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ABSTRACT 
The XWand is a novel wireless sensor package that 
enables styles of natural interaction with intelligent 
environments.  For example, a user may point the wand at 
a device and control it using simple gestures.  The XWand 
system leverages the intelligence of the environment to 
best determine the user’s intention.  We detail the 
hardware device, signal processing algorithms to recover 
position and orientation, gesture recognition techniques, a 
multimodal (wand and speech) computational architecture 
and a preliminary user study examining pointing 
performance under conditions of tracking availability and 
audio feedback. 
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INTRODUCTION 
Increasingly our environment is populated with a 
multitude of intelligent devices, each specialized in 
function.  The modern living room, for example, typically 
features a television, amplifier, DVD player, lights, and so 
on.  In the near future, we can look forward to these 
devices becoming more interconnected, more numerous 
and more specialized as part of an increasingly complex 
and powerful integrated intelligent environment.  This 
presents a challenge in designing good user interfaces. 

For example, today’s living room coffee table is typically 
cluttered with multiple user interfaces in the form of IR 
remote controls, each covered with many buttons.  Often 
each of these interfaces controls a single device, and 
requires the user to devote attention to finding the right 
button rather than attending to the device under control. 
Tomorrow’s intelligent environment presents the 
opportunity to present a single intelligent user interface to 
control many such devices when they are networked. 
What will this interface look like? 

Here we present the XWand, a hardware device (Figure 1) 
and associated signal processing algorithms for an 
interface that may control multiple connected devices in a 
natural manner.  The main idea is that the user should 
merely point at the device to be controlled, and use simple 
gestures or speech to control the device. The intelligent 
environment system interprets the user’s manipulation of 
the wand to determine an appropriate action in context.  
The ultimate goal of such a natural interface is to provide 
an interface that is so simple that it requires no particular 
instruction or special knowledge to use, and instead relies 
on the intelligence of the environment to figure out what 
to do. 

For example, the user may turn on a light in the room by 
pointing the wand at the light and pressing the button.  
Alternatively, the user may point the wand at the light and 
say “turn on”.  The user may then point the wand at the 
stereo amplifier and roll clockwise or counter-clockwise 
to turn the volume up or down.  

Part of the motivation of the design is to exploit our 
natural tendency to look at, point at, and talk to whatever 
we wish to control [1].  We would also like to exploit the 
complementary nature of speech and gesture in our 
everyday interactions.   

HARDWARE DEVICE 
We have constructed an early hardware prototype of the 
XWand, a handheld device which embeds a variety of 
sensors which in combination support pointing and 
gesture recognition tasks.  The XWand has the following 
features: 

Figure 1: The XWand. 
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•  Analog Devices ADXL202 2-axis MEMS 
accelerometer.  When motionless, this senses the 
acceleration due to gravity, and so can be used to sense 
the pitch and roll angle of the device. 

•  Honeywell HMC1023 3-axis magnetoresistive 
permalloy magnetometer.  This senses the direction of 
the Earth’s magnetic field in 3 dimensions, and can be 
used to compute the yaw angle of the device. 

•  Murata ENC-03 1-axis piezoelectric gyroscope.  This 
is an angular rate sensor, and is placed to sense motion 
about the vertical axis (yaw). 

•  BIM 418MHz FM transceiver (38kbps).  The 
transceiver is used to send and receive digital 
information to a matching base station, which then 
communicates to a host PC via RS-232. Continual 
polling by the host yields a 50Hz frame rate. 

•  PIC 16F873 flash-programmable microcontroller 
running at 20MHz.  The microcontroller reads each of 
the sensor values, formats data communication packets, 
decodes received packets, controls timing, power 
management, etc. 

•  Infra-red (IR) LED.  Invisible to the naked eye, this 
LED can be seen by cameras equipped with an IR pass 
filter.  This is used to support position tracking of the 
wand. 

•  Green and red visible LEDs.  These can be used to 
display status information.  Note that because the wand 
is equipped with a radio transceiver, these LEDs may be 
lit in response to commands received from the host PC. 

•  Pushbutton.  

•  4 AAA batteries.  Quiescent current when awake is 
approximately 52mA, less than 1mA while asleep. 

