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We explain how to implement, in the context of projected entangled-pair states (PEPS), the
general procedure of fermionization of a tensor network introduced in [P. Corboz, G. Vidal, Phys.
Rev. B 80, 165129 (2009)]. The resulting fermionic PEPS, similar to previous proposals, can be
used to study the ground state of interacting fermions on a two-dimensional lattice. As in the
bosonic case, the cost of simulations depends on the amount of entanglement in the ground state
and not directly on the strength of interactions. The present formulation of fermionic PEPS leads to
a straightforward numerical implementation that allowed us to recycle much of the code for bosonic
PEPS. We demonstrate that fermionic PEPS are a useful variational ansatz for interacting fermion
systems by computing approximations to the ground state of several models on an infinite lattice.
For a model of interacting spinless fermions, ground state energies lower than Hartree-Fock results
are obtained, shifting the boundary between the metal and charge-density wave phases. For the
t − J model, energies comparable with those of a specialized Gutzwiller-projected ansatz are also
obtained.
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I. INTRODUCTION

Strongly correlated fermionic systems, responsible
for relevant many-body phenomena such as high-
temperature superconductivity, the fractional quantum
Hall effect or metal-insulator transitions, represent one of
the most important theoretical challenges in condensed
matter physics. Among the simplest possible models
of interacting fermions in a 2D lattice is the Hubbard
model,1 which is believed to be one of the keys to un-
derstanding the theoretical riddle of high-temperature
superconductivity,2 and which serves as a good exam-
ple to illustrate the nature and scale of the difficulties
encountered. In spite of a titanic effort by the condensed
matter community spanning several decades, still today
the phase diagram of the 2D Hubbard model and its rela-
tion to high-temperature superconductors remain highly
controversial.

In the absence of exactly solvable models, accurate
numerical simulations are essential in order to gain fur-
ther insight into the physics of strongly correlated sys-
tems. While quantum Monte Carlo (QMC) techniques
are very powerful in simulating bosonic systems, they suf-
fer from the so-called negative sign problem in the case
of fermionic and frustrated models.3 On the other hand,
generic 1D lattice systems can be accurately addressed
with the density matrix renormalization group (DMRG)
method,4 but this approach scales inefficiently with the
lattice size in 2D systems. Recent progress in the simula-
tion of 2D fermionic models has been made with a variety
of methods.5–8 However, results obtained with different
methods are often inconsistent, highlighting the need for
further improvement and for alternative approaches.

A promising new route to studying strongly correlated
fermion systems in a 2D lattice, presently under intense

investigation,9–14 is based on using a tensor network as
ground state variational ansatz. For bosonic (e.g. spin)
2D lattice models, tensor network ansätze include pro-
jected entangled-pair states (PEPS) for inhomogeneous15

and homogeneous systems,16–20 and the multi-scale en-
tanglement renormalization ansatz 21 (MERA). [Homoge-
neous PEPS are also known with names such as (vertex)
tensor product states16,18,19]. The interest in these ap-
proaches resides in the fact that they manage to retain
some of the useful features of DMRG and QMC, while
avoiding their main shortcomings. Indeed, PEPS and
MERA approaches are free from the negative sign prob-
lem that prevents the application of QMC to fermionic
and frustrated models. At the same time, and unlike
DMRG, both PEPS and MERA can efficiently represent
ground states of 2D lattice models. In addition, com-
pared to other variational approaches, PEPS and MERA
are relatively unbiased towards specific ground states.
Still at an early stage of development, the major lim-
itation of these methods is that the cost of simulations
increases sharply with the amount of entanglement in the
ground state. This limits the range of models that can
be analyzed accurately at present. Nevertheless, several
systems of frustrated antiferromagnets beyond the reach
of DMRG and QMC have already been addressed.22–25

In recent months, generalizations of tensor network al-
gorithms to fermionic systems have been put forward in-
dependently by several groups.9–11 As a result, it is now
possible to study interacting fermions in 2D lattices both
within the context of the MERA9,11,12 and PEPS.10,13,14

The fundamental new step, common in all the proposals,
is to incorporate the fermionic character of the ground
state wave function directly into the ansatz. This is ac-
complished by considering a network of fermionic opera-
tors, that is, a set of linear maps, made of anticommuting
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operators, that are connected according to a network pat-
tern, as first proposed in Refs. 9,11 for the MERA and
in Ref. 10 for the PEPS.

In actual computations, one is still forced to store and
manipulate tensors (i.e. multi-dimensional arrays of co-
efficients) corresponding e.g. to the expansion coeffi-
cients of the fermionic maps. The process of ‘fermion-
ization’ of a tensor network algorithm, i.e. its extension
to fermionic systems, can in practice be achieved and
visualized in a variety of (ultimately equivalent) ways,
depending on how the underlying network of fermionic
operators is translated into a set of tensors and rules
for their manipulation. Examples include the use of a
Jordan-Wigner transformation,9,11 or the introduction of
additional bond indices between tensors.10 A particularly
simple form of ‘fermionization’ of tensor networks was in-
troduced in Ref. 12, where it was applied in the context of
the MERA. We emphasize that Ref. 12 is based on refor-
mulating previous work by Corboz, Evenbly, Verstraete
and Vidal on fermionic MERA,9 which in turn had its
origins in a key observation by Verstraete.26

The fermionization procedure of Ref. 12, which applies
to any tensor network, is remarkedly simple. It does
not require the introduction of a Jordan-Wigner trans-
formation in the bond indices, or to have to explicitly
keep track and dynamically modify a global fermionic
order; neither does it require the introduction of addi-
tional bond indices in the tensors. Instead, the fermionic
character of the tensor network is engraved in two sim-
ple rules: (i) use of parity invariant tensors and (ii) re-
placement of line crossings with so-called fermionic swap
gates. The net result of applying these rules is a modified
variational ansatz that can be manipulated using stan-
dard tensor network operations (tensor multiplications,
etc.), thus producing a straightforward fermionic version
of existing tensor network algorithms. Importantly, the
computational cost of bosonic and fermionic algorithms
scales in the same way with the amount of entanglement
in the ground state.12 This remarkable result was also
independently derived in Ref. 13.

This paper has two main goals. The first is to explain
how to obtain PEPS algorithms for fermionic systems
by applying the above ‘fermionization’ rules to existing
bosonic PEPS algorithms. Fermionic PEPS were origi-
nally proposed by Kraus, Schuch, Verstraete and Cirac in
Ref. 10 and have also been discussed by Barthel, Pineda
and Eisert in Ref. 13. Our formulation of fermionic
PEPS must be, at some level, equivalent to those pro-
posals. However, the present formulation, which is based
on previous independent work,9,12 is remarkably straight-
forward and appears to be comparatively much simpler.
In particular, it allowed us to numerically implement a
fermionic PEPS algorithm for infinite systems by only
introducing a small number of changes to existing code
for bosonic systems.

A second main goal of this paper is to demonstrate
the usefulness of fermionic PEPS. In spite of the several
existing formulations of fermionic PEPS,10,13,14 and with

the exception of Ref. 14, where some qualitative results
are reported for the t − J model, no evidence has been
presented yet showing that fermionic PEPS are a good
variational ansatz for interacting fermion systems. [No-
tice, however, that Ref. 10 shows that Gaussian fermionic
PEPS can represent states of non-interacting fermions].
Here we do present such evidence, in the form of ground
state computations for several 2D models.

Specifically, we use a fermionic version of the infinite
PEPS (iPEPS) algorithm17,20 to address models on an
infinite square lattice. First, results for free spinless
fermions are compared with the corresponding exact so-
lution, showing that a PEPS with small bond dimension
is capable of reproducing the ground state energy with
several digits of accuracy. Then a model of interacting
spinless fermions is addressed. Qualitatively, the sim-
ulation reproduces the phase diagram predicted within
Hartree-Fock, with metal and charge-density wave phases
separated by a line of first order phase transitions. At a
quantitative level, however, we obtain ground state en-
ergies that are lower than those obtained with Hartree-
Fock, and this shifts the boundary between phases sig-
nificantly. Finally, for the t−J model, we obtain ground
state energies that are close to those of a specialized
Gutziller-projected ansatz.

The rest of the paper is organized as follows: Sec. II
reviews the PEPS formalism for bosonic systems and the
general fermionization procedure of tensor networks in-
troduced in Ref. 12, which is then applied to PEPS al-
gorithms. Sec. III considers in more detail the fermionic
version of the iPEPS algorithm for infinite 2D lattices,
which was employed to obtain the benchmark results pre-
sented in this paper. Sec. IV describes ground state cal-
culations for systems of free and interacting fermions in
an infinite 2D lattice. Sec. V contains some conclusions,
while Appendix A defines generalized fermionic opera-
tors and Appendix B describes in detail one step of the
update in the fermionic iPEPS algorithm.

Note on terminology.— For the purposes of this paper,
a tensor is simply a multi-dimensional array of complex
coefficients, and a tensor network is a set of tensors some
of whose indices are connected according to a network
pattern, where being connected means that there is a
sum or trace over that index, in the sense of tensor multi-
plication. Accordingly, in this paper a bosonic/fermionic
tensor network is a tensor network used in the context
of simulating a bosonic/fermionic system. Thus, in the
present formulation a fermionic PEPS is simply a ”tensor
network that serves as a variational ansatz for fermionic
systems”. It is different from a bosonic PEPS in the pres-
ence of special gates called fermionic swap gates (and in
that its tensors are necessarily parity preserving). In par-
ticular, even though the rules used to create a fermionic
tensor network, as introduced in Ref. 12 and reviewed
here, were obtained by studying how to mimic a network
of fermionic operators (that is, of operators that obey
anticommuting relations), here a fermionic PEPS is not
a network of fermionic operators. One of the merits of



3

the present formulation is precisely that it replaces the
considerable complexity involved in dealing with a net-
work of fermionic operators with a simple set of rules.
In particular, it avoids having to explicitly define, keep
track and dynamically modify a fermionic order for the
bond indices. The equivalence between our formulation
of a fermionic tensor network and a network of fermionic
operators was already established in Ref. 12 for the case
of the MERA. A general derivation of this equivalence
would distract from the purpose of this paper and will
be presented elsewhere.

II. FERMIONIZATION OF PEPS

The goal of this section is to introduce a fermionic ver-
sion of bosonic PEPS algorithms,15–20 so that they can be
applied to simulate fermionic systems in a 2D lattice. We
start by reviewing some key aspects of the PEPS formal-
ism for bosonic systems. This allows us to introduce the
notation and the diagrammatic representation of tensors
used throughout Secs. II and III. Then we describe the
fermionization rules of Ref. 12, which we also extensively
review. We apply these rules to obtain a fermionic PEPS
ansatz (see also Refs. 10,13,14), and provide a discussion
of how fermionic PEPS algorithms can be obtained by
modifying existing bosonic PEPS algorithms.

A. Bosonic lattice system

Let us consider a quantum many-body system in a
lattice L made of N sites, labelled by an integer k ∈
{1, 2, · · · , N}. Each site k ∈ L is described by a complex
vector space V of finite dimension d, with basis states
{|s〉}s=1,··· ,d. The vector space V could represent, for in-
stance, the possible states of a quantum spin sitting on
that site of L. The system is further characterized by a
local (bosonic) Hamiltonian. This is a Hermitian opera-

tor Ĥ : V⊗N → V⊗N that (when expressed in terms of
bosonic operators, i.e. operators that commute when act-
ing on different sites) decomposes as a sum of terms each
involving only a small number of sites. Let |Ψ〉 ∈ V⊗N
be a pure state,

|Ψ〉 =
∑

s1s2···sN

Ψs1s2···sN |s1s2 · · · sN 〉, (1)

where index sk labels a basis on site k ∈ L.
A task of interest is to compute a specific state |Ψ〉

somehow related to Ĥ, e.g. its ground state, and to
evaluate the expectation value 〈Ψ|ô|Ψ〉 of some local ob-
servable ô. However, representing a vector |Ψ〉 ∈ V⊗N
requires a number of complex coefficients Ψs1s2···sN that
grows exponentially in N . This poses a serious com-
putational challenge. Exact diagonalization techniques
are only affordable for small systems (e.g., at most N ≈
30 − 40 for d = 2), and alternative numerical strategies
are required to analyze large systems.

