
A Case for Ending Monolithic Apps for Connected Devices

Rayman Preet Singh (Univ. of Waterloo) Chenguang Shen (UCLA)

Amar Phanishayee Aman Kansal Ratul Mahajan

Microsoft Research

1 Introduction
Connected sensing devices, such as cameras, ther-
mostats, in-home motion, door-window, energy, wa-
ter sensors [1], collectively dubbed as the Internet of
Things (IoT), are rapidly permeating our living environ-
ments [2], with an estimated 50 billion such devices in
use by 2020 [8]. They enable a wide variety of applica-
tions spanning security, efficiency, healthcare, and oth-
ers. Typically, these applications collect data using sens-
ing devices to draw inferences about the environment or
the user, and use the inferences to perform certain ac-
tions. For example, Nest [10] uses motion sensor data to
infer home occupancy and adjusts the thermostat.

Most applications that use connected devices today are
built in a monolithic way. That is, applications are tightly
coupled to the hardware, and need to implement all the
data collection, inferencing, and user functionality re-
lated logic. For application developers, this complicates
the development process, and hinders broad distribution
of their applications because the cost of deploying their
specific hardware limits user adoption. For end users,
each sensing device they install is limited to a small set of
applications, even though the hardware capabilities may
be useful for a broader set of applications. How do we
break free from this monolithic and restrictive setting?
Can we enable applications to be programmed to work
seamlessly in heterogeneous environments with different
types of connected sensors and devices, while leverag-
ing devices that may only be available opportunistically,
such as smartphones and tablets?

To address this problem, we start from an insight that
many inferences required by applications can be drawn
using multiple types of connected devices. For instance,
home occupancy can be inferred using motion sensors
(such as those in security systems or Nest [10]), cameras
(e.g. Dropcam [3], Simplicam [14]), microphone, smart-
phone GPS, or using a combination of these, since each
may have different sources of errors. We posit that in-
ference logic, traditionally left up to applications, ought
to be abstracted out as a system service. Such a service
should relieve application developers of the burden of

implementing and training commonly used inferences.
It should enable applications to work using any of the
sensing devices that the shared inference logic supports.

This paper discusses the key challenges in designing
the proposed service. First, the service must decouple i)
“what is sensed” from “how it is sensed”, and ii) “what is
inferred” from “how it is inferred”. In doing so, it should
ensure inference extensibility, and provide a uniform in-
terface to inferences which hides sensor-specific intrica-
cies (e.g., camera frame rate, motion sensitivity level).
Second, the service should enable seamless use of sen-
sors on mobile devices by handling environmental dy-
namics resulting from device and user mobility. Third,
while serving required inferences to applications, the ser-
vice should ensure efficient use of resources, e.g., by se-
lecting the optimal subset of sensors to serve active ap-
plications, sharing overlapping inference computations,
and hosting computations on suitable devices.

To explore these challenges concretely, we propose
Beam, an application framework and runtime for in-
ference driven applications. Beam provides applications
with inference-based abstractions. Applications simply
specify their inference requirements, while Beam bears
the onus of identifying the required sensors, initiating
data processing on suitable devices, handling environ-
mental dynamics, and using resources efficiently.

2 Key Design Requirements
Our motivation for designing Beam are data-driven-
inference based applications, aimed at homes [10, 16],
individual users [9, 11, 41, 48, 50] and enterprises [6, 13,
20, 33, 42]. We identify three key challenges for Beam
by analyzing two popular application classes in detail,
one that infers environmental attributes and another that
senses an individual user.

Rules: A large class of popular applications is based on
the ‘If This Then That (IFTTT)’ pattern [7, 47]. IFTTT
enables users to create their own rules connecting sensed
attributes to desired actions. We consider a particular
rules application which alerts a user if a high risk ap-
pliance, e.g., electric oven, is left on when the home is
unoccupied [15, 44]. This application uses the appliance-
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Figure 1: Improvement in occupancy and activity in-
ference accuracy by combining multiple devices. For
occupancy, sensor set 1 = {camera, microphone} in
one room and set 2 ={PC interactivity detection} in
a second room. For physical activity, set 1 = {phone
accelerometer} and set 2 = {wrist worn FitBit [4]}.

state and home occupancy inferences.
Quantified Self (QS) [9, 11, 19, 25, 38, 46] which dis-

aggregates a user’s daily routine, by tracking her physical
activity (walking, running, etc), social interactions (lone-
liness), mood (bored, focused), computer use, and more.