This particular combination of sensors is similar to that 
found in [2, 3], but will be used to recover true 3-d 
orientation information. In the next two sections we 
describe how the output of the accelerometer and 
magnetometer may be combined to compute the full 3-d 
orientation of the wand with respect to the room, and how 
computer vision techniques may be used to find the 3-d 
position of the wand using the IR LED.  The orientation 
and position of the wand may be used to compute what the 
user is pointing at with the wand, given a 3-d model of the 
room and its contents.  This geometric approach contrasts 
with other related systems that rely on tags embedded in 
the environment [4, 5]. 

ORIENTATION 
Each of the 3 orthogonal axes of the magnetometer senses 
the degree to which it lies along the direction of the 
Earth’s magnetic field.  This is not enough information 
however to compute a full 3-d rotation.  For example, if 
you rotate the magnetometer about magnetic north, none 
of the sensor readings change. 

Similarly, if you slowly rotate the accelerometer about the 
direction of gravity, neither of the accelerometer readings 
change.  However, we can combine the magnetometer and 
accelerometer outputs to find the full 3-d orientation of 
the wand.  The main idea is to take the accelerometer 
outputs as pitch and roll, and then use the output of the 
magnetometer to compute yaw.  The calculation of yaw 
from the magnetometer takes into account the pitch and 
roll information as follows. First take range-normalized 
(in [-1, 1]) accelerometer values as the pitch and roll, and 
form the 3-vector m  from the similarly range-normalized 
magnetometer values.  The pitch and roll then corrects the 
output of the magnetometer: 
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where
zyx θθθ ,,R  is the Euler angle rotation matrix about x, 

y and z axes.  Let N be the output of the magnetometer 
when the device is held flat, lying along the y axis, (yaw, 
pitch, roll) = (0, 0, 0).  Project onto the ground plane and 
normalize: 
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Yaw is then computed as the angle between  

)(cos)sign(  yaw T1
npnpnpnp  NmNm −×=  

The range of the magnetometer is computed online by 
twirling the wand for a minute or so.  The range of the 
accelerometer is found statically. 

There are a number of caveats to this approach.  First, the 
accelerometers only give true pitch and roll information 
when the device is motionless.  This problem can be 
avoided by relying on the orientation information only 
when the device is motionless, as determined by no 
change in the magnetometer and accelerometer outputs.  
Secondly, magnetic north can distort unpredictably in 
indoor environments and in close proximity to large metal 
objects.  In practice, we have found that for typical indoor 
office environments, magnetic north does not always 
agree with magnetic north found outdoors, but typically 
will be fairly constant throughout a typical office or living 
room.  Note that if the directions of magnetic north and 
gravity are co-linear, the above calculations for yaw will 
fail. 

POSITION 
A number of techniques may be used to recover the 3-d 
position of the device.  Acoustic-based tracking 
techniques are popular in similar applications [6, 7].  
Presently we use a computer vision technique which is 
capable of computing the 3-d position of the wand to an 
accuracy of an inch or two.  While research in computer 
vision has focused on the difficult problem of object 
tracking (see [8] for an example of recognizing pointing 



from computer vision alone), we have the advantage of 
being able to put a marker on the device.  The position 
system works by finding the 2-d position of a flashing IR 
LED on the device from two different video cameras 
trained on the room.  These 2 2-d observations are then 
combined to find the 3-d position by triangulation. 

Each of two Firewire video cameras is equipped with an 
IR pass filter.  On the device, an IR LED is flashed for 
3ms duty cycle at 15Hz, while the video cameras are set to 
acquire images at 30Hz.  Thus the IR LED is present in 
one image and absent in the next.  The pixel values of 
each successive image are then subtracted to obtain an 
image which reveals only the IR LED (Figure 2).  This 
bright spot is then located by finding the maximum pixel 
value in the image.  This process is applied to the images 
(320 by 240 pixels) acquired from both cameras, and 
takes less than one third of the CPU time of a 1GHz 
Pentium III processor. 

We use standard computer vision techniques to find the 3-
d position of an object from 2 2-d observations (see [9]). 
The system requires the position, focal length, lens 
distortion parameters and other parameters of each 
camera, computed by camera calibration procedures that 
are well known in the computer vision literature.  This 
process involves choosing a coordinate system for the 
room.  We choose a natural origin and coordinate axes, 
such as the corner of the room.  Note that the calibration 
of (yaw, pitch, roll) = (0, 0, 0) must be consistent with the 
choice of spatial coordinate systems. 

