at time t0 to a final state |ψf 〉 at time
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t0 + mT can be written in the following form, provided
tpre−thermal < t0 < t0 +mT < t∗ :

〈ψf |
(
Uf

)m|ψi〉 = 〈ψf | U(Xe−iDT )mU† |ψi〉
= 〈ψ̃f | e−iDmT |ψ̃i〉 (29)

where |ψ̃i〉 ≡ U†|ψi〉 and |ψ̃f 〉 ≡ Xm U†|ψf 〉; recall that
Xm is 1 or X for, respectively, m even or odd.

The second line of Eq. (29) is just the transition am-
plitude for the quantum transverse field Ising model in
(d+1)-dimensional spacetime, with d ≥ 2. The model has
nearest-neighbor interaction (27) together with higher-
order terms that are present in the full expression for D.
Hence, it can be represented by the standard functional
integral for the continuum limit of the Ising model:

〈ψ̃f | e−iDmT |ψ̃i〉 =∫
Dϕei

∫
ddx dt

[
1
2K(∂tϕ)2− v22 K(∇ϕ)2−U(ϕ)

]
(30)

where U(ϕ) has minima at ϕ = ±ϕ0 when the parame-
ters in the Ising model place it in the ordered phase. This
functional integral is only valid for wavevectors that are
less that a wavevector cutoff: |q| < Λ, where Λ � 1/a
and a is the spatial lattice spacing. Although the right-
hand side of (30) has a continuous time variable, it is only
equal to the original peridiodically-driven problem for
stroboscopic times t = mT for m ∈ Z. Note the left-hand
side of (30) is also well-defined for arbitrary times, i.e.
for continuous m, although it, too, only corresponds to
the original problem for integer m. Thus the continuous-
time effective field theory has a frequency cutoff Λω that
we are free to choose. Although the functional integral
only corresponds to the original problem for stroboscopic
times, the functional integral is well-defined for all times.
As a result of the factor of X in Uf, the field ϕ is related to
the Ising spin according to ϕ(x, kT ) ∼ (−1)k σ(x, kT ). In
other words, the field ϕ in the functional integral has the
intepretation of the temporally-staggered magnetization
density, just as, in the corresponding description of an
Ising anti-ferromagnet, this field would be the spatially-
staggered magnetization. Discrete time-translation sym-
metry, t → t + T has the following action: ϕ → −ϕ.
Thus, the symmetry-breaking phase, in which ϕ = ±ϕ0,
is a pre-thermal Floquet time crystal, in which TTSB
occurs, as expected.

The rotated Floquet operator U†Uf U has an approx-
imate Z2 symmetry generated by the operator X since
U†Uf U ≈ Xe−iDT and [D,X] = 0. Hence, U†XU com-
mutes with the (unrotated) Floquet operator Uf. It is
not a microscopic symmetry in the conventional sense,
since U†XU does not commute with the time-dependent
Hamiltonian H(t), except for special fine-tuned points in
the Floquet time crystal phase. However, since it com-
mutes with the Floquet operator, it is a symmetry of
the continuum-limit field theory (30). (See Ref. 15 for
a discussion of Floquet time crystals in the MBL con-
text that focuses on such symmetries, sometimes called

“emergent symmetries”.) Within the field theory (30),
this symmetry acts according to ϕ → −ϕ, i.e. it acts
in precisely the same way as time-translation by a single
period. Again, this is analogous to the case of an Ising
anti-ferromagnet, but with the time-translation taking
the place of spatial translation. Thus, it is possible to
view the symmetry-breaking pattern as ZTTS ×Z2 → Z.
The unbroken Z symmetry is generated by the combina-
tion of time-translation by one period and the action of
U†XU .

However, there is an important difference between a
Floquet time crystal and an Ising antiferromagnet. In
the latter case, it is possible to explicitly break the the
Ising symmetry without breaking translational symme-
try (e.g. with a uniform longitudinal magnetic field) and
vice versa (e.g. with a spatially-oscillating exchange cou-
pling). In a Floquet time crystal, this is not possible
because there is always a Z2 symmetry U†XU regard-
less of what small perturbation (compared to the drive
frequency) is added to the Hamiltonian. The only way
to explicitly prevent the system from having a Z2 sym-
metry is to explicitly break the time-translation symme-
try. Suppose the Floquet operator is UXe−iDTU†. When
a weak perturbation with period 2T is added, the Flo-
quet operator can be written in the approximate form
U ′e−2i(D+Y )T (U ′)† where Y is due to the doubled-period
weak perturbation, but it is not possible to guarantee
that [X,Y ] = 0. Thus there is a symmetry generated by
an operator of the form U†XU only if time-translation
symmetry is present – i.e. it is a consequence of time-
translation symmetry and pre-thermalization.

This functional integral is computed with boundary
conditions on ϕ at t = t0 and t0 + mT . Time-ordered
correlation functions can be computed by inserting op-
erators between the factors of Uf. However, if we are
interested in equal-time correlation functions (at strobo-
scopic times t = kT ),

〈ψ| Ô(x, kT )Ô(0, kT ) |ψ〉 ≡

〈ψ|
(
Uf

)−k
Ô(x, 0)Ô(0, 0)

(
Uf

)k |ψ〉 (31)

then we can make use of the fact that the system rapidly

pre-thermalizes to replace
(
Uf

)k|ψ〉 by a thermal state:

〈ψ|
(
Uf

)−k
Ô(x, 0)Ô(0, 0)

(
Uf

)k|ψ〉 =

tr(e−βDÔ(x)Ô(0)) (32)

where β is determined by tr(e−βDD) = 〈ψ|D|ψ〉. The
latter has an imaginary-time functional integral repre-
sentation:

tr(e−βDÔ(x)Ô(0)) =∫
Dϕe−

∫
ddx dτ

[
1
2K(∂τϕ)2+ v2

2 K(∇ϕ)2+U(ϕ)
]

(33)

This equation expresses equal-time correlation functions
in a pre-thermal Floquet time crystal in terms of the
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standard imaginary-time functional integral for the Ising
model but with the understanding that the field ϕ in
the functional integral is related to the Ising spins in the
manner noted above.

In order to compute unequal-time correlation func-
tions, it is convenient to use the Schwinger-Keldysh
formalism85,86 (see Ref. 87 for a modern review). This
can be done by following the logic that led from the first
line of Eq. (29) to the second and thence to Eq. (30).
This will be presented in detail elsewhere88.

We close this subsection by noting that the advantage
of the field theory formulation of a pre-thermal Floquet
time crystal is the salience of the similarity with the equi-
librium Ising model; for instance, it is clear that the tran-
sition out of the Floquet time crystal (e.g. as a function of
the energy of the initial state) in the pre-thermal regime
is an ordinary Ising phase transition. The disadvantage is
that it is difficult to connect it to measurable properties
in a quantitative way because the field ϕ has a compli-
cated relationship to the microscopic degrees of freedom.

D. Relation to formal definitions of time crystals

In the above discussion, we have implicitly been adopt-
ing an “operational” definition of time-crystal: it is a sys-
tem in which, for physically reasonable initial states, the
system displays oscillations at a frequency other than the
drive frequency forever (or at least, in the pre-thermal
case, for a nearly exponentially long time.) This is a
perfectly reasonable definition of time crystal, but it has
the disadvantage of obscuring the analogies with spon-
taneous breaking of other symmetries, which tends not
to be defined in this way. (Although in fact it could be;
for example, an “operational” definition of spontaneously
broken Ising symmetry, say, would be a system in which
the symmetry-breaking order parameter does not decay
with time for physically reasonable initial states89.) It
was for this reason that in Ref. 11 we introduced a for-
mal definition of time-translation symmetry-breaking in
MBL systems in terms of eigenstates (two equivalent for-
mulations of which we called TTSB-1 and TTSB-2.)

