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Abstract
In previous work [14], we modify the hidden Markov

model (HMM) framework to incorporate a global para-
metric variation in the output probabilities of the states of
the HMM. Development of the parametric hidden Markov
model (PHMM) was motivated by the task of simultaneously
recognizing and interpreting gestures that exhibit meaning-
ful variation. With standard HMMs, such global variation
confounds the recognition process. The original PHMM
approach assumes a linear dependence of output density
means on the global parameter. In this paper we extend
the PHMM to handle arbitrary smooth (nonlinear) depen-
dencies. We show a generalized expectation-maximization
(GEM) algorithm for training the PHMM and a GEM algo-
rithm to simultaneously recognize the gesture and estimate
the value of the parameter. We present results on a pointing
gesture, where the nonlinear approach permits the natural
azimuth/elevation parameterization of pointing direction.

1 Introduction
In [14] we introduce parametric hidden Markov models

(PHMMs) as a technique to simultaneously recognize and
interpret parameterized gesture. By parameterized gesture
we mean gestures that exhibit a meaningful variation; an
example is a point gesture where the important parame-
ter is direction. A point gesture is then parameterized by
two values: the Cartesian coordinates that indicate direc-
tion. Alternatively, direction can be specified by spherical
coordinates.

We refer the reader to [14] for a detailed motivation of
the PHMM approach as it relates to gesture recognition
and interpretation. We briefly mention here that without
resorting to manual tinkering with the feature space, a stan-
dard dynamic time warping (DTW) or HMM approach to
the recognition of parameterized gestures faces the diffi-
culty that either the variability controlled by the parameter
must be modeled as noise, or there must be an indepen-
dent recognition procedure for each significantly distinct
parameter value. Likewise the process of recovering the
parameters necessarily involves recognizing the gesture.

PHMMs extend the standard HMM model to include
a global parametric variation in the output of the HMM
states. In [14] a linear model was used to model the
parametric variation of the output densities at each state
of the HMM. Using the linear model, we formulated an
expectation-maximization (EM) method for training the
parametric HMM. During testing, the PHMM simultane-
ously recognizes the gesture and estimates the quantifying

parameters, also by an EM procedure.
After reviewing linear PHMMs, we present the exten-

sion of the framework to handle situations in which the
dependence of the state output distributions on the parame-
ters is not linear. Nonlinear PHMMs model the dependence
using a single 3-layer logistic neural network at each state;
this model reduces the constraint on the mapping from
parameterization to output densities from being linear to
simply being smooth. The nonlinear PHMM is thus able
to model a larger class of gesture and movement than the
linear PHMM, and by the same token, the parameterization
may be chosen more freely in relation to the observation
feature space.

2 Related work
Hidden Markov models and related statistical time-

warping techniques have been applied to the problem of
gesture recognition with notable success [11, 12, 5, 15].
None of these works has developed representations to learn
meaningful variation of the gestures. For example, Starner
and Pentland restrict the ASL alphabet to repeatable, non-
varying gestures. In fact ASL is subject to complex gram-
matical processes that operate on multiple simultaneous
levels. These kinds of variation in ASL are addressed in a
machine perception framework by Poizner et al. [9].

In [13], we apply HMMs to the task of hand gesture
recognition from video by training an eigenvector basis set
of the images corresponding to each state. An image’s
membership to each state is a function of the residual of the
reconstruction of the image using the state’s eigenvectors.
The state membership is thus invariant to variance along
the eigenvectors. Although not applied to images directly,
the present work is an extension of this earlier work in that
the goal is to recover a parameterization of the systematic
variation of the gesture.

Murase and Nayar [7] parameterize meaningful varia-
tion in the appearance of images by computing a repre-
sentation of the nonlinear manifold of the images in an
eigenspace of the images. Their work is similar to ours
in that training assumes that each input feature vector is
labeled with the value of the parameterization. In testing,
an unknown image is projected onto the manifold and the
parameterization is recovered. Their framework has been
used, for example, to recover the camera angle relative to a
known object in the field of view.

