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Abstract—Smartphone users are often grouped to exchange
files or perform collaborative tasks when meeting together. We ar-
gue that the location information of group members is critical to
many mobile applications. Existing localization solutions mostly
rely on anchor nodes or infrastructures to perform ranging
and positioning. These approaches are inefficient for ad hoc
scenarios. In this paper, we propose AMIL, an Acoustic Mobility-
Induced TDoA (Time-Difference-of-Arrival)-based Localization
scheme for smartphones. In AMIL, a smartphone user can use
simple gestures (e.g., hold the phone and draw a triangle in the
air) to quickly obtain the relative coordinates of neighboring
mobile devices. We have implemented and evaluated AMIL on
off-the-shelf smartphones. The field tests have shown that our
scheme can achieve less than three degree orientation errors and
can successfully build a simple map of 12 people in an office
room with average error of 50cm.

I. INTRODUCTION

Smartphone users are often grouped to exchange files when

meeting together. They may not know each other in advance,

so have no prior knowledge about each other’s names. They

would like, however, to exchange information such as contact

information or share electronic documents during the meeting.

To achieve that goal, mobile users often use their smartphones

to set up local networks (e.g., Wi-Fi or Bluetooth), where

inter-connected devices can communicate with each other. In

such networks, the ad hoc pattern increases the demand for

more intuitive ways to identify communication parties. For

example, Bluetooth can list neighboring devices and display

their names. Yet the user may not easily link the name

to individual communication party, because there exists a

perception gap between the digital world and the physical

world. We argue that location information can help bridge this

gap and enable a more intuitive method of sharing. Suppose all

neighboring devices can be displayed on a map according to

their relative positions, a user can easily share information with

selected targets (see Fig.1). It should be noticed that existing

NFC technology has provided an intuitive way to share files.

However, in order to share with many users, touching each

other’s devices is inefficient.

In this paper we design and implement AMIL: an Acoustic

Mobility-Induced Localization scheme for smartphones with a

requirement of only a set of common hardware: a speaker, a

microphone, and Inertial Measurement Units (IMUs). AMIL

allows a mobile user to quickly locate other devices in

proximity with little configuration overhead. Unlike conven-

tional localization approaches, AMIL offers a fast one-to-

many localization scheme: a device can perform AMIL to

obtain the relative coordinates of all other devices without

measuring the distance between them. Furthermore, AMIL is

a pure software solution that does not rely on any dedicated

hardware or modification to the operation system. It thus can

be adopted across different embedded platforms with little

deployment effort. Note that the intention of this work is to

develop a working system that allows a single mobile user to

obtain the basic positions of others so as to distinguish them

efficiently Our work does not aim at inventing a more accuracy

localization algorithm.

In the literature, researchers from Microsoft are among the

first to use speaker/microphone for acoustic ranging on mobile

devices with BeepBeep [1]. BeepBeep uses a TDoA (Time

Difference of Arrival)-based approach to measure the distance

between two devices only. Although mutual distances can be

further used to determine the relative positions, it requires at

least three anchor nodes to determine the location of a device.

Aiming to support localization between two devices, recent

work [2] extends BeepBeep, where each device must have

at least two speakers and two microphones. By measuring

the distances for all speaker-to-microphone pairs, two devices

can thus locate each other. The major drawback of both

approaches is that every device has to transmit beeps, so that

the localization overhead is increased significantly with the

number of devices. However, no matter how many devices

are nearby, a fixed number of beeps are emitted by a single

device in AMIL. AMIL induces the mobility of a single device

to create arbitrary “virtual” anchors. In such a way, a single

device can locate others more efficiently.

The basic idea of AMIL is as follows: A device (player) who

attempts to locate other devices is moved in the air. During the

movement, the internal accelerometer and gyroscope track the

displacement at every instant. The player, meanwhile, emits

audio beeps with a specific pattern. Other devices (listeners)

passively use their microphones to listen each beep, digitize

the sound signal, and compare it with the known pattern to

confirm the arrival time. Due to the movement of the player,

a listener at difference place is expected to measure differ-

ent time intervals between beeps. The player can use these

differences coupled with its motion trail to determine each

listener’s location. Again, AMIL does not intend to improve

the accuracy of the state-of-the-art localization algorithm.

Instead, AMIL offers a lightweight way to obtain the direction

and distance of all the neighboring mobile devices.
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Fig. 1: Motivation scenario
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Fig. 2: Intuition of AMIL localization
scheme

Fig. 3: Intuition of the difference of beep intervals
between a player and a listener

The idea of mobility-induced TDoA in AMIL is not totally

new, it has been proposed for localization in wireless sensor

networks in [3]. This paper, however, has demonstrated for

the first time that mobile devices can adopt this technique

for localization with a set of common hardware and pure

software implementation. Since the mobility of a phone is

limited by a small area covered by (human) arm motion, it is

very challenging to leverage phone’s internal sensors to deliver

an accurate localization when the mutual distance between

phones are far away. Furthermore, the moving strategy has

effects on the localization accuracy. Little work focused on

this problem before. It is non-trivial to design a better moving

gesture for practical use.