FIG. 1: (Color online) (a) Diagrammatic representation of the
tensor Ψ with coefficients Ψi1i2···i9 for a state |Ψ〉 ∈ V⊗9 of a
3× 3 square lattice L. This tensor is expressed in terms of a
PEPS made of a set of 9 tensors {A[~r]}, one for each site ~r ∈ L.

(b) Bulk tensor A[~r] with components A
[~r]
ulsdr. Notice that the

legs corresponding to indices u, l, s, d and r emerge from
the circle in anti-clockwise order. (c) Hermitian conjugate

A[~r]† of the PEPS tensor A[~r], represented as its mirror image.
Notice that the legs corresponding to indices r, d, s, l and
u of (A[~r]†)rdslu emerge again in anti-clockwise order. (d)
Hermitian conjugates of Ψ and its PEPS representation.

B. Projected Entangled-Pair States

Projected entangled-pair states15,16 (PEPS) were in-
troduced as a means to obtain an efficient description
for some states |Ψ〉 ∈ V⊗N of a 2D lattice L. For con-
creteness, in this work we consider the case of a square
lattice, although all the discussions can be extended to
other type of lattices. To each site k ∈ L there corre-
sponds a vector of integers ~r = (x(k), y(k)), and we also
write ~r ∈ L to denote a site of lattice L.

A PEPS is made of a collection of N tensors {A[~r]}, one
for each site ~r ∈ L, connected through bond indices that
follow the pattern of links of the lattice L. Upon tracing
over all bond indices, a PEPS yields a tensor Ψ with the
dN complex coefficients Ψs1s2···sN of a state |Ψ〉 ∈ V⊗N.

Throughout this paper a diagrammatic representation
of tensors and tensor networks is used, see Fig. 1. Each
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tensor is depicted as a shape (circle, square, diamond,
etc) and its indices as emerging lines. A line connecting
two shapes (or starting and ending at the same shape)
denotes an index over which a trace is taken. As an exam-
ple, Fig. 1(a) represents, in the case of a lattice L made
of 3 × 3 sites, a tensor Ψ with 9 indices, corresponding
to the coefficients Ψs1s2···s9 of |Ψ〉 ∈ V⊗9 , followed by a
PEPS made of 9 tensors {A[~r]}.

The number of indices in a tensor A[~r] depends on the
number of nearest neighbors of site ~r ∈ L, with tensors in
the bulk having more indices than tensors at a boundary.

Specifically, a bulk tensor has components A
[~r]
ulsdr, with

one physical index s and four bond indices u, l, d, r. The
physical index s labels the basis of the vector space V for
site ~r ∈ L and therefore takes d different values, whereas
each bond index connects the tensor with a tensor in a
nearest neighbor site and ranges from 1 to D, where D is
the so-called bond dimension of the PEPS. Correspond-
ingly, a bulk PEPS tensor is represented by a circle with
five legs, see Fig. 1(b). As in the rest of the paper, here
we follow the prescription that the indices of a tensor are
drawn in anti-clockwise order. Notice also that the open
indices of the PEPS in Fig. 1(a) reach the exterior of the
tensor network in exactly the same (anti-clockwise) or-
der that they appear in Ψi1i2···iN . These notational and
diagrammatical details are somewhat superfluous in the
bosonic case (since one can change the order of indices
in a tensor by simply permuting its components) but will
become important in the extension to fermions.

A PEPS on a L × L lattice, where N = L2, con-
tains O(N) bulk tensors, each depending on dD4 com-
plex coefficients. Therefore the PEPS is characterized by
O(NdD4) parameters. If D has a fixed value indepen-
dent of N , then the PEPS is indeed an efficient encoding
of some states |Ψ〉 ∈ V⊗N , and it can be used e.g. as

a variational ansatz for the ground state of Ĥ. How-
ever, for the PEPS to be a useful ansatz, we also need to
provide an efficient strategy to optimize its tensors and
manipulate them in order to extract physically relevant
information, as discussed next.

C. Optimization and expectation values

Two major tasks to be accomplished with a PEPS
algorithm15–20 are: (i) optimization of its O(NdD4) pa-
rameters so as to obtain a good approximation to e.g.
the ground state of the local Hamiltonian Ĥ; (ii) given a
PEPS for a state |Ψ〉, computation of expectation values
〈Ψ|ô|Ψ〉 of local observables ô, as given by

〈ô〉 =
〈Ψ|ô|Ψ〉
〈Ψ|Ψ〉

. (2)

These two tasks happen to be closely related. They in-
volve taking the trace over all the bond indices of a com-
posite tensor network, an operation referred to as con-
tracting the tensor network.

FIG. 2: (Color online) (a) Scalar product 〈Ψ|Ψ〉 written in
terms of tensors Ψ and Ψ†. (b) The same scalar product,
but written in terms of a PEPS together with its Hermitian
conjugate. (c)-(d) Using the jump move of Fig. 3, this tensor

network can be modified so that each tensor A[~r] is drawn
next to its Hermitian conjugate A[~r]. (e) Tensor network E in

terms of reduced tensors a[~r]. (f) a[~r] defined in terms of A[~r]

and A[~r]†, Eq. (6).

An emblematic example of tensor network contraction
required in a PEPS algorithm concerns the computation
of the scalar product 〈Ψ|Ψ〉. We need to introduce a few
more definitions and notation. Let T † denote the Hermi-
tian conjugate of a tensor T , obtained by reversing the
order of the indices of T and taking the complex con-
jugate of each of its coefficients (and diagrammatically
represented as the mirror image of T ). For instance, ten-
sor Ψ† in Fig. 1(d), corresponding to 〈Ψ|,

〈Ψ| =
∑

i1i2···iN

(Ψ†)iN ···i2i1〈i1i2 · · · iN |, (3)

has coefficients

(Ψ†)iN ···i2i1 = Ψi1i2···iN
∗. (4)

Fig. 1(c) represents the Hermitian conjugate A[~r]† of a



5

FIG. 3: (Color online) Jump move: The graphical representa-
tion of a tensor network is not unique. In particular, a line can
be dragged over a circle without changing the tensor network
that is represented. This property, trivial in tensor networks
for bosonic systems, will have a less obvious analogue in the
fermionic case.

bulk tensor A[~r], which has coefficients

(A[~r]†)rdslu = A
[~r]
ulsdr

∗
. (5)

We build the Hermitian conjugate of the PEPS for Ψ
as the set of tensors {A[~r]†} connected according to the
mirror image of the network of connections in the PEPS
for Ψ, see Fig. 1(d). For each site ~r ∈ L, let us define
the reduced tensor a[~r] in terms of tensor A[~r] and A[~r]†

by tracing over the physical index s. For instance, in the
bulk, the reduced tensor a[~r] has components

a
[~r]

uūll̄d̄dr̄r
≡

d∑
s=1

A
[~r]
ulsdr(A

[~r]†)r̄d̄sl̄ū, (6)

see Fig. 2(f). Then the scalar product 〈Ψ|Ψ〉 results from
contracting a tensor network E that consists of all re-
duced tensors a[~r] connected according to the links in L,
see Fig. 2(a)-(e), where the (trivial) jump move of Fig. 3
is used.

Contracting the tensor network E to obtain the scalar
product 〈Ψ|Ψ〉 comes with a cost that grows exponen-
tially in the linear size L of lattice L, and therefore cannot
be accomplished efficiently. A key ingredient of PEPS al-
gorithms is precisely a strategy to efficiently but approx-
imately contract the tensor network E , thus producing
an approximation to 〈Ψ|Ψ〉. This can be done in several
ways, depending on the size and topology of lattice L. In
a finite lattice with open boundary conditions, one can
use matrix product state (MPS) techniques.15 In the case
of a torus, coarse-graining techniques known as tensor
entanglement renormalization group (TERG)18,19 can be
used. Finally, in an infinite lattice, both infinite MPS17

and corner transfer matrix (CTM)20,27 techniques have
been employed.

In order to optimize a PEPS so as to approximate the
ground state of Ĥ, as well as to evaluate the expectation
value of local observables, it is useful to contract cer-
tain class of tensor networks called environments. The
environment E [~r] of a site ~r ∈ L is the tensor network ob-
tained from E by removing tensor a[~r], and can be used
to compute the expectation value of a local observable
acting on that site.

FIG. 4: (Color online) (a) Tensor network E , made of reduced

tensors a[~r], corresponding to the scalar product 〈Ψ|Ψ〉 in an
L × L lattice L with open boundary conditions. (b) Envi-

ronment E [~r1~r2] for two contiguous sites ~r1, ~r2 ∈ L, obtained
from E by removing tensors a[~r1] and a[~r2]. (c) Approximate

environment G[~r1~r2] consisting of six tensors {Eα}. (d) Tensor
o of coefficients for a two-site local operator ô, Eq. (7). (e)

Tensor network made of the approximate environment G[~r1~r2]
and tensors A[~r1], A[~r1]†, A[~r2], A[~r2]† and o. Its contraction
produces an approximation to 〈Ψ|ô|Ψ〉.

Similarly, a two-site environment E [~r1~r2] is the tensor
network obtained by removing tensors a[~r1] and a[~r2] from
E , and can be used e.g. to compute the expectation value
of a two-site observable

ô =
∑

i1i2j1j2

oi2i1j1j2 |j1j2〉〈i1i2|, (7)

acting on sites ~r1, ~r2 ∈ L. Figure 4(b) shows the en-
vironment E [~r1~r2] corresponding to two nearest neigh-
bor sites ~r1, ~r2 ∈ L. Again, the exact contraction of
the environment cannot be performed efficiently, but ef-
ficient schemes, analogous to those employed to con-
tract E , can be used in order to approximately contract
E [~r1,~r2]. The whole environment is in this way approxi-
mated by a smaller tensor network G[~r1~r2] made of 6 ten-
sors {E1, · · · , E6}, see Fig. 4(c). These tensors can then
be connected to tensors A[~r1], A[~r1]†, A[~r2], A[~r2]† and o
to produce an approximation to 〈Ψ|ô|Ψ〉, see Fig. 4(e).

In a system with a Hamiltonian Ĥ made of two-site in-
teractions h[~r1~r2] between nearest neighbors, the approx-
imate environment G[~r1~r2] is particularly useful. On the
one hand, it is employed in the optimization of tensors
A[~r1] and A[~r2] after a gate has been applied on the two
sites, as part of simulating an imaginary-time evolution
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according to Ĥ,

|ΨGS〉 = lim
τ→∞

e−τĤ |Ψ0〉
||e−τĤ |Ψ0〉||

, (8)

which offers one way of obtaining a PEPS approxima-
tion to the ground state |ΨGS〉 of Ĥ. On the other hand,
G[~r1~r2] can also be used to compute the expectation value

of the energy on that link, 〈Ψ|ĥ[~r1~r2]|Ψ〉, as part of an al-
gorithm to optimize the PEPS by minimizing its energy,

min
{A[~r]}

〈Ψ{A[~r]}| Ĥ |Ψ{A[~r]}〉
〈Ψ{A[~r]}|Ψ{A[~r]}〉

(9)

which is another way of obtaining a PEPS approximation
to the ground state |ΨGS〉 of Ĥ. We refer to Refs. 15,17,20
for more details. Other PEPS algorithms18,19 bypass the
computation of environments.

This concludes our short review of PEPS algorithms
for bosonic 2D lattice models.

