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Abstract
The conventional model for online planning under
uncertainty assumes that an agent can stop and plan
without incurring costs for the time spent planning.
However, planning time is not free in most real-
world settings. For example, an autonomous drone
is subject to nature’s forces, like gravity, even while
it thinks, and must either pay a price for counteract-
ing these forces to stay in place, or grapple with the
state change caused by acquiescing to them. Pol-
icy optimization in these settings requires metarea-
soning—a process that trades off the cost of plan-
ning and the potential policy improvement that can
be achieved. We formalize and analyze the metar-
easoning problem for Markov Decision Processes
(MDPs). Our work subsumes previously studied
special cases of metareasoning and shows that in
the general case, metareasoning is at most polyno-
mially harder than solving MDPs with any given
algorithm that disregards the cost of thinking. For
reasons we discuss, optimal general metareason-
ing turns out to be impractical, motivating approx-
imations. We present approximate metareasoning
procedures which rely on special properties of the
BRTDP planning algorithm and explore the effec-
tiveness of our methods on a variety of problems.

1 Introduction
Offline probabilistic planning approaches, such as policy iter-
ation [Howard, 1960], aim to construct a policy for every pos-
sible state before acting. In contrast, online planners, such as
RTDP [Barto et al., 1995] and UCT [Kocsis and Szepesvári,
2006], interleave planning with execution. After an agent
takes an action and moves to a new state, these planners sus-
pend execution to plan for the next step. The more planning
time they have, the better their action choices. Unfortunately,
planning time in online settings is usually not free.

Consider an autonomous Mars rover trying to decide what
to do while a sandstorm is nearing. The size and uncertainty
of the domain precludes a-priori computation of a complete
policy, and demands the use of online planning algorithms.

∗Research was performed while the author was an intern at Mi-
crosoft Research.

Normally, the longer the rover runs its planning algorithm,
the better decision it can make. However, computation costs
power; moreover, if it reasons for too long without taking
preventive action, it risks being damaged by the oncoming
sandstorm. Or consider a space probe on final approach to a
speeding comet, when the probe must plan to ensure a safe
landing based on new information it gets about the comet’s
surface. More deliberation time means a safer landing. At
the same time, if the probe deliberates for too long, the comet
may zoom out of range — a similarly undesirable outcome.

Scenarios like these give rise to a general metareasoning
decision problem: how should an agent trade off the cost
of planning and the quality of the resulting policy for the
base planning task every time it needs to make a move, so
as to optimize its long-term utility? Metareasoning about
base-level problem solving has been explored for probabilis-
tic inference and decision making [Horvitz, 1987; Horvitz et
al., 1989], theorem proving [Horvitz and Klein, 1995; Kautz
et al., 2002], handling streams of problems [Horvitz, 2001;
Shahaf and Horvitz, 2009], and search [Russell and Wefald,
1991; Burns et al., 2013]. There has been little work explor-
ing generalized approaches to metareasoning for planning.

We explore the general metareasoning problem for Markov
decision processes (MDPs). We begin by formalizing the
problem with a general but precise definition that subsumes
several previously considered metareasoning models. Then,
we show with a rigorous theoretical analysis that optimal gen-
eral metareasoning for planning under uncertainty is at most
polynomially harder than solving the original planning prob-
lem with any given MDP solver. However, this increase in
computational complexity, among other reasons we discuss,
renders such optimal general metareasoning impractical. The
analysis raises the issue of allocating time for metareason-
ing itself, and leads to an infinite regress of meta∗reasoning
(metareasoning, metametareasoning, etc.) problems.

We next turn to the development and testing of fast ap-
proximate metareasoning algorithms. Our procedures use
the Bounded RTDP (BRTDP [McMahan et al., 2005]) algo-
rithm to tackle the base MDP problem, and leverage BRTDP-
computed bounds on the quality of MDP policies to reason
about the value of computation. In contrast to prior work
on this topic, our methods do not require any training data,
precomputation, or prior information about target domains.
We perform a set of experiments showing the performance
of these algorithms versus baselines in several synthetic do-
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mains with different properties, and characterize their perfor-
mance with a measure that we call the metareasoning gap
— a measure of the potential for improvement from metarea-
soning. The experiments demonstrate that the proposed tech-
niques excel when the metareasoning gap is large.

2 Related Work
Metareasoning efforts to date have employed strategies that
avoid the complexity of the general metareasoning prob-
lem for planning via relying on different kinds of simpli-
fications and approximations. Such prior studies include
metareasoning for time-critical decisions where expected
value of computation is used to guide probabilistic inference
[Horvitz, 1987; Horvitz et al., 1989], and work on the guid-
ing of sequences of single actions in search [Russell and
Wefald, 1991; Burns et al., 2013]. Several lines of work
have leveraged offline learning [Breese and Horvitz, 1990;
Horvitz et al., 2001; Kautz et al., 2002]. Other studies have
relied on optimizations and inferences that leverage the struc-
ture of problems, such as the functional relationships between
metareasoning and reasoning [Horvitz and Breese, 1990;
Zilberstein and Russell, 1996], the structure of the prob-
lem space [Horvitz and Klein, 1995], and the structure of
utility [Horvitz, 2001]. In other work, [Hansen and Zil-
berstein, 2001] proposed a non-myopic dynamic program-
ming solution for single-shot problems. Finally, several plan-
ners rely on a heuristic form of online metareasoning when
maximizing policy reward under computational constraints in
real-world time with no “conversion rate” between the two
[Kolobov et al., 2012; Keller and Geißer, 2015]. In con-
trast, our metareasoning model is unconstrained, with com-
putational and base-MDP costs in the same “currency.”

Our investigation also has connections to research on al-
locating time in a system composed of multiple sensing
and planning components [Zilberstein and Russell, 1996;
Zilberstein and Russell, 1993], on optimizing portfolios of
planning strategies in scheduling applications [Dean et al.,
1995], and on choosing actions to explore in Monte Carlo
planning [Hay et al., 2012]. In other related work, [Chanel
et al., 2014] consider how best to plan on one thread, while a
separate thread processes execution.