To the best of our knowledge, we are the first to combine in-

ternal motion sensors and acoustic techniques on smartphones

for localization. The main contributions of this work are:

• AMIL is the first working system that allows a off-the-

shelf smartphone to locate neighboring mobile devices

easily. We have conducted extensive experiments to eval-

uate our system in a real-world environment.

• We characterize several new challenges of applying

acoustic mobility-induced localization on smartphones,

such as microphone’s sample rate drift and moving strat-

egy. We also give solutions to address each challenge.

II. SYSTEM DESIGN AND ALGORITHM

In this section, we present the system design and algorithms

of AMIL. We first describe the intuition behind why a single

user (player) can locate others (listeners) and then elaborate

the system architecture and each component.

A. Intuition

The intuition of our localization scheme is illustrated in

Fig. 2. We assume that the player who attempts to locate

several listeners is able to measure the distance towards each

of them (e.g., d1 to d6). Yet only knowing the distance is not

enough to locate each listener, because there is only one anchor

point (shown in Fig. 2(a)). The listener can reside in any point

on a circle centered on the player with the radius equal to

the measured distance dj . If we could create multiple anchor

points, the problem is then solvable. To achieve this, we move

the player and rely on IMUs to track the displacement (shown

in Fig. 2(b)). Thus, multiple “virtual” anchors are created, and

the position of each listener can be uniquely determined.

Actually, measuring the mutual distance (i.e., d1 to d6)

is not necessary here. In our solution, the player can locate

multiple receivers simultaneously by emitting a series of audio

beeps without the necessity for each listener to reply the beep.

Suppose the player emits k + 1 beeps at intervals ∆ti for

i ∈ [1, k]. After propagation, each listener will measure a set

of beep intervals ∆Ti shown in Fig. 3. If the player and the

listener are both stationary, we have ∆ti = ∆Ti. Due to the

spatial change when the player emits beeps, each listener will

capture different beep intervals depending on its own location.

For example, if the player moves towards a listener, the beep

interval measured by this listener is less than that captured by

the player. Based on the interval difference, we can derive the

delta distance using the speed of sound as c · (∆Ti − ∆ti).
After k + 1 beeps, we have k delta distances. The player can

finally use them to determine the position for each listener; the

details of this will be elaborated later. The advantage of this

approach is that only the player emits beeps, while listeners

only passively listen for beeps. This approach is easy for any

mobile user who wants to locate others to perform in practice.

B. Architecture

Fig. 4 depicts the system architecture of AMIL. In this

architecture, a player uses its internal speaker to emit beeps

with a pre-defined pattern, and its microphone to pick up the

acoustic signals for measuring the beep intervals. The player

also relies on IMUs (i.e., accelerometer and gyroscope), to

estimate the displacement of the phone during the movement.

At the same time, the listener just passively records sound from

its microphone, measures the beep intervals, and exchanges

this information with the player through other available com-

munication channels such as Wi-Fi or Bluetooth.

There are three algorithms in AMIL – the movement track-

ing algorithm, the interval calculation algorithm, and the

positioning algorithm. The movement tracking algorithm is

used only on the player side to track the motion trail of

the player and determine the displacement when each beep

is played. The interval calculation algorithm is performed on

both the player and the listener sides, aiming to detect the

beeps and measure beep intervals. After that, each listener

sends back the calculated beep intervals to the player. Once

receiving the beep intervals from the listeners, the player

will use the positioning algorithm to compute the relative

coordinates for each listener. The detail of each algorithm is

presented in the following subsections.
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Fig. 4: System architecture

C. Movement tracking algorithm

A player leverages accelerometer and gyroscope to compute

its displacement at every beep. The basic idea is to double inte-

grate the accelerometer readings to derive displacement, where

the first integration converts the acceleration into velocity, and

the second integration converts the velocity into displacement.

However, on-board motion sensors are not designed for precise

tracking. Any small errors caused by noise, gravity and rota-

tion will be accumulated into a significant drift. To minimize

these errors, we apply the following methods.

Motion detection. In order to reduce the drift, it is impor-

tant to decrease the integration period. Thus, we only integrate

on the period when motion is detected. To detect motion, we

separate sensor readings into bins and compute the standard

deviation (std) of each bin. If the std for a bin is greater

than a pre-defined threshold, the first reading in that bin is

conservatively regarded as the start point of a movement.

Given the start point, we marks the end point by checking

if the deviations of two subsequent consecutive bins are less

than the threshold.

