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ABSTRACT 

We present techniques and algorithms to simulate grasping 

behavior on an imaging interactive surface (e.g., Microsoft 

Surface). In particular, we describe a contour model of 

touch contact shape, and show how these contours may be 

represented in a real-time physics simulation in a way that 

allows more realistic grasping behavior. For example, a 

virtual object may be moved by “squeezing” it with 

multiple contacts undergoing motion. The virtual object is 

caused to move by simulated contact and friction forces. 

Previous work [14] uses many small rigid bodies (“particle 

proxies”) to approximate touch contact shape. This paper 

presents a variation of the particle proxy approach which 

allows grasping behavior. The advantages and 

disadvantages of this new approach are discussed. 
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INTRODUCTION 

Much of the allure of interactive surfaces may be attributed 

to the style of direct manipulation made possible by large 

multi-touch displays and powerful graphics capabilities. 

Often these manipulations have a tangible quality, as if the 

virtual object being manipulated behaves as it would in the 

real world. The now ubiquitous two finger rotation, 

translation and scaling of photos, for example, loosely 

emulates the manipulation of a real photo by friction forces 

imparted by two fingers in contact. 

Imaging interactive surfaces such as Microsoft Surface [9], 

FTIR-based systems [4] and others [10,11] use video 

cameras and computer vision techniques to obtain detailed 

information about the shape of the fingers, hands and other 

objects in contact with the screen. To date there have been 

few systems able to take advantage of the richness of this 

information however. Most multi-touch systems reduce 

each contact shape to a discrete point which is then hit-

tested against onscreen objects in a way that is familiar to 

most software developers.  

The ability to sense more information about hand pose, 

matched with the ability to animate onscreen objects in a 

realistic fashion, invites the simulation of more realistic 

behaviors on imaging interactive surfaces. Wilson et al [14] 

describe an interactive surface which incorporates precise 

contact shape information into a real-time gaming physics 

engine. Onscreen objects move as the result of friction 

forces and collisions with the contour of the hand or other 

physical objects. The proposed technique allows users to 

adopt a wide variety of manipulation strategies drawn from 

experience in the real world. For example, a rolling ball 

may be brushed lightly to cause a small amount of motion, 

while the sudden contact of multiple fingers will quickly 

stop a ball in motion. In their study, users exercised a 

variety of manipulation strategies not found in other 

systems, such as bumping a ball from the side and catching 

it with a cupped hand on the other side of the table. 

Importantly, none of these strategies require specific 

support in code; rather, they are the consequence of the 

physics simulation. 

Wilson et al [14] cite the lack of support for grasping 

behavior as a disadvantage of particle proxy technique. 

That is, it impossible to move or “hold onto” an object by 

“squeezing” a virtual object with multiple fingers placed 

around it. This is a consequence of the “particle proxy” 

technique used in their work. This deficiency seems 

particularly important given the 3D nature of the virtual 

objects and physics simulation: users are primarily limited 

to manipulating an object by applying friction forces on its 

top faces and colliding with its sides. 

In this paper we develop a variation of the particle proxy 

technique that supports the grasping of objects. It 

accomplishes this primarily by allowing the contour of 
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contact objects such as the hand or fingers to conform to the 

shape of the virtual object in grasp, much as your hands 

conform to an object that is being picked up. 

In the following sections we discuss the nature of grasping, 

review the particle proxy approach, present our new 

variation of that approach, show interactions that are 

enabled by it and discuss some limitations of the approach. 

GRASPING 

In the real world the ability to grasp an object is vital. 

Imagine interacting with the real world only applying 

friction forces or colliding with only one side of each 

object! Our grasping ability separates us from much of the 

animal kingdom, allows us to use tools and in a very 

concrete sense gives us the ability to rearrange the world 

around us. Grasping strategies vary widely and depend 

greatly on the task at hand [8]. The grasp used to pick up a 

jug of milk will be very different than that used to thread a 

needle.  

An important feature of grasping with hands is the way that 

multiple fingers and the soft flesh of the hand conform to 

the shape of the grasped object. This would appear to make 

it easier to achieve a stable grasp: consider grasping an 

object by the tips of two pencils.   

Clearly grasping is necessary to pick up an object and 

manipulate it in space. But in the case of a 2D interactive 

surface where objects cannot be lifted into the space above 

the surface, how important is grasping? Consider a typical 

work desk: when objects are rearranged, how often are they 

grasped and moved without leaving contact with the desk 

rather than picked up and moved? 

