

1

Simulating Grasping Behavior on an
Imaging Interactive Surface

Andrew D. Wilson

Microsoft Research

One Microsoft Way

Redmond, WA 98052 USA

awilson@microsoft.com

ABSTRACT

We present techniques and algorithms to simulate grasping

behavior on an imaging interactive surface (e.g., Microsoft

Surface). In particular, we describe a contour model of

touch contact shape, and show how these contours may be

represented in a real-time physics simulation in a way that

allows more realistic grasping behavior. For example, a

virtual object may be moved by “squeezing” it with

multiple contacts undergoing motion. The virtual object is

caused to move by simulated contact and friction forces.

Previous work [14] uses many small rigid bodies (“particle

proxies”) to approximate touch contact shape. This paper

presents a variation of the particle proxy approach which

allows grasping behavior. The advantages and

disadvantages of this new approach are discussed.

Author Keywords

Interactive surfaces, game physics engines

ACM Classification Keywords

H5.2 [Information interfaces and presentation]: User

Interfaces. – Graphical user interfaces.

INTRODUCTION

Much of the allure of interactive surfaces may be attributed

to the style of direct manipulation made possible by large

multi-touch displays and powerful graphics capabilities.

Often these manipulations have a tangible quality, as if the

virtual object being manipulated behaves as it would in the

real world. The now ubiquitous two finger rotation,

translation and scaling of photos, for example, loosely

emulates the manipulation of a real photo by friction forces

imparted by two fingers in contact.

Imaging interactive surfaces such as Microsoft Surface [9],

FTIR-based systems [4] and others [10,11] use video

cameras and computer vision techniques to obtain detailed

information about the shape of the fingers, hands and other

objects in contact with the screen. To date there have been

few systems able to take advantage of the richness of this

information however. Most multi-touch systems reduce

each contact shape to a discrete point which is then hit-

tested against onscreen objects in a way that is familiar to

most software developers.

The ability to sense more information about hand pose,

matched with the ability to animate onscreen objects in a

realistic fashion, invites the simulation of more realistic

behaviors on imaging interactive surfaces. Wilson et al [14]

describe an interactive surface which incorporates precise

contact shape information into a real-time gaming physics

engine. Onscreen objects move as the result of friction

forces and collisions with the contour of the hand or other

physical objects. The proposed technique allows users to

adopt a wide variety of manipulation strategies drawn from

experience in the real world. For example, a rolling ball

may be brushed lightly to cause a small amount of motion,

while the sudden contact of multiple fingers will quickly

stop a ball in motion. In their study, users exercised a

variety of manipulation strategies not found in other

systems, such as bumping a ball from the side and catching

it with a cupped hand on the other side of the table.

Importantly, none of these strategies require specific

support in code; rather, they are the consequence of the

physics simulation.

Wilson et al [14] cite the lack of support for grasping

behavior as a disadvantage of particle proxy technique.

That is, it impossible to move or “hold onto” an object by

“squeezing” a virtual object with multiple fingers placed

around it. This is a consequence of the “particle proxy”

technique used in their work. This deficiency seems

particularly important given the 3D nature of the virtual

objects and physics simulation: users are primarily limited

to manipulating an object by applying friction forces on its

top faces and colliding with its sides.

In this paper we develop a variation of the particle proxy

technique that supports the grasping of objects. It

accomplishes this primarily by allowing the contour of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ITS '09, November 23-25 2009, Banff, Alberta, Canada

Copyright © 2009 978-1-60558-733-2/09/11... $10.00

contact objects such as the hand or fingers to conform to the

shape of the virtual object in grasp, much as your hands

conform to an object that is being picked up.

In the following sections we discuss the nature of grasping,

review the particle proxy approach, present our new

variation of that approach, show interactions that are

enabled by it and discuss some limitations of the approach.

GRASPING

In the real world the ability to grasp an object is vital.