Rotation transformation. An accelerometer records ac-

celeration readings along the axes of phone’s frame. During

moving, the phone’s frame may be rotated. Thus, sensor

readings actually come from different reference coordinate

systems. To address this problem, we leverage gyroscope data

to perform rotation transformation. The gyroscope measures

the instantaneous angular speed around phone’s x, y, and z

axes. We define the initial phone’s frame is the reference

frame. The output of the gyroscope is integrated over time

to calculate the angle of rotation from the sampling instance

to the initial orientation. Suppose at timestamp t1, the angle

changes on x, y, z axes are roll (φ), pitch (θ), and yaw (ψ)

respectively. The rotation matrix is calculated as follows,
[

1 0 0

0 cosφ −sinφ
0 sinφ cosφ

][

cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

][

cosψ −sinψ 0

sinψ cosψ 0

0 0 1

]

.

The product of the rotation matrix and the accelerometer read-

ings in the phone’s frame yields the transformed acceleration.

Velocity compensation. When the phone is moved, it is

natural to pause for a short time somewhere. For instance, if

a user draws a triangle, natural pauses shall occur at three

corners. During the pause, the phone is stationary and its

speed is zero. However, the acceleration residues caused by

gravity and the misalignment of internal sensors typically

are integrated to a non-zero velocity at a stop. We need to

compensate the velocity. First, we detect the pauses using the

method mentioned in motion detection. At each pause, if the

integrated velocity is not zero, all velocities integrated during

the last movement are adjusted to the following value:

v′(tj) = v(tj)− v(tk)
tj − ti

tk − ti
, i ∈ [i, k]

where v′(tj) denotes the adjusted velocity at tj , v(tj) refers

to the originally integrated velocity at tj , and ti and tk
represent the starting and ending time of motion. Using this

method, constant gravity and sensor misalignment offset can

be eliminated.

D. Interval calculation algorithm

Due to the uncertain delay between the time when a

command is issued to emit a tone, and the instant when the

tone is physically emitted by the hardware, the actual interval

between two beeps on the sender side cannot be accurately

determined directly from the timestamp in the software when

the command was issued. To deal with this problem, we

adopt a “self-recording” method similar to work [1], [2], [4],

where the sender records itself using its own microphone when

beeping. Since the distance between the sender’s speaker and

microphone never changes, the time interval between the two

beeps captured by the microphone is exactly the same as they

are physically emitted by the speaker. In practice, the beep

signal should be designed carefully to cope with the following

issues. First, the sound signal will be attenuated and distorted

through the communication channel, and negatively affected

by the ambient noise. Thus, the signal should be designed to

have a good Signal-to-Noise Ratio (SNR) when reaches the

receiver. Second, the signal should have a better resistance

to multi-path and non-line-of-sight (NLOS) effects. Based on

existing work [1], [2], [4], [5], we choose a linear chirp

waveform to overcome these challenges.

To detect the beep signal and its arrival time, we adopt

a common cross-correlation-based method used in previous

mentioned work, where the emitted waveform is correlated

with the received signal to determine when the beep is present

in the received signals. Let the sample sequence {ui} for

i = 1, 2, · · · , n denote the received samples from microphone,

and the sample sequence {vi} for i = 1, 2, · · · ,m represent

the known, emitted waveform, where n >> m. In matched

filtering, a sliding window with the length equal to m is

extracted from {ui}, and the sample correlation coefficient

r is computed as follows:

r =

∑m

i=1(ui − u)(vi − v)
√

∑n

i=1(ui − u)2
√

∑n

i=1(vi − v)2
,

where u and v are the sample means of the sliding window and

{vi} respectively. For each r, the computational complexity



Θ(m) can be achieved by Welford’s one-pass algorithm. As

the sliding windows moves from the begin to the end of

{vi} sample by sample, each r is computed with the total

computation complexity equal to Θ(n ·m). A large value of r

means a high similarity between the two sequences. The arrival

instance of each beep (in terms of sample index) can be found

at the maximal peak of these coefficients. After obtaining the

index of two beeps, the beep interval is then calculated by the

number of samples between two beeps divided by the sampling

rate (44.1 kHz in our implementation). It is worth noting that

owing to the multiplicity of paths, the sound signal arriving via

the shortest path may be weaker than that of the reflections.

This situation is even worse in NLOS scenarios because the

direct path signal has to traverse through obstructions. As a

result, the maximum correlation peak may not represent the

Line-of-Sight distance. To address this problem, we adopt an

existing technique, in [6], that finds the first sidelobe that

exceeds a threshold ratio to the maximum peak.

FFT-based acceleration for beep detection. The cor-

relation is computationally expensive especially when n is

large. Some works(e.g., [1] and [6]) offload the computation

to a powerful cloud server or leverage parallelism of GPU

hardware to accelerate the process. Such approaches work but

at the expense of extra communication overhead or power

consumption, because the computational complexity is still

Θ(n · m). In recent work, Qiu et al [2] applied an energy

threshold to reduce the search space in the sample sequence.