For the purposes of the present work, we may consider 

grasping as the application of multiple resting contacts on 

the sides of an object. Each of these resting contacts imparts 

a normal force. In the case where the sum of all such forces 

is zero, “mechanical equilibrium” is obtained and the object 

does not accelerate. If the contacts move, the object may be 

caused to move to restore mechanical equilibrium, as when, 

for example, an object is rotated while grasped. 

Friction forces play an important role in grasping. Because 

friction forces are proportional to the normal force (see 

Figure 1), it is possible to maintain the grip of a slippery 

object by squeezing it more. Similarly, an object may fall 

out of grasp if the grip is lessened. 

By simulating grasping behavior at the basic level of 

concepts such as forces and friction, we hope to allow users 

to exploit the variety of grasping strategies that are familiar 

in the real world, and for system designers to avoid the need 

to program multiple interactions in an ad hoc fashion. 

 

 

Figure 1. An object exerts force of weight W. Friction force f 

opposes force F causing motion, and is proportional to the 

normal force N. 

RELATED WORK 

While there have been a number of interactive surface 

systems which have based interactions at least in part using 

physics concepts (see [14] for a review) there are very few 

(if any) that treat grasping realistically. More common is 

the programmatic manipulation of virtual objects (such as 

in [7]) where an object is rotated, translated and possibly 

scaled by the movement of contact points on the object. In 

these cases the object may be considered in the “grasped” 

state if any contact touches it. 

The variety of grasping behavior motivates the dependence 

on shape information in ShapeTouch [1]. For example, the 

authors note that hand posture varies drastically with the 

task, and that even coarse models of shape, such as contact 

size, may be used to implicitly select the mode of 

manipulation. 

The Responsive Workbench explored the use of multiple 

inputs with a physics engine in a 3D assembly task [3]. This 

system is notable for the way that objects are manipulated: 

virtual springs attached to the corners of a rigid cube are 

fixed to the object to be manipulated. The rigid frame is 

then moved with the user’s input. Bimanual interactions are 

supported by superposition of forces from both hands. This 

combination of forces from multiple inputs is similar to the 

notion of grasping introduced above. 

Grasping has been studied in great detail in the field of 

robotics, where a classic problem is how to drive a 

dexterous manipulator to pick up and hold a physical object 

(“grasp planning”). 

PARTICLE PROXIES 

The main idea of the particle proxy approach developed in 

Wilson et al [14] is to insert many small rigid bodies into a 

real-time physics simulation. These rigid bodies are termed 

“proxies” because they are positioned to closely 

approximate the shape of the surface contact (e.g., hand, 

finger, or other physical object), and so taken together are 

thought to be a proxy for the actual physical object (see 

Figure 2).  

The particles are moved to match the local motion of the 

contact observed at the corresponding location in the input 

image. This is achieved by applying a force of the exact 

W 

N 

F 

f = µN 

 



 

 

 

 

 

 

3 

magnitude and direction to effect the movement of each 

proxy. 

 

Figure 2. Particle proxies approximate the shape of multiple 

contacts. Left: applying friction from the top, and collision 

from the side to grip a block. Middle: long proxy particle 

objects (red) illustrated. 

Because each particle is a rigid body in the physics 

simulation, it participates in collision and friction 

calculations like any other rigid body. So, for example, 

when the contour of the hand moves to strike the side of an 

object, an appropriate collision response is made: the object 

may move. Similarly, the particles will generate friction 

forces that may cause the object under them to move. 

There are a number of aspects of the particle proxy 

algorithm that are relevant to the present work.  

Generating particles 

Particles are generated to match the contour of the contact. 

The input image is processed by a Sobel (gradient) operator 

which highlights the edges of objects on the surface. A 

particle is generated for every pixel in the Sobel image that 

is greater than some threshold intensity. 

Positioning particles 

Each particle must be positioned in the 3D world of the 

physics simulation. Because the input is fundamentally 2D 

and the virtual objects inhabit a 3D world, it is necessary to 

determine a 3D position for the particle. The position of the 

particle in the plane of the display is determined naturally 

from the input image coordinates. The out-of-plane height 

of the particle’s position is determined by finding the first 

point of intersection with any virtual object by a standard 

ray casting operation. The particle is placed to be in resting 

contact with this point. 

Particle shape 

The shape of each particle’s rigid body is limited only by 

the collision primitives supported by the physics simulator. 