POINTING AT TARGETS 
With the position and orientation of the wand determined, 
we now consider the task of determining if the wand is 
pointing at a known target.  Each object of interest is 

modeled as a 3-d Gaussian blob with mean iµ  and 

covariance iΣ .  Multivariate Gaussians are probability 

distributions that are easy to learn from data, and can 
coarsely represent an object of a given size and 
orientation. 

A simple technique is to evaluate the Gaussian 
distribution at the point that is same distance away as the 
wand is from the target, but lying along the ray cast by the 
wand.  The likelihood of pointing at target i  is then 

( )iigl
i
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where x  is the position of the wand, w  is the ray along 
the wand, and ( )Σ,µg  is the multivariate Gaussian 

probability distribution.  If the wand is not in motion, the 
target for which il  is greatest above some minimum 

threshold is taken as the current selected target. 

TRAINING TARGETS 
It is easiest to use the wand to enter the position and shape 
of each target into the model of the room.  A world model 
of an office space with several trained targets is shown in 
Figure 3. This begins by the user entering a target training 
mode, and specifying which target is to be trained. 

A simple method to train target location is to hold the 
wand at the target’s location.  We collect a series of 3-d 
wand position ix observations and take the mean µ and 

covariance of those observations Σ as the center and 
shape of the object. This method has the drawback the 
object being trained must be in the line of sight of both 
cameras or the tracking will fail.  This can be a problem 
when training a set of objects arrayed along a wall. 

A second method to specify location is to use the wand to 
point at the target from various positions throughout the 
room, and compute the mean and covariance for the target 
from the intersection of these rays.  Minimally two such 
observations are required.  In particular, if the wand is at 
position ix and pointing along the ray iw for the i th 

Figure 3: A 3-d graphics visualization of the wand world model 
with several trained targets in an office space.  The wand 
(foreground) is shown as a white cylinder and coordinate axes.

Figure 2: Computer-vision based positioning system.  2 
cameras near the ceiling on either side of the room are equipped 
with wide angle lenses and IR pass filters.  Top: Unprocessed 
input from cameras (with IR pass filter), looking on an office 
scene, with IR LED (bright dot).  Bottom: processed images 
show only the IR LED. 



pointing observation, we find µ  by solving the linear 

system of equations 

µwx =+ iii s  

via least squares, where the distances is are unknown.  

The covariance of the target can be computed by a 
minimum covariance 0Σ  added to the spread of the 

differences between calculated target location µ  and its 

multiple estimates iii s wx + : 

T
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In these target training methods, the shape of a target may 
be modified by adding any number of pointing 
observations along the body of the target. 

POINTING ACCURACY 
The accuracy in pointing with the wand depends on the 
accuracy of tracking and orientation information.  
Orientation calculations are subject to errors due to local 
magnetic field distortions, misalignment of the 
magnetometer in relation to the accelerometer, and 
imprecise calibration.  Ultimately, we are concerned with 
angular error in pointing, as this determines performance 
in target selection and what size targets can be selected in 
an indoor environment.  Here we wish to characterize the 
performance of the device, and so neglect errors due to 
users’ imprecision in pointing. 

To characterize the angular error we may compare the 
wand direction vector w  against the direction from the 
wand position to the pointing target: xµ − .  We can avoid 

errors due to calibration of the tracking system to ground 
truth world coordinates if we estimate µ  from a series of 

wand observations as described in the previous section. 

In this procedure, a laser pointer is taped to the wand.  
Several pointing observations are then collected during 
which the user is careful to line up the laser spot on the 
same precise location on a given target.  This eliminates 
any error due to the user’s pointing abilities.  The average 
angular error may then be computed from the set of 
pointing observations as the average difference between 
wand direction and direction from wand position to target 
position (the true target direction).  In one experiment, 
observations taken over a 6’ volume yielded an average 
angular error of less than three degrees.  Without 
reference to ground truth position, this estimate of error is 
a measure of the internal accuracy and repeatability of the 
wand pointing and target training routines. 

GESTURE RECOGNITION 
As described above, the orientation and position of the 
wand may be found by a combination of sensors and 
signal processing techniques.  This allows a pointing 
algorithm that is based on a geometric model of the room 
and the objects of interest.  A target may then be selected 
by the user by pointing at the target and holding the wand 

motionless, at which point the orientation calculation 
described above is precise.  This pause in movement may 
also be detected and used to indicate the user’s intention 
to point at a given target rather than pass over it for 
another.  