However, setting such a threshold is challenging due to the

dynamics of ambient noise. If set too low, the computational

overhead won’t save much. In contrast, if set too high, some

beeps may be lost. To overcome this issue, Zhang et al. [4]

used auto-correlation to quickly estimate the rough position

of a beep and then apply cross-correlation to identify the

exact position. In their approach, a beep is composed of two

same sequences: one followed by the other. If a sequence of

audio samples is found to be very similar to its half-lag (-

shift) sequence, a beep is detected. Auto-correlation can be

computed fast but inherently has wide peak, so it is difficult

to detect the position of a beep accurately. That is why cross-

correlation is used in the second stage. However, this method

cannot be applied to any scenario with highly self-correlated

ambient noise, such as air conditioner. In AMIL, we propose

a fast Fourier transform (FFT) based filter to reduce the

search space. First, the emitted chirp sound is converted to

the frequency domain by FFT. At the same time, the spanning

frequency is recorded. Next, the received sequence is divided

into equal blocks with size equal to that of the chirps. In

each block, an FFT is computed to find whether the similar

spanning frequency is detected with high energy. If true, a beep

may reside in the block and cross-correlation is calculated on

the samples in recent two blocks. Otherwise, we skip it to save

the computation of cross correlation. We include the previous

block conservatively because a beep sequence may be present

in two consecutive blocks and we want to find the exact start

point, which may reside in the first block. Suppose N beeps

are emitted, each with length equal to m, and the received

signal has n samples in total. To detect the position of every

beep, our approach needs about Θ(n logm) time to process

FFT plus Θ(m2) time to calculate cross-correlation. Later, in

the evaluation section, we will use experiments to show the

efficiency of this method.

E. Positioning Algorithm

Since three beeps are the minimal requirement to position a

device in a 2D plane, we first present the positioning algorithm

for three beeps and then generalize it to more than three beeps.

Positioning algorithm for three beeps. Suppose a receiver

is located at the coordinates (x, y). The coordinates of three

beeps are (0, 0), (x1, y1), and (x2, y2) respectively. The dis-

tance difference derived from beep intervals on both the sender

and receiver side are denoted as dd1 and dd2. Thus, we have

the following equations:

dd1 =
√

(x− x1)2 + (y − y1)2 −
√

x2 + y2

dd2 =
√

(x− x2)2 + (y − y2)2 −
√

x2 + y2 (1)

Combining the above two equations produces a system of

linear equations for x and y in terms of Ax+By = C, where

A, B and C are all constant variables given (x1, y1), (x2, y2),
dd1 and dd2. Either x or y can be expressed by the other

variable and substituted back into Eq.(1) to derive the closed-

form for x and y using (x1, y1), (x2, y2), dd1 and dd2.

The triangle inequality states that the difference of lengths

of any two sides must be less than the length of remaining

side. That means the absolute values of dd1 and dd2 must

be less than the moving lengths
√

x21 + y21 and
√

x22 + y22
respectively. In practice, due to measurement errors ddi may

be slightly larger the
√

x2i + y2i or less than −
√

x2i + y2i
where i ∈ 1, 2. In both cases, we cannot solve the equations,

though the approximate direction of receivers can be inferred.

In the former case, the receiver(s) is likely to be located

somewhere in the movement direction. In the latter case,

the receiver(s) may be located in the opposite of movement

direction.

Solving Eq.1 may produce one, two or zero solutions

in practice. If two solutions exist, additional information is

needed to select one point. For example, in a meeting room

where all people are sitting around a table and everybody is

in front of the player, the solution that indicates the receiver

is behind the player should be ignored. For the zero solution

case, more beeps are necessary.

Positioning algorithm for more beeps. In general, extra

beeps can improve the positioning accuracy. Let the coordi-

nates of the first beep be (0, 0) and (xi, yi) i = 1, 2, 3, · · · for

other beeps. We have an equation for each delta distance as:

ddi =
√

(x− xi)2 + (y − yi)2−
√

x2 + y2. Similar to Eq. 1,

combing every ddi and dd1 yields a system of linear equations

in two variables x and y. Suppose there are n beeps. All of

n− 2 linear equations can be expressed in matrix form








A1 B1

A2 B2

· · ·
An−2 Bn−2









[

x

y

]

=









C1

C2

· · ·
Cn−2









.