3 Preliminaries
A key contribution of our work is formalizing the metarea-
soning problem for planning under uncertainty. We build
on the framework of stochastic shortest path (SSP) MDPs
with a known start state. This general MDP class includes
finite-horizon and discounted-reward MDPs as special cases
[Bertsekas and Tsitsiklis, 1996], and can also be used to ap-
proximate partially observable MDPs with a fixed initial be-
lief state. An SSP MDP M is a tuple 〈S,A, T,C, s0, sg〉,
where S is a finite set of states, A is a set of actions that the
agent can take, T : (S,A, S) → [0, 1] is a transition func-
tion, C : (S,A) → R is a cost function, s0 ∈ S is the start
state, and sg is the goal state. An SSP MDP must have a
complete proper policy, a policy that leads to the goal from
any state with probability 1, and all improper policies must
accumulate infinite cost from every state from which they fail
to reach the goal with a positive probability. The objective is

to find a Markovian policy πs0 : S → A with the minimum
expected cost of reaching the goal from the start state s0 —
in SSP MDPs, at least one policy of this form is globally op-
timal.

Without loss of generality, we assume an SSP MDP to
have a specially designated NOP (“no-operation”) action.
NOP is an action the agent chooses when it wants to “idle”
and “think/plan”, and its semantic meaning is problem-
dependent. For example, in some MDPs, choosing NOP
means staying in the current state for one time step, while in
others it may mean allowing a tidal wave to carry the agent to
another state. Designating an action as NOP does not change
SSP MDPs’ mathematical properties, but plays a crucial role
in our metareasoning formalization.

4 Formalization and Theoretical Analysis of
Metareasoning for MDPs

The online planning problem of an agent, which involves
choosing an action to execute in any given state, is repre-
sented as an SSP MDP that encapsulates the dynamics of the
environment and costs of acting and thinking. We call this
problem the base problem. The agent starts off in this en-
vironment with some default policy, which can be as simple
as random or guided by an unsophisticated heuristic. The
agent’s metareasoning problem, then, amounts to deciding,
at every step during its interaction with the environment, be-
tween improving its existing policy or using this policy’s rec-
ommended action while paying a cost for executing either of
these options, so as to minimize its expected cost of getting
to the goal.

Besides the agent’s state in the base MDP, which we call
the world state, the agent’s metareasoning decisions are con-
ditioned on the algorithm the agent uses for solving the base
problem, i.e., intuitively, on the agent’s thinking process.
To abstract away the specifics of this planning algorithm
for the purposes of metareasoning formalization, we view it
as a black-box MDP solver and represent it, following the
Church-Turing thesis, with a Turing machine B that takes a
base SSP MDP M as input. In our analysis, we assume the
following about Turing machine B’s operation:

• B is deterministic and halts on every valid base MDP
M . This assumption does not affect the expressiveness
of our model, since randomized Turing machines can be
trivially simulated on deterministic ones, e.g., via seed
enumeration (although potentially at an exponential in-
crease in time complexity). At the same time, it greatly
simplifies our theorems.
• An agent’s thinking cycle corresponds to B executing a

single instruction.
• A configuration of B is a combination of B’s tape con-

tents, state register contents, head position, and next in-
put symbol. It represents the state of the online planner
in solving the base problem M . We denote the set of all
configurations B ever enters on a given input MDP M
as XB(M). We assume that B can be paused after ex-
ecuting y instructions, and that its configuration at that
point can be mapped to an action for any world state s
of M using a special function f : S ×XB(M) → A in



time polynomial in M ’s flat representation. The number
of instructions needed to compute f is not counted into
y. That is, an agent can stop thinking at any point and
obtain a policy for its current world state.
• An agent is allowed to “think” (i.e., execute B’s instruc-

tions) only by choosing the NOP action. If an agent de-
cides to resume thinking after pausingB and executing a
few actions, B re-starts from the configuration in which
it was last paused.

We can now define metareasoning precisely:
Definition 1. Metareasoning Problem. Consider an MDP
M = 〈S,A, T,C, s0, sg〉 and an SSP MDP solver repre-
sented by a deterministic Turing machine B. Let XB(M) be
the set of all configurations B enters on input M , and let
TB(M) : XB(M) × XB(M) → {0, 1} be the (deterministic)
transition function of B on XB(M). A metareasoning prob-
lem for M with respect to B, denoted MetaB(M) is an MDP
〈Sm, Am, Tm, Cm, sm0 , smg 〉 s.t.

• Sm = S ×XB(M)

• Am = A

• Tm((s, χ), a, (s′, χ′))

=


T (s, a, s′) if a 6= NOP, χ = χ′, and a = f(s, χ)

T (s, a, s′) · TB(M)(χ, χ′) if a = NOP
0 otherwise

• Cm((s, χ), a, (s′, χ′)) = C(s, a, s′) if T (s, a, s′) 6= 0,
and 0 otherwise
• sm0 = (s0, χ0), where χ0 is the first configuration B

enters on input M

• smg = (sg, χ), where χ is any configuration in XB(M)

Solving the metareasoning problem means finding a policy
for MetaB(M) with the lowest expected cost of reaching smg .

This definition casts a metareasoning problem for a
base MDP as another MDP (a meta-MDP). Note that in
MetaB(M), an agent must choose either NOP or an action
currently recommended by B(M); in other cases, the tran-
sition probability is 0. Thus, MetaB(M)’s definition essen-
tially forces an agent to switch between two “meta-actions”:
thinking or acting in accordance with the current policy.

Modeling an agent’s reasoning process with a Turing ma-
chine allows us to see that at every time step the metarea-
soning decision depends on the combination of the current
world state and the agent’s “state of mind,” as captured by the
Turing machine’s current configuration. In principle, this de-
cision could depend on the entire history of the two, but the
following theorem implies that, as forM , at least one optimal
policy for MetaB(M) is always Markovian.
Theorem 1. If the base MDP M is an SSP MDP, then
MetaB(M) is an SSP MDP as well, provided that B halts
on M with a proper policy. If the base MDP M is an infinite-
horizon discounted-reward MDP, then so is MetaB(M).
If the base MDP M is a finite-horizon MDP, then so is
MetaB(M).