The definitions TTSB-1 and TTSB-2 of Ref. 11 are
natural generalizations of the notion of “eigenstate order”
used to define spontaneous breaking of other symmetries
in MBL89,90. On the other hand they, like the notion
of eigenstate order in general, are not really appropriate
outside of the MBL context. In this subsection, we will
review the usual formal definitions of spontaneous sym-
metry breaking in equilibrium. Then we will show how
they can be extended in a natural way to time-translation
symmetries, and that these extended versions are satis-
fied by the pre-thermal Floquet time crystals constructed
above.

Let us first forget about time-translation symmetry,
and consider a time-independent Hamiltonian H with
an Ising symmetry generated by X. Let ρ be a steady
state of the Hamiltonian; that is, it is invariant under

the time evolution generated by H. (Here, we work
in the thermodynamic limit, so by ρ we really mean a
function which maps local observables to their expecta-
tion values; that is, we define a state in the C∗-algebra
sense91.) Generically, we expect ρ to be essentially a
thermal state. If the symmetry is spontaneously broken,
then ρ can obey the cluster decomposition (i.e. its corre-
lations can be short-ranged), or it can be invariant under
the symmetry X, but not both. That is, any state invari-
ant under the symmetry decomposes as ρ = 1

2 (ρ↑ + ρ↓),
where ρ↑ and ρ↓ have opposite values of the Ising order
parameter, and are mapped into each other under X.
Thus, a formal definition of spontaneously broken Ising
symmetry can be given as follows. We call a symmetry-
invariant steady state ρ state an extremal symmetry-
respecting state if there do not exist states ρ1 and ρ2

such that ρ = pρ1 + (1− p)ρ1 for some p ∈ (0, 1), where
ρ1 and ρ2 are symmetry-invariant steady states. We say
the Ising symmetry is spontaneously broken if extremal
symmetry-invariant steady states do not satisfy the clus-
ter decomposition. Similar statements can be made for
Floquet systems, where by “steady state” we fnow mean
a state that returns to itself after one time cycle.

We can now state the natural generalization to time-
translation symmetry. For time-translation symmetry,
“symmetry-invariant” and “steady state” actually mean
the same thing. So we say that time-translation sym-
metry is spontaneously broken if extremal steady states
do not satisfy the cluster decomposition. This is similar
to our definition TTSB-2 from Ref. 11 (but not exactly
the same, since TTSB-2 was expressed in terms of eigen-
states, rather than extremal steady states in an infinite
system), so we call it TTSB-2′. We note that TTSB-2′

implies that any short-range correlated state ρ, i.e. a state
ρ which satisfies the cluster decomposition, must not be
an extremal steady state. Non-extremal states never sat-
isfy the cluster decomposition, so we conclude that short-
range correlated states must not be steady states at all,
so they cannot simply return to themselves after one time
cycle. (This is similar to, but again not identical with,
TTSB-1 in Ref. 11.)

We note that, for clean systems, the only steady state
of the Floquet operator Uf is believed to be the infinite
temperature state34–36 which always obeys the cluster
property, and hence time translation symmetry is not
broken spontaneously. This does not contradict our pre-
vious results, since we already saw that time transla-
tion symmetry is only spontaneously broken in the pre-
thermal regime, not at infinitely long times. Instead,
we should examine the steady states of the approxi-

mate Floquet operator Ũf which describes the dynam-
ics in the pre-thermal regime. We recall that, after a

unitary change of basis, Ũf = Xe−iDT , where D com-
mutes with X and spontaneously breaks the Ising sym-
metry generated by X (for temperatures τ < τc). Hence

Ũ2
f = e−2iDT . Any steady state ρ of Ũf must be a steady

state of Ũ2
f , which implies (if its energy density corre-

sponds to a temperature τ < τc) that it must be of the
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form ρ = tρSB + (1 − t)XρSBX, where ρSB is an Ising
symmetry-breaking state of temperature τ for the Hamil-
tonian D. Hence, we see (since ρSB is invariant under

e−iDT ) that ŨfρŨ
†
f = tXρSBX + (1− t)ρSB . So if ρ is a

steady state of Ũf and not just Ũ2
f , we must have t = 1/2.

But then the state ρ clearly violates the cluster property.
Hence, time translation is spontaneously broken.

IV. SPONTANEOUSLY-BROKEN
CONTINUOUS TIME-TRANSLATION

SYMMETRY IN THE PRE-THERMAL REGIME

A. Basic Picture

The pre-thermalized Floquet time crystals discussed
above have a natural analog in undriven systems with
continuous time translation symmetry. Suppose we have
a time-independent Hamiltonian

H = −uL+ V, (34)

where the eigenvalues of L are integers; in other words,
for time T = 2π/u, the condition einuLT = 1 holds for
all n ∈ Z. We also assume that L is a sum of local
terms of local strength O(1); and V is a local Hamilto-
nian of local strength λ � u. Then by Theorem 3.1 of
Ref. 47, restated in Theorem 2 in Section II), there ex-

ists a local unitary U such that UH U† = −uL+D + V̂
such that [D,L] = 0 and the local strength of V̂ is

∼ λ e−O([log λT ]3/[λT ]). As noted in Theorem 2 in Section
II), the first term in the explicit iterative construction of
D in Ref. 47 is D = 〈V 〉+ 1

TO(λT )2, where

〈V 〉 ≡ 1

2π

∫ 2π

0

dθ eiLθV e−iLθ. (35)

As a result of this theorem, such a system has an ap-
proximate U(1) symmetry generated by U†LU that is ex-
plicitly broken only by nearly exponentially-small terms.
Consequently, U†LU is conserved by the dynamics of H

for times t � t∗ = eO([− log λT ]3/[λT ]). We will call the
Hamiltonian −uL + D the “pre-thermal” Hamiltonian,
since it governs the dynamics of the system for times
short compared to t∗. We will assume that we have added
a constant to the Hamiltonian such that L is positive-
definite; this will allow us to abuse terminology a little
by referring to the expectation value of L as the “parti-
cle number”, in order to make analogies with well-known
properties of Bose gases, in which the generator of the
U(1) symmetry is the particle number operator. In this
vein, we will call u the electric potential, in analogy with
(negatively) charged superfluids.

We will further suppose that D is neither integrable
nor many-body localized, so that the dynamics of D will
cause an arbitrary initial state |ψ0〉 with non-zero energy
density and non-zero 〈ψ0|L|ψ0〉 to rapidly thermalize on
some short (compared to t∗) time scale tpre−thermal ∼

λ−1. The resulting thermalized state can be character-
ized by the expectation values of D and L, both of which
will be the same as in the initial state, since energy
and particle number are conserved. Equivalently, the
thermalized state can be characterized by its tempera-
ture β (defined with respect to D) and effective chemical
potential µ. In other words, all local correlation func-
tions of local operators can be computed with respect to
the density matrix ρ = e−β(D−µL). The chemical po-
tential µ has been introduced to enforce the condition
tr(ρL) = 〈ψ0|L|ψ0〉.

Now suppose that we choose V such that D sponta-
neously breaks the U(1) symmetry in some range of tem-
perature 1/β and chemical potential µ. Suppose, fur-
ther, that we prepare the system in a short-range corre-
lated initial state |ψ0〉 such that the energy density (and
hence, its temperature) is sufficiently low, and the num-
ber density sufficiently high, so that the corresponding
thermalized state spontaneously breaks the U(1) sym-
metry generated by L. Then, the preceding statement
must be slightly revised: all local correlation functions
of local operators can be computed with respect to the
density matrix ρ = e−β(D−µL−εX) for some X satisfying
[X,L] 6= 0. The limit ε → 0 is taken after the thermo-
dynamic limit is taken; the direction of the infinitesimal
symmetry-breaking field X is determined by the initial
state. To avoid clutter, we will not explicitly write the
εXin the next paragraph, but it is understood.