Imagine interacting with the real world only applying

friction forces or colliding with only one side of each

object! Our grasping ability separates us from much of the

animal kingdom, allows us to use tools and in a very

concrete sense gives us the ability to rearrange the world

around us. Grasping strategies vary widely and depend

greatly on the task at hand [8]. The grasp used to pick up a

jug of milk will be very different than that used to thread a

needle.

An important feature of grasping with hands is the way that

multiple fingers and the soft flesh of the hand conform to

the shape of the grasped object. This would appear to make

it easier to achieve a stable grasp: consider grasping an

object by the tips of two pencils.

Clearly grasping is necessary to pick up an object and

manipulate it in space. But in the case of a 2D interactive

surface where objects cannot be lifted into the space above

the surface, how important is grasping? Consider a typical

work desk: when objects are rearranged, how often are they

grasped and moved without leaving contact with the desk

rather than picked up and moved?

For the purposes of the present work, we may consider

grasping as the application of multiple resting contacts on

the sides of an object. Each of these resting contacts imparts

a normal force. In the case where the sum of all such forces

is zero, “mechanical equilibrium” is obtained and the object

does not accelerate. If the contacts move, the object may be

caused to move to restore mechanical equilibrium, as when,

for example, an object is rotated while grasped.

Friction forces play an important role in grasping. Because

friction forces are proportional to the normal force (see

Figure 1), it is possible to maintain the grip of a slippery

object by squeezing it more. Similarly, an object may fall

out of grasp if the grip is lessened.

By simulating grasping behavior at the basic level of

concepts such as forces and friction, we hope to allow users

to exploit the variety of grasping strategies that are familiar

in the real world, and for system designers to avoid the need

to program multiple interactions in an ad hoc fashion.

Figure 1. An object exerts force of weight W. Friction force f

opposes force F causing motion, and is proportional to the

normal force N.

RELATED WORK

While there have been a number of interactive surface

systems which have based interactions at least in part using

physics concepts (see [14] for a review) there are very few

(if any) that treat grasping realistically. More common is

the programmatic manipulation of virtual objects (such as

in [7]) where an object is rotated, translated and possibly

scaled by the movement of contact points on the object. In

these cases the object may be considered in the “grasped”

state if any contact touches it.

The variety of grasping behavior motivates the dependence

on shape information in ShapeTouch [1]. For example, the

authors note that hand posture varies drastically with the

task, and that even coarse models of shape, such as contact

size, may be used to implicitly select the mode of

manipulation.

The Responsive Workbench explored the use of multiple

inputs with a physics engine in a 3D assembly task [3]. This

system is notable for the way that objects are manipulated:

virtual springs attached to the corners of a rigid cube are

fixed to the object to be manipulated. The rigid frame is

then moved with the user’s input. Bimanual interactions are

supported by superposition of forces from both hands. This

combination of forces from multiple inputs is similar to the

notion of grasping introduced above.

Grasping has been studied in great detail in the field of

robotics, where a classic problem is how to drive a

dexterous manipulator to pick up and hold a physical object

(“grasp planning”).

PARTICLE PROXIES

The main idea of the particle proxy approach developed in

Wilson et al [14] is to insert many small rigid bodies into a

real-time physics simulation. These rigid bodies are termed

“proxies” because they are positioned to closely

approximate the shape of the surface contact (e.g., hand,

finger, or other physical object), and so taken together are

thought to be a proxy for the actual physical object (see

Figure 2).

The particles are moved to match the local motion of the

contact observed at the corresponding location in the input

image. This is achieved by applying a force of the exact

W

N

F

f = µN

3

magnitude and direction to effect the movement of each

proxy.

Figure 2. Particle proxies approximate the shape of multiple

contacts. Left: applying friction from the top, and collision

from the side to grip a block. Middle: long proxy particle

objects (red) illustrated.

Because each particle is a rigid body in the physics

simulation, it participates in collision and friction

calculations like any other rigid body. So, for example,

when the contour of the hand moves to strike the side of an

object, an appropriate collision response is made: the object

may move. Similarly, the particles will generate friction

forces that may cause the object under them to move.