As long as n ≥ 4, variables x and y can be solved without

substituting them back into the equation of ddi. The least

squares method can be used to find an approximate solution

to the overdetermined system. The point derived by such

a method has minimal distance to all the curves. However,

according to our experience, least squares method does not

work well in practice, since some curves are noisy, due to

measurement errors. Including these curves for calculation

may degrade the overall accuracy. Our method is to select

a set of three beeps from n beeps. The total number of sets is

equal to
(

n

3

)

. For each set, the positioning algorithm for three

beeps is applied to extract possible solutions. The direction

of those points to the origin is then calculated. The majority

of points within a certain angle (10◦ is used in the current

implementation) are kept and others are filtered out as outliers.

Finally, the geometric centroid of all the remaining points is

used as the location of the target. Although the localization

accuracy may be slightly deteriorated when a very accurate

solution is averaged by several less accurate solutions, this

method can output a good solution for general cases and is

therefore more robust.

III. MOVING STRATEGY

There are two error sources that may affect the accuracy

of AMIL. The first source is in the acoustic subsystem. Due

to the effects of multi-path and non-light-of-sight (NLOS) in

practice, the arrival of a beep may not be precisely detected.

Thus, the beep interval is calculated with errors. The second

source of errors are from the IMU subsystem. As mentioned

before, sensor noise, gravity and phone’s rotation will lead

to several centimeter errors of estimating the displacement of

the phone. All these measurement errors will contribute to the

inaccuracy of positioning results. In previous sections, we use

various methods to minimize these errors. This section will

focus on the impact of moving strategy on the accuracy.

To simplify the analysis, we assume a sender simply moves

along a segment and beeps at two endpoints. The angle

between a listener’s direction and the direction of movement

is defined as θ. Due to the measurement errors, the estimated

location of the listener will depart from the actual place.

According to our simulation, with bounded value of errors,

all the estimated locations will reside in a sector which also

includes the actual location. We define α as the angle of this

sector. The smaller α, the better. We seek to find a better

moving strategy (i.e., θ) that can yield a small α. In simulation,

we enumerate every possible errors within the bound for a

θ. Fig. 5 depicts the relation between θ and α, where the

value of θ ranges from -180◦ to 180◦. The positive angles

represent clockwise rotation of θ, while the negative angles

refer to counter-clockwise rotation. It is seen that if the player

is moving towards or away from the listener, the corresponding

α is the largest. However, if the direction of movement is

perpendicular to the direction of the listener, the smallest α

can be achieved. Therefore, our first guideline for a better

moving strategy is that it is better to move perpendicular than

parallel to the direction of the target.

From Fig. 5, it seems that the positive θ and negative θ

have the same impact on α. In fact, if we further divide

the sector into the left and right parts based on the actual

location of the listener (i.e., the estimated location falling in

the left part is defined as negative error, and the estimated

locations in the right part refers to positive error), we can tell

the difference. Fig. 6 shows the percentage of positive and

negative errors against θ. It is seen that when θ is negative,

errors are prone to be positive; otherwise, they are prone to

be negative. If overlapping the positive and negative errors,

the final localization can be improved. Therefore, our second

guideline for movements is if moving more than once, the

directions of the movements should flank the the target.

Based on our findings, if the location of the target is known

in advance, the best movement strategy is shown in Fig. 7(a).

However, that strategy may result in a poor estimation for a

target whose location is approximately parallel to the direction

of movement like Fig. 7(b). Therefore, without knowledge

of target’s location, a triangle is the best moving strategy to

achieve good performance on average. It ensures that we can

find at least two sides of the triangle that are not parallel to

the direction of target (see Fig. 7).

The performance of AMIL is not very sensitive to the shape

of triangle according to our real experiments. Users are free

to draw any triangle. To further improve the robustness of our

localization algorithm, we design a new moving strategy to

draw a triangle: starting from the middle of the bottom side,

moving to the left corner, to the top corner, to right corner, and

then back to the origin. This strategy combines the benefits of

both the line and triangle gestures. We evaluate this triangle

gesture in comparison to the line gesture in Section V.

IV. IMPLEMENTATION

We have implemented AMIL on Android devices, including

Galaxy Nexus, HTC EVO 3D, Nexus S and Galaxy S2 with

Android version 4.x. According to previous research [1], [5],

[6], we choose a linear chirp as the ranging signal, because

linear chirps offer good pulse compressibility and increased

signal-to-noise ratio (SNR). To minimize audible artifacts, we

set the frequency band of the linear chirp as [18kHz,22kHz],

and modified the waveform with fade-in and fade-out pattern.

The duration of the chirp is 50 ms. The sampling rate of mi-

crophone is configured to 44.1kHz. During the implementation

of AMIL, we encountered two major difficulties as follows.