D. Fermionic lattice systems

Let us now consider a fermionic lattice system. For the
sake of simplicity, we first assume that each site k ∈ L is
described by a complex vector space V of dimension d = 2
that is associated to a fermionic annihilation operator ĉk,
with anticommutation relations

ĉ†k ĉk′ + ĉk′ ĉ
†
k = δkk′ , (10)

ĉk ĉk′ + ĉk′ ĉk = 0, (11)

[we will shortly extend the discussion to sites with vector
space of finite dimension d ≥ 2, see also appendix A].
A basis of the vector space V⊗N of the lattice system is
given by

|s1s2 · · · sN 〉 ≡ (ĉ†1)s1(ĉ†2)s2 · · · (ĉ†N )sN |00 · · · 0〉. (12)

Recall that fermionic operators can be expressed in terms
of Pauli matrices {σ̂x, σ̂y, σ̂z} by means of a Jordan-
Wigner transformation,

ĉk =

(∏
k′<k

σ̂zk′

)
σ̂xk + iσ̂yk

2
. (13)

The fermionic lattice system L is further characterized
by a local fermionic Hamiltonian Ĥ. This is a Hamilto-
nian that, when expressed in terms of the fermionic op-
erators {ĉk}, decomposes as the sum of terms involving
only a small number of sites. As in Eq. (1), let |Ψ〉 ∈ V⊗N
be a pure state of lattice L,

|Ψ〉 =
∑

s1s2···sN

Ψs1s2···sN |s1s2 · · · sN 〉. (14)

Here we will assume that |Ψ〉 is somehow related to the

fermionic Hamiltonian Ĥ, for instance it is its ground

state. Once more, we would like to find a varia-
tional ansatz depending on O(N) parameters to effi-
ciently encode the tensor Ψ containing the dN coefficients
Ψs1s2···sN of a pure state |Ψ〉.

One possibility would be to use a PEPS exactly as in
the bosonic case. However, this might not be a good idea.
Remember that the label k ∈ {1, 2, · · · , N} provides an
order to the set of sites of L, whose position in the lattice
is given by ~r = (x(k), y(k)). Two nearest neighbor sites
~r1 and ~r2 on the square lattice might correspond to val-
ues k1 and k2 that are far apart. Then, when expressed
in terms of Pauli matrices, the local fermionic Hamilto-
nian Ĥ will no longer look local. For instance, a nearest
neighbor hopping term

ĉk1 ĉ
†
k2

=
σ̂xk1 + iσ̂yk1

2

 ∏
k1≤k′<k2

σ̂zk′

 σ̂xk2 − iσ̂
y
k2

2
(15)

develops a string of σ̂z’s. This might be harmful in two
ways. On the one hand, the presence of strings of σ̂z’s
would require important modifications in the algorithms
to approximate the ground state of Ĥ with a PEPS, ei-
ther through imaginary-time evolution or energy min-
imization. On the other hand, it is unclear that the
PEPS itself, which was originally designed as an ansatz
for ground states of local bosonic Hamiltonians, will be
as good an ansatz also for ground states of fermionic
Hamiltonians, given that the latter are non-local when
expressed in bosonic variables.

Below we will explain how to modify the PEPS so
that it is suitable to study fermionic systems (see also
Refs. 10,13). Before, however, we introduce the notation
necessary to deal with local vector spaces V of dimension
d ≥ 2.

E. Parity

Fermionic systems are governed by Hamiltonians that
preserve the parity of the fermionic particle number, to
which we refer simply as ‘parity ’. That is, fermions can
only be created or annihilated in pairs, and parity is a
constant of motion. As a result, we can assume that
the pure state |Ψ〉 ∈ V⊗N of lattice L has a well-defined
parity, and observables ô and reduced density matrices
are block diagonal in parity.

Let us consider again the vector space V of a single
site, now with finite dimension d ≥ 2. It is natural to
decompose V as the direct sum of an even parity subspace
V(+) and an odd parity subspace V(−),

V ∼= V(+) ⊕ V(−), (16)

and to choose a basis of vectors with well-defined parity.
Accordingly, the physical index s describing one such ba-
sis is decomposed as s = (p, αp), where p ∈ {−1,+1} is
the parity and αp (denoted α+ and α−) enumerates the
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FIG. 5: (Color online) A tensor network is ’fermionized ’ by
following two rules (see text): (a) all tensors in the network
are chosen to be parity preserving (P is the parity operator
acting on the indices of tensor T ); (b) line crossings are re-
placed with a special gate, a fermionic swap gate X.

different basis states with parity p. The parity operator
P̂ then acts on this basis as

P̂ |p, αp〉 = p|p, αp〉. (17)

In the case of spinless fermions, with a local dimension
d = 2, the two possible states of a site are the local
vacuum |0〉, signaling the absence of a fermion, and the
state |1〉, corresponding to one fermion. In our notation
these states read

|(1, 1)〉 ≡ |0〉, |(−1, 1)〉 ≡ |1〉. (18)

In the case of the t − J model there are three possible
states per site, {|0〉, | ↑〉, | ↓〉} ∈ V, where | ↑〉 and | ↓〉
denote an electron with spin up and spin down, respec-
tively. In our notation these states read

|(1, 1)〉 ≡ |0〉, |(−1, 1)〉 ≡ | ↑〉, |(−1, 2)〉 ≡ | ↓〉. (19)

Finally, in the case of the Hubbard model with local
dimension d = 4 there is an additional state, | ↑↓〉 =

ĉ†↑ĉ
†
↓|0〉, corresponding to a doubly occupied site, which

in our notation reads

|(1, 2)〉 ≡ | ↑↓〉. (20)

In analogy with the physical index s = (p, αp), we
introduce a parity operator also on the bond indices of

a PEPS. Accordingly, the tensor A
[~r]
ulsdr has bond indices

u = (p, αp), etc. This means that e.g. bond index u can
take values

u ∈ {(1, 1), · · · (1, D+), (−1, 1), · · · , (−1, D−)}, (21)

where the bond dimension D is given by D = D+ +
D−. The actual values of D+ and D− can be chosen at
convenience.

F. Fermionization rules

Given a PEPS for bosonic systems, cf. Fig. 1(a), in
this work we obtain a PEPS for fermionic systems by
applying the two rules used in Ref. 12 to fermionize the
MERA. These rules are applied both to the PEPS and
to all related tensor networks that are involved e.g. in
optimizing the ansatz or computing expectation values
of local observables.

Rule 1: Each tensor T in a tensor network is chosen
to be parity preserving, i.e.

Ti1i2...iM = 0 if p(i1)p(i2) . . . p(iM ) = −1, (22)

where p(ik) ∈ {1,−1} denotes the parity of the basis
state labelled by ik, see Fig. 5(a).

Rule 2: Each crossing of lines in the tensor network
is replaced with a fermionic swap gate X̂, see Fig. 5(b).
This gate implements a fermionic exchange and has the
form

Xi2i1j1j2 = δi1,j2δi2,j1S(i1, i2), (23)

with S(i1, i2) given by

S(i1, i2) ≡
{
−1 if p(i1) = p(i2) = −1

1 otherwise.
(24)

Accordingly, starting from a PEPS for a bosonic sys-
tem, a PEPS for a fermionic system is built as follows:
(i) choose all the PEPS tensors {A[~r]} to be parity in-

variant. For instance, in the case of a bulk tensor A
[~r]
ulsdr,

choose

A
[~r]
ulsdr = 0, if p(u)p(l)p(s)p(d)p(r) = −1; (25)

and (ii) introduce a fermionic swap gate X̂ on any cross-
ing of lines, as illustrated in Fig. 6 for a 3× 3 lattice.

Rule 1 is very convenient from a computational per-
spective: it ensures that the parity of the wave function
is exactly preserved during (otherwise approximate) cal-
culations, while the block diagonal structure of tensors
can be exploited to reduce computational costs. In addi-
tion, Rule 1 is important in order to account for the an-
tisymmetric character of fermionic wavefunctions (Rule
2) in a simple way. However, we emphasize that tensor
networks made of parity preserving tensors are also use-
ful to describe bosonic systems (e.g., a Z2 invariant spin
system, such as the quantum Ising model) and therefore
Rule 1 is not what turns a bosonic tensor network ansatz
into a fermionic one.

Rule 2 accounts for the fermionic character of the ten-
sor network, in the sense that it is employed to mimic the
effect of anticommutators in a network of fermionic op-
erators, as justified in Ref. 9 in the context of the MERA
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FIG. 6: (Color online) (a) Fermionic PEPS for the state
|Ψ〉 ∈ V⊗9 of a 3×3 lattice L, obtained from the bosonic PEPS
in Fig. 1(a) by replacing line crossings with fermionic swap
gates. The coefficients Ψi1i2···i9 are obtained by contract-
ing this fermionic PEPS using standard tensor multiplication
techniques (see text). The presence of fermionic swap gates
introduces a complex structure of minus signs in Ψi1i2···i9 .
(b) Bulk tensor A[~r], which is chosen to be parity preserv-

ing, Eq. (25). (c) Hermitian conjugate of A[~r]. (d) Scalar
product 〈Ψ|Ψ〉 written as a tensor network of reduced ten-

sors a[~r] defined in (e). Notice that, in a L×L lattice, O(L3)
fermionic swap gates pervade the PEPS and yet, thanks to the
jump move, Fig. 10, it is possible to write the scalar product
〈Ψ|Ψ〉 in terms of only O(L2) fermionic swap gates and in

such a way that all of them are near a pair (A[~r], A[~r]†) and
can therefore be absorbed into the definition of the reduced
tensor a[~r]. [For a detailed derivation, replace line crossings
with fermionic swap gates in Fig. 2]. As a result, there are
no fermionic swap gates left in E , and therefore this tensor
network can be contracted using the techniques employed for
bosonic PEPS.

(see also the note on terminology in the Introduction of
this paper).

Several additional remarks concerning fermionic ten-
sor networks and their manipulations are in order. We
start with a number of comments on fermionic tensor
network representations that are relevant to the present
formulation of the fermionic PEPS ansatz.

(i) Fermionic order. The label k ∈ {1, 2, · · · , N} for

FIG. 7: (Color online) (a) The fermionic PEPS in Fig. 6 corre-
sponds to a specific choice of fermionic order, which appears in
the definition of the local basis of Eq. (12) and Jordan-Wigner
transformation of Eq. (13). (b) Another possible fermionic
PEPS, associated to another fermionic order. The two tensor
networks are not equivalent in that they cannot be mapped
into each other by jump moves alone (where one is not al-
lowed to drag a line over the end of another open line), but
the mapping is possible if we allow some additional fermionic
exchanges to modify the order of the open lines. Importantly,
it can be seen that the tensors {A[~r]} in both PEPS appear
in the same way in any expectation value. In particular, they
would be optimized using exactly the same figure of merits.
This shows that the tensors {A[~r]} are independent of the
choice of fermionic order.

the sites of L establishes an order on these sites. This
order has been used to define a local basis of the Hilbert
space in Eq. (12), and can also be used to translate the
local fermionic lattice model into a non-local bosonic one
through the Jordan-Wigner transformation of Eq. (13)
(although this is not the strategy that we follow here).
According to our prescription to graphically represent
tensors and tensor networks, this order is also the order
in which the open indices are drawn in Fig. 6(a). Notice
that the structure of line crossings in the PEPS depends
on the fermionic order and therefore the number and lo-
cation of fermionic swap gates, see Fig. 7. Notice also
that, in contrast with Refs. 10,13, we do not explicitly
introduce fermionic operators (and corresponding order)
on the bond indices of the PEPS, but use instead a simple
graphical notation and two rules that already account for
the complex pattern of fermionic-exchange minus signs in
tensor Ψi1i2···iN .