There are a number of aspects of the particle proxy

algorithm that are relevant to the present work.

Generating particles

Particles are generated to match the contour of the contact.

The input image is processed by a Sobel (gradient) operator

which highlights the edges of objects on the surface. A

particle is generated for every pixel in the Sobel image that

is greater than some threshold intensity.

Positioning particles

Each particle must be positioned in the 3D world of the

physics simulation. Because the input is fundamentally 2D

and the virtual objects inhabit a 3D world, it is necessary to

determine a 3D position for the particle. The position of the

particle in the plane of the display is determined naturally

from the input image coordinates. The out-of-plane height

of the particle’s position is determined by finding the first

point of intersection with any virtual object by a standard

ray casting operation. The particle is placed to be in resting

contact with this point.

Particle shape

The shape of each particle’s rigid body is limited only by

the collision primitives supported by the physics simulator.

A sphere is a good choice because it allows easy collision

detection calculations. A capsule that extends all the way

from graphics camera near plane to the intersected object is

an interesting choice because it would collide with objects

that lie above the original intersecting body, such as objects

that are stacked, are airborne or have sides that are not flat

(e.g., a ball). The capsule proxy may more closely meet

users’ expectations about how objects should collide with

contacts.

Advancing the simulation

Rather than attempt to track the particle across multiple

frames, the algorithm outlined in [14] suggests creating a

new set of particles each frame. After the physics

simulation is updated, all particles are removed from the

simulation. This instantaneous feature of the algorithm

avoids complex and error-prone tracking techniques, and

fits well with the contour information contained in the

Sobel image.

The particle proxy algorithm is summarized as:

compute Sobel image from surface input
for each pixel with high spatial gradient:

raycast into scene to determine initial particle position
add particle rigid body to physics simulation
compute contact motion at particle (e.g., from flow)
compute corresponding tangential motion in scene
apply force to particle to match scene motion
apply downward force (gravity) to particle

update physics simulation
destroy all particle rigid bodies

GRASPING WITH PARTICLE PROXIES

The particle proxy approach summarized above does not

support grasping primarily because of the instantaneous

nature of the algorithm. Consider two finger contacts

closing around a virtual object at rest. Each finger is

represented by a cluster of particles, each created,

positioned, moved, and destroyed every frame. At some

point some particles will collide with the object and the

object will move in response. Eventually there will be

particles in contact on both sides of the object, and the

object will have nowhere to go. At this moment we might

consider the object to be under grasping control. But it is

very likely that the user, in the absence of tactile feedback

from the virtual object, will continue to move their fingers

together. Shortly thereafter, the subsequently created

particles will be placed on top of the object, in accordance

with the raycasting placement strategy summarized above.

The net result is that while the user may be able to place

particles that are in contact with the side of objects, these

particles will never exert any significant normal force on

the side of the object (and, subsequently, friction forces)

that lead to true grasping behavior. The particles are

replaced by new particles that are positioned on top of the

object to be grasped. It is as if the fingers slide to the top of

the object: the object literally slips out of grasp.

PERSISTENT PARTICLE PROXIES

The alternative to creating a complete set of particles every

frame is to create a set of particles that are preserved frame

to frame. As we show in the rest of the paper, this approach

has the advantage of allowing particles to rest on the side of

an object even when the corresponding contact has moved

deep within the object. A collection of such points

distributed along the contour of an input contact can thus

conform to the shape of the object and lead to strong

normal and friction forces needed for grasping.

The difficulty in this approach is that particles must follow

the input contour, and particles must be added and removed

to follow the changing size and shape of the input contact.

In order to simplify the task of tracking an evenly sampled

contour over many frames, we use an explicit contour

representation (i.e., a linked list of points) rather than the

previous approach of implicitly representing the contour by

generating a particle for every bright pixel in the Sobel

image. As discussed later, this loses some of the robustness

features of the original particle proxy approach.

In the following sections we detail this “persistent particle

proxy” approach.