Consider an operator Φ that satisfies [L,Φ] = Φ. (For
example, if we interpret L as the particle number, we
can take Φ to be the particle creation operator.) Its
expectation value at time t is given by

〈ψ0|e−i(−uL+D)tΦei(−uL+D)t|ψ0〉

= tr
([
e−i(−uL+D)tΦei(−uL+D)t

]
e−β(D−µL)

)
= ei(µ−u)t tr

([
e−i(−µL+D)t Φ ei(−µL+D)t

]
e−β(D−µL)

)
(36)

According to the discussion in Appendix B, which makes
use of the result of Watanabe and Oshikawa10, the trace
on the right-hand-side of the second equality must be in-
dependent of time. Hence, so long as Tr(Φe−β(D−µL)) 6=
0 (which we assume to be true for some order parame-
ter Φ in the symmetry-breaking phase), we find that the
expectation value of Φ oscillates with frequency given by
the “effective electrochemical potential” µ−u due to the
winding of the phase of Φ.

If the dynamics were exactly governed by −uL + D,
then the system would oscillate with period 2π/(u − µ)
forever. As it is, these oscillations will be observed until
the exponentially late time t∗. At infinitely long times,
the system approaches a thermal state of the full Hamil-
tonian −uL + D + V̂ . Since V̂ is small, this is approxi-
mately the same as a thermal state of −uL+D. However,
because V̂ is not exactly zero, the particle number is not
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conserved and in equilibrium the system chooses the par-
ticle number that minimizes its free energy, which cor-
responds to the “electrochemical potential” being zero,
µ − u = 0. Since this corresponds to zero frequency of
oscillations, it follows that no oscillations are observed at
infinite time.

The above discussion is essentially the logic that was
discussed in Refs. 8, 10, and 92, where it was pointed out
that a superfluid at non-zero chemical potential is a time
crystal as a result of the well-known time-dependence
of the order parameter93. However, there is an impor-
tant difference: the U(1) symmetry is not a symme-
try of the Hamiltonian of the problem and, therefore,
does not require fine-tuning but, instead, emerges in the
u→∞ limit, thereby evading the criticism8,10,94–96 that
the phase winds in the ground state only if the U(1) sym-
metry is exact.

B. Example: XY Ferromagnet in a Large
Perpendicular Field

Consider the concrete example of a spin-1/2 system in
three spatial dimensions, with Hamiltonian

H = −hz
∑
i

Szi − hx
∑
i

Sxi

−
∑
i,j

[
Jij(S

x
i S

x
j + Syi S

y
j ) + JzijS

z
i S

z
j

]
− hx

∑
i

Sxi ,

(37)

We take L = Sz ≡
∑
i S

z
i , and the longitudinal magnetic

field hz plays the role of u in the preceding section. We
take Jij and Jzij to vanish except for nearest neighbors,
for which Jij = J and Jzij = Jz. The local scale of V
is given by λ = max(J, hx), so that the condition λ �
T−1 ∼ hz is satisfied if J, hx � hz. In this case, D is (to
first order) the Hamiltonian of an XY ferromagnet:

D = −
∑
i,j

[
Jij(S

x
i S

x
j + Syi S

y
j ) + JzijS

z
i S

z
j

]
+

1

T
O(λ/hz)2.

(38)

Then, starting from a short-range correlated state with
appropriate values of energy and 〈Sz〉, we expect that
time evolution governed by D causes the system to “pre-
thermalize” into a symmetry-breaking state with some
value of the order parameter 〈S+

i 〉 = n0e
iφ. According

to the preceding discussion, the order parameter will then
rotate in time with angular frequency ω = hz +µ (where
µ . λ is determined by the initial value of 〈Sz〉) for times
short compared to the thermalization time t∗.

Note, however, that we have assumed that the system
is completely isolated. If the system is not isolated, then
the periodic rotation of the order parameter will cause
the system to emit radiation, and this radiation will cause
the system to decay to its true ground state4,97.

C. Field Theory of Pre-Thermal Continuous-TTSB
Time Crystal

For simplicity we will give only the imaginary-time
field theory for equal-time correlation functions deep
within the pre-thermal regime; the Schwinger-Kelysh
functional integral for unequal-time correlation func-
tions, with nearly exponentially-small thermalization ef-
fects taken into account, will be discussed elsewhere88.
Introducing the field φ ∼ (Sx + iSy)ei(µ−u)t, we apply
Eq. (36) to the XY ferromagnet of the previous section,
thereby obtaining the effective action:

Seff =

∫
ddx dτ

[
φ∗∂τφ− µφ∗φ+ g(φ∗φ)2 + . . .

]
(39)

The . . . represents higher-order terms. The U(1) sym-
metry generated by Sz acts according φ → eiθφ.
Time-translation symmetry acts according to φ(t) →
ei(µ−u)a φ(t+a) for any a. Thus, when φ develops an ex-
pectation value, both symmetries are broken and a com-
bination of them is preserved according to the symmetry-
breaking pattern RTTS×U(1)→ R, where the unbroken
R is generated by a gauge transformation by θ and a
time-translation t→ t+ θ

µ−u .

From the mathematical equivalence of Eq. (39) to the
effective field theory of a neutral superfluid, we see that
(1) in 2D, there is a quasi-long-range-ordered phase – an
‘algebraic time crystal’ – for initial state energies below a
Kosterlitz-Thouless transition; (2) the TTSB phase tran-
sition in 3D is in the ordinary XY universality class in 3D;
(3) the 3D time crystal phase has Goldstone boson ex-

citations. If we write φ(x, t) =

√(
µ
2g + δρ(x, t)

)
eiθ(x,t),

and integrate out the gapped field δρ(x, t), then the ef-
fective action for the gapless Goldstone boson θ(x, t) is
of the form discussed in Ref. 95.

V. OPEN SYSTEMS

So far, we have considered only isolated systems. In
practice, of course, some coupling to the environment
will always be present. One can also consider the effect
of classical noise, for example some time-dependent ran-
domness in the parameters of the drive, so that successive
time steps do not implement exactly the same time evo-
lution. The Floquet-MBL time crystals of Ref. 11 are not
expected to remain robust for open systems, because such
a coupling will destroy MBL. This limits the timescales
over which one could expect to observe Floquet-MBL
time crystals experimentally.

However, as we discuss in this section, we expect the
pre-thermal time crystals of this work to be more robust.
In fact, we expect that (at least in the Floquet case) the
time-crystals can actually be stabilized in open systems
so that the oscillations actually continue forever for any
initial state (in contrast to the case of isolated systems, in
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System

Floquet heating,
Noise

Cold thermal bath

Cold steady state
Implies fractional-frequency
oscillations

FIG. 2. So long as the energy inflow due to noise and periodic
driving is balanced by the outflow to a cold thermal bath,
giving a low-energy steady state, oscillations at a fraction of
the drive frequency will be observed.

which, as discussed previously, the oscillations continue
only up to some very long time, and only for some initial
states). The idea, as depicted in Figure 2, is that the
heating due to the periodic driving, as well as classical
noise sources and other stray couplings to an environ-
ment, can be counteracted by cooling from a coupling to
a sufficiently cold thermal bath. Provided that the re-
sulting steady-state has sufficiently low energy (for some
appropriate measure of “energy” in the driven system),
we will argue that that oscillations at a fraction of the
drive frequency will be observed in this steady state.

First we need to clarify what we mean by “energy” and
“steady state” in the Floquet context. Let HS(t) be the
time-evolution of the system alone (not taking to account
the coupling to the environment.) We define the Floquet

operator Uf = T exp
(
−i
∫ T

0
HS(t)dt

)
. Recall that in the

regime discussed in Section III, where λ as defined there

satisfies λT � 1, we can write HS(t) = H̃S(t) + V (t).
Here V (t) is a very weak residual perturbation, and

H̃S(t) is such that, if we define the approximate Flo-

quet operator by Ũf = T exp
(
−i
∫ T

0
H̃S(t)

)
, then it can

be expressed, following a local unitary time-independent
change of basis (which we will here set to 1 for notational

simplicity), as Ũf = Xe−iDT , where X2 = 1 and D is a
quasi-local Hamiltonian D that commutes with X. In

particular, we have Ũf

2
= e−2iDT . This implies that we

can make a time-dependent local unitary change of basis
W (t), periodic with period 2T and satisfying W (0) = 1,
such that the transformed Hamiltonian, which is related

to H̃S(t) according to

H̃ ′S = WHSW
† + i[∂tW ]W †, (40)

is time-independent and equal to D. Therefore, in this

new reference frame, it is clear that we should refer to
the expectation value of D as “energy”. We emphasize
that we have not gotten rid of the time-dependence com-
pletely: even in the new reference frame the residual driv-
ing term V (t), as well as any couplings to the environ-
ment, will still be time-dependent. (Due to the time-
dependent change of basis, the latter will gain a time-
dependence even if it was originally time-independent.)