Recently there has been interest in methods that re-
cover latent parameterizations. In his “family discovery”
paradigm, Omohundro [8], for example, outlines a variety



of approaches to learning the nonlinear manifold represent-
ing systematic variation. One of these techniques has been
applied to the task of lip reading by Bregler and Omohundro
[4]. Bishop, Svensen and Williams [3] have also introduced
techniques to learn latent parameterizations.

Finally, a number of systems have been developed which
use gesture recognitionwithinan interactive context. These
are particularly relevant to the present work in that the sys-
tem is charged with the task of extracting a parameter im-
portant to the interaction as well as the task of recognizing
that the gesture occurred. The Perseus [6] system is an
example. The typical approach of these systems is to first
identify static configurations of the user’s body that are di-
agnostic of the gesture, and then use an unrelated method to
extract the parameter of interest (e.g., direction of pointing).
Manually constructed ad hoc procedures are typically used
to identify the diagnostic configuration, a task complicated
by the requirement that this procedure work through the
range of meaningful variation and also not be confused by
other gestures. Perseus, for example, understands pointing
gestures by detecting when the user’s arm is extended. The
system then finds the pointing direction by computing the
line from the head to the user’s hand.

3 Linear PHMMs
This section reviews the linear derivation found in [14].

PHMMs model the dependence on the parameter of interest
explicitly. We begin with the usual HMM formulation [10]
and change the form of the output probability distribution
(usually a normal distribution or a mixture model) to depend
on the parameter �, a vector quantity.

3.1 Model
In the standard continuous HMM model, a sequence is

represented by movement through a set of hidden states.
The Markov property is encoded in a set of transition prob-
abilities, with aij = P (qt = j j qt�1 = i) being the
probability of moving to state j at time t given the system
was in state i at time t � 1. Associated with each state j
is an output distribution of the feature vector x given the
system is really in state j at time t: P (xt j qt = j). In a
simple Gaussian HMM, the parameters to be estimated are
the aij, �j , and �j.1

To introduce the parameterization on � we modify the
output distributions. The simplest useful model is a linear
dependence of the mean of the Gaussian on �. For each
state j of the HMM we have:

�̂j(�) = Wj� + �̄j (1)

P (xt j qt = j; �) = N (xt; �̂j(�);Σj) (2)

In the work presented here all values of � are considered
equally likely and so the prior P (� j qt = j) is ignored.

Note that � is constant for the entire observation se-
quence, but is free to vary from sequence to sequence.
When necessary, we write the value of � associated with a
particular sequence k as �k.

Figure 1 shows the PHMM architecture as a Bayes
network. Bengio and Frasconi’s [1] Input Output HMM

1Technically there are also the initial state parameters�j to be estimated;
in this work we use causal topologies with a unique starting state.

qtqt-1 qt+1

xtxt-1 xt+1

Figure 1: Bayes network showing the conditional dependencies
of the PHMM.

(IOHMM) is a similar architecture that maps input se-
quences to output sequences using a recurrent neural net,
which by the Markov assumption needs only consider the
current and previous time steps of the input and output.The
PHMM architecture differs in that it maps a single param-
eter value to a sequence. Thus the parameter provides a
global constraint on the sequences, and so the PHMM test-
ing phase must consider the entire sequence at once. Later,
we show how this feature provides robustness to noise.

3.2 Training
Training consists of setting the HMM parameters to

maximize the probability of the training sequences. Each
training sequence is paired with a value of �. The Baum-
Welch form of the expectation-maximization (EM) algo-
rithm is used to update the parameters of the output prob-
ability distributions. The expectation step of the Baum-
Welch algorithm (also known as the “forward/backward”
algorithm) computes the probability that the HMM was in
state j at time t given the entire sequence xt, denoted as
tj. It is convenient to consider the HMM’s parse of the
observation sequence as being represented by the matrix
tj.