(ii) Local operators. A local fermionic operator ô is
characterized by a tensor of components that describes
the action of ô on a given basis of states. For instance,
in the simple case where each site has a vector space V
of dimension d = 2, we expand a two-site operator ô as

ô =
∑

i1i2j1j2

oi2i1j1j2 |j1j2〉〈i1i2|. (26)
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where

|j1j2〉〈i1i2| ≡ (â†)j1(b̂†)j2 |0102〉〈0102|(b̂)i2(â)i1 , (27)

and â and b̂ are the annihilation operators acting on the
two sites (see appendix A for the d > 2 case). The coef-
ficients oi2i1j1j2 are given by

oi2i1j1j2 = 〈j1j2|ô|i1i2〉 (28)

= 〈0102|(b̂)j2(â)j1 ô (â†)i1(b̂†)i2 |0102〉. (29)

For instance, a hopping term â†b̂ reads

â†b̂ = |1102〉〈0112|, (30)

since the only non-vanishing coefficient is

o0101 = 〈1102|â†b̂|0112〉 (31)

= 〈0102|â â†b̂ b̂†|0102〉 = 1, (32)

which is obtained using the anticommutation relations.
When the two-site operator ô acts on two sites k1, k2 ∈ L,
the state |Ψ〉 of the system is modified into some other
state |Ψ′〉 = ô|Ψ〉. This is implemented simply by con-
necting the tensor (or tensor network) that represents
Ψs1s2···sN with the four-index tensor osk2

sk1
s′k1

s′k2
as in-

dicated in Fig. 8(a). In particular, when the two sites
are not contiguous in the fermionic order, |k2 − k1| > 1,
a number of line crossings appear. This is reflected in
the computation of the expectation value 〈Ψ|ô|Ψ〉, see
Fig. 8(b)-(d).

(iii) Parity changing tensors. Parity preserving tensors
allow us to represent both states |Ψ〉 with even fermionic
particle number (i.e. parity p = 1) and local operators
ô that are parity preserving. But they also allow us to
represent states with an odd fermionic particle number
(parity p = −1) and parity changing operators. This is

so because a parity changing tensor T̃ ,

T̃i1i2...iM = 0 if p(i1)p(i2) . . . p(iM ) = 1, (33)

can be represented as a parity preserving tensor T ,

Ti1i2···iM j = T̃i1i2...iM , (34)

where the additional index j only takes one value, j =
(p, αp) = (−1, 1). For instance, in order to represent a
state |Ψ〉 ∈ V⊗N with an odd number of particles by
means of a PEPS, an additional index j = (−1, 1) is
attached to one of the PEPS tensors, see Fig. 9(a). Sim-
ilarly, a fermionic annihilation operator c, which changes
parity, can be represented as a tensor with three in-
dices, one of which is fixed to j = (p, αp) = (−1, 1),
see Fig. 9(b). It is sometimes computationally conve-
nient (e.g. in the computation of two-point correlators,
Fig. 16) to represent a parity preserving operator that
is the product of two parity changing operators, such as

the hopping operator â†b̂ in Eq. (30), by two parity pre-
serving tensors connected by a fixed index j = (−1, 1),
see Fig. 9(b).

FIG. 8: (Color online) (a) The state |Ψ′〉 = ô|Ψ〉 is described
by a tensor Ψ′ of coefficients obtained by connecting tensors
Ψ and o. The example corresponds to a 3 × 4 lattice and
a choice of fermionic order such that the two sites on which
ô acts, which are nearest neighbors in L, are not contigu-
ous in the fermionic order (they occupy positions k1 = 5 and
k2 = 8). The line crossings (fermionic swap gates) that ap-
pear in connecting tensors Ψ and o can be interpreted as
changes in the fermionic order needed in order to bring the
two sites on which ô acts together, then bringing them back
to their original position. (b) Expectation value 〈Ψ|ô|Ψ〉. (c)
The same expectation value in terms of a fermionic PEPS.
(d) After some manipulation, an approximation of the expec-
tation value is expressed in terms of an approximate two-site
environment G[~r1~r2] and tensors A[~r1], A[~r1]†, A[~r2], A[~r2]† and
o, as it was done for a bosonic system in Fig. 4. The only
difference here is the presence of a few fermionic swap gates.

(iv) Simplification. In the particular case of a pair
of crossing lines i and j where index j only takes one
possible value p of the parity, the fermionic swap gate X̂
reduces to a product of two gates. Namely, to a product
of two identity operators Î⊗Î if p = +1, and to a product
of the parity P̂ on line i and identity Î on line j if p = −1.
It follows, for instance, that the jump move applied to a
line i and a parity preserving tensor T with an index
j = (p, αp) = (−1, 1) (used e.g. to represent a parity

changing tensor T̃ in Eqs. (33)-34) allows us to ignore
index j in T at the price of applying the parity operator
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FIG. 9: (Color online) (a) PEPS for a state |Ψ〉, of a 3 × 3
lattice, with odd parity p = −1. All PEPS tensors are par-
ity preserving. One of the tensors has an additional index
j ≡ (−1, 1) with fixed parity p = −1. (b) The tensor o of
coefficients oi2i1j1j2 for a two-site operator such as a hopping

term â†b̂ in Eq. (30), that is the product of two parity chang-

ing operators, â† and b̂, can be decomposed as the product of
two parity-preserving tensors o′ and o′′ connected by an index
j ≡ (−1, 1) with fixed parity p = −1. This decomposition is
useful e.g. in the computation of a correlator involving two
distant sites, see Fig. 16. Notice that parity preserving tensor
o′ can also be used independently of o′′ in order to represent
the parity changing operator â.

P̂ to line i, see Fig. 10(b). This simplification appears to
be useful e.g. in the calculation of the expectation value

〈Ψ|â†b̂|Ψ〉, see Fig. 16.

A fermionic tensor network can be manipulated sim-
ply by performing a sequence of tensor multiplications.
It turns out, however, that by considering a special prop-
erty (jump move) of fermionic tensor networks obeying
Rules 1 and 2, the fermionic swap gates can be treated
in a very special and advantageous way: they can be ig-
nored until they correspond to a crossing of two indices
connected to the same tensor, in which case they can
be absorbed into the tensor using a low cost operation.
As a result, in a fermionic tensor network algorithm we
can follow the same sequence of tensor multiplications
that we would have employed to manipulate its bosonic
counterpart. In particular, we can use the same optimal
sequence of contractions, with the same computational
cost (to leading order). Let us discuss all these aspects
in more detail.

(i) Jump move. It follows from Rules 1 and 2 that in a
fermionic tensor network, as in the bosonic case, lines can
be dragged over tensors, see Fig. 10(a). This invariance
under ‘jump’ moves allows us to modify fermionic tensor
networks in such a way that the fermionic swap gates
do not increase the leading cost of manipulations. For a

FIG. 10: (Color online) (a) As a result of rules 1 and 2, lines
can jump over (parity invariant) tensors, with the fermionic
swap gates traveling with the line crossings. (b) A parity

changing tensor T̃ is represented with a parity preserving ten-
sor T with an extra index j = (−1, 1) that remains open. In
this case the jump rule introduces an additional fermionic
swap gate X, involving j and the jumping line, that reduces
to a parity operator P on the jumping line (see text). (c) A
line can also be dragged over a set of open lines provided that
the latter have even overall parity (in other words, provided
they could be connected to a parity preserving tensor)

proof of this property, which exploits the fact that ten-
sors are parity-preserving, we refer again to Ref. 12. No-
tice that the jump move does not include dragging a line
over the open end of another line (this would amount to
a change in the local fermionic order). The latter trans-
formation is only allowed when it involves a set of open
lines with even overall parity, as explained next.

(ii) Open lines. By construction, line ends only appear
in the diagrams grouped in such a way that they could
be connected to a parity preserving tensor (that is, their
combined parity is always even) without introducing ad-
ditional crossings to the network. For instance, the set
of all open legs of the PEPS in Figs. 6(a) or 9(a) have
even overall parity, since the PEPS as a whole has parity
p = +1. Another example is given by the open legs of an
environment, Fig. 14(c). Since such groups of open legs
with even overall parity could be connected to a parity
preserving tensor, the jump move extends naturally to
them, as illustrated in Fig. 10(c).

(iii) Absorption of a fermionic swap gate. Given a
tensor T , with coefficients Ti1···ij···iM , such that the two
contiguous indices i, j are connected to a fermionic swap
gate, it is possible to absorb the latter into the former
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FIG. 11: (Color online) Multiplication of two tensors in a
fermionic tensor network. (a) Example of two tensors T1 and
T2 connected by two lines. (b) By means of a jump move, all
lines standing between T1 and T2 can be dragged away. (c)
Any fermionic swap gate involving the lines that connect T1

and T2 can be absorbed into e.g. tensor T1, which is mapped
into some T̃1. (d) Finally tensors T̃1 and T2 are multiplied
together, producing tensor T . The cost of all these manipu-
lations is dominated by the last step.

and produce a new tensor T̃ with coefficients

T̃i1···ji···iM = Ti1···ij···iMS(i, j). (35)

The cost of the absorption is thus just proportional to
the number of coefficients in T and comparable to per-
muting two adjacent indices in a bosonic tensor network.
This cost is, in particular, smaller than the tensor mul-
tiplication that may have produced T or a subsequent
tensor multiplication involving T̃ . Therefore the absorp-
tion of fermionic swap gates only makes a sub-leading
contribution to the total cost of contracting a fermionic
tensor network (in the same way that the permutation
of indices only makes a sub-leading contribution to the
total cost of contracting a bosonic tensor network).

(iv) Same leading cost. In a bosonic system, the con-
traction of a tensor network is implemented by a sequence
of multiplications of tensors, where each multiplication
involves two tensors and the sequence is chosen carefully
to minimize computational costs. In the fermionic case,
it is natural to ask whether the presence of fermionic
swap gates will modify the optimal sequence of tensor
multiplications and increase the computational cost of
the contraction. It turns out that one can always follow
the same sequence of multiplications as in the bosonic
case. Indeed, as illustrated in the example of Fig. 11, in
order to multiply two tensors, one can use jump moves
and fermionic swap gate absorptions to eliminate any
fermionic swap gate between the two tensors, which can
then be multiplied together exactly as in the bosonic case.
The leading cost of these manipulations is given by tensor
multiplications, and it is therefore the same for bosonic

and fermionic systems.

G. Fermionic PEPS algorithms

We have explained how to build a fermionic PEPS for
the state |Ψ〉 ∈ V⊗N of a fermionic lattice system. The
next step is to consider algorithms to compute the ex-
pectation value 〈ô〉 of a local operator ô from a fermionic
PEPS, as well as to optimize the coefficients in its ten-
sors {A[~r]}. It turns out that these algorithms can be
obtained by just introducing simple modifications to ex-
isting bosonic PEPS algorithms. Here we discuss these
modifications broadly.

Let us consider first the computation of the scalar
product 〈Ψ|Ψ〉. As we did in the bosonic case, see Fig. 2,
we build this scalar product by connecting the open in-
dices of a PEPS for |Ψ〉 with those for a PEPS for 〈Ψ|
obtained by Hermitian conjugation. The resulting ten-
sor network may contain, in the fermionic case, a large
number of fermionic swap gates. However, an important
point is that, by using the jump move of Fig. 10(a), the
scalar product 〈Ψ|Ψ〉 can again be re-expressed in terms
of a tensor network E made of reduced tensors {a[~r]}, see
Fig. 6(d).

As shown in Fig. 6(e), the fermionic reduced tensor
a[~r] differs from its bosonic counterpart by the presence of
four fermionic swap gates. Importantly, in a finite or infi-
nite lattice with open boundary conditions, all fermionic
swap gates present in the scalar 〈Ψ|Ψ〉 are absorbed into
the reduced tensor a[~r]. Thus, the tensor network E con-
tains no fermionic swap gates. As a result, an approxi-
mation to the scalar product 〈Ψ|Ψ〉 can be obtained by
contracting E with exactly the same approximate con-
traction techniques (namely MPS techniques for finite
PEPS15 and either infinite MPS or CTM techniques for
infinite PEPS17,20) as in the bosonic case. [In some im-
plementations, it is possible to lower computational costs
by considering the components A[~r] and A[~r]† of a[~r] sep-
arately. In this case the approximate contraction tech-
niques have to be slightly modified so as to account for
the four fermionic swap gates involved in the definition
of a[~r]].