The steady state is now determined by some balance
between the residual periodic driving V (t), the classical
noise, and the coupling to the environment. We leave
a detailed analysis of this open system process for fu-
ture work98, but we expect that in a suitable regime the
energy-density of the steady state will be low. We will
now explain why this implies oscillations (which are ob-
served in the original reference frame, not the rotating
one defined above.)

Consider a short-range correlated steady state ρ whose
energy density with respect to D is small. Recall that in
Section III A we argued that if ρ is a thermal state it must
spontaneously break the symmetry generated by X, and

it follows that under Ũf it oscillates at twice the drive fre-
quency. Of course, for an open system the steady-state
need not be thermal, and time evolution of the open sys-

tem is not exactly given by Ũf . However, as we prove
in Appendix C, even non-thermal states must fail to be
invariant under the symmetry X if their energy density
with respect to D is sufficiently small, provided that they
satisfy a physically reasonable “thermalizability” condi-
tion. Moreover, if λT � 1 (so that we can approximate

Ũf ≈ X), and the coupling to the environment sufficiently
weak, then the resulting state after one time period is
approximately given by XρX†, which by the preceding
discussion is not the same as ρ. (We make this argument
more precise in Appendix C.) Thus, provided that the
energy of the steady-state is sufficiently small, it does
not return to itself after one time period, and oscillations
with period 2T will be observed.

Generic baths will destroy continuous-time time crys-
tals. The difference with the discrete-time case is the ex-
istence of an extra variable characterizing thermal states
of D; namely, the chemical potential µ. This extra vari-
able is needed because of the presence of the hidden U(1)
symmetry in the continuous-time regime. (There is no
analogous variable when the hidden symmetry is dis-
crete). Thus, one certainly cannot make any statement
that all low-energy states of D oscillate, because, in par-
ticular, a thermal state of D in which the electrochemical
potential µ − u = 0 does not oscillate. A coupling to a
generic bath will not preserve the hidden U(1) symme-
try, and thus to the extent that the steady state of an
open system process is close to a thermal state of D, we
in fact expect it to have µ−u = 0, since this corresponds
to minimizing the free energy.

In principle, one could fine-tune the bath so that it
repects the symmetry. This would allow the time crystal
to survive, but is clearly contrived. One might wonder
whether the bath itself could also pre-thermalize: if we
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could consider the bath to be included in the Hamiltonian
(34) then it could have an approximate U(1) symmetry
along with the rest of the system. This would require the
local terms in the bath Hamiltonian to be much smaller
than the coupling u in Eq. (34). However, for most
of the physically relevant baths that one would want to
consider (for example, phonons), the local terms in the
bath Hamiltonian are in fact unbounded.

VI. PRE-THERMALIZED FLOQUET
TOPOLOGICAL PHASES

We can also apply our general results of Section II
to Floquet symmetry-protected (SPT) and symmetry-
enriched (SET) topological phases, even those which
don’t exist in stationary systems. (We will henceforth
use the abbreviation SxT to refer to either SPT or SET
phases.)

As was argued in Refs. 81 and 82, any such phase
protected by symmetry G is analogous to a topologi-
cal phase of a stationary system protected by symmetry
ZoG, where the extra Z corresponds to the time transla-
tion symmetry. Here the product is semi-direct for anti-
unitary symmetries and direct for unitary symmetries.
For simplicity, here we will consider only unitary sym-
metries. Similar arguments can be made for anti-unitary
symmetries.

We will consider the class of phases which can still
be realized when the Z is refined to ZN . That is, the
analogous stationary phase can be protected by a uni-

tary representation W (g̃) of the group G̃ = ZN × G.
Then, in applying the general result of Section II, we will
choose H0(t) such that its time evolution over one time
cycle is equal to X ≡ W (T), where T is the generator
of ZN . Then it follows that, for a generic perturbation
V of small enough local strength λ, there exists a local
unitary rotation U (commuting with all the symmetries

of Uf) such that Uf ≈ Ũf , where Ũf = UXe−iDTU†, D is
a quasi-local Hamiltonian which commutes with X, and

Ũf well describes the dynamics until the almost exponen-
tially large heating time t∗.

Now let us additionally assume (since we want to con-
struct a Floquet-SxT protected by the symmetry G, plus
time-translation) that the Floquet operator Uf is cho-
sen such that it has the symmetry G. Specifically, this
means that it is generated by a periodic time evolution
H(t) such that, for all g ∈ G, W (g)H(t)W (g)−1, By in-
spection of the explicit construction for U and D (see
Appendix A), it is easy to see that in this case U is a
symmetry-respecting local unitary with respect to W (g),
and D commutes with W (g). That is, the rotation by U
preserves the existing symmetry G as well as revealing a
new ZN symmetry generated by X (which in the original
frame was “hidden”).

Therefore, we can choose D to be a Hamiltonian whose
ground state is in the stationary SxT phase protected by
ZN ×G. It follows (by the same arguments discussed in

Ref. 81 for the MBL case) that the ground state D will
display the desired Floquet-SxT order under the time
evolution generated by U†UfU = Xe−iDT . Furthermore,
since Floquet-SxT order is invariant under symmetry-
respecting local unitaries, the ground state of UDU† will
display the desired Floquet-SxT order under Uf .

We note, however, that topological order, in contrast to
symmetry-breaking order, does not exist at nonzero tem-
perature (in clean systems, for spatial dimensions d < 4).
Thus, for initial state mean energies 〈D〉 that corresponds
to temperatures β−1 satisfying 0 < β−1 � ∆, where ∆ is
the bulk energy gap, the system will exhibit exponentiall-
small corrections ∼ e−β∆ to the quantized values that
would be observed in the ground state. This is no worse
than the situation in thermal equilbirum where, for in-
stance, the Hall conductance is not precisely quantized
in experiments, but has small corrections ∼ e−β∆. How-
ever, preparing such an initial state will be more involved
than for a simple symmetry-breaking phase. For this rea-
son it is more satisfactory to envision cooling the system
by coupling to a thermal bath, as discussed in Section
V, which is analogous to how topological phases are ob-
served in thermal equilibrium experiments – by refriger-
ation.

VII. DISCUSSION

In this paper, we have described how time crystal
behavior can be observed in the pre-thermal regime of
driven and undriven quantum systems. This greatly in-
creases the set of experimental systems in which time
crystal behavior can be observed, since, as opposed to
previous proposals, we do not require many-body local-
ization to robustly prevent the system from heating to
infinite temperature. While many-body localization has
been observed in experiments99–101, the ideas put for-
ward in this paper significantly reduce experimental re-
quirements as strong disorder is not required.

Our Theorem 1 states that oscillations can be ob-
served to nearly exponentially-late times, provided that
the drive frequency is sufficently high. However, the rig-
orous bound given in the theorem – which requires a
drive frequency ∼ 103 times larger than the local cou-
plings in the time-dependent Hamiltonian – may not be
tight. Therefore, it would be interesting to check numer-
ically whether long-lived oscillations are observed in sys-
tems with drive frequency only moderately larger than
the local couplings. This may be challenging in small
systems, in which there isn’t a large separation of energy
scales between the local coupling strength and the width
of the many-body spectrum (which the frequency should
certainly not exceed). In one-dimensional systems, oscil-
lations will not be observed to exponentially-long (in the
drive frequency) times, but will have a finite correlation
time for any non-zero energy density initial state. How-
ever, there will be a universal quantum critical regime
in which the correlation time will be the inverse effective
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temperature.