Proof. Verifying the result for finite-horizon and infinite-
horizon discounted-reward MDPs M is trivial, since the only
requirement MetaB(M) must satisfy in these cases is to have
a finite horizon or a discount factor, respectively.

If M is an SSP MDP, then, per the SSP MDP definition
[Bertsekas and Tsitsiklis, 1996], to ascertain the theorem’s
claim we need to verify that (1) MetaB(M) has at least one
proper policy and (2) every improper policy in MetaB(M)
accumulates an infinite cost from some state.

To see why (1) is true, recall that MetaB(M)’s state space
is formed by all configurations Turing machine B enters on
M . Consider any state (s′0, χ

′
0) of MetaB(M). Since B is

deterministic, as stated in Section 3, the configuration χ′0 lies
in the linear sequence of configurations between the “des-
ignated” initial configuration χ0 and the final proper-policy
configuration that B enters according to the theorem. Thus,
B can reach a proper-policy configuration from χ′0. There-
fore, let the agent starting in the state (s′0, χ

′
0) of MetaB(M)

choose NOP until B halts, and then follow the proper policy
corresponding toB’s final configuration until it reaches a goal
state sg of M . This state corresponds to a goal state (sg, χ)
of MetaB(M). Since this construct works for any (s′0, χ

′
0),

it gives a complete proper policy for MetaB(M).
To verify (2), consider any policy πm for MetaB(M) that

with a positive probability fails to reach the goal. Any infinite
trajectory of πm that fails to reach the goal can be mapped
onto a trajectory in M that repeats the action choices of πm’s
trajectory in M ’s state space S. Since M is an SSP MDP,
this projected trajectory must accumulate an infinite cost, and
therefore the original trajectory in MetaB(M) must do so as
well, implying the desired result.

We now present two results to address the difficulty of
metareasoning.

Theorem 2. For an SSP MDP M and a deterministic Turing
machine B representing a solver for M , the time complexity
of MetaB(M) is at most polynomial in the time complexity
of executing B on M .

Proof. The main idea is to construct the MDP representing
MetaB(M) by simulating B on M . Namely, we can run B
on M until it halts and record every configuration B enters to
obtain the setX . GivenX , we can construct Sm = S×X and
all other components of MetaB(M) in time polynomial in
|X| and |M |. ConstructingX itself takes time proportional to
running time of B on M . Since, by Theorem 1, MetaB(M)
is an SSP MDP and hence can be solved in time polynomial
in the size of its components, e.g., by linear programming, the
result follows.

Theorem 3. Metareasoning for SSP MDPs is P -complete
under NC-reduction. (Please see the appendix for proof.)

At first glance, the results above look encouraging. How-
ever, upon closer inspection they reveal several subtleties
making optimal metareasoning utterly impractical. First, al-
though both SSP MDPs and their metareasoning counterparts
with respect to an optimal polynomial-time solver are in P ,
doing metareasoning for a given MDPM is appreciably more



expensive than solving that MDP itself. Given that the addi-
tional complexity due to metareasoning cannot be ignored,
the agent now faces the new challenge of allocating computa-
tional time between metareasoning and planning for the base
problem. This challenge is a meta-metareasoning problem,
and ultimately causes infinite regress, an unbounded nested
sequence of ever-costlier reasoning problems.

Second, constructing MetaB(M) by running B on M ,
as the proof of Theorem 2 proceeds, may entail solving M
in the process of metareasoning. While the proof doesn’t
show that this is the only way of constructing MetaB(M),
without making additional assumptions about B’s operation
one cannot exclude the possibility of having to run B until
convergence and thereby completely solving M even before
MetaB(M) is fully formulated. Such a construction would
defeat the purpose of metareasoning.

Third, the validity of Theorems 2 and 3 relies on an im-
plicit crucial assumption that the transitions of solver B on
the base MDP M are known in advance. Without this knowl-
edge, MetaB(M) turns into a reinforcement learning prob-
lem [Sutton and Barto, 1998], which further increases the
complexity of metareasoning and the need for simulating B
on M . Neither of these is viable in reality.

The difficulties with optimal metareasoning motivate the
development of approximation procedures. In this regard, the
preceding analysis provides two important insights. It sug-
gests that, since running B on M until halting is infeasible, it
may be worth trying to predict B’s progress on M . Many ex-
isting MDP algorithms have clear operational patterns, e.g.,
evaluating policies in the decreasing order of their cost, as
policy iteration does [Howard, 1960]. Regularities like these
can be of value in forecasting the benefit of running B on M
for additional cycles of thinking. We now focus on exploring
approximation schemes that can leverage these patterns.

5 Algorithms for Approximate Metareasoning
Our approach to metareasoning is guided by value of com-
putation (VOC) analysis. In contrast to previous work that
formulates V OC for single actions or decision-making prob-
lems [Horvitz, 1987; Horvitz et al., 1989; Russell and Wefald,
1991], we aim to formulate V OC for online planning. For a
given metareasoning problem MetaB(M), V OC at any en-
countered state sm = (s, χ) is exactly the difference between
the Q-value of the agent following f(s, χ) (the action recom-
mended by the current policy of the base MDP M ) and the
Q-value of the agent taking NOP and thinking:

V OC(sm) = Q∗(sm, f(s, χ))−Q∗(sm,NOP). (1)

V OC captures the difference in long-term utility between
thinking and acting as determined by these Q-values. An
agent should take the NOP action and think when the V OC is
positive. Our technique aims to evaluate V OC by estimating
Q∗(sm, f(s, χ)) and Q∗(sm,NOP). However, attempting to
estimate these terms in a near-optimal manner ultimately runs
into the same difficulties as solving MetaB(M), such as sim-
ulating the agent’s thinking process many steps into the fu-
ture, and is likely infeasible. Therefore, fast approximations
for the Q-values will generally have to rely on simplifying
assumptions. We rely on performing greedy metareasoning

analysis as has been done in past studies of metareasoning
[Horvitz et al., 1989; Russell and Wefald, 1991]:
Meta-Myopic Assumption. In any state sm of the meta-MDP,
we assume that after the current step, the agent will never
again choose NOP, and hence will never change its policy.