CONTACT MODEL

Imaging touch screens such as Microsoft Surface and others

base the discovery and tracking of input contacts on

observing connected components in a binary image that is

the result of several image processing steps such as lens

distortion correction, level normalization and so on. In this

binary image, each “on” pixel corresponds to a tiny region

of the screen that is being touched. The calculation of

connected components groups these regions into one or

more spatially distinct input contacts. Most often the center,

bounding box or ellipsoid shape of each contact is made

available to subsequent processing.

Wilson et al [14] argues for avoiding the connected

component model of contacts on the grounds that it results

in a poor representation of contact shape, and that the

typical subsequent tracking of connected components is

error-prone when the user adopts more complex postures

such as the flat of the hand, the whole hand, or any of the

myriad postures beyond the tip of the index finger touching

the display.

In the persistent particle proxy approach we return to the

use of connected components for ease of computation, but

compute the exact contour of each connected component

using the technique described in [2]. This technique finds

all connected components and their contours in one pass of

the image (see Figure 3).

Each connected component corresponds to a single input

contact. Contacts may be tracked from to frame by

matching the connected components found in the current

frame to those found in the previous frame. A reasonable

heuristic is to assign a connected component to the nearest

component in the previous frame, within some threshold

distance. Components in the previous frame that have no

assignment after this process are marked as removed (the

contact has been lifted off). Components in the current

frame that have no assignment are marked as new (the

contact has just touched the surface).

The use of connected components thus allows the detection

and special handling of new input contacts. In particular, in

the algorithm presented later, particles corresponding to

new contacts are positioned in the scene using raycasting,

while those associated with pre-existing contacts are not.

Figure 3. Example image from diffuse-illumination table

showing fingertips in contact and business card (face up) on

the table. Extracted contours are in red.

KINEMATIC CONTROL

Before presenting the full persistent particle proxy

algorithm we outline how rigid bodies may be correctly

moved under programmatic control in a physics engine.

This is necessary in our case to move a particle to match the

position of a point on the contour of a contact.

At their most basic level rigid body physics simulators offer

only the ability to apply forces and torques to a rigid body.

Setting the position of a rigid body directly is generally not

allowed, as this would defeat correct collision and

dynamics calculations, as well as generate unrealistic object

motion.

A common way to emulate kinematic motion by applying

only forces and torques is to apply the amounts necessary to

move the rigid body into a given position and orientation.

These calculations assume the rigid body is in free space,

and neglects the possibility of collisions and friction forces

that might interrupt the object’s motion.

Given the present (actual) position 𝑥 , the force F to move

an object of mass m to position 𝑥 ∗ is calculated by:

𝑣 ∗ =
𝑥 ∗−𝑥

∆𝑡
, 𝑎 ∗ =

𝑣 ∗−𝑣

∆𝑡
, F = m 𝑎 ∗.

For the purposes of the present work, we need only control

angular velocity. Given target angular velocity 𝜔 ∗ and

current angular velocity 𝜔 , apply torque 𝜏 ∗ =
𝜔 ∗−𝜔

∆𝑡
.

5

ALGORITHM

In this section we detail the persistent particle proxy

technique.

As described above, the contact model is able to detect and

allow for special handling of new contacts. New contacts

are typically generated when the user first touches the

surface with a finger, hand or other physical object. To

begin the persistent particle proxy technique, each new

contact is seeded by a number of particles that approximate

the contour of the corresponding connected component. As

with the original particle proxy algorithm, these new

particles are placed in the 3D scene at (x,y) coordinates to

match the position of the corresponding contour point in the

input image. The height (z) of the particle is determined by

raycasting to find the surface in the 3D scene nearest the

graphics camera. Thus if the user touches a virtual object,

the particles will be positioned to lie on top of the virtual

object.

Existing contacts differ from new contacts in that there is a

collection of particles already created to approximate the

contact’s contour in the previous frame. In the persistent

particle proxy technique, this set of particles must be

updated to reflect the change in size and shape of the

contact’s contour from the previous frame to the current

frame.