Although naive application of Theorem 1 suggests that
the ideal situation is the one in which the drive frequency
becomes infinitely large, in practice very high-frequency
driving will tend to excite high energy modes that
were ignored in constructing the model lattice Hamil-
tonian. For example, if the model Hamiltonian describes
electrons moving in a periodic potential in the tight-
binding approximation, high frequency driving would ex-
cite higher orbitals that were excluded. Thus, the driv-
ing frequency Ω needs to be much greater than the local
energy scales of the degrees of freedom included in the
model Hamiltonian (except for one particular coupling,
as discussed in Section III), but also much less than the
local energy scales of the degrees of freedom not included.
(One cannot simply include all degrees of freedom in the
model Hamiltonian, because then the norm of local terms
would be unbounded, and Theorem 1 would not apply.)

In the case of undriven systems, we have shown that
continuous time-translation symmetry breaking can sim-
ilarly occur on nearly exponentially-long time intervals
even without any fine-tuning of the Hamiltonian, pro-
vided that there is a large separation of scales in the
Hamiltonian. We show how in certain cases this can be
described in terms of approximate Goldstone bosons as-
sociated with the spontaneously-broken time-translation
symmetry.

Our analysis relied on the construction of hidden ap-
proximate symmetries that are present in a pre-thermal
regime. The analogous symmetries in MBL systems,
where they are exact, were elucidated in the interesting
work of von Keyserlingk et al.15. In the pre-thermal Flo-
quet time crystal discussed here, the symmetry generated
by the operator U†XU is enslaved to time-translation
symmetry since, in the absence of fine-tuning, such a
symmetry exists exists only if time-translation symmetry
is present. (That is, if we add fields to the Hamiltonian
that are periodic with period nT and not period T , then
the hidden symmetry no longer exists.) Moreover, this
symmetry is broken if and only if time-translation sym-
metry is broken. (Similar statements hold in the MBL
case15.) Since the hidden symmetry generated by U†XU
acts on the order parameter at stroboscopic times in the
same way as time-translation by T (a single period of
the drive), it does not constrain correlation functions any
more than they already are by time-translation symme-
try. The same observation holds for the approximate
symmetry generated by Lz in the undriven case.

However, there are systems in which the time crys-
tal behavior actually does “piggyback” off another bro-
ken symmetry. This does require fine-tuning, since it
is necessary to ensure that the system posseses the “pri-
mary” symmetry, but such tuning may be physically nat-
ural (e.g. helium atoms have a very long lifetime, lead-
ing to a U(1) symmetry). The broken symmetry allows
a many-body system to effectively become a few-body
system. Thus, time crystal behavior can occur in such
systems for the same reason that oscillations can per-

sist in few-body systems. Oscillating Bose condensates
(e.g. the AC Josephson effect and the model of Ref. 102)
can, thus, be viewed as fine-tuned time crystals. They
are not stable to arbitrary time-translation symmetry-
respecting perturbations; a perturbation that breaks the
“primary” symmetry will cause the oscillations to decay.
Indeed, most few-body systems are actually many-body
systems in which a spontaneously-broken symmetry ap-
proximately decouples a few degrees of freedom. A pen-
dulum is a system of 1023 atoms that can be treated as
a single rigid body due to spontaneously-broken spatial
translational symmetry: its oscillations owe their per-
sistence to this broken symmetry, which decouples the
center-of-mass position from the other degrees of free-
dom.

With the need for MBL obviated by pre-
thermalization, we have opened up the possibility
of time crystals in open systems, in which MBL is
impossible37–45. In fact, since the results of Appendix
C show that TTSB can occur in non-thermal states, it
is possible for the coupling to a cold bath to counteract
the heating effect that would otherwise bring an end
to the pre-thermal state at time t∗. This raises the
possibility of time crystals that survive to infinite times
in non-equilibrium steady states; the construction of
such states is an interesting avenue for future work.
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Appendix A: Rigorous proof of pre-thermalization
results

a. Definition of the norm

Let’s suppose, for the sake of concreteness, that we
have a spin system with a local time-dependent Hamil-
tonian of the form:

H(t) =
∑
i,j

Jαβi,j (t)Sαi S
β
j +

∑
i,j,k

Kαβγ
i,j,k(t)Sαi S

β
j S

γ
k + . . .

=
∑
p

∑
p−tuples

Ai1,...,ip

(A1)

Here α = x, y, z are the components of the spins, and
i, j, k are lattice sites. In the first line, we have explic-
itly written the 2-site and 3-site terms; the . . . represents
terms up to n-site terms, for some finite n. It is assumed
that these interactions have finite range r ≥ n such that
all of the sites in a k-site term are within distance r. In
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the second line, we have re-expressed the Hamiltonian in
a more generic form in terms of p-site terms Ai1,...,ip with
i1 6= . . . 6= ip. To avoid clutter, we have not explicitly
denoted the t-dependence of Ai1,...,ip . We define the local
instantaneous norm ‖Ai1,...,ip‖n according to

F‖Ai1,...,ip‖inst
n ≡ epκn‖Ai1,...,ip‖ (A2)

where ‖Ai1,...,ip‖ is the operator norm of Ai1,...,ip at a
given instant of time t and

κn ≡ κ1/[1 + lnn]. (A3)

We make this choice of n-dependence of κn, following
Ref. 47 for reasons that will be clear later. We then av-
erage the instantaneous norm over one cycle of the drive:

‖Ai1,...,ip‖n ≡
1

T

∫ T

0

dt ‖Ai1,...,ip‖inst
n (A4)

It is only in this step that we differ from Abanin et al.47,
who consider the supremum over t rather than the aver-
age. In analyzing the Floquet operator, i.e. the evolution
due to H at stroboscopic times, it is the total effect of
H, which is determined by its integral over a cycle, that
concerns us. Error terms that act over a very short time,
even if they are relatively strong, have little effect on the
Floquet operator so long as their norm, as defined above,
is small. Finally, we define the global time-averaged norm
of the Hamiltonian H:

‖H‖n ≡ sup
j

∑
p

∑
p−tuples

[∑
k

δj,ik

]
‖Ai1,...,ip‖n (A5)

The term in square braces restricts the sum to p-tuples
that contain the site j.

b. More technical statement of Theorem 1

Theorem 1 stated above will follow from the follow-
ing slightly more technical formulation. For notational
simplicity we work in units with T = 1.

Theorem 1′. Consider a periodically-driven system with
Floquet operator:

Uf = T exp

(
−i
∫ T

0

[H0(t) + V (t)]dt

)
, (A6)

where X ≡ T exp
(
−i
∫ T

0
H0(t)

)
satisfies XN = 1 for

some integer N , and we assume that H0 can be written
as a sum H0(t) =

∑
i hi(t) of terms acting on single sites

i. Define λ ≡ ‖V ‖1. Then there exists a sequence of
quasi-local An such that, defining Un = e−iAn · · · e−iA1 ,
we have

UnUf U†n = X T exp

(
−i
∫ 1

0

[Dn + En + Vn(t)]dt

)
,

(A7)

where [Dn, X] = 0; Dn, En are independent of time; and

‖Vn‖n, ‖En‖n ≤ 2Knλ
n, (A8)

‖An‖n ≤ (N + 1)Knλ
n, (A9)

‖Dn −Dn−1‖n ≤ Knλ
n, (A10)

where we have defined λ ≡ ‖V ‖1, and

Kn = Cn−1
n−1∏
k=1

m(k), C = 2(N + 3)(N + 4),

m(n) =
18

κn+1(κn − κn+1)
. (A11)

These bounds hold provided that n ≤ n∗, with

n∗ =
λ0/λ

[1 + log(λ0/λ)]3
, λ0 = (36C)−1 (A12)

and provided that

λ <
µ

N + 3
, µ ≈ 0.07. (A13)

Theorem 1 follows from Theorem 1′, because n∗ is
chosen such that n ≤ n∗ implies Cm(n) ≤ 1