Sampling drift. Previous work always assumes that the

microphone hardware could generate samples at the given

sampling rate. According to our observations, sampling drift,

however, occurs among different smartphones. To demonstrate

the drift, we investigated the smartphones listed in Table I. A

Galaxy Nexus phone was set up as a player (i.e., the reference),

and other phones acted as listeners. The player emitted two

beeps with intervals ranging from 0.5s to 2.5s. Meanwhile, the

listeners measured the beep intervals in terms of microphone

samples. It is expected that the samples captured on the listener

side should be equal to that on the player side, because no

one moved. However, we indeed captured different number
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Fig. 7: Exemplar moving strate-
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Fig. 8: Comparison of different
gestures with or without pause

of samples on these devices. Table I presents the results,

where the positive values means more samples were captured

by listener than the player, and the negative values means

the opposite. It is seen that 1) the same model platforms

(two Galaxy Nexus phones) barely have sampling drift, and

2) the drift on different models increases linearly over time.

The experiment results are quite stable for 10 tests and also

exist when we changed the role for each phone. It should be

noticed that each sample difference will lead to around 0.8cm

ranging error given the sampling rate is 44.1kHz. In that case,

2.5s will bring about 16cm ranging error between Galaxy S2

and Galaxy Nexus. To cope with this problem, we build a

linear model to calibrate each phone based on our extensive

experiment results. During the process of localization, this

model was used to compensate the sample drift for the second

algorithm shown in Figure 4.

TABLE I: Sampling drift under different durations

Galaxy Nexus (ref) 0.5s 1.0s 1.5s 2.0s 2.5s

Galaxy Nexus 0 0 0 0 0
HTC EVO 3D 3 5 7 9 11

Nexus S 2 3 5 7 9
Galaxy S2 -4 -8 -12 -16 -20

Beep timing. It is critical to decide when to beep. Through

study we found it is best to play a beep when the movement

pauses. The reasons are in two aspects. First, Doppler effects

will shift the frequency band of the emitted beeps and make

the detection inaccurate. Playing beeps when the phone is

stationary can mitigate this effect. Second, it is difficult to

synchronize the sensor and microphone. In other words, it is

not easy to find the precise location of the phone when a beep

is physically emitted. However, if the beep is only emitted

when the phone is stationary, we have more constraints to

improve the accuracy.

V. EVALUATION

In this section, we evaluate the performance of AMIL by

answering the following questions: 1) What is the accuracy

of our motion tracking algorithm; 2) What is the accuracy of

our localization algorithm with respect to both direction and

ranging errors; and 3) What is the on average computation

time to locate other devices.

A. Accuracy of IMU sensors

We investigated the accuracy of different gestures including

line, triangle and circle with or without pauses during the

movement. To obtain the ground truth, we first drew a trail

(i.e., line, triangle and circle) on the desk as the reference,

and then moved the phone exactly following the trail. For a

line, the estimated location of the ending point was compared

to the reference. For a triangle and a circle, we compared three

corners and quadrant points, respectively. The experiment was

repeated 30 times. Fig. 8 show the averaged results with

the standard deviation (std) as error bars. It is seen that

the line gesture has the smallest estimation error which is

slightly less than the triangle gesture and significantly less than

the circle gesture. It concludes that pausing can significantly

improve the displacement estimation. Therefore, we use simple

gestures with natural pause, namely line and triangle for rest

experiments.

B. Accuracy of determining direction

Line gesture. A line gesture with the length equal to 40cm

was first tested for localization. Given the starting point at

(0,0), we drew the line from the middle of the line, first to

the left endpoint (-20,0) and then to the right endpoint (20,0).

The reason why we drew the line in such a way is to make

three beeps at each point. Receivers were placed along a line

which is perpendicular to the moving line with 41cm away

from each other. Experiment at each location was repeated

five times. Fig. 9 shows the results. We found that the average

direction errors were within 2.5◦ and the accuracy decreased

when the receivers departed from the center. This is consistent

with the the analysis in Section 4. Note that we also tested

the cases of angles greater than 40 degree, but sometimes we

could not find any solution, hence the results were not plotted

in the figure. It confirms our guidelines in Section III.

Triangle gesture. Next, a triangle gesture with five beeps

was tested. The motion trail was kept the same for all

experiments from the coordinates (0,0) to (-20,0) to (0,20)

to (20,0) and then back to (0,0). We use Cartesian coordinate

to mark locations of player and listeners. The unit of distance

is centimeter (cm). We investigated several locations where a

line gesture cannot work well, where receivers were set to the

coordinates (-264,-366), (-264,-244), (-264,-122), (-264,0), (-

264,122), (-264,244) and (-264,-366) respectively. Again, each

location was tested for 5 times. Fig. 10 shows the results. It is

seen that the average direction errors are less than 6 degree.

It confirms that the triangle gesture performs well for some

places that the line gesture cannot work.
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Moving radius. We also tested the same triangle gesture

but with different radius. In this experiments, receivers were

placed in the center of a sender. First, the player is moved

the coordinates (0,0) to (-20,0) to (0,20) to (20,0) and back to

(0,0). Next, the moving radius increase from (0,0) to (-40,0)

to (0,40) to (40,0) and back to (0,0). Both experiments were

repeated 10 times. Fig. 11 depicts the CDF of angle errors, in

which a gesture with large radius has better accuracy.