Critical to this update is that particles should move in the

same way that the corresponding part of the real object on

the surface moves. This is necessary to generate correct

friction forces when the particles are in contact with a

virtual object, as well as to determine which parts of the

contour are new or have been removed.

The motion of a given particle from the previous frame to

the current frame is calculated by matching a small part of

the contour in the previous frame with the contour in the

current frame. Our current prototype uses exhaustive search

to find the closest match in the new contour. A point 𝑥 𝑡−1,𝑘

at the previous time step is matched to the point 𝑥 𝑡 ,𝑗 ∗ by

summing squared distance over 𝑛 consecutive points of the

contours:

𝑗∗ = argmin
𝑗

 𝑥 𝑡−1,𝑘+𝑖 − 𝑥 𝑡 ,𝑗 +𝑖
2

𝑛/2

𝑖=−𝑛/2

Let us call the best matching point 𝑥 𝑡 ,𝑗 ∗ on the current

contour the previous point’s “successor”.

As this process continues around the contour, the best

match to each point in the current contour is noted with that

point. Let us call the current contour point’s best match

point in the previous contour that point’s “predecessor”.

Note that every point in the previous frame has a successor

but not every point in the current frame may have a

predecessor.

If a point on the current frame’s contour was assigned a

predecessor its corresponding particle is marked for reuse:

it will be propagated to the next simulation time step.

If the point was not assigned a predecessor, it is considered

to be a new point (the contact evidently grew in size). A

particle is created for this point and is placed at the position

of the particle corresponding with the first neighboring

point on the current contour not marked as new. The new

particle is added to the physics simulation.

Every point on the previous contour is assigned a successor

on the current contour. If that successor does not consider

the same point on the previous contour its predecessor, its

corresponding particle is marked for deletion and is

removed from the physics simulation.

The result of this process is that every point on the current

contour has a corresponding particle in the physics

simulation that is either new or reused, and each particle is

paired with a point on the current frame’s contour in such a

way as to approximate the local motion at each point of the

contour.

As the last step of the algorithm, forces are applied to move

the particles to match the position of the paired contour

point. This is performed using the technique of kinematic

control described earlier, but with one distinction: a

constant force is applied in the (z) direction. Like gravity,

this tends to keep the particles touching the top face of

some virtual object in the scene. To ensure correct friction

with the particles and avoid the possibility of spinning

particles, the angular velocity of each particle is

kinematically controlled to be zero. Finally, we note that

the physics simulation should be configured so that

particles are not allowed to collide with one another.

GRASPING FORCES

As noted earlier, the above algorithm supports grasping

behavior primarily because particles are preserved frame to

frame. Consider a contact that moves to collide with the

side of a virtual object. Because each particle is

kinematically controlled and will have the same or similar

height as its predecessor, particles would rather rest in

contact with the side of a virtual object rather than appear

on the top of the object. In this way the particles are

allowed to conform to the shape of the object much as a real

hand might.

Note that the procedure of initializing a new particle is

different than the raycasting approach used with a new

contact described above. This difference is key to the

persistent particle approach: rather than have a new particle

appear on the top of the object, they appear with their

neighbors.

Moreover, because the forces applied to kinematically

position the particle in the (x,y) plane are proportional to

the displacement of the particle from its matched input

contour point, the normal force of a particle resting on the

side of the object will increase as the contact moves further

inside the object, with the attendant increase in friction

forces. This allows the user to “press harder” or “squeeze”

an object to maintain a firmer grip (see Figure 4).

Figure 4. The force applied to a particle is proportional to its

displacement from the input contour.

Of course, because the object is virtual, there is no real

restorative force opposing the user’s fingers. Consequently,

there is nothing to stop the user from penetrating the object

by an amount that cannot be reasonably modeled by the

conforming behavior of the particle contours. While this

appears to be fundamental limitation of the technology that

is difficult to address, we note that the forces applied vary

continuously with varying amounts of penetration, so that

the subsequent behavior of the object is at least predictable.