In training, the parameters � of the HMM are updated in
the maximization step of the EM algorithm. In particular,
the parameters � are updated by choosing a �0 to maximize
the auxiliary function Q(�0 j �), the expected value of the
log probability of the sequence given the parse tj . �0

may contain all the parameters in �, or only a subset if
several maximization steps are required to estimate all the
parameters. In [14] we derive Q for HMMs:

@Q

@�0
=
X
t

X
j

tj

@
@�0

P (xt j qt = j; �0)

P (xt j qt = j; �0)
(3)

The parameters � of the parameterized Gaussian HMM
include Wj , �̄j, Σj and the Markov model transition prob-
abilities. UpdatingWj and �̄j separately has the drawback
that when estimating Wj only the old value of �̄j is avail-
able, and similarly if �̄j is estimated first. Instead, we
define new variables:
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�
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�
(4)



such that �̂j = ZjΩk. We then need to only update Zj in
the maximization step for the means.

To derive an update equation for Zj we maximize Q by
setting equation 3 to zero (selecting Zj as the parameters
in �0) and solving for Zj . Note that because each obser-
vation sequence k in the training set is associated with a
particular �k, we can consider all observation sequences in
the training set before updating Zj . Accordingly we de-
note tj associated with sequence k as ktj. Substituting
the Gaussian distribution and the definition of �̂j = ZjΩk

into equation 3:
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Setting this derivative to zero and solving for Zj , we get
the update equation for Zj :
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Once the means are estimated, the covariance matrices
Σj are updated in the usual way:

Σj =
X
k;t

ktjP
t ktj

(xkt � �̂j(�k))(xkt � �̂j(�k))
T (9)

as is the matrix of transition probabilities [10].
3.3 Testing

In testing we are given an HMM and an input sequence.
We wish to compute the value of � and the probability
that the HMM produced the sequence. As compared to the
usual HMM formulation, the PHMM’s testing procedure is
complicated by the dependence of the parse on the unknown
�. Here we present only a technique to extract the value
of �, since for a given value of � the probability of the
sequence xt is easily computed by the Viterbi algorithm or
by the forward/backward algorithm.

We desire the value of � which maximizes the prob-
ability of the observation sequence. Again an EM al-
gorithm is appropriate: the expectation step is the same
forward/backward algorithm used in training. The for-
ward/backward algorithm computes the optimal parse given
a value of �. In the corresponding maximization step we
update� to maximizeQ, the log probabilityof the sequence
given the parse tj .

To derive an update equation for �, we start with the
derivative in equation 3 from the previous section and select
� as �0. As with Zj , only the means �̂j depend upon �
yielding:
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Setting this derivative to zero and solving for �, we have:
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The values of tj and � are iteratively updated until the

change in � is small. With the examples we have tried, less
than ten iterations are sufficient. Note that for efficiency,
many of the inner terms of the above expression may be
pre-computed.

4 Nonlinear PHMMs
4.1 Model

Nonlinear PHMMs omit the linear model of section 3.1
in favor of a logistic neural network with one hidden layer.
As with linear PHMMs, the output of each state is assumed
to be Gaussian:

P (xt j qt = j; �) = N (xt; �̂j(�);Σj) (12)

The mean �̂j(�) is defined to be the output of the net-
work associated with state j:

�̂j(�) = W (2;j)g(W (1;j)� + b(1;j)) + b(2;j) (13)

where W (1;j) denotes the matrix of weights from the input
layer to the layer of hidden logistic units, b(1;j) the biases
at each input unit, and g(�) the vector-valued function that
computes the logistic function of each component of its
argument. Similarly, W (2;j) and b(2;j) denote the weights
and biases for the output layer (see [2]).
4.2 Training

As with linear PHMMs, the parameters of the nonlinear
PHMM are updated in the maximization step of the training
EM algorithm by choosing �0 to maximize the auxiliary
function Q(�0 j �).

In the nonlinear PHMM, the parameters� include the pa-
rameters of each neural network as well as Σj and transition
probabilitiesaij. Unlike the linear PHMM it is not possible
to maximize Q with respect to � analytically. Instead we
rely on the “generalized expectation-maximization” (GEM)
algorithmin whichQ is numerically maximized in the max-
imization step using optimization techniques. The expecta-
tion step is the same as in the linear parametric and standard
HMM formulations (the forward/backward algorithm).