2λ . It

then follows that Kn+1λ
n+1/(Knλ

n) = Cm(n)λ ≤ 1
2 ,

and hence that Knλ
n ≤ λ/2n−1. Moreover, we ob-

tain Eq. (9) by summing Eq. (A10), from which we see

that ‖Dn−D1‖n ≤
∑∞
k=2Kkλ

k ≤ K2λ
2
∑∞
k=2

(
1
2

)k−2
=

2K2λ
2 = 2Cm(1)λ2 ≈ 2.9λ2/λ0. (Here we use the fact

that ‖ · ‖n+1 ≤ ‖ · ‖n.)
In the next subsections, we will give a proof of Theorem

1′.

c. Iterative construction

The idea is to construct the Dn, Vn, En, An discussed
above iteratively. That is, suppose that at the n-th step,
we have

UnUf U†n ≡ U
(n)
f = X T exp

(
−i
∫ 1

0

Hn(t)dt

)
, (A14)

where Hn(t) = Fn + Vn(t), with Fn =
∫ T

0
Hn(t)dt

time-independent. We will choose to separate the time-
independent piece Fn according to Fn = Dn+En, where
Dn = 〈Fn〉, and we have defined the symmetrization

〈O〉 =
1

N

N−1∑
k=0

X−kOXk. (A15)

In particular, this implies that [Dn, X] = 0 and 〈Dn〉 =
Dn, and therefore 〈En〉 = 〈Fn〉 − 〈Dn〉 = Dn −Dn = 0.

We will now introduce a local unitary An = e−iAn ,

which we use to rotate the Floquet operator U
(n)
f , giving

a new Floquet operator

U
(n+1)
f ≡ AnU (n)

f A
†
n = XT exp

(
−i
∫ 1

0

Hn+1(t)dt

)
.

(A16)
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The ultimate goal, decomposing Hn+1(t) = Dn+1 +
En+1 + Vn+1(t) as before, is to ensure that the resid-
ual error terms En+1 and Vn+1 are much smaller than
En and Vn. This goal is achieved in two separate steps.
The first step ensures that En+1 is small (that is, the
time-independent part of Hn+1(t) nearly commutes with
X), and the second step ensures that Vn+1 is small.

Step One.– This step proceeds similarly to the recur-
sion relation of Abanin et al47 for the time-independent
case (Section 5.4 of Ref. 47). There the recursion re-
lation was designed to make the Hamiltonian commute
with its zero-th order version. This is analogous to our
present goal of making the Floquet operator commute
with X. Here, we adapt the analysis of Ref. 47 to the
Floquet case.

We observe that

U
(n+1)
f = AnU (n)

f A
†
n (A17)

= X

[
X†AnX × T exp

(
−i
∫ 1

0

Hn(t)dt

)
×A†n

]
,

(A18)

= X

[
e−X

†iAnX × T exp

(
−i
∫ 1

0

Hn(t)dt

)
× eiAn

]
(A19)

= X × T exp

(
−i
∫ 1

0

H′n(t)dt

)
, (A20)

where

H′n(t) =


1
a (−An) 0 ≤ t ≤ a

1
1−2aHn(3t− 1) a ≤ t ≤ (1− a),
1
a (X†AnX) (1− a) ≤ t ≤ 1,

(A21)

(for some constant a ∈ [0, 1/2] which can be chosen ar-
bitrarily.) Let us decompose H′n(t) = D′n + V ′n(t), where

D′n = 1
T

∫ 1

0
H′n(t). Our goal will be to ensure that the

time-independent part D′n commutes with X. It turns
out this can actually be achieved exactly, and in partic-
ular we can choose An such that D′n = Dn.

To this end, we first observe that

D′n = Dn + En +X†AnX −An. (A22)

We now claim that D′n = Dn if we choose

An :=
1

N

N−1∑
k=0

k∑
p=0

E(p)
n , E(p)

n = X−pEXp. (A23)

To see this, note that, by construction,

X†AnX −An =
1

N

N−1∑
k=0

k∑
p=0

[E(p+1)
n − E(p)

n ] (A24)

=
1

N

N−1∑
k=0

[E(k+1)
n − En] (A25)

= −En + 〈En〉, (A26)

= −En, (A27)

since 〈En〉 = 0.
Step Two.– The next step is now to find a new time-

dependent Hamiltonian Hn+1(t) which gives the same
unitary evolution as H′n(t) over the time interval [0, 1],
while making the time-dependent part smaller. That is,
making the decomposition Hn+1(t) = Dn+1 + En+1 +
Vn+1(t) as before, the goal is to make Vn+1 small. In
fact, this is precisely the problem already considered by
Abanin et al47, and we can use the procedure described
in Section 4.1 of that paper.

One might worry whether Step Two undoes the good
work done by Step One. That is, does making Vn+1 small
come at the cost of making En+1 larger again? However,
this turns out not to be a problem, as the bounds we
derive below will make clear.

d. Bounds on Error terms

Now we will derive bounds that quantify the success of
the iterative procedure described in the previous subsec-
tion at making the residual error terms En and Vn small.
Analysis proceeds in similar way to Abanin et al47. We
define

d(n) = ‖Dn‖n, v(n) = ‖Vn‖n, v′(n) = ‖V ′n‖n,
e(n) = ‖En‖n, δd(n) = ‖Dn+1 −Dn‖n+1, (A28)

First of all, from Eq. (A23) we have a bound on An:

‖An‖n ≤
N + 1

2
e(n) (A29)

From Eq. (A21) we observe that

V ′n(t) =


1
a (−An)−Dn 0 ≤ t ≤ a

1
1−2a (2aDn + En + Vn(3t− 1)) a ≤ t ≤ (1− a),
1
a (X†AnX)−Dn (1− a) ≤ t ≤ 1,

(A30)
and hence

v′(n) ≤ 2‖An‖n + ‖En‖n + ‖Vn‖n + 4a‖Dn‖n (A31)

Hence, we can send a→ 0 to give (using Eq. (A29))

v′(n) ≤ (N + 2)e(n) + v(n). (A32)

Then, as our construction of Hn+1 from H′n is the one
described in Section 4.1 of Abanin et al, we can use their
bounds

‖Dn+1 + En+1 −Dn‖n+1 ≤ εn/2 (A33)

v(n+ 1) ≤ εn (A34)

where

εn = m(n)v′(n)
(
d(n) + 2v′(n)), (A35)

m(n) =
18

(κn+1 − κn)κn+1
. (A36)
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These bounds hold provided that

3v′(n) ≤ κn − κn+1 (A37)

Since Dn+1 −Dn = 〈Dn+1 + En+1 −Dn〉, we see that

δd(n) ≤ ‖Dn+1 + En+1 −Dn‖n+1 ≤ εn/2 (A38)

and

e(n+1) ≤ ‖Dn+1+En+1−Dn‖n+1+‖Dn+1−Dn‖n+1 ≤ εn
(A39)

e. Proof of Theorem 1′ by induction

The idea now is to apply the bounds of the previous
subsection recursively to give bounds expressed in terms
of the original Floquet operator,

Uf = U
(1)
f = T exp

(
−i
∫ 1

0

[H0(t) + V (t)]

)
(A40)

= XT exp

(
−i
∫ 1

0

Vint(t)dt

)
, (A41)

and in particular the quantity λ ≡ ‖Vint‖1 = ‖V ‖1. First
of all, we write H1(t) ≡ Vint(t) = F1 + V1(t), where F1 =∫ 1

0
Vint(t)dt, and then separate F1 = D1 + E1, where

D1 = 〈F1〉. We note that ‖F1‖1 ≤ λ, which implies that
v(1) ≤ ‖Vint‖1 + ‖F1‖1 ≤ 2λ, and d(1) ≤ λ. In turn this
gives e(1) ≤ ‖D1‖1 + ‖F1‖1 ≤ 2λ.