In analyzing these two popular classes of applications,
we identify the following three key design requirements
for an inference framework:

R1) Decouple applications, inference algorithms, and
devices. Data driven inferences can often be derived
using data from multiple devices. Combining inputs from
multiple devices, when available, generally leads to im-
proved inference accuracy (often overlooked by develop-
ers [10]). In Figure 1 we illustrate the improvement in in-
ference accuracy for the occupancy and physical activity
inferences, used in the Rules and Quantified Self appli-
cations respectively; 100% accuracy maps to manually
logged ground truth over 28 hours.

Hence, applications should not be restricted to using
a single sensor, or a single inference algorithm. At the
same time, applications should not be required to in-
corporate device discovery, handle the challenges of po-
tentially using devices over the wide area (e.g., remote
I/O and tolerating disconnections), use disparate device
APIs, and instantiate and combine multiple inferences
depending on available devices. Therefore an inference
framework should require an application to only spec-
ify the desired inference, e.g., occupancy (in addition to
inference parameters like sampling rate and coverage),
while handling the complexity of configuring the right
devices and inference algorithms.

R2) Handle environmental dynamics. Applications
are often interested in tracking user and device mobil-
ity, and in adapting their processing accordingly. For
instance, the QS applications needs to track which lo-
cations a user frequents (e.g., home, office, car, gym,
meeting room, etc), handle intermittent connectivity, and

Category R1 R2 R3
Device [24] [5] ◦
abstractions [12] [18]

Mobile sensing
[23] [40] •
[34] [29] [30]
[31] [32] ◦ ◦

Cross-device [49] [45] •
Macro-programming [22] [26] [35] ◦

Table 1: Categorization of prior work. ◦ denotes par-
tial fulfillment.

more. Application development stands to be greatly sim-
plified if the framework were to seamlessly handle such
environmental dynamics, e.g., automatically update the
selection of devices used for drawing inferences based on
user location. Hence the QS application, potentially run-
ning on a cloud server, could simply subscribe to the ac-
tivity inference, which would be dynamically composed
of sub-inferences from various devices tracking a user.

R3) Optimize resource usage. Applications often in-
volve continuous sensing and inferring, and hence con-
sume varying amounts of system resources across multi-
ple devices over time. Such an application must structure
its sensing and inference processing across multiple de-
vices, in keeping with the devices’ resource constraints.
This adds undue burden on developers. For instance, in
the QS application, wide area bandwidth constraints may
prevent backhaulling of high rate sensor data. Moreover,
whenever possible, inferences should be shared across
multiple applications to prevent redundant resource con-
sumption. Therefore an inference framework must not
only facilitate sharing of inferences, but in doing so must
optimize for efficient resource use (e.g., network, battery,
CPU, memory, etc) while meeting resource constraints.

3 Related Work
Beam is the first framework that (i) decouples appli-
cations, inference algorithms, and devices, (ii) handles
environmental dynamics, and (iii) automatically splits
sensing and inference logic across devices while opti-
mizing resource usage. We classify prior work into four
categories, and compare them based on the requirements
above (Table 1).

Device abstraction frameworks: HomeOS [24] and
other platforms [5, 12], provide homogeneous program-
ming abstractions to communicate with devices. For in-
stance, HomeOS applications can use a generic motion
sensor role, regardless of the sensor’s vendor and proto-
col. Similarly, Rio [18] provides smartphone applications
with a uniform device API, regardless of the devices
being local or remote. These approaches only decouple
device-specific logic from applications, but are unable to
decouple inference algorithms from applications. More-
over, they do not address handling of environmental dy-
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Figure 2: Inference graph for Quantified Self app.