Figure 12 considers a PEPS for a fermionic lattice sys-
tem on a cylinder. Its scalar product can again be ex-
pressed in terms of a tensor network E , made of reduced
tensors {a[~r]}, that contains no line crossings. Therefore
its contraction can also be performed exactly as in the
bosonic case. Instead, in a fermionic lattice system on a
torus, the analogous tensor network E contains a num-
ber of fermionic swap gates, see Fig. 13. However, it
can be seen that even in this case E can still be coarse-
grained using the same TERG techniques of Ref. 18,19
for the bosonic case, by properly coarse-graining the swap
fermionic gates at each step of the coarse-graining.

As discussed in Sec. II C, given an environment E [~r1 ~r2],
an approximation G[~r1 ~r2] can be used both for the com-
putation of the expectation value 〈ô〉 of a local operator
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FIG. 12: (Color online) (a) PEPS for a state |Ψ〉 of fermionic
3×3 lattice with cylindrical boundary conditions. (b) Tensor
network for the scalar product 〈Ψ|Ψ〉. (c) Tensor network E
of reduced tensors {a[~r]}. As in a system with open boundary
conditions, E has no line crossings and can be contracted as
in the bosonic case.

FIG. 13: (Color online) (a) PEPS for a state |Ψ〉 of fermionic
3 × 3 lattice with toroidal boundary conditions. (b) Tensor
network for the scalar product 〈Ψ|Ψ〉. (c) Tensor network E
of reduced tensors {a[~r]}. On the torus, it is not possible to
eliminate all line crossings in E , which must contain fermionic
swap gates and therefore differs from the bosonic case. How-
ever, TERG techniques18,19 can still be applied by noting that
the coarse-graining of the reduced tensors {a[~r]} can take
place independently of the fermionic swap gates, which are
also coarse-grained in an obvious way. The (coarse-grained)
fermionic swap gates only need to be absorbed into the rest
of the tensor network at the latest coarse-graining step, when
the torus has been reduced to only a few lattice sites.

ô and for the optimization of the tensors {A[~r]} defining
the PEPS. The approximate contraction of E [~r1 ~r2] lead-
ing to G[~r1 ~r2] is very similar to the contraction of E for
the scalar product 〈Ψ|Ψ〉, and can again be accomplished
in the fermionic case using the same techniques than in
the bosonic case.

From G[~r1 ~r2], obtaining an approximation to the ex-
pectation value 〈Ψ|ô|Ψ〉 involves contracting the tensor

network of Fig. 8(d), which differs from its bosonic coun-
terpart in the presence of 12 fermionic swap gates. An
analogous tensor network is central to the update of the
PEPS tensors {A[~r]} during an imaginary-time evolution
towards the ground state |ΨGS〉 of a nearest neighbor

fermionic Hamiltonian Ĥ, cf. Eq. (8). More details of
this update will be provided in Sec. III in the context
of an infinite lattice system, where also the computation
of two-point correlators between distant sites will be ad-
dressed.

To summarize, the differences between bosonic and
fermionic PEPS algorithms are in practice reduced to: (i)
use of parity preserving tensors {A[~r]} to efficiently en-
code the state |Ψ〉 ∈ V⊗N ; and (ii) presence of fermionic
swap gates in some of the tensor networks that need to be
contracted, e.g. in order to compute the expected value
of a local observable or optimize the tensors {A[~r]} of the
variational ansatz. However, thanks to the jump move,
the optimal sequence of tensor multiplications involved
in the contraction of a given fermionic tensor network is
the same than in the bosonic case, as is the incurred com-
putational cost. All in all, we see that fermionic PEPS
algorithms can be obtained by introducing a few mod-
ifications to bosonic PEPS algorithms. This is further
illustrated in the next section, where we provide more
details on the specific PEPS algorithm used in Sec. IV,
namely the iPEPS algorithm.17,20

III. iPEPS ALGORITHM FOR INFINITE
LATTICE SYSTEMS

In Sec. IV the formulation of fermionic PEPS pre-
sented in this paper is tested by computing the ground
state of a number of models on an infinite lattice. In this
section we provide additional details on the fermionic
iPEPS ansatz and algorithm used for those compu-
tations. We start by reviewing the bosonic iPEPS
algorithm.17,20 Then we describe the modifications re-
quired in order to address a fermionic system.

A. iPEPS for bosonic systems

The iPEPS ansatz exploits translation invariance of
a system on an infinite lattice L to store the state |Ψ〉
using only a small number of PEPS tensors, which are
repeated throughout the lattice. Here we consider an
infinite square lattice L and assume that the ground state
of the system is invariant under translations by one site.
We use an iPEPS made of copies of two tensors A and B
that are distributed according to a checkerboard pattern,
that is,

A[(x,x+2y)] = A, A[(x,x+2y+1)] = B, x, y ∈ Z. (36)

The reason to use two different tensors A and B, in-
stead of a single tensor copied on all locations (as one
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FIG. 14: (Color online) (a) Environment E [~r1~r2] for two con-
tiguous sites ~r1, ~r2 ∈ L, in terms of the reduced tensors a
and b corresponding to the PEPS tensors A and B. (b) Ap-

proximate environment G[~r1~r2] expressed in terms of 10 ten-
sors, corresponding to the 10 shaded regions in (a), as used
in the CTM approach20,27. Some of the tensor are used in
Fig. 16(b). (c) Approximate environment G[~r1~r2] written in
terms of 6 tensors {Eα}, as used in the computation of the
expectation value of a two-site observable ô (Fig. 16(a)) and
the update of tensors A and B during an imaginary-time evo-
lution (Fig. 30).

would expect for a translation invariant ground state) is
that the iPEPS algorithm17,20 requires that translation
invariance be partially broken to the above checkerboard
pattern during intermediate stages of the optimization of
the ansatz. Invariance under translations by one site is
(approximately) restored at the end of the optimization.
Needless to say, the same ansatz is also valid for systems
where the ground state has checkerboard order (invari-
ance by diagonal shifts), as will be the case in some of
the results in Sec. IV.

B. Expectation values

Let us first consider how to compute the expectation
value of a two-site operator ô, see Eq. (2). This requires
computing both 〈Ψ|Ψ〉 and 〈Ψ|ô|Ψ〉.

The scalar product 〈Ψ|Ψ〉 is expressed in terms of an
infinite 2D tensor network E of reduced tensors a and b
distributed according to a checkerboard pattern. As in
a finite system, an environment E [~r1~r2] for two nearest
sites ~r1, ~r2 ∈ L is then built from E by removing two
reduced tensors, see Fig. 14(a)-(b). Contracting E [~r1~r2]

requires an approximation scheme, which produces an
approximate environment G[~r1~r2] consisting of six tensors
{Eα} connected through bond indices that take χ differ-
ent values, see Fig. 14(d). Here χ quantifies the degree
of approximation in G[~r1~r2]. One possible approximation
scheme consists in using infinite MPS techniques, as was
discussed in the original iPEPS algorithm in Ref. 17.
Another possible approximation scheme consists in us-
ing CTM techniques,27 as discussed in the context of the
iPEPS algorithm in Ref. 20.

An approximation 〈ô〉χ to the expectation value 〈ô〉 of
a two-site observable ô is then obtained by computing

〈ô〉χ ≡
〈Ψ|ô|Ψ〉χ
〈Ψ|Î|Ψ〉χ

, (37)

where Î denotes the identity operator on the space V ⊗
V of two sites of L and we use the same approximate
environment G[~r1~r2] to compute 〈Ψ|ô|Ψ〉χ and 〈Ψ|Î|Ψ〉χ =

〈Ψ|Ψ〉χ, where the latter is computed as an expectation

value for ô = Î. The approximate value 〈ô〉χ will in
general differ from the exact value 〈ô〉. One expects,
however, that in the limit of a large χ one recovers the
exact value,

〈ô〉 = lim
χ→∞

〈ô〉χ. (38)

In practice, we compute 〈ô〉χ for increasingly large val-
ues of χ, e.g. χ ∈ {10, 20, · · · , 100}, until the expectation
value 〈ô〉χ does no longer depend substantially in χ, and
assume that this corresponds to 〈ô〉. The cost of com-
puting 〈ô〉χ using CTM techniques scales with the PEPS
bond dimension D and the environment bond dimension
χ as O(D6χ3).

Notice that for any value of the bond dimension D, a
PEPS produces a variational energy 〈Ĥ〉,

〈Ĥ〉 ≡ 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

, (39)

that is 〈Ĥ〉 ≥ Eexact, where Eexact is the exact ground

state energy. Therefore, if we could compute 〈Ĥ〉 ex-
actly, we would obtain an upper bound to Eexact, which
could e.g. be compared with another upper bound cor-
responding to another variational ansatz. However, the
approximate value 〈Ĥ〉χ is not guaranteed to be an upper
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bound to Eexact. In this paper we assume that 〈Ĥ〉χ is
an upper bound to Eexact once it has converged for large
values of χ. This assumption is seen to be correct in the
case of free fermions in Sec. IV.

C. Simulation of imaginary-time evolution

In the iPEPS algorithm of Refs. 17,20 an approxima-
tion to the ground state is obtained by simulating an
evolution in imaginary time, Eq. (8). The optimiza-
tion of tensors A and B during the imaginary-time evo-
lution is achieved by breaking the evolution into steps
(Suzuki-Trotter decomposition) and then considering up-
dates that involve a single link. There are four types
of updates, corresponding to the four inequivalent links
given by the bond indices u, l, d, r of tensor A. For each
link, new tensors A′ and B′ are produced as a result of
an optimization that aims to account for the action of
a two-site gate g = exp(−h[~r1~r2]δt) acting on that link.
We refer to Refs. 17,20 for a detailed explanation on how
to use the approximate environment G[~r1~r2] to obtain up-
dated tensors A′ and B′. The algorithm proceeds by
iteratively updating tensors A and B until they converge
to some pair of tensors that depend on χ and the time
step δt. A finite time step δt introduces errors in the
imaginary-time evolution. A better approximation to the
ground state is obtained by gradually reducing δt until
its value does no longer affect significantly quantities of
interest (e.g. the energy). For instance, this occurs for
δt = 10−5 in the simulations of Sec. IV. The cost of simu-
lating an imaginary-time evolution is proportional to the
number of time steps that are being simulated and scales
as O(χ3D6), since each update requires reconverging an
approximate two-site environment G[~r1~r2].

A simplified way of simulating an evolution in imagi-
nary time was proposed in Ref. 19. This simplified up-
date does not involve the environment G[~r1~r2] and has a
much lower cost per iteration, namely O(D4d4 + D7d3)
when applied in a straightforward way and reducible to
O(D2d6 + D3d4 + D5d2) after more careful considera-
tions. On the one hand, ignoring the environment (that
is, the rest of the wavefunction) implies that the update
may not be optimal, and indeed there are cases, such
as the 2D quantum Ising model near its critical point,
where it produces a less accurate approximation to the
ground state,28 although we also found many cases where
it only performs marginally worse than when using the
environment. On the other hand, its much lower cost ac-
celerates the simulations considerably. Notice, however,
that the computation of expectation values with the re-
sulting PEPS still requires computing G[~r1~r2], which has
cost O(χ3D6).

FIG. 15: (Color online) Reduced tensor a defined in terms of
PEPS tensors A and A† and four fermionic swap gates. (b)
Reduced tensor b defined in terms of PEPS tensors B and B†

and four fermionic swap gates.