Now we proceed by induction. Suppose that we have
some n such that, for all 1 ≤ k ≤ n, we have

e(k), v(k) ≤ 2Kkλ
k, (A42)

and for all 1 ≤ k < n,

δd(k) ≤ Kk+1λ
k+1 (A43)

where the coefficients Kk satisfy Kk+1/Kk ≤ 1
2λ . (The

preceding discussion shows that this induction condition
is satisfied for n = 1 with K1 = 1.)

Then from Eq. (A32) we find that

v′(n) ≤ 2cNKnλ
n, cN = N + 3, (A44)

and hence

εn ≤ m(n)2cNKnλ
n(d(n) + 2cNKnλ

n). (A45)

We note that the triangle inequality and the fact that
‖·‖n decreases with n ensures that d(n+1)−d(n) ≤ δd(n).

Hence we can bound d(n) by

d(n) ≤ d(1) +

n−1∑
k=1

δd(k) (A46)

≤ λ+

n−1∑
k=1

Kk+1λ
k+1 (A47)

=

n∑
k=1

Kkλ
k (A48)

≤
n∑
k=1

λ

(
1

2

)k−1

(A49)

≤ 2λ (A50)

In Eq. (A49), we used the inequality Kk+1/Kk ≤ 1/(2λ).
This same inequality also ensures that Knλ

n ≤ λ, so
inserting into Eq. (A45) gives

εn ≤ m(n)2cNKn(2 + 2cN )λn+1

≡ 2Cm(n)Knλ
n+1

≡ Kn+1λ
n+1. (A51)

Here we chose

Kn+1 = Cm(n)Kn, C = 2cN (1 + cN ). (A52)

Next we need to examine the conditions under which
Eq. (A37) holds. Given the bounds on v′(n) and us-
ing the inequality Knλ

n ≤ λ(1/2)n−1, it is sufficient to
demand that

3cN (1/2)n−1λ ≤ κn+1 − κn, (A53)

or in other words

λ ≤ 1

3cN
max
n∈N

[
2n−1(κn+1 − κn)

]
=

1

3cN
(κ2−κ1) ≈ 0.14κ1

N + 3
.

(A54)
Provided that Eq. (A54) holds, we then find that

δd(n), v(n+ 1)/2, e(n+ 1)/2 ≤ Kn+1λ
n+1. (A55)

Therefore, we can continue the induction provided that
Kn+1/Kn ≤ 1

2λ . Since Kn+1/Kn = Cm(n), this is true
provided that n ≤ n∗. This completes the proof of The-
orem 1′.

Appendix B: Proof of phase-winding when a U(1)
symmetry is spontaneously broken

Here we intend to prove the claim made in Section IV A
above that the expectation value

Tr(ρXe
itKΦe−itK) ≡ gX(t) (B1)

must be independent of time t, where we have defined
K ≡ D − µL and ρX ≡ limε→0+

1
Z e
−β(K+εX). The idea
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is to make a connection with results of Ref. 10; however,
these were expressed in terms of two-point correlation
functions, and also did not have the εX term in the def-
inition of the density matrix. To make a connection, we
assume that the symmetric density matrix ρ = 1

Z e
−βK

can be recovered by symmetrizing a symmetry-breaking

state,

ρ =
1

2π

∫ 2π

0

e−iθLρXe
iθLdθ, (B2)

and that the symmetry-breaking state ρX is short-range
correlated. Now we calculate the two-point correlation
function (where Φ(x) and Φ(y) are two operators acting
at different spatial locations x and y)

f(t) = Tr[ρeitKΦ(x)eitKΦ†(y)] (B3)

=
1

2π

∫ 2π

0

dθTr[e−iθLρXe
iθLeitKΦ(x)e−itKΦ(y)] (B4)

=
1

2π

∫ 2π

0

dθTr[ρXe
itK{eiθLΦ(x)e−iθL}e−itK{eiθLΦ†(y)e−iθL}] (B5)

= Tr[ρX{e−itKΦ(x)eitK}Φ†(y)}] (B6)

= gX(t)[gX(0)]∗, (B7)

where we used the fact that L and K commute and that
eiθLΦe−iθL = eiθΦ. In the last line we sent |x− y| → ∞
and used the assumption that ρX has short-range corre-
lations.

Now, the theorem of Ref. 10 rigorously proves that the
function f(t) must be independent of time. Hence, unless
gX(0) = 0, we conclude that gX(t) must be independent
of time. (If gX(0) = 0 but gX(t) is not independent
of time then there must be some t such that gX(t) 6=
0. Then we can just relabel the time-coordinate so that
gX(0) 6= 0 and repeat the argument.)

Appendix C: Spontaneous symmetry-breaking for
non-thermal states

Let D be a quasi-local Hamiltonian for which the ther-
mal states spontaneously break an on-site ZN symmetry
generated by X for energy densities e < ec. More pre-
cisely, what we mean is the following, where we define the
local distance between two states on a region A according
to

‖ρ1 − ρ2‖A = ‖(ρ1)A − (ρ2)A‖1 (C1)

where ‖ · ‖1 is the trace norm, and (ρ)A = TrAcρ is the
reduced state of ρ on A.

Assumption 1 (Spontaneous symmetry-breaking).
There exists some finite region A and some γ > 0, such
that, for any short-range correlated thermal state ρτ with
energy density e < ec, we have ‖ρτ − XkρτX

−k‖A ≥ γ
for all 0 < k < N .

Now let ρ be any state (not necessarily thermal) such
that the energy density ε ≡ 〈D〉ρ/V < εc (with V the
volume of the system.) We assume the following ther-
malizability condition, which roughly states that ρ can
thermalize when time-evolved under D. More precisely:

Assumption 2 (Thermalizability). There exist a time
t1 and a short-range correlated thermal state ρτ with the
same energy density as ρ, such that ‖ρ(t1)−ρτ‖A ≤ γ/8,
where ρ(t) = e−iDt1ρeiDt1 .

From Assumptions 1 and 2 we derive the following
lemma, which quantifies the sense in which the state ρ
must break the symmetry.

Lemma 1. There exists a finite region A′ such that ‖ρ−
XkρX−k‖A′ ≥ 3γ/4.

Proof. From the triangle inequality it follows that

‖ρ(t1)−Xkρ(t1)X−k‖A (C2)

≥ ‖ρτ −XkρτX
−k‖A − ‖ρ(t1)−Xkρ(t1)X−k − (ρτ −XkρτX

−k)‖A (C3)

≥ γ − 2γ/8 (C4)

= 3γ/4. (C5)
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Using the characterization of the trace norm as

‖ρ‖1 = sup
ô:‖ô‖=1

|〈ô〉ρ|, (C6)

it follows that there exists an operator ôA supported on
A, with ‖ôA‖ = 1, such that |〈X−kôAXk − ôA〉ρ(t1)| ≥
3γ/4. Now, since D is quasi-local, it must obey a Lieb-
Robinson bound103,104, which implies that there exists a
local operator ÔA′ supported on a finite region A′ such
that ‖ô(t1) − ÔA′‖ ≤ γ/8, where ô(t1) = eiDt1 ôe−iDt1 .
Hence we see that

|〈X−kÔA′Xk − ÔA′〉ρ| (C7)

≥ −γ/4 + |〈X−kôA(t1)Xk − ôA(t1)〉ρ| (C8)

= −γ/4 + |〈X−kôAXk − ôA〉ρ(t1)| (C9)

≥ −γ/4 + 3γ/4. (C10)

= γ/2. (C11)

To get to line Eq. (C9), we used the fact that X and D
commute. The lemma follows.

Now consider a system which in isolation would evolve
under a time-dependent Hamiltonian H(t), which is pe-
riodic with period T . We assume that H(t) exhibits
the pre-thermalization phenomena discussed in the main
text. That is, we assume that the Floquet operator can

be approximated according to Uf ≈ Ũf = Xe−iDT , where
D is quasi-local and commutes with X, and where Uf is

close to Ũf in the sense that

‖U†f OA′Uf − Ũf

†
OA′Ũf‖ ≤

γ

8
‖OA′‖ (C12)

for any operator OA′ supported on A′.
Let ρopen(t) be the reduced state of the system (tracing

out the bath) at time t, taking into account the system-
bath coupling, and we assume that ρopen(0) ≡ ρ satisfies
Assumption 2 above. We assume the coupling to the
bath is sufficiently weak, in the following sense:

Assumption 3 (Weak coupling). For any time 0 ≤ t ≤
T , we have ‖ρint

open(t)− ρ‖A′ ≤ γ/8.