A sphere is a good choice because it allows easy collision 

detection calculations. A capsule that extends all the way 

from graphics camera near plane to the intersected object is 

an interesting choice because it would collide with objects 

that lie above the original intersecting body, such as objects 

that are stacked, are airborne or have sides that are not flat 

(e.g., a ball). The capsule proxy may more closely meet 

users’ expectations about how objects should collide with 

contacts. 

Advancing the simulation 

Rather than attempt to track the particle across multiple 

frames, the algorithm outlined in [14] suggests creating a 

new set of particles each frame. After the physics 

simulation is updated, all particles are removed from the 

simulation. This instantaneous feature of the algorithm 

avoids complex and error-prone tracking techniques, and 

fits well with the contour information contained in the 

Sobel image. 

The particle proxy algorithm is summarized as: 

compute Sobel image from surface input 
for each pixel with high spatial gradient: 

raycast into scene to determine initial particle position 
add particle rigid body to physics simulation 
compute contact motion at particle (e.g., from flow) 
compute corresponding tangential motion in scene 
apply force to particle to match scene motion 
apply downward force (gravity) to particle 

update physics simulation 
destroy all particle rigid bodies 

 

GRASPING WITH PARTICLE PROXIES 

The particle proxy approach summarized above does not 

support grasping primarily because of the instantaneous 

nature of the algorithm. Consider two finger contacts 

closing around a virtual object at rest. Each finger is 

represented by a cluster of particles, each created, 

positioned, moved, and destroyed every frame. At some 

point some particles will collide with the object and the 

object will move in response. Eventually there will be 

particles in contact on both sides of the object, and the 

object will have nowhere to go. At this moment we might 

consider the object to be under grasping control. But it is 

very likely that the user, in the absence of tactile feedback 

from the virtual object, will continue to move their fingers 

together. Shortly thereafter, the subsequently created 

particles will be placed on top of the object, in accordance 

with the raycasting placement strategy summarized above. 

The net result is that while the user may be able to place 

particles that are in contact with the side of objects, these 

particles will never exert any significant normal force on 

the side of the object (and, subsequently, friction forces) 

that lead to true grasping behavior. The particles are 

replaced by new particles that are positioned on top of the 

object to be grasped. It is as if the fingers slide to the top of 

the object: the object literally slips out of grasp. 

PERSISTENT PARTICLE PROXIES 

The alternative to creating a complete set of particles every 

frame is to create a set of particles that are preserved frame 

to frame. As we show in the rest of the paper, this approach 



 

 

 

 

has the advantage of allowing particles to rest on the side of 

an object even when the corresponding contact has moved 

deep within the object. A collection of such points 

distributed along the contour of an input contact can thus 

conform to the shape of the object and lead to strong 

normal and friction forces needed for grasping. 

The difficulty in this approach is that particles must follow 

the input contour, and particles must be added and removed 

to follow the changing size and shape of the input contact. 

In order to simplify the task of tracking an evenly sampled 

contour over many frames, we use an explicit contour 

representation (i.e., a linked list of points) rather than the 

previous approach of implicitly representing the contour by 

generating a particle for every bright pixel in the Sobel 

image. As discussed later, this loses some of the robustness 

features of the original particle proxy approach. 

In the following sections we detail this “persistent particle 

proxy” approach. 

CONTACT MODEL 

Imaging touch screens such as Microsoft Surface and others 

base the discovery and tracking of input contacts on 

observing connected components in a binary image that is 

the result of several image processing steps such as lens 

distortion correction, level normalization and so on. In this 

binary image, each “on” pixel corresponds to a tiny region 

of the screen that is being touched. The calculation of 

connected components groups these regions into one or 

more spatially distinct input contacts. Most often the center, 

bounding box or ellipsoid shape of each contact is made 

available to subsequent processing. 

Wilson et al [14] argues for avoiding the connected 

component model of contacts on the grounds that it results 

in a poor representation of contact shape, and that the 

typical subsequent tracking of connected components is 

error-prone when the user adopts more complex postures 

such as the flat of the hand, the whole hand, or any of the 

myriad postures beyond the tip of the index finger touching 

the display. 

In the persistent particle proxy approach we return to the 

use of connected components for ease of computation, but 

compute the exact contour of each connected component 

using the technique described in [2]. This technique finds 

all connected components and their contours in one pass of 

the image (see Figure 3).  

Each connected component corresponds to a single input 

contact. Contacts may be tracked from to frame by 

matching the connected components found in the current 

frame to those found in the previous frame. A reasonable 

heuristic is to assign a connected component to the nearest 

component in the previous frame, within some threshold 

distance. Components in the previous frame that have no 

assignment after this process are marked as removed (the 

contact has been lifted off). Components in the current 

frame that have no assignment are marked as new (the 

contact has just touched the surface). 