This meta-myopic assumption is important in allowing us
to reduce V OC estimation to predicting the improvement in
the value of the base MDP policy following a single thinking
step. The weakness of this assumption is that opportunities
for subsequent policy improvements are overlooked. In other
words, the V OC computation only reasons about the current
thinking opportunity. Nonetheless, in practice, we compute
V OC at every timestep, so the agent can still think later. Our
experiments show that our algorithms perform well in spite
of their meta-myopicity.

5.1 Implementing Metareasoning with BRTDP
We begin the presentation of our approximation scheme with
the selection of B, the agent’s thinking algorithm. Since ap-
proximating Q∗(sm, f(s, χ)) and Q∗(sm,NOP) essentially
amounts to assessing policy values, we would like an on-
line planning algorithm that provides efficient policy value
approximations, preferably with some guarantees. Having
access to these policy value approximations enables us to de-
sign approximate metareasoning algorithms that can evaluate
V OC efficiently in a domain-independent fashion.

One algorithm with this property is Bounded RTDP
(BRTDP) [McMahan et al., 2005]. It is an anytime plan-
ning algorithm based on RTDP [Barto et al., 1995]. Like
RTDP, BRTDP maintains a lower bound on an MDP’s op-
timal value function V ∗, which is repeatedly updated via
Bellman backups as BRTDP simulates trials/rollouts to the
goal, making BRTDP’s configuration-to-configuration transi-
tion function TB(M)(χ, χ′) stochastic. A key difference is
that in addition to maintaining a lower bound, it also main-
tains an upper bound, updated in the same conceptual way
as the lower one. If BRTDP is initialized with a mono-
tone upper-bound heuristic, then the upper-bound decreases
monotonically as BRTDP runs. The construction of domain-
independent monotone bounds is beyond the scope of this
paper, but is easy for the domains we study in our experi-
ments. Another key difference between BRTDP and RTDP
is that if BRTDP is stopped before convergence, it returns
an action greedy with respect to the upper, not lower bound.
This behavior guarantees that the expected cost of a policy re-
turned at any time by a monotonically-initialized BRTDP is
no worse than BRTDP’s current upper bound. Our metarea-
soning algorithms utilize these properties to estimate V OC.
In the rest of the discussion, we assume that BRTDP is ini-
tialized with a monotone upper-bound heuristic.

5.2 Approximating VOC
We now show how BRTDP’s properties help us with estimat-
ing the two terms in the definition of V OC, Q∗(sm, f(s, χ))
and Q∗(sm,NOP). We first assume that one “thinking cycle”
of BRTDP (i.e., executing NOP once and running BRTDP in
the meantime, resulting in a transition from BRTDP’s cur-
rent configuration χ to another configuration χ′) corresponds
to completing some fixed number of BRTDP trials from the
agent’s current world state s.



Estimating Q∗(sm,NOP)
We first describe how to estimate the value of taking the NOP
action (thinking). At the highest level, this estimation first
involves writing down an expression for Q∗(sm,NOP), mak-
ing a series of approximations for different terms, and then
modeling the behavior of how BRTDP’s upper bounds on the
Q-value function drop in order to compute the needed quan-
tities.

When opting to think by choosing NOP, the agent may tran-
sition to a different world state while simultaneously updating
its policy for the base problem. Therefore, we can express
Q∗(sm,NOP) =∑

s′

T (s,NOP, s′)
∑
χ′

TB(M)(χ, χ′)V ∗((s′, χ′)). (2)

Because of meta-myopicity, we have V ∗((s′, χ′)) = V χ
′
(s′)

where V χ′ is the value function of the policy correspond-
ing to χ′ in the base MDP. However, this expression can-
not be efficiently evaluated in practice, since we do not know
BRTDP’s transition distribution TB(M)(χ, χ′) nor the state
values V χ

′
(s′), forcing us to make further approximations.

To do so, we assume V χ
′

and Qχ
′

are random variables, and
rewrite

∑
χ′ TB(M)(χ, χ′)V χ

′
(s′) =∑

a

P (Aχ
′

s′ = a)E[Qχ
′
(s′, a)|Aχ

′

s′ = a]. (3)

where the random variableAχ
′

s′ takes value a iff f(s′, χ′) = a

after one thinking cycle in state (s, χ). Intuitively, P (Aχ
′

s′ =
a) denotes the probability that BRTDP will recommend ac-
tion a in state s′ after one thinking cycle. Now, let us denote
the Q-value upper bound corresponding to BRTDP’s current
configuration χ as Q

χ
. This value is known. Then, let the up-

per bound corresponding to BRTDP’s next configuration χ′,

be Q
χ′

. Because we do not know χ′, this value is unknown,
and is a random variable. Because BRTDP selects actions
greedily w.r.t. the upper bound, we follow this behavior and
use the upper bound to estimate Q-value by assuming that

Qχ
′

= Q
χ′

. Since the value of Q
χ′

is unknown at the time of

the V OC computation, P (Aχ
′

s′ = a) andE[Q
χ′

(s′, a)|Aχ
′

s′ =
a] are computed by integrating over the possible values of

Q
χ′

. We have that E[Q
χ′

(s′, a)|Aχ′

s = a] =

∫
Q
χ′

(s′,a)

Q
χ′

(s′, a)
P (Aχ

′

s′ = a|Qχ
′

(s′, a))P (Q
χ′

(s′, a))

P (Aχ
′

s′ = a)
,

and P (Aχ
′

s′ = a) =∫
Q
χ′

(s′,a)

P (Q
χ′

(s′, a))
∏
ai 6=a

P (Q
χ′

(s′, ai) > P (Q
χ′

(s′, a)).