namics and optimizing for efficient resource usage.
Mobile sensing frameworks: Existing work has focused
on applications requiring continuous sensing on mobile
devices. Kobe [23] and Auditeur [40] propose building
libraries of inference algorithms to promote code re-use
and to enable developers to select inference algorithms.
Other work [29, 30, 31, 32, 34] has focused on improv-
ing resource utilization by sharing sensing and data pro-
cessing across multiple applications on a mobile device.
Senergy [32] automates selection of inference algorithms
driven by an application requirements on a mobile de-
vice. These approaches overlook handling environmen-
tal dynamics across devices, and do not address optimiz-
ing resource use for inferences across multiple devices.
Moreover, they require manual composition of certain in-
ference parameters (e.g., coverage), thus providing lim-
ited decoupling of inference algorithms.
Cross-device frameworks: Semantic Streams [49] and
Task Cruncher [45] address sharing sensor data and
data processing across devices, but are limited to sim-
ple stream processing methods, e.g., aggregates, rather
than sophisticated inferences. They overlook decoupling
of sensing and inferring, as well as handling of dynamics.
Macro-programming frameworks: Macro-
programming frameworks [22, 26, 35] provide ab-
stractions to allow applications to dynamically compose
dataflows [36, 39]. However these approaches focus
on data streaming and aggregations rather than generic
inferences, and do not target general purpose compute
devices e.g., phones, PCs. In addition, they do not ad-
dress handling of environmental dynamics and resource
optimization across devices at runtime.

4 Beam Inference Framework
We propose Beam as a framework for distributed appli-
cations using connected devices. Applications in Beam
subscribe to high-level inferences. Beam dynamically
composes the required modules to satisfy application re-
quests by using appropriate devices in the given deploy-
ment. Central to Beam’s design are a set of abstractions
that we describe next.
Inference Graphs: Inference graphs are directed acyclic
graphs that connect devices to applications. The nodes

in this graph correspond to inference modules and edges
correspond to channels that facilitate the transmission of
inference data units (IDUs) between modules. Figure 2
shows an example inference graph for a Quantified Self
application that uses eight different devices spread across
the user’s home and workplace, and includes mobile and
wearable devices.

Composing an inference as a directed graph enables
sharing of data processing modules across applications
and across modules that require the same input. In Beam,
each compute device associated with a user, such as a
tablet, phone, PC, or home hub, has a part of the runtime,
called the Engine. Engines host inference graphs and in-
terface with other engines. Figure 3 shows two engines,
one on the user’s home hub and another on her phone;
the inference graph for QS shown earlier is split across
these engines, with the QS application itself running on
a cloud server. For simplicity, we do not show another
engine that may run on the user’s work PC.

IDU: An Inference data unit (IDU) is a typed inference,
and in its general form is a tuple <t,e,s>, which denotes
any inference with state information s, generated by an
inference algorithm at time t and error e. The types of the
inference state s, and error e, are specific to the inference
at hand. For instance, s may be of a numerical type such
as a double (e.g., inferred energy consumption), or an
enumerated type such as, high, medium, low, or numer-
ical types. Similarly, error e may specify a confidence
measure (e.g., standard deviation), probability distribu-
tion, or error margin (e.g., radius). IDUs abstract away
“what is inferred” from “how it is inferred”. The latter is
handled by inference modules, which we describe next.

Inference Modules: Beam encapsulates inference algo-
rithms into typed modules. Inference modules consume
IDUs from one or more modules, perform certain com-
putation using IDU data and pertinent in-memory state,
and output IDUs. Special modules called adapters inter-
face with underlying sensors and output sensor data as
IDUs. Adapters decouple “what is sensed” from “how
it is sensed”. Module developers specify the IDU types
a module consumes, the IDU type it generates, and the
module’s input dependency (e.g., {PIR} OR {camera
AND mic}). Modules have complete autonomy over how
and when to output an IDU, and can maintain arbitrary
internal state. For instance, an occupancy inference mod-
ule may specify (i) input IDUs from microphone, cam-
era, and motion sensor adapters, (ii) allow multiple mi-
crophones as input, and (iii) maintain internal state to
model ambient noise.