The use of connected components thus allows the detection 

and special handling of new input contacts. In particular, in 

the algorithm presented later, particles corresponding to 

new contacts are positioned in the scene using raycasting, 

while those associated with pre-existing contacts are not.  

 

Figure 3. Example image from diffuse-illumination table 

showing fingertips in contact and business card (face up) on 

the table. Extracted contours are in red. 

 

KINEMATIC CONTROL 

Before presenting the full persistent particle proxy 

algorithm we outline how rigid bodies may be correctly 

moved under programmatic control in a physics engine. 

This is necessary in our case to move a particle to match the 

position of a point on the contour of a contact. 

At their most basic level rigid body physics simulators offer 

only the ability to apply forces and torques to a rigid body. 

Setting the position of a rigid body directly is generally not 

allowed, as this would defeat correct collision and 

dynamics calculations, as well as generate unrealistic object 

motion. 

A common way to emulate kinematic motion by applying 

only forces and torques is to apply the amounts necessary to 

move the rigid body into a given position and orientation. 

These calculations assume the rigid body is in free space, 

and neglects the possibility of collisions and friction forces 

that might interrupt the object’s motion. 

Given the present (actual) position 𝑥 , the force F to move 

an object of mass m to position 𝑥 ∗ is calculated by: 

𝑣 ∗ =
𝑥 ∗−𝑥 

∆𝑡
, 𝑎 ∗ =

𝑣  ∗−𝑣  

∆𝑡
, F = m 𝑎 ∗. 

For the purposes of the present work, we need only control 

angular velocity. Given target angular velocity 𝜔   ∗ and 

current angular velocity 𝜔   , apply torque 𝜏 ∗ =
𝜔    ∗−𝜔    

∆𝑡
. 
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ALGORITHM 

In this section we detail the persistent particle proxy 

technique.  

As described above, the contact model is able to detect and 

allow for special handling of new contacts. New contacts 

are typically generated when the user first touches the 

surface with a finger, hand or other physical object. To 

begin the persistent particle proxy technique, each new 

contact is seeded by a number of particles that approximate 

the contour of the corresponding connected component. As 

with the original particle proxy algorithm, these new 

particles are placed in the 3D scene at (x,y) coordinates to 

match the position of the corresponding contour point in the 

input image. The height (z) of the particle is determined by 

raycasting to find the surface in the 3D scene nearest the 

graphics camera. Thus if the user touches a virtual object, 

the particles will be positioned to lie on top of the virtual 

object. 

Existing contacts differ from new contacts in that there is a 

collection of particles already created to approximate the 

contact’s contour in the previous frame. In the persistent 

particle proxy technique, this set of particles must be 

updated to reflect the change in size and shape of the 

contact’s contour from the previous frame to the current 

frame. 

Critical to this update is that particles should move in the 

same way that the corresponding part of the real object on 

the surface moves. This is necessary to generate correct 

friction forces when the particles are in contact with a 

virtual object, as well as to determine which parts of the 

contour are new or have been removed. 

The motion of a given particle from the previous frame to 

the current frame is calculated by matching a small part of 

the contour in the previous frame with the contour in the 

current frame. Our current prototype uses exhaustive search 

to find the closest match in the new contour. A point  𝑥 𝑡−1,𝑘  

at the previous time step is matched to the point 𝑥 𝑡 ,𝑗 ∗ by 

summing squared distance over 𝑛 consecutive points of the 

contours: 

𝑗∗ = argmin
𝑗

  𝑥 𝑡−1,𝑘+𝑖 − 𝑥 𝑡 ,𝑗 +𝑖 
2

𝑛/2

𝑖=−𝑛/2

 

Let us call the best matching point 𝑥 𝑡 ,𝑗 ∗ on the current 

contour the previous point’s “successor”. 

As this process continues around the contour, the best 

match to each point in the current contour is noted with that 

point. Let us call the current contour point’s best match 

point in the previous contour that point’s “predecessor”. 

Note that every point in the previous frame has a successor 

but not every point in the current frame may have a 

predecessor. 

If a point on the current frame’s contour was assigned a 

predecessor its corresponding particle is marked for reuse: 

it will be propagated to the next simulation time step. 