Gradient ascent may be used to update the network pa-
rameters in each maximization step of the GEM algorithm.
When applied to multi-layer neural networks, gradient as-
cent (or gradient descent when the goal is to minimize “er-
ror”) is often referred to as the backpropagation algorithm
[2].

Rather than reiterate the development of the backpropa-
gation algorithm here, we note that to optimizeP (xt j qt =
j; �) via gradient ascent we use

@

@�
logP (xt j qt = j; �) = �Σ�1

j (xkt � �̂j(�)) (14)

where xkt � �̂j(�) is the usual error quantity to be min-
imized by the backpropagation algorithm. Accordingly,



to maximize Q we use the backpropagation algorithm to
minimize the error

tjΣ�1
j (xkt � �̂j(�)) (15)

for the network corresponding to state j.
In each maximization step of the GEM algorithm, it is

not necessary to maximize Q completely. As long as Q is
increased for every maximization step, the GEM algorithm
is guaranteed to converge to a local maximum in the same
manner as EM. In fact, since the functionalQ changes with
every expectation step, a complete maximization of Q in
the maximization step is probably computationally waste-
ful. In our testing we run the gradient ascent algorithm
(backpropagation algorithm) a fixed number of iterations
for each GEM iteration.
4.3 Testing

In testing we desire the value of � which maximizes
the probability of the observation sequence. Again an EM
algorithm to compute � is appropriate.

As in the training phase, we can not maximize Q analyt-
ically, and so a GEM algorithm is necessary. To optimize
Q, we use a gradient ascent algorithm:
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@�̂j(�)

@�
=W (2;j)Λ(g0(W (1;j) + b(1;j)))W (1;j) (17)

where Λ(�) forms the diagonal matrix from the components
of its argument, and g0(�) denotes the derivative of the
vector-valued function that computes the logistic function
of each component of its argument.

In the results presented in this paper, we use a gradient
ascent algorithm with adaptive step size. In addition it was
found necessary to constrain the gradient ascent step to pre-
vent the algorithm from wandering outside the bounds of
the training data, where the output of the neural networks
is essentially undefined. This constraint is implemented by
simply limiting any component of the step that takes the
value of � outside the bounds of the training data, estab-
lished by the minimum and maximum � training values.

As with the EM training algorithm of the linear para-
metric case, for all of our experiments less than ten GEM
iterations are required.
4.4 Freedom of choice

In [14] we present an example of a pointing gesture
parameterized by projection of hand positiononto the plane
parallel and in front of the user at the moment that the arm
is fully extended. The linear PHMM works well since the
projection is a linear operation over the range of angles
used in the experiment.

The nonlinear variant of the PHMM introduced in the
previous section is appropriate in situations in which the
dependence of the state output distributions on the param-
eters � is not linear, and cannot be made linear easily with
a known coordinate transformation of the feature space.

In practice, a useful consequence of nonlinear model-
ing for PHMMs is that the parameter space may be chosen
more freely in relation to the observation feature space. For

example, in a hand gesture recognition system, the natu-
ral feature space may be the spatial position of the hand,
while a natural parameterization for a pointing gesture is
the spherical coordinates of the pointing direction (see Fig-
ure 2).

However, there is no guarantee that any observation fea-
ture space will permit the PHMM to learn the parameteri-
zation. Continuing with the pointing example, the nonlin-
ear PHMM approach will learn the smooth mapping from
spherical coordinates of the point to hand position at each
state unambiguously. Obviously, a feature space that does
not include the x coordinate (across the body) will not
be enough to capture the parameterization, while a feature
space that neglects the depth away from the body may work
well enough.

The mapping from parameter to observations must be
smooth enough to be learned by neural networks with a
reasonable number of hidden units. While in theory a 3-
layer logistic neural network with sufficiently many hidden
units and sufficient data is capable of computing any smooth
mapping, we would like to use as few hidden units as pos-
sible and so choose our parameterization and observation
feature space to give simple, learnable maps. Cross vali-
dation is probably the only practical automatic procedure
to evaluate parameter/observation feature space pairings,
as well as the number of hidden units in each neural net-
work. The computational complexity of such approaches
is a drawback of the nonlinear PHMM approach.