Channels: To ease inference composition, channels link
modules to each other and to applications. They abstract
away the complexities of connecting modules across dif-
ferent devices, including dealing with device disconnec-
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Figure 3: An overview of different components in an example Beam deployment with 2 Engines.

tions, and allowing for optimizations such as batching
IDU transfers for efficiency. Every channel has a single
writer and a single reader module. Modules have can
have multiple input and output channels. Channels con-
necting modules on the same engine are local. Channels
connecting modules on two different engines, across a
local or wide area network, are remote channels. They
enable applications and inference modules to seamlessly
use remote devices or remote inference modules.

Coverage tags: Coverage tags help manage sensor cov-
erage. Each adapter is associated with a set of coverage
tags which describes what the sensor is sensing. For ex-
ample, a location string tag can indicate a coverage area
such as “home” and a remote monitoring application can
use this tag to request an occupancy inference for this
coverage area. Coverage tags are strongly typed. Beam
uses tag types only to differentiate tags and does not
dictate tag semantics. This allows applications complete
flexibility in defining new tag types. Adapter are assigned
tags by the respective engines at setup time, and are up-
dated at runtime to handle dynamics.

Beam’s runtime also consists of a Coordinator which
interfaces with all engines in a deployment and runs on
a server that is reachable from all engines. The coordi-
nator maintains remote channel buffers to support reader
or writer disconnections (typical for mobile devices). It
also provides a place to reliably store state of inference
graphs at runtime while being resistant to engine crashes
and disconnections. The coordinator is also used to main-
tain reference time across all engines. Engines interface
with the coordinator using a persistent web-socket con-
nection, and instantiate and manage the parts of an infer-
ence graph(s) local to them.

4.1 Beam Runtime
The Beam runtime creates or updates inference graphs
when applications request inferences (R1), and mutates
the inference graphs to handle environmental dynamics
(R2) and to optimizes resource usage (R3).

Inference graph creation: An application may run on
any user device and the sensors required for a requested
inference may be spread across devices. Applications re-
quest their local Beam engine for all inferences they re-
quire. All application requests are forwarded to the coor-
dinator, which uses the requested inference to lookup the
required module. It recursively resolves all required in-
puts of that module (as per its specification), and re-uses
matching modules that are already running. The coordi-
nator maintains a set of such inference graphs as an in-
carnation. The coordinator determines where each mod-
ule in the inference graph should run and formulates the
new incarnation. The coordinator initializes buffers for
remote channels, and partitions the inference graphs into
engine-specific subgraphs which are sent to the engines.

Engines receive their respective subgraphs, compare
each received subgraph to existing ones, and update them
by terminating deleted channels and modules, initializ-
ing new ones, and changing channel delivery modes and
module sampling rates as needed. Engines ensure that
exactly one inference module of each type with a given
coverage tag is created.

Inference delivery and guarantees: For each inference
request, Beam returns a channel to the application. The
inference request consists of i) required inference type
or module, ii) delivery mode, iii) coverage tags, and iv)
sampling requirements (optional).

Delivery mode is a channel property which captures
data transport optimizations. For instance, in the fresh
push mode, an IDU is delivered as soon as the writer-
module generates it, while in the lazy push mode, the
reader chooses to receive IDUs in batches (thus amortiz-
ing network transfer costs from battery-limited devices).
Remote channels provide IDU delivery in the face of de-
vice disconnections by using buffers at the coordinator
and the writer engine. Channel readers are guaranteed i)
no duplicate IDU delivery, and ii) FIFO delivery based
on IDU timestamps. Currently, remote channels use the
drop-tail policy to minimize wide-area data transfers in
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the event of a disconnected/lazy reader. This means when
a reader re-connects after a long disconnection, it first
receives old inference values followed by more recent
ones. A drop-head policy may be adopted to circumvent
this, at the cost of increased data transfers.

In requesting inferences, applications use tags to spec-
ify coverage requirements. Furthermore, an application
may specify sampling requirements as a latency value
that it can tolerate in detecting the change of state for an
inference (e.g., walking periods of more than 1 minute).
This allows adapters and modules to temporarily halt
sensing and data processing to reduce battery, network,
CPU, or other resources.
Optimizing resource use: The Beam coordinator uses
inference graphs as the basis for optimizing resource us-
age. The coordinator re-configures inference graphs by
remapping the engine on which each inference module
runs. Optimizations are either performed reactively i.e.,
when an application issues/cancels an inference request,
or proactively at periodic intervals. Beam’s default reac-
tive optimization minimizes the number of remote chan-
nels and proactive optimization minimizes the amount
of data transferred over remote channels. Other potential
optimizations can minimize battery, CPU, and/or mem-
ory consumption at engines.