C. Accuracy of determining position

To evaluate the accuracy of determining positions, we

conducted the following experiments in the hallway of our

department building. The player was moved from (0,0) to (-

30.5,0), to (0,30.5), to (30.5,0) and back to (0,0), and four

listeners were placed from (0, 122) to (0, 488) each spaced by

122cm. The experiments were tested for 10 times. Since there

are two types of error sources as mentioned in Section III,

we decided to investigate them separately. First, we assumed

that the motion trail was given in advance. In this way, we

can ignore the sensor errors and only estimate how much the

acoustic errors affect the localization accuracy. Next, we redid

the experiment with inertial sensors enabled to estimate the

displacement of our gesture. Last, we performed the same test

by drawing three triangles to improve the performance.

The results are shown in Fig. 12. From this figure, we

find that both errors of inertial sensor and beep detection

contribute to the localization errors. And it shows that the

displacement error adds more variations to the results. As the

distance between sender and receiver increases, both the mean

error and std becomes larger. For example, in (0,122) case, the

biggest error is within 30cm while in (0,488) we have an error

of almost 1 meter. By using three triangles, we can limit the

error to less than 50cm for all cases. Note that, except for the

488cm case, all other three have an error of 30cm.

D. Field test

To measure the overall accuracy of our system, we con-

ducted field tests in a 3m x 5m hallway. One player and twelve

targets (listeners) are located in a 2D plane. All the listeners

formed a grid with its cell size equal to 122 cm. The origin of

the coordinate system is the player. The listeners are marked

as in Fig. 13. Based on the previous discussion, we tested a

small-sized triangle starting from the origin and ending to the

same point. The side length of the triangle is 30.5cm.

Fig. 13 shows the visualized localization results. In this

figure, the actual location of each listener is denoted by

a unique solid and bold symbol. The estimated location is

plotted in the same symbol to indicate its relationship with

the ground-truth location. It is seen that when the listener is

near the player, all the estimations are close to the ground-truth

locations. It confirms our previous measurement observations

that AMIL can estimate angle within 3 degree errors and

differentiate targets accurately. However, when the distance

between listeners and the player are far (e.g., listeners on the

third row and fourth row), the accuracy decreases. There are

more overlapping results, but we can still differentiate targets

excepts that in the (-122,488) case.

To further improve the accuracy, we can use our localization

scheme in multiple rounds. Fig. 14 depicts the results when a

triangle was drawn three times. The maximal error is approx-

imately 50cm. From this figure, we can easily differentiate all

the targets, because there are no overlapping results.

E. Computation time

The finishing time of the localization process consists of two

main parts: the duration of movement and computation time.

When phone is moving, samples collected from microphone

and IMU sensors are stored in memory or disk (when memory

is full). The entire duration varies according to the shape and

radius of the gesture, but it typically can be finished within 5s.

The computation process is to calculate the moving trail from

sensor readings, beep intervals from microphone readings, and

the coordinates of receivers afterwards. To compare with full

cross-correlation method, we only investigated the duration for

computing beep intervals. Given all samples are in memory,

the full cross-correlation method is first tested then followed

by our method. Table II lists the results. It is seen that the

FFT-based correlation method used in AMIL can reduce the

finishing time by more than 90%.

F. Other considerations

Due to space limit, we briefly discuss other practical con-

siderations in our system implementation.

Noise: We tested if our scheme can resist to ambient noise

through playing different videos in the process of localization.

AMIL can give accurate results most of time. However, in

some very noisy cases, the starting point of the beep can be

buried in random noise and results in big errors even though
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TABLE II: Computation time of cross-correlation

Gesture Samples Finishing time (s)
Mean Std cross-corr. (mean) cross-corr. (std) AMIL(mean) AMIL(std)

Line (4 beeps) 389734 16249 46.06 1.78 3.09 0.07

Triangle (5 beeps) 427008 9523 50.40 1.16 3.68 0.05

previous works [1] and [4] claim that noise is not a problem for

their designs. To solve the problem, we have also implemented

a chirp in the inaudible frequency range of [18k, 22k]. The new

chirp is more noise resistant but suffers from shorter distance

and certain inaccuracy.

Phone orientation: We measured the 3D polar pattern

of Galaxy Nexus’s built-in speaker and microphone through

PCB 378B02 condenser microphone. As we expected, the rear

acoustic field is stronger than its front counterpart, because the

curvature near the bottom edge of Nexus causes a small angle

between the speaker front and the x-y plane. For different

phone orientation, the localization distance instead of the

accuracy is relatively affected.