FIG. 16: (Color online) (a) Computation of an approximation
〈Ψ|ô|Ψ〉χ to the expectation value 〈Ψ|ô|Ψ〉 of a local observ-
able ô acting on two contiguous sites. This tensor network
only differs from the one in Fig. 4(e) for a bosonic system in
the presence of 12 fermionic swap gates. (b) Computation of
two-point correlators. For concreteness, we consider the ex-
pected value 〈ĉ†i cj〉 discussed in Eq. (41). The figure shows

the tensor network representing 〈Ψ|ĉ†i ĉj |Ψ〉χ, where sites i, j
are in the same row of L but separated by 4 sites. Notice the
line connecting the two tensors corresponding to operators ĉ†i
and ĉj , which crosses a number of other lines introducing a
number of fermionic swap gates. Since this line corresponds
to an index j = (−1, 1) with well-defined parity p = −1, the

fermionic swap gates simplify into Î ⊗ P̂ .

D. Fermionic iPEPS

As in the bosonic case, the fermionic iPEPS ansatz ex-
ploits translation invariance of a system on an infinite
lattice L to store the state |Ψ〉 using only a small num-
ber of PEPS tensors, which are repeated throughout the
lattice. Whether we are interested in approximating a
ground state invariant under translations by one site or
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with checkerboard order, we consider again just two (par-
ity preserving) PEPS tensors A and B as in Eq. (36).

It may not seem obvious that a fermionic iPEPS, char-
acterized by tensors A andB, represents a state |Ψ〉 of the
infinite lattice L that is invariant under diagonal shifts
(checkerboard order). Indeed, the presence of the ubiqui-
tous fermionic swap gates, which are not homogeneously
distributed across the tensor network corresponding to
the iPEPS (see Fig. 6 for an illustration in the case of
a finite PEPS) may seem incompatible with the checker-
board order. However, the checkerboard order becomes
manifest during the computation of expectation values
for local observables.

Given a fermionic iPEPS, the computation of the ex-
pectation value of e.g. a two-site observable ô is very
similar to the bosonic case. Since there are no fermionic
swap gates in the tensor network E for the scalar prod-
uct 〈Ψ|Ψ〉 or the two site environment E [~r1~r2], these ten-
sor networks can be contracted exactly in the same way
as in a bosonic iPEPS. [If one wants to use the decom-
position of the reduced tensors a and b in terms of A
and B, Fig. 15, the presence of four fermionic swap gates
needs to be taken into account]. In the simulations of
Sec. IV, we have used the directional CTM approach
discussed in Ref. 20 in order to produce an approximate
environment G[~r1~r2]. Then an approximation 〈ô〉χ to the
expected value 〈ô〉 is computed using the tensor network
of Fig. 16(a). Figure 16(b) describes the tensor network
that needs to be contracted in order to compute a two-
point correlators.

The simulation of time evolution proceeds in a very
similar way as in the bosonic iPEPS algorithm, with
the difference that the tensor networks involved contain
fermionic swap gates instead of simple line crossings. A
detailed description of the two updates used in this paper
is presented in appendix. B.

Before we move to presenting the results of ground
state computations, we conclude this section with a sum-
mary of the fermionic iPEPS algorithm:

(i) Ansatz. The state |Ψ〉 of the system on an infi-
nite square lattice L is encoded in two parity symmetric
tensors A and B. These tensors depend on O(dD4) pa-
rameters, where d is the dimension of the vector space
V of one site of L and D is the bond dimensions of the
iPEPS.

(ii) Computation of expectation values. Given tensors
A and B, the reduced tensors a and b are computed ac-
cording to Fig. 15. From the reduced tensors a and b, an
approximation G[~r1~r2] to a two-site environment E [~r1~r2]

is obtained using the CTM algorithm, see Fig. 14. The
computational cost scales as O(χ3D6), where χ is the
bond dimension of the approximate environment. Then
expectation values are computed by contracting small
tensor networks involving G[~r1~r2]. For instance, an ap-
proximation 〈ô〉χ to the expected value 〈ô〉, Eq. (37), for
an operator ô on two nearest neighbor sites is obtained
according to Fig. 16(a), whereas an approximation to a

two-point correlator is obtained according to Fig. 16(b).

(iii) Approximation of the ground state. Starting from
e.g. random tensors A and B, an imaginary-time evo-
lution is used to find an approximation to the ground
state of a local Hamiltonian Ĥ. The two updates of ap-
pendix B can be used: the standard update, which in
general produces better ground state approximations and
has cost O(χ3D6); and the simplified update, which has
a significantly lower cost and is often only marginally less
accurate than the standard update.

IV. RESULTS

In this section we test the fermionic iPEPS algorithm,
as summarized at the end of the last section, for sev-
eral models of free and interacting fermions in an infinite
square lattice L. We start by considering an exactly solv-
able model of free spinless fermions, which allows us to
compare the numerical results with the exact solution,
and therefore assess the accuracy of the approach. It
turns out that, similarly as in the 2D MERA,12 the ac-
curacy of the numerical results depends on the amount
of entanglement in the system. We also compare the
use of the standard and simplified updates discussed in
appendix B. The second model, describing interacting
spinless fermions on a square lattice, is no longer exactly
solvable. We compare our results for the phase diagram
with the Hartree-Fock (HF) solution from Ref. 29, and
show that our results for large D = 6 are an improve-
ment upon the HF result. The final example is the t− J
model, where we compare energies obtained with iPEPS
with previous variational Monte Carlo results based on
Gutzwiller-projected ansatz wave functions. In all these
examples we present iPEPS results for different bond di-
mensions D, and study the convergence of the energy as
a function of χ, the bond dimension of the environment.
In all these examples we chose D+ = D− = D/2, see Eq.
(21).

A. Free spinless fermions

1. Model

The first model under consideration is an exactly solv-
able model of free spinless fermions,30 given by the
Hamiltonian

Hfree =
∑
〈ij〉

[ĉ†i ĉj+H.c.−γ(ĉ†i ĉ
†
j+ĉj ĉi)]−2λ

∑
i

ĉ†i ĉi, (40)

with 〈ij〉 denoting the sum over nearest-neighbor pairs, λ
the chemical potential, and γ the pairing potential. Fig-
ure 17 shows the exact phase diagram of the model.30 For
γ = 0 the model reduces to the usual tight-binding model
of free fermions, with a metal phase for 0 ≤ λ < 2 and a
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FIG. 17: (Color online) Phase diagram of the free-fermion
model 40 as a function of chemical potential λ and pairing
potential γ. For γ > 0, λ > 0 the system is superconducting.
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FIG. 18: (Color online) Relative error of the ground state
energy of the free-fermion model (40) as a function of λ, for
different values of γ and D. The dimension χ is 20 and 40 for
D = 2 and D = 4, respectively.

band insulator for λ ≥ 2. Also the line λ = 0, γ > 0 cor-
responds to a metal phase with a one dimensional Fermi
surface. For γ > 0, λ > 0 the system is superconducting,
with a critical phase for 0 < λ ≤ 2 and a gapped phase
for λ > 2.

2. iPEPS results

Fig. 18 shows the relative error in the ground state en-
ergy obtained by simulating an imaginary-time evolution
with the standard update (cf. appendix B). Results for
bond dimensions D = 2 and D = 4 and at different lo-
cations in the phase diagram are shown. In the gapped
phase, λ > 2, accurate results are already obtained for
D = 2, and for D = 4 these accuracies are increased
by one to three orders of magnitude. [A special case is
the band insulator for γ = 0, λ ≥ 2, (not shown) which
corresponds to an unentangled or product ground state
and can be reproduced exactly even with bond dimension
D = 1.] The accuracy in the critical phase, λ ≤ 2, is of
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FIG. 19: (Color online) Upper panels: Correlation function

C(r) = 〈ĉ†i ĉj〉 as a function of distance r (in x-direction), see
Eq. (41), for two different values of (γ, λ) of the free-fermion
model (40). Middle panels: Absolute value of the correlation
function C(r) in semi-logarithmic scale. Lower panels: The
difference between the simulation result C(r,D) and the exact
result Cex(r) for different values of D. Notice that better ac-
curacies are obtained in the gapped phase, which corresponds
to a less entangled ground state.

the order of 1% forD = 2. Increasing the bond dimension
to D = 4, an order of magnitude is gained for γ = 1, but
the gain is smaller for γ = 2. Finally, the free fermion
regime with a 1D Fermi surface (γ = 0, λ < 2) is the
most challenging case. Note that in this case, the entan-
glement entropy exhibits a logarithmic correction to the
area law.30–33 This shows that the accuracy of the results
depends on the amount of entanglement in the system,
similarly to the findings with the 2D MERA.9,12,34

Next we study the accuracy obtained for the two-point
correlator

C(r) ≡ 〈ĉ†i ĉj〉, (41)

where (x(j), y(j)) = (x(i) + r, y(i)), i.e. site j is in the
same row as site j but separated by r − 1 columns, see
Fig. 16(b). The iPEPS results shown in Fig. 19 are seen
to approach the exact values with increasing D. In the
critical phase (left panels) only the correlations at short
distances are reproduced accurately. The precision of the
correlator at longer distance is rather poor for small D,
but improves upon increasing D. In the gapped phase
(right panels) the accuracy is clearly better, already for
small bond dimension. For D = 6 accurate results are
obtained up to distance r = 9 where the magnitude of
the correlator is of the order 10−7. These results are ob-
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FIG. 20: (Color online) Relative error of the ground state
energy of the free-fermion model (40) as a function of χ, the
bond dimension of the environment, for D = 4. In these ex-
amples the energy decreases monotonously with χ, i.e. the en-
ergy from the simulation is always larger than the true ground
state energy.

tained from simulations with the simplified update, and
we checked that they are similar to the ones obtained
with the standard update (for D = 2 and D = 4). We
compare and discuss the two updates further below.

3. Technical comments

Since the iPEPS is a variational ansatz, the ground
state energy 〈Ĥ〉 of a state represented by an iPEPS is
an upper bound of the exact ground state energy Eexact.
With increasing bond dimension D the true ground state
can be represented more accurately, and consequently the
energy 〈Ĥ〉 becomes lower, i.e. a better upper bound of
Eexact. However, as discussed in the previous section,
quantities such as the energy can only be extracted in
an approximate way from the iPEPS. The error of this
approximation depends on the bond dimension of the en-
vironment χ. In Fig. 20 the dependence of the relative
error of the energy as a function of χ is plotted for an
iPEPS with bond dimension D = 4. We observe that,
with increasing χ, the energy 〈Ĥ〉χ converges to some
value that is indeed an upper bound for Eexact. This is
consistent with the assumption that 〈Ĥ〉χ has converged

to the true energy 〈Ĥ〉 of our D = 4 iPEPS. In the other
models analyzed in this section we will also assume that
once 〈Ĥ〉χ does no longer change with increasing χ, it

has attained 〈Ĥ〉 and therefore is an upper bound to
Eexact. Fig. 20 shows that, in the present free model, the
approximate energy 〈Ĥ〉χ monotonically decreases with

increasing χ, and therefore any value of 〈Ĥ〉χ is already
an upper bound to Eexact. However, this behavior is not
true in general, as we will see further below. It is there-
fore important to study the convergence in χ in each case
separately.

Let us make a few comments about the convergence
of the environment in the iPEPS algorithm, for fixed
sets of tensors A and B which approximate the ground
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FIG. 21: (Color online) Relative error of the ground state
energy of the free-fermion model (40) as a function of the
number of renormalization steps in the CTM algorithm. The
boundary tensors are initialized randomly, and the dimensions
are D = 4, and χ = 32 (χ = 16 for λ = 1). The environment
in the gapped phase converges considerably faster than in the
critical phase.

state of different phases. Figure 21 illustrates how the en-
ergy converges with the number of renormalization steps
in the directional CTM algorithm20 for different points
in the phase diagram. The environment in the gapped
phase clearly converges faster than in the critical phase.
Here, the tensors at the boundary of the iPEPS have
been chosen randomly at the beginning. Depending on
the initial conditions of these boundary tensors the num-
ber of steps needed to converge can vary significantly.
In practice, when using the standard update, we use the
environment from the previous imaginary time step as
an initial condition, so that only a few renormalization
steps are needed to re-converge the environment. Note
also that for different initial boundary tensors the energy
might converge to slightly different values (especially in
the critical phase). It is therefore advisable to check re-
sults for different initial boundary tensors.