Therefore, we must model the distribution that Q
χ′

is drawn

from. We do so by modeling the change ∆Q = Q
χ − Qχ

′

,
due to a single BRTDP thinking cycle that corresponds to a
transition from configuration χ to χ′. Since Q

χ
is known and

fixed, estimating a distribution over possible ∆Q gives us a

distribution over Q
χ′

.
Let ∆̂Qs,a be the change in Qs,a resulting from the most

recent thinking cycle for some state s and action a. We first
assume that the change resulting from an additional cycle
of thinking, ∆Qs,a, will be no larger than the last change,
∆Qs,a ≤ ∆̂Qs,a. This assumption is reasonable, because
we can expect the change in bounds to decrease as BRTDP
converges to the true value function. Given this assumption,
we must choose a distribution D over the interval [0, ∆̂Qs,a]

such that for the next thinking cycle, ∆Qs,a ∼ D. Figure 1a
illustrates these modeling assumptions for two hypothetical
actions, a1 and a2.

One option is to make D uniform, so as to represent our
poor knowledge about the next bound change. Then, com-
puting P (Aχ

′

s′ = a) involves evaluating an integral of a poly-
nomial of degree O(|A|) (the product of |A| − 1 CDF’s and

1 PDF), and computing E[Q
χ′

(s′, a)|Aχ′

s = a] also entails
evaluating an integral of degree O(|A|), and thus computing
these quantities for all actions in a state can be computed in
time O(|A|2). Since the overall goal of this subsection, ap-
proximating Q∗(sm,NOP), requires computing P (Aχ

′

s′ = a)
for all actions in all states where NOP may lead, assuming
there are no more than K << |A| such states, the complexity
becomes O(K|A|2) for each state visited by the agent on its
way to the goal.

A weakness of this approach is that the changes in the up-
per bounds for different actions are modeled independently.
For example, if the upper bounds for two actions in a given
state decrease by a large amount in the previous thinking step,
then it is unlikely that in the next thinking step one of them
will drop dramatically while the other drops very little. This
independence can cause the amount of uncertainty in the up-
per bound at the next thinking step to be overestimated, lead-
ing to V OC being overestimated as well.

Therefore, we create another version of the algorithm as-
suming that the speed of decrease in Q-value upper bounds
for all actions are perfectly correlated; all ratios between fu-
ture drops in the next thinking cycle are equal to the ratios
between the observed drops in the last thinking cycle. For-
mally, for a given state s, we let ρ ∼ Uniform[0, 1]. Then, let
∆Qs,a = ρ · ∆̂Qs,a for all actions a.

Now, to compute P (Aχ
′

s′ = a), for each action a, we repre-

sent the range of its possible future Q-values Q
χ′

s,a with a line
segment la on the unit interval [0,1] where la(0) = Q

χ

s,a and

la(1) = Q
χ

s,a−∆Qs,a. Then, P (Aχ
′

s′ = a) is simply the pro-
portion of la which lies below all the other lines representing
all other actions. We can naı̈vely compute these probabilities
in time O(|A|2) by enumerating all intersections. Similarly,

computing E[Q
χ′

(s′, a)|Aχ′

s = a] is also easy. This value is
the mean of the portion of la that is beneath all other lines.
Figure 1b illustrates these computations.

Whether or not we make the assumption of action inde-
pendence, we further speed up the computations by only cal-

culating E[Q
χ′

(s′, a)|Aχ′

s = a] and P (Aχ
′

s′ = a) for the two



Figure 1: a) Hypothetical drops in upper bounds on the Q-
values of two actions, a1 and a2. We assume the next Q-
value drop resulting from another cycle of thinking, ∆Q, is
drawn from a range equal to the last drop from thinking, ∆̂Q
b) Assuming perfect correlation in the speed of decrease in
the Q-value upper bounds, as the upper bounds of the two
actions drop from an additional cycle of thinking, initially a2
has a better upper bound, but eventually a1 overtakes a2.

“most promising” actions a, those with the lowest expectation
of potential upper bounds. This limits the computation time
to the time required to determine these actions (linear in |A|),
and makes the time complexity of estimating Q∗(sm,NOP)
for one state s be O(K|A|) instead of O(K|A|2).

Estimating Q∗(sm, f(s, χ))
Now that we have described how to estimate the value of tak-
ing the NOP action, we describe how to estimate the value
of taking the currently recommended action, f(s, χ). We

estimate Q∗(sm, f(s, χ)) by computing E[Q
χ′

(s, f(s, χ))],
which takes constant time, keeping the overall time complex-
ity linear. The reason we estimate Q∗(sm, f(s, χ)) using fu-
ture Q-value upper bound estimates based on a probabilis-
tic projection of χ′, as opposed to our current Q-value up-
per bounds based on the current configuration χ, is to make
use of the more informed bounds derived at the future utility
estimation. As the BRTDP algorithm is given more compu-
tation time, it can more accurately estimate the upper bound
of a policy. This type of approximation has been justified
before [Russell and Wefald, 1991]. In addition, using fu-
ture utility estimates in both estimating Q∗(sm, f(s, χ)) and
Q∗(sm,NOP) provides a consistency guarantee: if thinking
leads to no policy change, then our method estimates V OC
to be zero.

5.3 Putting It All Together
The core of our algorithms involves the computations we
have described, in every state s the agent visits on the
way to the goal. In the experiments, we denote UnCorr
Metareasoner as the metareasoner that assumes the ac-
tions are uncorrelated, and Metareasoner as the metarea-
soner that does not make this assumption. To complete the
algorithms, we ensure that they decide the agent should think
for another cycle if ∆̂Qs,a isn’t yet available for the agent’s
current world state s (e.g., because BRTDP has never updated

bounds for this state’s Q-value so far), since V OC compu-
tation is not possible without prior observations on ∆̂Qs,a.
Crucially, all our estimates make metareasoning take time
only linear in the number of actions, O(K|A|), per visited
state.

6 Experiments
We evaluate our metareasoning algorithms in several syn-
thetic domains designed to reflect a wide variety of factors
that could influence the value of metareasoning. Our goal is
to demonstrate the ability of our algorithms to estimate the
value of computation and adapt to a plethora of world condi-
tions. The experiments are performed on four domains, all of
which are built on a 100×100 grid world, where the agent can
move between cells at each time step to get to the goal located
in the upper right corner. To initialize the lower and upper
bounds of BRTDP, we use the zero heuristic and an appropri-
ately scaled (multiplied by a constant) Manhattan distance to
the goal, respectively.