3D localization: In our evaluation, we moved the phone

on the surface of the floor or a table for 2D localization. We

have tested our system by freely moving the phone in the air.

Unfortunately, the performance is not satisfactory due to the

noisy readings from IMUs. Therefore, we have not included

the data for free movements. In our future work, we will work

on extending our system to 3D space.

Multiple users: The current implementation assumes that

there is only one player at a time. However, it can be

easily extended to support multiple users by selecting different

frequency bands for beeps and employing a similar multiple

access protocol used in [7].

User Effort: 1) There is not much effort involved in

drawing those gestures. The user only needs to move the phone

in her hand to draw the gesture quickly. 2) AMIL can be

implemented as a system service in the Android framework

to avoid the installation effort. 3) It is possible to avoid the

network setup effort by relying on a service in Cloud providing

public APIs to applications.

VI. RELATED WORK

While GPS-based localization has been improved in recent

years [8], it can not be directly applied to indoor scenario.

How to locate without GPS has been studied over two decades,

which can be categorized into: Radio Frequency (RF) based

techniques and Acoustic techniques.

RF based techniques. In these techniques, location is deter-

mined by measuring the radio signals from Wi-Fi APs, RFID

or cellular towers. Some of those techniques are proximity-

based, which can only provide low accuracy [9]–[11]. By pro-

filing received signal strength (RSS) fingerprints for each loca-

tion, finer localization is performed by finding a location with

the matched fingerprint [12]–[15]. Besides that, FM radio [16]

and channel responses from multiple OFDM subcarriers [17]

are recently proposed as signatures. Different from signature-

based approaches, several techniques exist for deriving range,

angle and proximity information from radio signals, and then

positions can be inferred by applying geometric algorithms.

Time-of-arrival (TOA) systems such as [18] determine the

distance between devices by measuring RF propagation delays.

Time-difference-of-arrival (TDOA) systems such as [19] rely

on the signal difference in arrival time and phase on time-

synchronized devices to determine range. Angle-of-arrival

(AOA) systems [20] utilize the directions from which a signal

is received to derive positions. Through measuring the RSS

of RF signals, the location of devices can be also determined

by employing a radio propagation model [21], [22]. These

approaches do not provide provisions to accurately locate

nearby mobile users in any circumstance, since they typically

need profiling in advance, special hardware design, or only

provide coarse-grained precision (e.g., room-level).

Acoustic techniques. Acoustic techniques can measure

the range more precisely, owing to its relatively slow speed

compared with RF signal. Hence, most acoustic localization

schemes leverage range-based approaches. Many systems such



as [23]–[26] adopt custom hardware to measures the time-of-

flight of modulated ultrasonic signals to estimate the range

between devices. The ENSBox system [27] leverages micro-

phone array to obtain orientation information for localization.

These approaches cannot be applied to mobile phones without

additional hardware. The BeepBeep system [1] designed to

work with ordinary mobile devices with speaker/microphone

introduces a novel way to measure the range based on the

elapsed time between two time-of-arrival (ETOA) of two audio

tones. Based on BeepBeep, the work [2] uses multiple speakers

and microphones to perform phone-to-phone localization in

3D space. SwordFight [4] improves BeepBeep by supporting

fast and continuous phone-to-phone ranging. Different from

those approaches, only a single device emits audio tones in our

work, thus eliminating the requirement of time synchronization

and significantly improve the scalability. Recent work [5]

proposes another acoustic TDOA-based ranging technique for

mobile phone self-localization with infrastructure support. In

addition, acoustic fingerprint is also used for indoor localiza-

tion such as the work [28].

Miscellaneous. There also has been research focused on

hybrid techniques of both RF based and acoustic localization.

WALRUS [29] can achieve room-level localization in office

environment by broadcasting the identity of the room through

sound and Wi-Fi channels. Centaur [6] improves the resolution

of localization by acoustic ranging plus Bayesian inference.

Acoustic ranging techniques are also leveraged to detect driver

phone use [30], and pair intended devices by a pointing

gesture [31], [32]. Other related works in the context expect

for localization is to leverage IMU sensors for the movement

recognition. The techniques proposed in the work [33] can

recognize human handwriting using phones. Those algorithms

relies on IMU sensors to extract the features of the movement,

while our targeted problem is more challenging that demands

measuring the precise displacement of the movement.

VII. CONCLUSION

In this paper, we consider the problem of efficiently and

securely grouping and locating mobile phone users in prox-

imity. A system called AMIL is proposed to leverage a simple

gesture to perform localization during network setup. By using

internal motion sensors and speakers/microphones, our scheme

combines gesture detection and acoustic techniques for a user

to locate other users in an efficient, low-cost and scalable

manner. We have designed, implemented and evaluated our

system on commercial smartphones. Extensive experiments

have shown that AMIL can achieve less than three degree

error in orientation and 50cm error in distance.
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