We are also interested in allowing the user to control 
devices associated with the target by gesturing with the 
wand.  Here we describe a simple approach based on one 
or more of the accelerometer, gyro, position and 
orientation values.  See [3] for a related application of 
gesture recognition with a device similar to the XWand. 

We exploit very simple gestures and gesture recognizers 
based on the instantaneous values of the sensors and their 
derivatives, while relying on the context of the interaction 
to map the gesture appropriately.  For short and simple 
gestures a recognition strategy is to look for simple trends 
or peaks in one or more of the sensor values.  For 
example, pitching the wand up may be detected by simply 
thresholding the output of the accelerometer 
corresponding to pitch.  Clearly such an approach will 
admit many false positives if run in isolation.  However, in 
a real system the gesture will be performed in the context 
of an ongoing interaction, during which it will be clear 
when a simple pitch up indicates the intent to control a 
device in a particular way.  For example, the system may 
only act on the gesture recognition results if the user is 
also pointing at an object, and furthermore only if the 
gesture applies to that particular object.  In this way 
simple gesture recognizers coupled with strong context 
models may be more robust overall than a system relying 
on very specific gesture models that are prone to failure 
due to individual differences that are not captured during 
training.  The present system uses this strategy, and 
further reduces the risk of false positives by requiring the 
user to press and hold down the wand button while 
gesturing. 

Requiring the user to press the button while gesturing 
allows the system to easily determine when a gesture 
begins.  In the present system the start of the gesture 
indicates a natural origin from which to detect trends in 
sensor values.  Continuing the up motion example, “up” in 
the context of pointing at an object on the floor means 
pitching up from a pitched down position.  The gesture 
recognition process records the sensor readings at the time 
the user presses the button and uses them as an origin for 
subsequent sensor readings.  In the context of gesturing 
while pointing at an object, this process sets up a local 
coordinate system around the object, so that “up”, 
“down”, “left” and “right” are relative to where the object 
appears to the user. 

MULTIMODAL INTERPRETATION 
The complementary nature of speech and gesture is well 
established.  It has been shown that when naturally 
gesturing during speech, people will convey different sorts 
of information than is conveyed by the speech [10].  In 



more designed settings such as interactive systems, it may 
also be easier for the user to convey some types of 
information with either speech or gesture or a combination 
of both.  For example, if the user has selected the stereo 
amplifier, it may be possible to say “up volume” a number 
of times until the desired volume is reached, but it is likely 
to be more convenient and more precise to give the user a 
volume knob to turn.  When using the wand, this can be 
accomplished by pointing at the stereo and rolling the 
wand clockwise.   

We have developed a simple framework for combining 
the outputs of various modalities such as pointing targets, 
wand gestures, and speech, to arrive at a unified 
interpretation that instructs the system on an appropriate 
course of action.  This framework decomposes the desired 
action (e.g., “turn up the volume on the amplifier”) into a 
command (“turn up the volume”) and referent 
(“amplifier”) pair.  Presently, the referent may be 
determined from the wand pointing target or speech 
recognition events, while the command may be specified 
by wand gesture, a button press event, or a speech 
recognition event.  With this command/referent 
representation, it is possible to effect the same action in 
multiple ways.  For example, all the following actions on 
the part of the user will result in a light turning on: 

•  Say “turn on the desk lamp” 

•  Point at the lamp and say “turn on” 

•  Point at the lamp and perform the “turn on” gesture 

•  Say “desk lamp” and perform the “turn on” gesture 

•  Point somewhere closer to the desk lamp than the 
floor lamp and say “lamp” and perform the “turn on” 
gesture 

•  Point at the lamp and click the button 

where the last example relies on the fact that the default 
behavior when the lamp is off and the button is clicked is 
to turn the lamp on. 

The speech recognition system is based on a simple 
command and control (CFG) style grammar, with 
predetermined utterances for the various objects and 
simple command phrases that apply to the objects.  The 
user is required to wear a wireless lapel microphone to use 
the speech recognition system.  We would like to 
incorporate a microphone into the wand in a future 
hardware design. 