6.1 Domains
The four world domains are as follows:
• Stochastic. This domain adds winds to the grid world

to be analogous to worlds with stochastic state transi-
tions. Moving against the wind causes slower movement
across the grid, whereas moving with the wind results in
faster movement. The agent’s initial state is the south-
east corner and the goal is located in the northeast cor-
ner. We set the parameters of the domain as follows so
that there is a policy that can get the agent to the goal
with a small number of steps (in tens instead of hun-
dreds) and where the winds significantly influence the
number of steps needed to get to the goal: The agent
can move 11 cells at a time and the wind has a push-
ing power of 10 cells. The next location of the agent is
determined by adding the agent’s vector and the wind’s
vector except when the agent decides to think (executes
NOP), in which case it stays in the same position. Thus,
the winds can never push the agent in the opposite direc-
tion of its intention. The prevailing wind direction over
most of the grid is northerly, except for the column of
cells containing the goal and starting position, where it is
southerly. Note that this southerly wind direction makes
the initial heuristic extremely suboptimal. To simulate
stochastic state transitions, the winds have their prevail-
ing direction in a given cell with 60% probability; with
40% probability they have a direction orthogonal to the
prevailing one (20% easterly and 20% westerly).
We perform a set of experiments on this simplest do-
main of the set, to observe the effect of different costs
for thinking and acting on the behaviors of algorithms.
We vary the cost of thinking and acting between 1 and
15. When we vary the cost of thinking, we fix the cost
of acting at 11, and when we vary the cost of acting, we
fix the cost of thinking at 1.
• Traps. This domain modifies the Stochastic domain to

resemble the setting where costs for thinking and act-
ing are not constant among states. To simplify the pa-
rameter choices, we fix the cost of thinking and acting



to be equal, respectively, to the agent’s moving distance
and wind strength. Thus, the cost of thinking is 10 and
the cost of acting is 11. To vary the costs of thinking
and acting between states, we make thinking and act-
ing at the initial state extremely expensive at a cost of
100, about 10 times the cost of acting and thinking in
the other states. Thus, the agent is forced to think out-
side its initial state in order to perform optimally.

• DynamicNOP-1. In the previous domains, executing a
NOP does not change the agent’s state. In this domain,
thinking causes the agent to move in the direction of the
wind, causing the agent to stochastically transition as a
result of thinking. In this domain, the cost of thinking
is composed of both explicit and implicit components;
a static value of 1 unit and a dynamic component deter-
mined by stochastic state transitions as a result of think-
ing. The static value is set to 1 so that the dynamic com-
ponent can dominate the decisions about thinking. The
agent starts in cell (98, 1). We change the wind direc-
tions so that there are easterly winds in the most southern
row and northerly winds in the most eastern row that can
push the agent very quickly to the goal. Westerly winds
exist everywhere else, pushing the agent away from the
goal. We change the stochasticity of the winds so that
the westerly winds change to northerly winds with 20%
probability, and all other wind directions are no longer
stochastic. We lower the amount of stochasticity to bet-
ter see if our agents can reason about the implicit costs
of thinking. The wind directions are arranged so that
there is potential for the agent to improve upon its initial
policy but thinking is risky as it can move the agent to
the left region, which is hard to recover from since all
the winds push the agent away from the goal.

• DynamicNOP-2. This domain is just like the previous
domain, but we change the direction of the winds in the
northern-most row to be easterly. These winds also do
not change directions. In this domain, as compared to
the previous one, it is less risky to take a thinking ac-
tion; even when the agent is pushed to the left region of
the board, the agent can find strategies to get to the goal
quickly by utilizing the easterly wind at the top region
of the board.

6.2 The Metareasoning Gap
We introduce the concept of the metareasoning gap as a
way to quantify the potential improvement over the initial
heuristic-implied policy, denoted as Heuristic, that is
possible due to optimal metareasoning. The metareasoning
gap is the ratio of the expected cost of Heuristic for the
base MDP to the expected cost of the optimal metareasoning
policy, computed at the initial state. Exact computation of the
metareasoning gap requires evaluating the optimal metarea-
soning policy and is infeasible. Instead, we compute an upper
bound on the metareasoning gap by substituting the cost of
the optimal metareasoning policy with the cost of the optimal
policy for the base MDP (denoted OptimalBase). The
metareasoning gap can be no larger than this upper bound,
because metareasoning can only add cost to OptimalBase.
We quantify each domain with this upper bound (MGUB)

in Table 1 and show that our algorithms for metareasoning
provide significant benefits when MGUB is high. We note
that none of the algorithms use the metareasoning gap in its
reasoning.

Heuristic OptimalBase MGUB

Stochastic (Thinking) 1089 103.9 10.5
Stochastic (Acting) 767.3 68.1 11.3
Traps 979 113.5 8.6
DynamicNOP-1 251.4 66 3.8
DynamicNOP-2 119.4 66 1.8

Table 1: Upper bounds of metareasoning gaps (MGUB) for
all test domains, defined as the ratio of the expected cost of
the initial heuristic policy (Heuristic) to that of an optimal
one (OptimalBase) at the initial state.

6.3 Experimental Setup
We compare our metareasoning algorithms against a number
of baselines. The Think∗Act baseline simply plans for n
cycles at the initial state and then executes the resulting pol-
icy, without planning again. We also consider the Prob base-
line, which chooses to plan with probability p at each state,
and executes its current policy with probability 1− p. An im-
portant drawback of these baselines is that their performance
is sensitive to their parameters n and p, and the optimal pa-
rameter settings vary across domains. The NoInfoThink
baseline plans for another cycle if it does not have informa-
tion about how the BRTDP upper bounds will change. This
baseline is a simplified version of our algorithms that does
not try to estimate the V OC.

For each experimental condition, we run each metareason-
ing algorithm until it reaches the goal 1000 times and average
the results to account for stochasticity. Each BRTDP trajec-
tory is 50 actions long.