In summary, with nonlinear PHMMs we are free to
choose intuitive parameterizations but we must be careful
that it is possible to learn the mapping from parameters to
observation features given a particular observation feature
space.

5 Results
To test the performance of the nonlinear PHMM, we

conducted an experiment similar to the pointingexperiment
of [14] but with a spherical coordinate parameterization
rather than the projection onto a plane in front of the user.

We used a Polhemus motion capture system to record
the position of the user’s wrist at a frame rate of 30Hz.
Fifty such examples were collected, each averaging 29 time
samples (about 1 second) in length. Thirty of the sequences
were randomly selected as the training set; the remaining
20 comprised the test set.

Before training, the value of the parameter � must be
set for each training example, as well as for each testing
example to evaluate the ability of the PHMM to recover the
parameterization. We directly measured the value of � by
finding the point at which the depth of the wrist away from
the user was greatest. This point was transformed to spher-
ical coordinates (azimuth and elevation) via the arctangent
function. Figure 2 diagrams the coordinate system.

Note that for pointing gestures that are confined to a
small area in front of the user (as in the experiment pre-
sented in [14]) the linear parametric HMM approach will
work well enough, since for small values the tangent func-
tion is approximately linear. The pointing gestures used in
the present experiment were more broad, ranging from -36
to +81 degrees elevation and -77 to +80 degrees azimuth.

An 8 state causal nonlinear PHMM was trained on the
40 training examples. To simplify training we constrained
the number of hidden units of each state to be equal; note
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Figure 2: The spherical coordinate system is a natural parame-
terization of pointing direction.

that this is not required by the model but makes choosing
the number of hidden units via cross validation easier. We
evaluated performance on the testing set for various num-
bers of hidden units and found that 10 hidden units gave the
best testing performance. We did not evaluate the perfor-
mance under varying amounts of training data or varying
numbers of states in the HMM.

The average error over the testing set was computed to
be about 6.0 degrees elevation and 7.5 degrees azimuth.
Inspection of the surfaces learned by the logistic networks
of the nonlinear PHMM reveals that as in the linear case, the
input’s dependence on � is most dramatic in the middle of
the sequence, the apex of the pointinggestures. The surface
learned by the logistic network at the state corresponding to
the apex captures the nonlinearity of the dependency (see
Figure 3). For comparison, an eight state linear PHMM
was trained on the same data and yielded an average error
over the same test set of about 14.9 degrees elevation and
18.3 degrees azimuth.

Lastly, we demonstrate recognition performance of the
nonlinear PHMM on our pointing data. A one minute se-
quence was collected that contained a variety of movements
including six points distributed throughout. To simultane-
ously detect the gesture and recover �, we used a 30 sample
(one second) window on the sequence. Figure 4 shows the
log probability as a function of time and the value of �
recovered for a number of recovered pointing gestures. All
of the pointing gestures were recovered.

6 Conclusion
The PHMM framework presented in [14] has been gen-

eralized to handle nonlinear dependencies of the state out-
put distributionson the parameterization �. We have shown
that where the linear PHMM employs the EM algorithm in
training and testing, the nonlinear variant similarly uses the
GEM algorithm.

The drawbacks of the of the generalized approach are
two-fold: the number of hidden units for the networks
must be chosen appropriatelyduring training, and secondly,
during testing the GEM algorithm is more computationally
intensive than the EM algorithm of the linear approach.
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Figure 3: The output of the logistic network corresponding to
state j = 5 displayed as a surface. State 5 is near the apex of
the gesture and shows the greatest sensitivity to pointing angle.
Only the y coordinate of the output is shown; the x coordinate is
similarly nonlinear.

The nonlinear PHMM is able to model a much larger
class of parameterized gestures and movements than the
linear parametric HMM. A benefit of the increased model-
ing ability is that with some care, the parameter space may
be chosen independently of the observation feature space.
It follows that the parameterization may be tailored to a
specific gesture. Furthermore, more intuitive parameteri-
zations may be used. For example, a family of movements
may be parameterized by a subjective quantity (e.g. the
“intensity” of a walk). We believe these are significant
advantages in modeling parameterized gesture and move-
ment.
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