If the point was not assigned a predecessor, it is considered 

to be a new point (the contact evidently grew in size). A 

particle is created for this point and is placed at the position 

of the particle corresponding with the first neighboring 

point on the current contour not marked as new. The new 

particle is added to the physics simulation. 

Every point on the previous contour is assigned a successor 

on the current contour. If that successor does not consider 

the same point on the previous contour its predecessor, its 

corresponding particle is marked for deletion and is 

removed from the physics simulation. 

The result of this process is that every point on the current 

contour has a corresponding particle in the physics 

simulation that is either new or reused, and each particle is 

paired with a point on the current frame’s contour in such a 

way as to approximate the local motion at each point of the 

contour. 

As the last step of the algorithm, forces are applied to move 

the particles to match the position of the paired contour 

point. This is performed using the technique of kinematic 

control described earlier, but with one distinction: a 

constant force is applied in the (z) direction. Like gravity, 

this tends to keep the particles touching the top face of 

some virtual object in the scene. To ensure correct friction 

with the particles and avoid the possibility of spinning 

particles, the angular velocity of each particle is 

kinematically controlled to be zero. Finally, we note that 

the physics simulation should be configured so that 

particles are not allowed to collide with one another. 

GRASPING FORCES 

As noted earlier, the above algorithm supports grasping 

behavior primarily because particles are preserved frame to 

frame. Consider a contact that moves to collide with the 

side of a virtual object. Because each particle is 

kinematically controlled and will have the same or similar 

height as its predecessor, particles would rather rest in 

contact with the side of a virtual object rather than appear 

on the top of the object. In this way the particles are 

allowed to conform to the shape of the object much as a real 

hand might. 

Note that the procedure of initializing a new particle is 

different than the raycasting approach used with a new 

contact described above. This difference is key to the 

persistent particle approach: rather than have a new particle 



 

 

 

 

appear on the top of the object, they appear with their 

neighbors. 

Moreover, because the forces applied to kinematically 

position the particle in the (x,y) plane are proportional to 

the displacement of the particle from its matched input 

contour point, the normal force of a particle resting on the 

side of the object will increase as the contact moves further 

inside the object, with the attendant increase in friction 

forces. This allows the user to “press harder” or “squeeze” 

an object to maintain a firmer grip (see Figure 4). 

 
 

Figure 4. The force applied to a particle is proportional to its 

displacement from the input contour. 

Of course, because the object is virtual, there is no real 

restorative force opposing the user’s fingers. Consequently, 

there is nothing to stop the user from penetrating the object 

by an amount that cannot be reasonably modeled by the 

conforming behavior of the particle contours. While this 

appears to be fundamental limitation of the technology that 

is difficult to address, we note that the forces applied vary 

continuously with varying amounts of penetration, so that 

the subsequent behavior of the object is at least predictable.  

STACKED PARTICLES 

In much of our experimentation we have been using 

spherical particle proxies. These are simple to work with, 

but can sometimes lead to unusual or unexpected results 

with certain kinds of 3D geometry. For example, sliding a 

contact into a virtual ball results in the much smaller 

particles moving under the ball until they finally hit the 

underside of the ball near the point at which it contacts the 

ground floor. Wilson et al [14] suggest using long capsules 

as proxies to address this problem, and we expect that this 

approach will work with the persistent particle proxy 

approach as well. 

However, capsules and spheres have the limitation that in 

most circumstances they will contact a colliding object at 

just one point. When grasping an object, the height of the 

point of contact may vary throughout the grasping contours, 

thus causing forces that may cause the object to rotate or 

flip over unexpectedly. 

In the present work we explore the idea of stacking multiple 

spherical particles at each point in the grasping contour (see 

Figure 5). In this scheme, the behavior of the bottommost 

particle is exactly as before, but the particles above it in the 

stack are kinematically controlled to lie at fixed heights 

above the bottommost particle. The result is analogous to 

using capsule proxies, except with the important distinction 

that because each particle in a stack is an independent rigid 

body, the stack conforms to the grasped object’s change in 

shape along the (z) dimension. 

The effect of stacked particle proxies during grasping will 

depend on the geometry of the object under grasp. An 

object with straight sides will behave no differently, but the 

ball mentioned earlier will be cradled by the proxies, 

probably resulting in a more stable grasp. 

 

Figure 5. Stacked particles generated from two contacts. 

 

IMPLEMENTATION 

In our experimentation we have used a diffuse-illuminated 

interactive tabletop system similar to Microsoft Surface. 