6.4 Results
In Stochastic, we perform several experiments by varying the
costs of thinking (NOP) and acting. We observe (figures can
be found in the appendix) that when the cost of thinking
is low or when the cost of acting is high, the baselines do
well with high values of n and p, and when the costs are re-
versed, smaller values do better. This trend is expected, since
lower thinking cost affords more thinking, but these baselines
don’t allow for predicting the specific “successful” n and p
values in advance. Metareasoner does not require pa-
rameter tuning and beats even the best performing baseline
for all settings. Figure 2a compares the metareasoning al-
gorithms against the baselines when the results are averaged
over the various settings of the cost of acting, and Figure 2b
shows results averaged over the various settings of the cost of
thinking. Metareasoner does extremely well in this do-
main because the metareasoning gap is large, suggesting that
metareasoning can improve the initial policy significantly.
Importantly, we see that Metareasoner performs better
than NoInfoThink, which shows the benefit from reason-
ing about how the bounds on Q-values will change. UnCorr
Metareasoner does not do as well as Metareasoner,



Figure 2: Comparison of Metareasoner and Uncorr Metareasoner with baselines on experimental domains. Some
figures do not include Heuristic when it performs especially poorly for readability.

probably because the assumption that actions’ Q-values are
uncorrelated does not hold well.

We now turn to Traps, where thinking and acting in the ini-
tial state incurs significant cost. Figure 2c again summarizes
the results. Think∗Act performs very poorly, because it is
limited to thinking only at the initial state. Metareasoner
does well, because it figures out that it should not think
in the initial state (beyond the initial thinking step), and
should instead quickly move to safer locations. Uncorr
Metareasoner also closes the metareasoning gap signif-
icantly, but again not as much as Metareasoner.

We now consider DynamicNOP-1, a domain adversarial
to approximate metareasoning, because winds almost every-
where push the agent away from the goal. There are only
a few locations from which winds can carry the agent to
the destination. Figure 2d shows that our algorithms do not
achieve large gains. However, this result is not surprising.
The best policy involves little thinking, because whenever
the agent chooses to think, it is pushed away from the goal,
and thinking for just a few consecutive time steps can take
the agent to states where reaching the goal is extremely dif-
ficult. Consequently, Think∗Act with 1-3 thinking steps
turns out to be near-optimal, since it is pushed away from the
goal only slightly and can use a slightly improved heuristic
to head back. Metareasoner actually does well in many
individual runs, but occasionally thinks longer due to V OC
computation stochasticity and can get stuck, yielding higher
average policy cost. In particular, it may frequently be pushed
into a state that it has never encountered before, where it must
think again because it does not have any history about how
BRTDP’s bounds have changed in that state, and then subse-

quently get pushed into an unencountered state again. In this
domain, our approximate algorithms can diverge away from
an optimal policy, which would plan very little to minimize
the risk of being pushed away from the goal.

DynamicNOP-2 provides the agent more opportunities
to recover even if it makes a poor decision. Figure 2e
demonstrates that our algorithms perform much better in
DynamicNOP-2 than in DynamicNOP-1. In DynamicNOP-2,
even if our algorithms do not discover the jetstreams that can
push it towards the goal from initial thinking, they are pro-
vided more chances to recover when they get stuck. When
thinking can move the agent on the board, having more op-
portunities to recover reduces the risk associated with mak-
ing suboptimal thinking decisions. Interestingly, the metar-
easoning gap is decreased at the initial state by the addition
of the extra jetstream. However, the metareasoning gap at
many other states in the domain is increased, showing that
the metareasoning gap at the initial state is not the most ideal
way to characterize the potential for improvement via metar-
easoning in all domains.

7 Conclusion and Future Work
We formalize and analyze the general metareasoning problem
for MDPs, demonstrating that metareasoning is only polyno-
mially harder than solving the base MDP. Given the determi-
nation that optimal general metareasoning is impractical, we
turn to approximate metareasoning algorithms, which esti-
mate the value of computation by relying on bounds given by
BRTDP. Finally, we empirically compare our metareasoning
algorithms to several baselines on problems designed to re-
flect challenges posed across a spectrum of worlds, and show



that the proposed algorithms are much better at closing large
metareasoning gaps.

We have assumed that the agent can plan only when it takes
the NOP action. A generalization of our work would allow
varying amounts of thinking as part of any action. Some ac-
tions may consume more CPU resources than others, and ac-
tions which do not consume all resources during execution
can allocate the remainder to planning. We also can relax the
meta-myopic assumption, so as to consider the consequences
of thinking for more than one cycle. In many cases, assuming
that the agent will only think for one more step can lead to un-
derestimation of the value of thinking, since many cycles of
thinking may be necessary to see significant value. This abil-
ity can be obtained with our current framework by projecting
changes in bounds for multiple steps. However, in experi-
ments to date, we have found that pushing out the horizon
of analysis was associated with large accumulations of errors
and poor performance due to approximation upon approxi-
mation from predictions about multiple thinking cycles. Fi-
nally, we may be able to improve our metareasoners by learn-
ing about and harnessing more details about the base-level
planner. In our Metareasoner approximation scheme, we
make strong assumptions about how the upper bounds pro-
vided by BRTDP will change, but learning distributions over
these changes may improve performance. More informed
models may lead to accurate estimation of non-myopic value
of computation. However, learning distributions in a domain-
independent manner is difficult, since the planner’s behavior
is heavily dependent on the domain and heuristic at hand.
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Figure 3: The construction of a base MDP M ′ for a metarea-
soning problem from an input SSP MDP M .

A Appendix
A.1 Proof of Theorem 3
Proof. By calling metareasoning P -complete we mean that
there exists a Turing machine B s.t. (1) for any input SSP
MDP M ′, MetaB(M ′) can be decided in time polynomial
in |M ′|, i.e., MetaB(M) is in P , and (2) there is a class of
P -complete problems that can be converted to MetaB(M ′)
via an NC-reduction, i.e., by constructing M ′ appropriately
using a polynomial number of parallel Turing machines, each
operating in polylogarithmic time.