For this model, we have also compared the precision
of the ground state energy obtained with the standard
and simplified updates, see Fig. 22. The accuracies ob-
tained with the standard update are typically slightly
better than the ones obtained with simplified updates.
However, the simulations with the simplified update are
computationally considerably cheaper, because the en-
vironment has to be computed only once at the end of
the simulation for the evaluation of observables, whereas
in the standard update the environment it has to be re-
computed at each step of the imaginary-time evolution.
The leading cost of the two methods is the same, but
the computational cost differs by a rather large factor,
which depends on the total number of imaginary-time
steps. For the remaining examples of this paper we will
consider only simplified updates. This allowed us to per-
form simulations with D = 6 and χ = 60 on a standard
computer in roughly one day. We checked for D = 2
and D = 4 that the results obtained with the two up-
dates give similar accuracies. It is conceivable, however,
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FIG. 22: (Color online) Comparison of the accuracies of the
ground state energy of the free-fermion model (40) obtained
with the two different updates described in appendix B.

that the difference in accuracy between the two update
schemes become larger with increasing D, depending on
the model under consideration.

B. Interacting spinless fermions

1. Model

The second model under consideration is a model of in-
teracting spinless fermions, which is not exactly solvable.
It is defined by the Hamiltonian

Hint = −t
∑
〈ij〉

[ĉ†i ĉj +H.c.]− µ
∑
i

ĉ†i ĉi + V
∑
〈ij〉

ĉ†i ĉiĉ
†
j ĉj ,

(42)
with t = 1 the nearest-neighbor hopping ampli-
tude, V > 0 the (repulsive) nearest-neighbor interaction
strength, and µ the chemical potential. The Hartree-Fock
(HF) phase diagram29,35 as a function of V and particle
density n is given Fig. 23 (solid line). The HF calculation
predicts a gapped charge-density-wave (CDW) phase at
half filling (n = 0.5) and a translational invariant normal
state (metal phase) far away from half filling. In between
these two phases they find a thermodynamically unsta-
ble region, which we identify as a phase separation (PS)
region, i.e. where the system splits into two parts, one in
the metal phase and the other in the CDW phase.

2. iPEPS results

Our results for the phase diagram, obtained with the
simplified update using an iPEPS with bond dimension
D = 4 and D = 6, are given by the squares and triangles
in Fig. 23, respectively. The phase diagram obtained
with iPEPS qualitatively agrees with the HF solution.
However, with increasing D the phase boundary to PS
region moves away from the HF result. In the following
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FIG. 23: (Color online) Phase diagram of the interacting spin-
less fermion model (42). V is the interaction strength, and
n is the particle density (filling). The charge-density wave
phase (checkerboard pattern) at exactly half-filling (n = 0.5)
is separated from the metal phase by a first order phase transi-
tion, with an intermediate region corresponding to phase sep-
aration (PS). With increasing D, the boundary between the
metal phase and the PS region moves away from the Hartree-
Fock (HF) result from Ref. 29. Dotted and dashed lines are
a guide to the eye. The uncertainty of the phase boundaries
obtained with iPEPS is smaller than the symbol size (in x-
direction).

we explain how we computed the phase boundary and
discuss the origin of this deviation. We focus only on the
left half of the phase diagram, n ≤ 0.5, since it is mirror
symmetric with the n = 0.5 line.

We determined the phase boundary between the metal
phase and the PS region for several values of V , for D = 4
and D = 6. For each value of V , we studied the first
order phase transition, which occurs at a certain value
µ = µ∗. The iPEPS algorithm known to be particularly
suitable to study first order phase transitions, thanks to
displaying some degree of hysteresis.24,36 Specifically, if
we start a simulation with an iPEPS that represents a
state in e.g. the metal phase, it will remain in the metal
phase upon increasing µ, even for values (slightly) larger
than µ∗ (where the ground state is no longer metallic).
This allows us to compute the energy of the metal phase
in the region µ > µ∗ even though the CDW-state has a
lower energy, and vice versa. We can therefore compute
the energies of the ground states of the two phases indi-
vidually, and the phase transition occurs where the two
energies cross, as shown in the upper panel of Fig. 24 for
V = 2. At the transition point µ∗, the density n jumps
from a certain value n∗ < 0.5 in the metal phase to the
value n = 0.5 in the CDW phase, as plotted in the lower
panel of Fig. 24. For densities with values between n∗

and n = 0.5 there exists no homogenous ground state,
i.e. the system exhibits phase separation (cf. Fig. 23).

Let us now compare the energies obtained with iPEPS
with the HF solution in Fig. 23. While the results in the
CDW phase coincide (up to ≈ 0.5%), we obtain lower
energies for D = 6 than the HF result (of the order of
3%). This leads to a shift of the transition point µ∗ to a
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FIG. 24: (Color online) Upper panel: Energy per site of the
interacting fermion model (42) as a function of chemical po-
tential µ for V = 2, obtained by iPEPS and Hartree-Fock
(HF).29 The first order phase transition between the metal
phase and the charge-density wave (CDW) phase occurs at a
value µ∗ where the two corresponding energies cross. Lower
panel: Particle density n as a function of chemical potential.
At the first order phase transition point µ∗, n jumps from a
certain value n∗ in the metal phase to n = 0.5 in the CDW
phase. For densities in between n∗ and n = 0.5 the system
exhibits phase separation. The numbers in brackets indicate
the uncertainty in the last digit.

larger value of µ, and thus the phase boundary appears
at a larger value of n∗ than in the HF case. The error of
the energy due to the finite χ is smaller than the symbol
size (cf. Fig. 25). Within this error, we regard the results
as ”variational” energies, i.e. an upper bound of the true
ground state energy. Accordingly, our D = 6 results in
the metal phase are closer to the true ground state energy,
and the phase boundary for D = 6 is an improvement
upon the HF solution.

3. Technical comments

Note that the convergence of the energy with χ in
Fig. 25 is not monotonous as in the previous examples
in Fig. 20. Still, for large χ the energies do not seem
to change significantly anymore. For some simulations
we observe that the environment does not converge to a
fixed point, but rather oscillates slightly. In such a case
the energy fluctuates around a certain value. We take
this error also into account in our study. The final un-
certainty of the phase boundary obtained by iPEPS is
smaller than the symbol sizes (in x-direction) in Fig. 23.
All simulation results for this model were obtained with

the simplified update of appendix B.
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FIG. 25: (Color online) The convergence of the energy per site
as a function of χ is not monotonous. For large χ the values
do not seem to change significantly anymore. We associate
an error bar to the values of the energy, depending on the
convergence behavior in χ. This error is smaller than the
symbol sizes in Fig. 24.

C. t− J model

1. Model

As a final example we consider the t− J model,

Ht-J = −t
∑
〈ij〉σ

c̃†iσ c̃jσ+H.c.+J
∑
〈ij〉

(ŜiŜj−
1

4
n̂in̂j)−µ

∑
i

n̂i,

(43)

with σ = {↑, ↓} the spin index, n̂i =
∑
σ ĉ
†
iσ ĉiσ the elec-

tron density and Ŝi the spin 1/2 operator on site i, and

c̃iσ = ĉiσ(1 − ĉ†iσ̄ ĉiσ̄). The t − J model is an effective
model of the Hubbard model in the limit of strong on-site
repulsion. The local Hilbert space of each site contains
three basis states {|0〉, | ↑〉, | ↓〉}, i.e. two electrons with
opposite spins cannot occupy the same lattice site as in
the Hubbard model. The t − J model is an important
model in the context of high-Tc superconductivity and its
phase diagram is still controversial. We focus here on the
parameter t/J = 3 which lies in the relevant parameter
range of cuprate superconductors. At half filling, i.e. par-
ticle density n = 1, the model corresponds to the antifer-
romagnetic spin 1/2 Heisenberg model, where the ground
state has long-range antiferromagnetic (Néel) order. Far
away from half filling the model is a metal. At small,
but finite doping x = 1 − n, several studies predict a
dx2−y2-wave superconducting phase, see e.g. Refs. 6,37–
40 and references therein. In studies with DMRG also
a phase with stripe order41–43 was found at low doping.
Some studies suggest that the formation of stripes is due
to phase separation of the undoped antiferromagnet and
the superconducting phase.38,44,45

Here we focus on the variational Monte Carlo (VMC)
results from Ref. 38, based on Gutzwiller-projected
ansatz wave functions. This study was done for finite
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lattices of size 22 × 22, where the finite size corrections
of the energy are estimated to be of the order of 10−3J .
The Monte Carlo sampling error is of the same order
of magnitude. At low doping (n & 0.9) the best varia-
tional energies are obtained by an ansatz wave function
including superconductivity and antiferromagnetic order.
At larger doping 0.7 . n . 0.9 a better variational en-
ergy is obtained with an ansatz wave function that is su-
perconducting without antiferromagnetic order. In the
following we compare our energies with the best values
obtained in this previous study.

2. iPEPS results

Figure 26 shows the energy per site (with the chemical
potential term subtracted) as a function of particle den-
sity. One can see that the iPEPS results approach the
VMC results from Ref. 38 with increasing D. For D = 6
the iPEPS energies are roughly 1% higher than the VMC
energies, and for D = 8 the deviation is of the order of
10−3J , which is the same order of magnitude as the er-
ror bar of the VMC results. Note also, that some of the
energies for D = 8 are lower than the VMC results. How-
ever, the D = 8 results are not necessarily ”variational”
energies, as we discuss below.

These preliminary results are encouraging for the fu-
ture study of the phase diagram of the t−J model using
PEPS algorithms, because the current energies with the
largest dimension D = 8 are compatible with previous
variational studies, and we expect to be able to increase
D by properly exploiting the global symmetries of the
model. We also would like to emphasize that iPEPS is
a general ansatz, i.e. the same ansatz is used for any
model on a square lattice, whereas in other variational
studies the ansatz wave function is typically based on
the specific physics of the model. It is remarkable that
iPEPS, which starts from a random initial state, yields
comparable energies as the ones obtained by specialized
ansatz wave functions. Finally, it will be interesting to
verify whether the phases obtained by iPEPS correspond
to the ones predicted by the variational study, or whether
a phase with different dominant correlations appears,
e.g. stripe-ordered phase, as previously found in DMRG
studies.41–43

3. Technical comments

Figure 27 shows that the energies as a function of χ
are sufficiently converged, both for D = 4 and D = 6,
i.e. the uncertainty due to a finite χ is much smaller
than the symbol sizes in Fig.26. We can thus view the
energies for D ≤ 6 as ”variational” in the sense that
they are an upper bound of the true ground state energy.
However, for D = 8 at finite doping the energy increases
with increasing χ, and it is at present not clear what
value it will reach for larger (and presently unaffordable)
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FIG. 26: (Color online) Upper panel: Energy per site in units
of J of the t−J model as a function of filling n, with t/J = 3.
With increasing D, the energies obtained by iPEPS are ap-
proaching the values from the variational Monte Carlo (VMC)
study in Ref. 38. Note that the chemical potential term has
been subtracted from the energy. The error bars of the VMC
results are of the order 10−3J . Lower panel: Relative devia-
tion between the energies obtained by iPEPS and VMC. Full
symbols indicate that iPEPS energy is lower than the VMC
energy.

values χ. Thus, in this case the energy is not believed to
necessarily be an upper bound to the exact ground state
energy.

V. CONCLUSION

In recent months several theoretical proposals have
appeared describing fermionic versions of tensor net-
work algorithms for 2D lattice systems, namely fermionic
MERA9,11 and fermionic PEPS10,13,14. In this paper we
have explained how to obtain fermionic PEPS algorithms
by applying the general fermionization procedure of ten-
sor networks introduced in Ref. 12. A highlight of our
formulation of fermionic PEPS is its simplicity: it re-
places the complexity involved in dealing with a network
of fermionic operators with a tensor network built by fol-
lowing two rules, namely the use of parity preserving ten-
sors and the substitution of line crossings with fermionic
swap gates.
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FIG. 27: (Color online) Energy per site as a function of χ.
The energies for D ≤ 6 do not seem to change significantly
anymore for large χ, whereas for D = 8 the energy is still
increasing at the largest value of χ used.