Here we defined the interaction picture state ρint
open(t) =

U(0, t)−1ρopen(t)U(0, t), where U(0, t) is the time evolu-
tion generated by H(t). If we were to set the coupling to
the bath to zero then the state ρint

open(t) would be constant
in time, so Assumption 3 corresponds to weak coupling.
Finally, we will assume that the strength of DT is small
enough so that

Assumption 4. For any observable OA′ supported on
A′, we have

‖e−iDTOA′eiDT −OA′‖ ≤
γ

8
‖OA′‖ (C13)

This will always be true in the regime of interest, λT �
1 (where λ is as defined in Section II), because ‖D‖n∗ is
O(λ) [see Eq. (9) in Theorem 1].

From the above assumptions we can now derive our
main result:
Theorem 3.

‖ρopen(T )− ρ‖A′ ≥ γ/8. (C14)

Proof.

‖ρopen(T )− ρ‖A′ (C15)

= ‖Ufρ
int
open(T )U†f − ρ‖A′ (C16)

≥ −γ/8 + ‖Ũfρ
int
open(T )Ũ†f − ρ‖A′ (C17)

= −γ/8 + ‖e−iDT ρint
open(T )eiDT −X†ρX‖A′ (C18)

≥ −γ/8− γ/8 + ‖ρint
open(T )−X†ρX‖A′ (C19)

≥ −γ/8− γ/8− γ/8 + ‖ρ−X†ρX‖A′ (C20)

≥ −γ/8− γ/8− γ/8 + γ/2. (C21)

= γ/8. (C22)

In other words, the state of the open system at times
t = T and t = 0 are locally distinguishable. That is, for
the stated assumptions, the state of the system does not
synchronize with the drive and time translation symme-
try is spontaneously broken.
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M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and
I. Bloch, Science 349, 842 (2015), arXiv:1501.05661 [cond-
mat.quant-gas].

100 J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess,
P. Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat Phys
advance online publication, (2016).

101 J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal,
T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and
C. Gross, Science 352, 1547 (2016).

102 K. Sacha, Phys. Rev. A 91, 033617 (2015),
arXiv:1410.3638 [cond-mat.quant-gas].

103 E. H. Lieb and D. W. Robinson, Commun. Math. Phys.
28, 251 (1972).

104 B. Nachtergaele and R. Sims, Commun. Math. Phys. 265,
119 (2006), arXiv:math-ph/0506030 [math-ph].

105 T. Shirai, J. Thingna, T. Mori, S. Denisov, P. Hänggi,
and S. Miyashita, New J. Phys. 18, 053008 (2016),
arXiv:1511.06864.

http://dx.doi.org/10.1103/PhysRevB.90.235137
http://arxiv.org/abs/1409.5436
http://dx.doi.org/10.1103/PhysRevB.90.245122
http://arxiv.org/abs/1302.7072
http://dx.doi.org/10.1103/PhysRevLett.114.031601
http://dx.doi.org/10.1103/PhysRevLett.114.031601
http://arxiv.org/abs/1405.7689
http://arxiv.org/abs/1501.01313v1$\delimiter "026E30F $nhttp://arxiv.org/abs/1501.01313
http://arxiv.org/abs/1501.01313v1$\delimiter "026E30F $nhttp://arxiv.org/abs/1501.01313
http://arxiv.org/abs/1501.01313v1$\delimiter "026E30F $nhttp://arxiv.org/abs/1501.01313
http://arxiv.org/abs/1501.01313
http://dx.doi.org/ 10.1103/PhysRevLett.105.246809
http://dx.doi.org/ 10.1103/PhysRevLett.105.246809
http://arxiv.org/abs/1004.3628
http://dx.doi.org/10.1103/PhysRevB.87.104406
http://dx.doi.org/10.1103/PhysRevB.87.104406
http://arxiv.org/abs/1212.0593
http://arxiv.org/abs/1302.2634
http://arxiv.org/abs/1302.2634
http://arxiv.org/abs/1302.2634
http://arxiv.org/abs/1302.2634
http://dx.doi.org/10.1103/PhysRevB.87.155115
http://arxiv.org/abs/1212.0835
http://dx.doi.org/10.1103/PhysRevB.87.165107
http://dx.doi.org/10.1103/PhysRevB.87.165107
http://arxiv.org/abs/1212.1827
http://arxiv.org/abs/1410.4540
http://arxiv.org/abs/1410.4540
http://arxiv.org/abs/1410.4540
http://arxiv.org/abs/1511.02263
http://arxiv.org/abs/1511.02263
http://arxiv.org/abs/1511.02263
http://arxiv.org/abs/1511.02263
http://arxiv.org/abs/1602.02157
http://arxiv.org/abs/arXiv:1602.04804
http://arxiv.org/abs/1602.05194
http://arxiv.org/abs/1602.08089
http://dx.doi.org/10.1063/1.1703727
http://dx.doi.org/ 10.1103/PhysRevX.4.011052
http://arxiv.org/abs/1307.3253
http://dx.doi.org/ 10.1103/PhysRevB.88.014206
http://arxiv.org/abs/1304.1158
http://dx.doi.org/10.1103/PhysRevLett.111.250402
http://arxiv.org/abs/1308.5949
http://dx.doi.org/10.1007/JHEP06(2012)025
http://dx.doi.org/10.1007/JHEP06(2012)025
http://arxiv.org/abs/1112.5174
http://arxiv.org/abs/1112.5174
http://arxiv.org/abs/1410.2261
http://arxiv.org/abs/1410.2261
http://arxiv.org/abs/1411.4236
http://arxiv.org/abs/1411.4236
http://dx.doi.org/10.1103/PhysRevLett.111.070402
http://arxiv.org/abs/1306.6275
http://dx.doi.org/ 10.1126/science.aaa7432
http://arxiv.org/abs/1501.05661
http://arxiv.org/abs/1501.05661
http://dx.doi.org/10.1038/nphys3783
http://dx.doi.org/10.1038/nphys3783
http://dx.doi.org/10.1126/science.aaf8834
http://dx.doi.org/10.1103/PhysRevA.91.033617
http://arxiv.org/abs/1410.3638
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/BF01645779
http://dx.doi.org/10.1007/s00220-006-1556-1
http://dx.doi.org/10.1007/s00220-006-1556-1
http://arxiv.org/abs/math-ph/0506030
http://dx.doi.org/ 10.1088/1367-2630/18/5/053008
http://arxiv.org/abs/1511.06864

	Pre-thermal Time Crystals and Floquet topological phases without disorder
	Abstract
	I Introduction
	II Results on Pre-Thermalization
	III Pre-thermalized Floquet time crystals
	A Basic Picture
	B Example: periodically-driven Ising spins
	C Field Theory of the Pre-Thermal Floquet Time Crystal State
	D Relation to formal definitions of time crystals

	IV Spontaneously-broken continuous time-translation symmetry in the pre-thermal regime
	A Basic Picture
	B Example: XY Ferromagnet in a Large Perpendicular Field
	C Field Theory of Pre-Thermal Continuous-TTSB Time Crystal

	V Open systems
	VI Pre-thermalized Floquet topological phases
	VII Discussion
	 Acknowledgments
	A Rigorous proof of pre-thermalization results
	a Definition of the norm
	b More technical statement of Theorem ??
	c Iterative construction
	d Bounds on Error terms
	e Proof of Theorem ??' by induction


	B Proof of phase-winding when a U(1) symmetry is spontaneously broken
	C Spontaneous symmetry-breaking for non-thermal states
	 References