When handling an inference request, the coordina-
tor first incorporates the requested inference graph into
the incarnation, re-using already running modules, and
merging inference graphs if needed. For new modules,
the coordinator decides on which engines they should run
(by minimizing the number of remote channels).

Engines profile their subgraphs, and report profiling
data (e.g., per-channel data rate) to the coordinator pe-
riodically. The coordinator annotates the incarnation us-
ing this data and periodically re-evaluates the mapping of
inference modules to engines. Beam’s default proactive
optimization minimizes wide area data transfers.
Handling dynamics: Movement of users and devices
can change the set of sensors that satisfy an application
requirements. For instance, consider an application that
requires camera input from the device currently facing
the user at any time, such as the camera on her home PC,
office PC, smartphone, etc. In such scenarios, the infer-
ence graph needs to be updated dynamically. Beam up-
dates the coverage tags to handle such dynamics. Certain
tags such as those of location type (e.g., “home”) can be
assumed to be static (edited only by the user), while for
certain other types, e.g, user, the sensed subject is mobile
and hence the sensors that cover it may change.

The coordinator’s tracking service manages the cover-
age tags associated with adapters on various engines. The
engine’s tracking service updates the user coverage tags
as the user moves. For example, when the user leaves
her office and arrives at home, the tracking service re-

moves the user tag from device adapters in the office, and
adds them to adapters of devices deployed in the home.
The tracking service relies on device interactions to track
users. When a user interacts with a device it updates the
tags of all sensors on the device to include the user’s tag.

When coverage tags change (e.g., due to user move-
ment and change in sensor coverage), the coordinator re-
computes the inference graphs and sends updated sub-
graphs to the affected engines.

4.2 Implementation
Our Beam prototype is implemented in C# as a cross-
platform portable service that can be used by .NET v4.5,
Windows Store 8.1, and Windows Phone 8.1 applica-
tions. Module binaries are currently wrapped within the
service, but may also be downloaded from the coordina-
tor on demand. We have implemented 8 inference mod-
ules: mic-occupancy [27], camera-occupancy, appliance-
use [21, 28], occupancy, pc-activity [37], fitness-
activity [43], semantic-location, social-interaction, and
9 adapters: tablet and pc mic, power-meter, fitbit [4],
GPS, accelerometer, pc-interaction, pc-event, and a
HomeOS [24] adapter to access all its device drivers.
We have implemented the two sample applications, de-
scribed in Sec 2. Both applications run on a cloud VM;
Beam hosts the modules for their inferences across the
user’s home PC, work PC, and phone.

Compared to monolithic or library based approaches,
we find that for these applications using Beam’s frame-
work results in up to 4.5× lower number of tasks and
12× lower SLoC, up to 3× higher inference accuracy
due to Beam’s handling of environmental dynamics, and
Beam’s dynamic optimizations match hand optimized
versions for network resource usage. We aim to enrich
Beam’s optimizer to include optimizations for battery,
CPU, and memory, and plan to extend tracking support to
objects using passive tags, e.g., RFID, or QR codes [17].

5 Conclusion
Applications using connected devices are difficult to de-
velop today because they are constructed as monolithic
silos, tightly coupled to sensing devices, and must imple-
ment all data sensing and inference logic, even as devices
move or are temporarily disconnected. We present Beam,
a framework and runtime for distributed inference-driven
applications that (i) decouples applications, inference al-
gorithms, and devices, (ii) handles environmental dy-
namics, and (iii) automatically splits sensing and infer-
ence logic across devices while optimizing resource us-
age. Using Beam, applications only specify “what should
be sensed or inferred,” without worrying about “how it is
sensed or inferred.” Beam simplifies application develop-
ment and maximizes the utility of user-owned devices. It
is time to end monolithic apps for connected devices.
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