STACKED PARTICLES

In much of our experimentation we have been using

spherical particle proxies. These are simple to work with,

but can sometimes lead to unusual or unexpected results

with certain kinds of 3D geometry. For example, sliding a

contact into a virtual ball results in the much smaller

particles moving under the ball until they finally hit the

underside of the ball near the point at which it contacts the

ground floor. Wilson et al [14] suggest using long capsules

as proxies to address this problem, and we expect that this

approach will work with the persistent particle proxy

approach as well.

However, capsules and spheres have the limitation that in

most circumstances they will contact a colliding object at

just one point. When grasping an object, the height of the

point of contact may vary throughout the grasping contours,

thus causing forces that may cause the object to rotate or

flip over unexpectedly.

In the present work we explore the idea of stacking multiple

spherical particles at each point in the grasping contour (see

Figure 5). In this scheme, the behavior of the bottommost

particle is exactly as before, but the particles above it in the

stack are kinematically controlled to lie at fixed heights

above the bottommost particle. The result is analogous to

using capsule proxies, except with the important distinction

that because each particle in a stack is an independent rigid

body, the stack conforms to the grasped object’s change in

shape along the (z) dimension.

The effect of stacked particle proxies during grasping will

depend on the geometry of the object under grasp. An

object with straight sides will behave no differently, but the

ball mentioned earlier will be cradled by the proxies,

probably resulting in a more stable grasp.

Figure 5. Stacked particles generated from two contacts.

IMPLEMENTATION

In our experimentation we have used a diffuse-illuminated

interactive tabletop system similar to Microsoft Surface.

The system’s single video camera runs at 60Hz, with

images of resolution 640x480. The table projects a

1024x768 image onto a 30” diagonal display. We use

standard, well known techniques to correct for lens

distortion, projective distortion, level normalization and

binarization. For physics simulator, we use Newton 1.53

[6].

The system is driven by a desktop PC with an Intel Core i7

CPU. With the particle proxy approach, CPU consumption

increases with more particles. The simple contour matching

process is quadratic in the number of points on the contour.

While the frame rate of the overall system will dip below

the camera frame rate when there are many contacts or

large contacts, there has been no concerted attempt to

multithread or otherwise optimize the present software

implementation.

INTERACTIONS

The persistent particle proxy technique supports the same

collision and friction-based interactions of the original

particle proxy technique. Collisions from the side cause the

object to move, while touching the top of an object may

cause it to translate and rotate (we invite the reader to view

the accompanying video figure):

7

Several new grasping interactions are now possible with the

persistent particle technique. Grasping from the side and

turning in place sets up opposing forces which cause the

object to turn in place:

Grasping from the side can translate the object by friction

forces on the side of the object:

The same friction forces may prevent a colliding object

(such as a third finger) from moving the object:

A lighter squeeze might have allowed the object to move.

Likewise, a finger from the top may not impart enough

friction force to move the object. In this case the finger will

slide off the top of the object:

The conforming behavior of the particle proxies will enact a

restorative force when an object is let go from grasp:

The “feel” of these interactions will depend on the values of

the coefficients of static and kinetic friction, as well as the

masses and moments of inertia of the grasped object. The

grasp of a slippery or heavy object may be difficult to

acquire.

DISCUSSION

The persistent particle proxy approach addresses one of the

main limitations of the particle proxy approach presented in

Wilson et al. The present implementation trades away some

of the features of the technique that make it robust to

tracking and segmentation errors.

Much of the motivation in using connected components and

their associated contours is the need to bootstrap new

contacts into the simulation.

Another reason for using connected components is that the

point matching process used to determine particle motion

need only exhaustively search the contour of the tracked

component, not all contours.

Unfortunately, errors in the contact tracking process can

disrupt the grasping behavior of the persistent particle

contour. Consider, for example, a grasping contact with its

particles resting on the side of an object. If the contact

tracking process confuses this contact with another, it may

conclude that it is a new contact, triggering the deletion or

relocation of all the contours particles and the placement of

new particles on top of the object. The object may fall out

of grasp.