The first part of the above claim follows from Theorem 2:
since SSP MDPs are solvable optimally by linear program-
ming in polynomial time, MetaB(M) is in P if B encodes a
polynomial solver for linear programs.

For the second part, we perform an NC-reduction from the
class of SSP MDPs to the class of SSP MDPs-based metarea-
soning problems with respect to a fixed optimal polynomial-
time solver B. Specifically, given an SSP MDP M with an
initial state, we show how to construct another SSP MDPM ′
s.t., for the optimal polynomial-time solver B we describe
shortly, deciding MetaB(M ′) is equivalent to deciding M .

The intuition behind converting a given SSP MDP M into
M ′, the SSP MDP that will serve as the base in our metarea-
soning problem, is to augment M with new states where the
agent can “think” by using a zero-cost NOP action until the
agent arrives at an optimal policy for the original states ofM .
Afterwards, the agent can transition from any of these newly
added “thinking states” to M ’s original start state s0 and ex-
ecute the optimal policy from there. Unfortunately, the proof
is not as straightforward as it seems, because we cannot sim-
ply build M ’ by equipping M with a new start state s′0 with
a self-loop zero-cost NOP action — M ′ with such an action
would violate the SSP MDP definition. Below, we show how
to overcome this difficulty. Since thinking in the newly added
states of M ′ costs nothing, the cost of an optimal policy for
MetaB(M ′) is the same as for M , so deciding the former
problem decides the latter.

The construction of M ′ from a given SSP MDP M is illus-
trated in Figure 3. Consider the number of instruction-steps
it takes to solve M by linear programming. This number is
polynomial; namely, there exists a polynomial pLP (|M |) that
bounds M ’s solution time from above. To transform M into
M ′, we add a set of pLP (|M |) states, s′0, s

′
1, . . . , s

′
pLP (|M |) to

M . These new states connect into a chain via zero-cost NOP

actions: the start state s′0 of M ′ links to s′1, s′1 links to s′2, and
so on until s′pLP (|M |) links to s0, the start state of M . In ad-
dition, for all original states of M , we create a self-loop NOP
action with a positive cost. The entire transformation can be
easily implemented as an NC-reduction on pLP (|M |) + |S|
computers, each recording the cost and transition function of
NOP for a separate state. Since for each state, NOP’s cost and
transition functions together can be encoded by just two num-
bers (NOP transition function assigns probability 1 to a single
transition that is implicitly but unambiguously determined for
every state), each computer operates in polylogarithmic time.
Moreover, initializing each of the parallel machines with the
MDP state for which it is supposed to write out the transition
and cost function values is as simple as appropriately setting a
pointer to the input tape, and can be done in log-space. Thus,
the above procedure is a valid NC-reduction. Note also that
M ′ is an SSP MDP: although it has zero-cost actions, they do
not form loops/strongly connected components.

Our motivation for constructing M ′ as above was to pro-
vide an agent with enough states where it can “think” to guar-
antee that if the agent starts at s′0, it arrives atM ’s initial state
s0 with a computed optimal policy from s0 onwards. This
would imply that the expected cost of an optimal policy for
MetaB(M ′) from s0 would be the same as for M . How-
ever, for this guarantee to hold, we need a general SSP MDP
solverB that can solve/decideM ′ in timeO(poly(|M |)), not
O(poly(|M ′|). The difference between O(poly(|M ′|)) and
O(poly(|M |)) is very important, because M ′ is larger than
M , so the newly added chain of states may not be enough for
a O(poly(|M ′|)) policy computation to have zero cost.

To circumvent this issue, we define B that recognizes
“lollypop-shaped” MDPs M ′ as in Figure 3, which have an
arbitrarily connected subset Sc of the state space representing
a sub-MDP M c preceded by a chain of NOP-connected states
of size pLP (|M c|) leading to M c’s start state s0, and ignores
the linear chain part. (Note that the policy for the linear chain
part is determined uniquely and there is no need to write it out
explicitly). For that, we assume the metareasoning problem’s
input SSP MDP to be in the form of a string

M c description###chain description
In this string,M c description stands for the arbitrarily con-

nected part of the input MDP, and chain description stands for
the description of the linear NOP-connected chain. For MDPs
violating conditions in Figure 3 (i.e., having a different con-
nectivity structure or having the linear part of the wrong size),
chain description must be empty, with the entire MDP de-
scription placed before “###”. B is defined to read that input
string only up to “###” and solve that part using LP.

Constructing M ′ from M and recording M ′ in the afore-
mentioned way ensures that the optimal policy for the metar-
easoning problem MetaB(M ′) chooses NOP until the agent
reaches M ’s start state s0, by which point the agent will have
computed an optimal policy for M . Coupled with the fact
that MetaB(M ′) is in P , this implies the theorem’s claim.

A.2 More Figures
Figures 4 through 11 show results for the Stochastic domain
where we vary the cost of thinking and the cost of acting.
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Figure 4: Comparison of algorithms in Stochastic, with the
cost of thinking = 1 and cost of acting = 11
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Figure 5: Comparison of algorithms in Stochastic, with the
cost of thinking = 5 and cost of acting = 11
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Figure 6: Comparison of algorithms in Stochastic, with the
cost of thinking =10 and cost of acting = 11
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Figure 7: Comparison of algorithms in Stochastic, with the
cost of thinking = 15 and cost of acting = 11
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Figure 8: Comparison of algorithms in Stochastic, with the
cost of acting = 1 and cost of thinking = 1
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Figure 9: Comparison of algorithms in Stochastic, with the
cost of acting = 5 and cost of thinking = 1

2 4 6 8 10 12 14 16 18
Number of Thinking Cycles n for Think*Act Baseline

100

120

140

160

180

200

220

240

A
v
e
ra

g
e
 C

o
st

 t
o
 t

h
e
 G

o
a
l

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Probability p for Prob Baseline

Think*Act

Metareasoner

UnCorr Metareasoner

NoInfoThink

Prob

Figure 10: Comparison of algorithms in Stochastic, with the
cost of acting = 10 and cost of thinking = 1
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Figure 11: Comparison of algorithms in Stochastic, with the
cost of acting = 15 and cost of thinking = 1
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