We have then used the fermionic iPEPS algorithm to
compute an approximation to the ground state of sev-
eral fermionic models on an infinite lattice. By simu-
lating an exactly solvable model of free fermions,30 we
have been able to see that even a fermionic PEPS with
small bond dimension D (D = 2, 4) is already capable
of reproducing up to several digits of the exact ground
state energy, as well as two-point correlators. The results
also showed that, similarly to what had been observed
with the fermionic MERA,9,12 the accuracy of the ap-
proach depends on the amount of entanglement in the
system. Generally speaking, gapped systems are less en-
tangled than critical ones and, accordingly, a fermionic
iPEPS with a given bond dimension D produces better
accuracies for the former. The simulation of model of
interacting spinless fermions has provided us with a first
clear indication of the usefulness of the fermionic PEPS
as a variational ansatz for the ground state of systems of
interacting fermions. The fermionic PEPS approach re-
produces the Hartree-Fock phase diagram29, with metal
and charge-density wave phases; but even with bond di-
mension D = 4 and D = 6, it improves the ground state
energies on the metallic phase and this results in a signif-
icant shift of the phase boundary. Finally, results for the
t− J model in the relevant parameter range for cuprate
superconductors are particularly encouraging, given that
fermionic PEPS, still at an early stage of development,
already produce ground state energies comparable with
those of previous variational studies.38

The main limitation in present calculations is due to
the scaling O(χ3D6) of simulation costs with the PEPS
bond dimension D and the environment bond dimension
χ, which restricts D and χ to relatively small values.
There are, however, several ways in which larger values
of D and χ could become affordable, thereby leading to
more accurate results. On the one hand, one can incorpo-

rate the internal global symmetries of a model (e.g. par-
ticle number conservation) into the tensors and exploit
their block structure to reduce computational costs.46

This strategy is expected to be decisive for the charac-
terization of the phase diagram of the t−J and Hubbard
models. On the other hand, Monte Carlo sampling tech-
niques could be used to reduce the formal dependence
of the simulation costs in D and χ.47,48 Finally, the use
parallel computing on a large cluster would also lead to
improved fermionic PEPS simulations.
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Appendix A: Generalized fermionic operators

In the case of a lattice where each site is described
by a generic vector space V of finite dimension d, we
decompose V into even and odd parity sectors,

V ∼= V(+) ⊗ V(−) (A1)

and use an index s = (p, αp) to label a basis with well
defined parity,

P̂ |p, αp〉 = p|p, αp〉, (A2)

see Sec. II E. We can also introduce a set {f̂s} of general-

ized fermionic operators on each site, where f̂s is defined
as

f̂s ≡ |0〉〈s|, |s〉 = |(p, αp)〉. (A3)

Then a local operator ô acting on just one site can be
expanded as

ô =
∑
s,s′

oss′ |s′〉〈s|, |s′〉〈s| ≡ f̂†s′ |0〉〈0|f̂s. (A4)

Notice that fs is parity preserving if p(s) = +1 and

parity changing if p(s) = −1. Fermionic operators f̂
[~r1]
s1

and f̂
[~r2]
s2 acting on two different sites ~r1, ~r2 ∈ L fulfill

f̂ [~r1]
s1 f̂ [~r2]

s2 = S(s1, s2)f̂ [~r2]
s2 f̂ [~r1]

s1 , (A5)

where

S(s1, s2) ≡
{
−1 if p(s1) = p(s2) = −1

1 otherwise.
(A6)

A two-site operator ô acting on sites ~r1~r2 ∈ L can then
be written as

ô =
∑

s1s2s′1s
′
2

os2s1s′1s′2 |s
′
1s
′
2〉〈s1s2|. (A7)

where

|s′1s′2〉〈s1s2| ≡ f̂ [~r1]†
s′1

f̂
[~r2]†
s′2
|0102〉〈0102|f̂ [~r2]

s2 f̂ [~r1]
s1 . (A8)
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FIG. 28: (Color online) Definition of tensors A and B.

FIG. 29: (Color online) (a) Tensor A• is obtained from ten-
sor A by crossing the legs s and d. (b) Tensor B• is obtained
from tensor B by crossing the legs s and u. (c) Tensors WA•

and MA• are obtained by joining the u, l, d indices and the
r, s indices of A•, and doing a singular value decomposition
of the resultant matrix. The singular values are included in
the definition of tensor MA• . (d) Tensors NB and WB are ob-
tained by joining indices l, s and indices u, r, d of B together,
then performing a singular value decomposition of the result-
ing matrix, then splitting the composed indices back apart.
The singular values are included in tensor NB . (e) Tensors
WA and MA are obtained by joining indices u, l, d and indices

r, s of A, then performing a singular value decomposition of
the resulting matrix, then splitting the composed indices back
apart. The singular values are included in tensor MA. (f)

Tensors NB• and UB• are obtained by joining indices s, l and
indices u, r, d of B•, then performing a singular value decom-
position of the resulting matrix, then splitting the composed
indices back apart. The singular values are included in tensor
NB• .

Appendix B: Standard and simplified two-site
horizontal update for fermionic gates

This appendix describes how to update the tensors A
and B that define a fermionic iPEPS. We consider the
two strategies employed to obtain the results of Sec. IV,
namely (i) the standard update, used in Refs. 17,20 for
bosonic systems, which requires the approximate envi-
ronment G[~r1~r2] = {E1, · · · , E6} of Fig. 14(d); and (ii) a
simplified update, used in Ref. 14, which does not involve
an environment.

In these two schemes, a gate g = exp(−ĥ[~r1~r2]δt) is
applied to the two sites ~r1, ~r2 ∈ L of a given link, with
tensors A and B, and new tensors A′ and B′ are cho-

FIG. 30: (Color online) (a) Tensor Z is obtained by contract-
ing a tensor network that contains the approximate environ-
ment G[~r1~r2] = {E1, · · · , E6}, tensors WA• , WA, UB and UB• ,
and a few fermionic swap gates. (b) Tensor Q is obtained from
the contraction of Z,MA• , NB and the gate g.

sen in order to best account for the action of the gate.
Here we simply list the steps required in order to obtain
the updated tensors A′ and B′. For a justification of the
schemes we refer to Refs. 14,17,20. We emphasize that
the only difference between these updates and the ones
used in a bosonic system is the presence of fermionic swap
gates. In particular, if the fermionic swap gates are elimi-
nated (by setting S(i1, i2) ≡ 1 in Eqs. (23)-24) we obtain
update algorithms for bosonic PEPS. In some models,
such as the quantum Ising model near criticality,28 the
standard update produces significantly more accurate re-
sults than the simplified update, but this did not seem to
be the case in the gapless phases studied in this paper.
In all models away from criticality that we could test, the
simplified update produces only marginally worse accura-
cies. On the other hand, the much lower computational
cost of the simplified update allows to consider larger
bond dimension D than with the standard update.

For concreteness, in the following we assume that the
gate g is applied on a horizontal link where tensors A
and B are at the left and right, respectively. Similar
derivations apply to the other three types of links.

1. Standard update

Given tensors A and B, an approximate environment
G[~r1~r2] = {E1, · · · , E6} is obtained as described in Sec.
III: first build the reduced tensors a and b, Fig. 15, which
are the building blocks of the exact environment E [~r1~r2];
then use e.g. CTM techniques20,27 to produce an approx-
imation G[~r1~r2] to E [~r1~r2].

On the other hand, it is convenient to introduce a num-
ber of additional tensors. First compute tensors A and
B according to Fig. 28, as well as tensors A• and B• ac-
cording to Fig. 29(a,b). Then perform a singular value
decomposition of tensors A•, B, A and B• as explained
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FIG. 31: (Color online) The updated tensors M ′A• and N ′B
are obtained by iteratively solving two linearized equations.
Specifically, we iterate the following two steps until conver-
gence: (a) Given NB and NB• , we obtain M ′A• by solving the
linear equation M ′A•R = S, where R and S are obtained as
indicated in the diagram. Then, we set MA• = M ′A• , and
compute MA = M†A• . (b) Given MA• and MA, we obtain
N ′B by solving the linear equation N ′BR = S, where R and S
are again obtained as indicated in the diagram. Then, we set
NB = N ′B , and compute NB• = N†B .

FIG. 32: (Color online) (a) Tensor A•′ is obtained from the
contraction of WA• and M ′A• . (b) The updated tensor A′

is computed by crossing the s and d indices of A•′. (c) The
updated tensor B′ is obtained from the contraction of N ′B and
UB .

in the caption of Fig. 29(c-f). Here we use the nota-
tion T = WTDTUT = WTMT = NTUT for the singular
value decomposition of a matrix T , where WT and UT
are isometries and DT is the diagonal matrix of singu-
lar values. Notice that the singular value decompositions
are performed by regarding a tensor as a matrix after
grouping its indices into two sets.

Tensor Z is then obtained by contracting the tensor
network of Fig. 30(a), which in turn is used to produce
tensor Q in Fig. 30(b). From tensors Z and Q, updated
tensors M ′A• and N ′B are obtained by iterating until con-

vergence the process explained in the caption of Fig. 31.
Finally, the updated tensors A′ and B′ for the iPEPS

are obtained as indicated in Fig. 32.

FIG. 33: (Color online) (a) Local detail of an iPEPS ex-
pressed in terms of tensors ΓA and ΓB and four weight matri-
ces λ1, . . . , λ4, as required for the simplified update. (b)-(c)
Relation with the usual iPEPS tensors A and B.

FIG. 34: (Color online) (a) Tensor Θ and the tensor network

that defines it. (b) Tensors Γ̃•A and Γ̃B and weight matrix λ̃1,
obtained from the singular value decomposition of Θ.

2. Simplified update

For the simplified update from Ref. 14, the structure
of the PEPS tensor network is slightly different to the
one considered so far in this paper. Here the infinite
PEPS is specified by two tensors ΓA and ΓB , and four
diagonal matrices λ1, . . . , λ4 with non-negative diagonal
entries that assign weights to the indices of ΓA and ΓB ,
see Fig. 33(a). Notice that the usual expression in terms
of tensors A and B can be recovered e.g. by multiplying
the square root of the weight matrices λ1, . . . , λ4 with the
tensors ΓA and ΓB , see Fig. 33(b)-(c).



24

FIG. 35: (Color online) (a) Tensor Γ•′A is obtained by multi-

plying Γ̃•A with the inverses of λ2, λ3 and λ4. (b) Tensor Γ′B
is obtained by multiplying Γ̃B with the inverses of λ2, λ3 and
λ4.

The simplified update consists of the following steps:
first, a tensor Γ•A is computed in analogous way as tensor
A• in Fig. 29(a). Then tensor Θ is obtained by contract-

ing the network in Fig. 34(a), and subsequently decom-
posed through a singular value decomposition as shown

in Fig. 34(b). This results in tensors Γ̃•A and Γ̃B and the

matrix of weights λ̃1, which corresponds to the singular
values of Θ. At this stage λ̃1 is truncated into λ′1, which

keeps only the D largest diagonal entries of λ̃1. Then

tensors Γ̃•A and Γ̃B are also truncated accordingly.

Next, tensors Γ•′A and Γ′B are obtained from (the

truncated version of) tensors Γ̃•A and Γ̃B as shown in
Fig. 35(a)-(b). Finally, tensor Γ′A is obtained from Γ•′A
again in an analogous way as A′ in Fig. 32(b).

The updated infinite PEPS is given in terms of the
new tensors Γ′A and Γ′B , and the set of weight matrices
λ′1, λ2, λ3 and λ4.
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