If there is no need to support the manipulation of objects by

friction forces from the top, it may be preferable to avoid

tracking connected components, and instead place all

particles on the “ground floor” of the scene, with the

provision that new particles are placed so that they do not

penetrate any object.

Perhaps an easy way to support top friction forces and

grasping is to establish a limit on the penetration that

grasping supports. For example, a contact contour that

appears near the middle of an object (or is completely

contained by the object) would be placed on its top face

because to conclude otherwise would imply an unrealistic

amount of penetration.

Ultimately these considerations arise from the fact that we

are using a 2D sensor to interact with a 3D environment.

Hence there is a need to infer (rather than directly measure)

the height of a contact.

But we are also very interested in considering interactions

that use 3D sensing technology, where the height of a

contact may in fact be directly measured.

For example, Wilson [13] shows interactions using a range

sensing camera and a co-located projected image. Hilliges

et al [5] examine interactions above interactive surfaces,

using two hardware configurations that allow sensing the

space above the display, including a range sensing camera.

In their work, they show a few grasping strategies: first

using the technique in [12] to sense when the user brings

their thumb and forefinger together. They explore a second

approach of tracking fingers directly. 3D finger positions

are intersected with rigid bodies in the scene: a five degree

of freedom manipulation is enabled on a rigid body when

two fingertips are detected to lie within object.

We believe that the persistent particle proxy technique can

be extended to work with 3D input devices such as range

sensing cameras. The main challenge will be in extending

the point motion estimation process to work with meshes

rather than contours.

CONCLUSION

We have shown a variation of the particle proxy approach

that supports grasping behavior on imaging interactive

surfaces. In addressing one of the main drawbacks of the

particle proxy approach, the proposed technique increases

the fidelity of the simulation of the physics of interacting

with a real object.

REFERENCES

1. Cao, X., Wilson, A., Balakrishnan, R., Hinckley, K.,

and Hudson, S. 2008. ShapeTouch: Leveraging Contact

Shape on Interactive Surfaces, Third IEEE

International Workshop on Horizontal Interactive

Human-Computer Systems, 129-136

2. Chang, F., Chen, C.-J., and Lu, C.-J. 2004. A linear-

time component labeling algorithm using contour

tracing technique, Computer Vision and Image

Understanding, vol. 93, no. 2, 206-220.

3. Fröhlich, B., Tramberend, H., Beers, A., Agrawala, M.,

and Baraff, D. 2000. Physically-based manipulation on

the responsive workbench. IEEE VR Conference 2000,

5-11.

4. Han, J.Y. 2005. Low-cost multi-touch sensing through

frustrated total internal reflection. UIST ‘05, 115-118.

5. Hilliges, O., Izadi, S., and Wilson, A. 2009.

Interactions in the air: adding further depth to

interactive tabletops, UIST’09.

6. Jerez, J., and Suero, A. Newton Physics Engine.

http://www.newtondynamics.com.

7. Kruger, R., Carpendale, S., Scott, S., Tang, A. 2005.

Fluid integration of rotation and translation. CHI 2005,

601-610.

8. MacKenzie, C.L., and Iberall, T. 1994. The grasping

hand. Amsterdam, Netherlands: North Holland.

9. Microsoft Corporation. Microsoft Surface.

http://www.surface.com. 2007.

10. Wilson, A. 2004. TouchLight: an imaging touch screen

and display for gesture-based interaction. ICMI '04, 69-

76.

11. Wilson, A. 2005. PlayAnywhere: a compact interactive

tabletop projection-vision system. UIST'05, 83-92.

12. Wilson, A. 2006. Robust computer vision-based

detection of pinching for one and two-handed gesture

input. UIST'06, 255-258.

13. Wilson, A. 2007. Depth-sensing video cameras for 3D

Tangible Interaction. Second IEEE International

Workshop on Horizontal Interactive Human-Computer

Systems, 201-204.

14. Wilson, A., Izadi, S., Hilliges, O., Garcia-Mendoza, A.

and Kirk, D. 2008. Bringing physics to the surface,

UIST’08, 67-76.