By unifying the results of pointing detection and speech 
recognition, the overall speech recognition is more robust.  
For example, a spurious recognition result “volume up” 
while pointing at the light is ignored.  Our overall 
motivation in working with speech is to show that with 
strong contextualizing cues provided by devices such as 
the wand, speech recognition may be made more robust 
[11].  We note that while speech clearly has enough 
expressive power to make the wand unnecessary, relying 
on speech alone can be difficult in practice.  In many 
environments speech recognition may be too unreliable to 
use exclusively, particularly with an open microphone.  
Secondly, by exploiting pointing with the wand, we avoid 
the problem of determining the object of the user’s 
speech, as well as whether the speech is intentionally 
directed to the system (no push to talk signal is necessary). 

BAYES NETWORK 
Multimodal integration is accomplished by a dynamic 
Bayes network [12] which encodes the various ways that 
sensor outputs may be combined to find the referent, 
command, and action.  This network is illustrated in 
Figure 4. When the wand is pointing at the light, the 
PointingTarget variable in the Bayes net is set to Light1, 
for example.  This causes the Action node to assign equal 
probability to the “TurnOnLight” and “TurnOffLight” 
variable settings, since these are the only admissible 
actions on lights.  When the user then says “turn on”, the 
speech node is set to “TurnOn” and the distribution over 
the Action node collapses to “TurnOnLight”.  The system 
then takes the appropriate action to turn on the light. 

Bayes networks have a number of advantages that make 
them appropriate to this task.  First, it is easy to break 
apart and treat separately dependencies that otherwise 
would be embedded in a very large table over all the 
variables of interest.  Secondly, Bayes networks are adept 
at handling probabilistic (noisy) inputs.  Although this 
remains future work, it is possible to train the 
dependencies in the network so that, for example, the 
system learns that Target3 is the desk lamp when the user 
points at Target3 and utters the phrase “desk lamp”.  
Lastly, as the example above detailing the change in the 
Action distribution illustrates, the network represents 

Figure 4: Dynamic Bayes network used in combining wand 
(PointingTarget, Gesture, ButtonClick), speech input 
(SpeechReferent, SpeechCommand, SpeechAction), and world 
state (Light1, Light2, Light3) to determine the next action 
(Action) as a combination of command (Command) and referent 
(Referent) and past beliefs (PrevCommand, PrevReferent).



ambiguity and incomplete information that may be used 
appropriately by the system.  For example, if the user 
doesn’t point at the light, the system might ask which light 
is meant after hearing the utterance “light”.  Similarly if 
there is exactly one thing to be done with a light, such as 
toggling on or off, the system will appropriately reflect 
that in the distribution over the action node after the user 
points at the light and will require no further clarification. 

The dynamic Bayes network also performs temporal 
integration.  The PrevCommand and PrevReferent nodes 
hold the distribution over the Command and Referent over 
the previous moment in time.  These heavily influence the 
distribution over the same variables in the current time 
step, such that the network tends to hold a memory of the 
current command and referent which decays over time, 
and it is thus unnecessary to specify the command and 
referent at exactly the same moment in time.  This 
propagation occurs four times a second. 

The Bayes network also has the ability to incorporate 
device state in its interpretation.  For example, Light1 
holds the state (on or off) of Light1.  The associated 
distribution over this variable and its parents, Action and 
Referent, are configured so that the only admissible action 
with Light1 when it is on is to turn it off, and likewise 
when it is off the only action available is to turn it on. 

DEVICE CONTROL 
We have assembled a demonstration of the wand used to 
control a variety of devices in a living room-like scenario.  
The user may control the following with the wand: 

•  X10 lighting: Multiple lights in the room may be 
turned on and off by pointing and clicking, or uttering 
the phrases “turn on” and “turn off”.  The lights may be 
dimmed or brightened by gesturing down and up. 

•  Windows Media Player: Pointing and clicking starts 
the media player playing or pauses it (Figure 5).  Rolling 
left or right changes the volume, gesturing up and down 
moves the previous and next tracks in the play list.  
“Volume up”, “volume down”, “next” and “previous” 
utterances are mapped appropriately. 

•  Cursor control: Pointing and clicking at the computer 
display gives control of the cursor to the wand, with the 
wand button taking the function of the left mouse button. 
See [13] for considerations in designing GUIs used with 
pointing devices away from the desktop. 

•  Color Kinetics lights: Pointing at these special 
computer controlled arrays of red, green, and blue lights 
brightens them over time.  Rolling left and right changes 
the red, green and blue combination sent to the selected 
light, changing the light’s color.  When the user points 
away, the color gradually decays. 