The system’s single video camera runs at 60Hz, with 

images of resolution 640x480. The table projects a 

1024x768 image onto a 30” diagonal display. We use 

standard, well known techniques to correct for lens 

distortion, projective distortion, level normalization and 

binarization. For physics simulator, we use Newton 1.53 

[6].  

The system is driven by a desktop PC with an Intel Core i7 

CPU. With the particle proxy approach, CPU consumption 

increases with more particles. The simple contour matching 

process is quadratic in the number of points on the contour. 

While the frame rate of the overall system will dip below 

the camera frame rate when there are many contacts or 

large contacts, there has been no concerted attempt to 

multithread or otherwise optimize the present software 

implementation.  

INTERACTIONS 

The persistent particle proxy technique supports the same 

collision and friction-based interactions of the original 

particle proxy technique. Collisions from the side cause the 

object to move, while touching the top of an object may 

cause it to translate and rotate (we invite the reader to view 

the accompanying video figure): 
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Several new grasping interactions are now possible with the 

persistent particle technique. Grasping from the side and 

turning in place sets up opposing forces which cause the 

object to turn in place: 

 

Grasping from the side can translate the object by friction 

forces on the side of the object: 

 

The same friction forces may prevent a colliding object 

(such as a third finger) from moving the object: 

 

A lighter squeeze might have allowed the object to move. 

Likewise, a finger from the top may not impart enough 

friction force to move the object. In this case the finger will 

slide off the top of the object: 

  

The conforming behavior of the particle proxies will enact a 

restorative force when an object is let go from grasp: 

   

The “feel” of these interactions will depend on the values of 

the coefficients of static and kinetic friction, as well as the 

masses and moments of inertia of the grasped object. The 

grasp of a slippery or heavy object may be difficult to 

acquire.  

DISCUSSION 

The persistent particle proxy approach addresses one of the 

main limitations of the particle proxy approach presented in 

Wilson et al. The present implementation trades away some 

of the features of the technique that make it robust to 

tracking and segmentation errors. 

Much of the motivation in using connected components and 

their associated contours is the need to bootstrap new 

contacts into the simulation. 



 

 

 

 

Another reason for using connected components is that the 

point matching process used to determine particle motion 

need only exhaustively search the contour of the tracked 

component, not all contours. 

Unfortunately, errors in the contact tracking process can 

disrupt the grasping behavior of the persistent particle 

contour. Consider, for example, a grasping contact with its 

particles resting on the side of an object. If the contact 

tracking process confuses this contact with another, it may 

conclude that it is a new contact, triggering the deletion or 

relocation of all the contours particles and the placement of 

new particles on top of the object. The object may fall out 

of grasp. 

If there is no need to support the manipulation of objects by 

friction forces from the top, it may be preferable to avoid 

tracking connected components, and instead place all 

particles on the “ground floor” of the scene, with the 

provision that new particles are placed so that they do not 

penetrate any object. 

Perhaps an easy way to support top friction forces and 

grasping is to establish a limit on the penetration that 

grasping supports. For example, a contact contour that 

appears near the middle of an object (or is completely 

contained by the object) would be placed on its top face 

because to conclude otherwise would imply an unrealistic 

amount of penetration. 

Ultimately these considerations arise from the fact that we 

are using a 2D sensor to interact with a 3D environment. 

Hence there is a need to infer (rather than directly measure) 

the height of a contact. 

But we are also very interested in considering interactions 

that use 3D sensing technology, where the height of a 

contact may in fact be directly measured.  

For example, Wilson [13] shows interactions using a range 

sensing camera and a co-located projected image. Hilliges 

et al [5] examine interactions above interactive surfaces, 

using two hardware configurations that allow sensing the 

space above the display, including a range sensing camera. 

In their work, they show a few grasping strategies: first 

using the technique in [12] to sense when the user brings 

their thumb and forefinger together. They explore a second 

approach of tracking fingers directly. 3D finger positions 

are intersected with rigid bodies in the scene: a five degree 

of freedom manipulation is enabled on a rigid body when 

two fingertips are detected to lie within object. 

We believe that the persistent particle proxy technique can 

be extended to work with 3D input devices such as range 

sensing cameras. The main challenge will be in extending 

the point motion estimation process to work with meshes 

rather than contours. 

CONCLUSION 

We have shown a variation of the particle proxy approach 

that supports grasping behavior on imaging interactive 

surfaces. In addressing one of the main drawbacks of the 

particle proxy approach, the proposed technique increases 

the fidelity of the simulation of the physics of interacting 

with a real object. 
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