For the demonstration system, audio feedback is provided 
when the selected target changes.  This audio feedback 
assures the user that the object pointed to has been 

selected, and is currently the same for all objects. In 
addition, the green LED on the wand is lit by commands 
from the host when the wand is pointing at any object 
known to the system.  

The wand demonstration system was shown to several 
hundred people in a technical conference and trade show 
setting.  The overall feedback was overwhelmingly 
positive, many people inquiring when the device would be 
commercially available, and many referring to it as the 
“magic wand”, Harry Potter’s wand, the über-universal 
remote, and so on. 

People that tried the wand needed a few hints on pointing, 
such as that it is necessary to hold the wand motionless for 
a moment and listen for audio feedback to verify the target 
selection.  Everyone found the gestures easy to learn once 
they were demonstrated.  People often assumed that 
special sensors were embedded in the various objects in 
the room to sense the wand pointing.  When the full 
system was explained to them, many of these people asked 
if the system would “know” if one of the objects were 
moved. 

Experience in showing the device has highlighted an 
important advantage the XWand has over standard button-
laden remote controls: users maintain their visual attention 
on the device under control, not the controlling device as 
is typically required using a remote. 

USER STUDY: POINTING PERFORMANCE 
Motivation 
One common concern regarding the XWand system is that 
it presently requires two calibrated video cameras.  
Besides requiring installation and calibration of video 
cameras, the vision system has the drawback that in order 
for the wand to be tracked, at least two cameras must be 
able to see the IR LED.  For the wand to work well 
throughout the room, more than two cameras may be 
required to ensure that at least two cameras can see the IR 
LED.  Clearly, the acceptance of the XWand or a related 
device is limited by the limitations imposed by the 
installation and calibration of the cameras.  Note that 
many other positioning technologies have similar 
infrastructure requirements. 

Figure 5: Controlling the Media Player, with X10 controlled 
lights and video camera shown. 



But is precise tracking necessary for users to make use of 
the wand?  Perhaps users will still be able to select targets 
if the tracking is only approximate, or if the virtual 
position of the wand is fixed at a known location that is 
central to the room, or fixed at one of a few important 
locations, such as the user’s favorite chair.  Here we 
describe a preliminary user study in which we test the 
pointing performance of wand users when the tracking 
system is disabled, with the wand placed at a fixed 
position in the room.  We also test how audio feedback 
may play a role in aiding the performance in this task.  
The hypothesis is that with appropriate audio feedback 
users may approach levels of pointing performance 
achieved when tracking is enabled.  See [14] for related 
studies studying basic pointing performance using other 
devices such as laser pointers. 

SUBJECTS 
Ten male subjects were selected from around the research 
lab to participate in this study.  Though a few of them had 
seen the wand before the study, none had used the wand. 

Experimental design 
A two factor within-subject design was employed.  
Independent variables were the use of tracking 
(tracking/no tracking), the use of audio feedback (audio 
feedback/no audio feedback), and the position of the 
subject in the room.  Dependent variables were accuracy 
in pointing, time to completion of a pointing task, and 
responses to a post-task questionnaire. 

In the ‘tracking’ condition, the computer vision system 
was used along with orientation from the wand to sense 
target selection by pointing.  In the ‘no tracking’ 
condition, the position information was ignored and the 
position of the wand was fixed at 50 inches directly above 
a specially marked position over the floor.  In the audio 
feedback condition, the user heard a special sound when 
the target selection changes, and then only when the wand 
is held motionless for a brief period (less than 1s).  This 
sound was the same for all targets.  Also in the audio 

feedback condition, a success or failure sound was played 
when the correct or incorrect target was selected. 

Procedure 
Five round red printed targets each with a clearly visible 
number were hung along one side of a typical living room 
environment.  These were spaced such that target 1 was 
spaced 58 inches to the left of target 2.  Targets 2, 3, and 
4 were spaced at 3 foot intervals along the wall, and 
finally target 5 was spaced 1 foot to the right of target 4.  
Target 1 was hung at a height of 60 inches, while the 
remaining targets were hung at 50 inches. 

Four blue square labels were taped to the floor, marked 
‘A’, ‘B’, ‘C’ and ‘D’.  Positions A, B, and C were 
positioned 6.5 feet from the wall with the targets, and 
spaced at 3 foot intervals.  Position D was placed 3 feet 
directly behind position B.  Figure 6 and Figure 7 
illustrate the setup.  In the no-tracking condition, the 
position of the wand was fixed over position B. 

The within subjects design consisted of 4 blocks of 40 
trials, each with the following conditions: (1) no audio 
feedback/tracking, (2) audio feedback/tracking (3) no 
audio feedback/no tracking (4) audio feedback/tracking.  
Before each block subjects were instructed in how the 
audio feedback works (if present) and how the pointing 
target was determined, including detailed instructions in 
the no-tracking case.  Each trial began with a verbal 
instruction from the experimenter consisting of a letter 
and number combination. The subject then stood before 
the position on the floor corresponding to the letter and 
then pointed and clicked at the numbered target.  

Results 
Subjects showed no significant change in pointing 
accuracy or time to complete the task between the first 
half and second half of each block of 40 trials.  Subjects 
improved pointing accuracy when audio feedback was 
added in both the tracking and no tracking conditions 
(Table 1).  In the no tracking conditions this improvement 
was statistically significant (t test p = 0.024), suggesting 
that when tracking was disabled, subjects found the audio 
feedback useful in maintaining pointing performance.  

Standing positions 

Targets 
1 

2 3 4 5 

A 
B

C 
D 

Figure 6. Physical layout of targets and standing positions used 
in the experiment.  Users are instructed to stand at one of the 4 
positions and point and click at one of 5 targets. 

Figure 7: Graphical representation of the wand and targets used 
in the experiment, with the wand fixed directly above position B 
in the ‘no-tracking’ condition. 



However, subjects took more time to complete the task in 
the same condition (p < 0.01) (Table 2). 

Informal observations of subjects indicate that in the no-
tracking/audio case, subjects often exploited a few simple 
strategies to improve performance.  In trying to select 
target 5 for example, subjects would often go further to 
the right than they needed to insure that their point would 
not be confused with 4 (similarly with target 1).  To select 
target 4, the same subjects would often aim past 5, wait 
for audio feedback for the selection of 5, then move 
slowly over to 4 until they received audio feedback.  This 
behavior was not as frequent in picking the other targets.  
In all conditions, over half of the total errors committed 
were in attempting to select target 4, while target 5 proved 
almost as easy to select as target 1.  Audio feedback was 
not as helpful in the tracking case and informal 
observations indicate that subjects did not alter their 
pointing strategy over their natural behavior while 
tracking was enabled. 

A follow up survey indicates that subjects felt that the no-
tracking case “required too much thinking” but that audio 
feedback was “helpful in selecting the correct target.” 

This user study suggests that users are most comfortable 
with a system that incorporates good tracking, but a lack 
of precise tracking may be compensated for by concise 
audio feedback, or judicious spacing of the targets, or 
both.  This has implications in the design of larger 
intelligent environments where users are likely to roam 
among areas with varying degrees of tracking resolution 
and intelligence, and yet are likely to expect a high degree 
of functionality everywhere. 

Table 1. Mean and standard deviation of percent correct target 
selection (on one trial). 

 Tracking No tracking 

No Feedback 87.2 ± 33.5 80.6 ± 39.6 

Feedback 90.0 ± 30.0 86.9 ± 33.8 

Table 2. Mean and standard deviation of time to task 
completion (seconds). 

 Tracking No tracking 

No Feedback 5.23 ± 1.59 5.89 ± 1.69 

Feedback 5.73 ± 2.36 6.90 ± 3.85 

 
CONCLUSION 
We have introduced a novel user interface device that is 
designed to address the need for an easy to use interface 
for intelligent environments.  The XWand relies on our 
natural tendency to point at and speak to objects that we 
wish to control, and leverages the intelligence of the 
environment to determine what the user means. 

Future work includes improvements in the hardware 
design such as the addition of a microphone for off-board 
speech recognition, device miniaturization, and 
investigations into alternatives to camera-based tracking.   
The multimodal interpretation process may be enhanced 
by the ability to do certain kinds of learning, including 
associating a spoken name to the object pointed to by the 
wand.  As demonstrated by the user study, appropriate 
feedback to the user requires careful consideration.  
Finally, real world deployment requires an infrastructure 
to support a series of networked, controllable devices. 
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