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Abstract 
In recent years,  there has been  substantial research on 
exploring how AI can contribute to Human-Computer 
Interaction by enabling an  interface to  understand a user’s 
needs and act accordingly. Understanding user  needs is 
especially challenging when it involves assessing the user’s 
high-level mental states not easily reflected by interface 
actions.  In this paper, we present our results on using eye-
tracking data to model such mental states during interaction 
with adaptive educational software.  We then discuss the 
implications of our research for Intelligent User Interfaces. 

Introduction1  
One of the main challenges in devising agents that can act 
intelligently is to endow them with the capability of 
understanding the behaviors of other agents (human or 
artificial) that are part of their environment. Thus,  AI has a 
long history of research on plan   recognition, i.e., how to 
infer an agent’s goals and intentions from its observable 
behaviors. One of the applications of this research has been 
in Intelligent User Interfaces (IUI), more specifically in 
devising adaptive interfaces  that can understand a user’s 
needs (i.e., perform user modeling) and act accordingly so 
as to improve the user’s interaction experience. However, 
providing meaningful adaptivity often requires 
understanding more than a user’s plans.  Depending on the 
nature of the interaction task, the   user traits that an 
interface agent may need to model include domain-
dependent cognitive skills (e.g.,  knowledge of relevant 
concepts and procedures), meta-cognitive processes that 
cut across tasks and domains (e.g. general learning and 
reasoning strategies), and affective states (e.g. emotions 
and moods). Arguably, the higher the level of the traits to 
be captured, the more difficult they are to assess 
unobtrusively from simple interaction events. This problem 
has generated a stream of IUI research on using innovative 
sensing devices to enrich the information available for user 
modeling and interaction adaptation.  
The work we report here contributes to this research with 
our results on using real-time eye-tracking to capture `user 
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attention patterns, in order  to inform a user model 
designed to assess student meta-cognitive behavior during 
interaction with an Intelligent Learning Environment 
(ILE). ILEs are educational systems that  provide 
personalized  instruction,  much as  human educators do to 
accommodate individual students’ needs. Personalizing the 
instruction to target the meta-cognitive processes relevant 
for learning is important because it can help students 
improve their overall learning ability in addition to 
domain-specific skills. However, assessing user meta-
cognitive behaviors is difficult, because they cannot 
usually be inferred from simple interface actions. For this 
reason, we are exploring the use of eye-tracking data to 
provide a user model with information on user meta-
cognition. In the research described here, we  specifically 
targeted  the meta-cognitive skills related  to learning  from 
free exploration [11]  and to self-explaining  instructional 
material, i.e., clarifying  the material to oneself  in light of 
the underlying domain theory (e.g., [3]).   
There is a well-established body of research on using eye-
tracking data for off-line evaluation of interface design [7], 
or as an  alternative form of input to allow a user to 
explicitly  operate an interface [7,10]. However, research 
on real-time usage of this type of data to enable on-line 
adaptation of the interaction is still in its infancy. Some of 
this work uses gaze tracking to understand what a user is 
doing (e.g., reading email vs. reading a web page) [6], or to 
help assess user task performance (e.g., reading 
performance for automatic reading remediation [12]) 
Others have explored using gaze data to assess user mental 
states such as interest in various elements of an interactive 
story [13], attention in the context of assessing learner 
motivation during interaction with an ILE [9] and student 
problem-solving strategies in a tutoring system for algebra 
[5]. We contribute to this research by showing how eye-
tracking can improve recognition of user meta-cognitive 
skills during interaction with  the Adaptive Coach of 
Exploration (ACE), an ILE that  supports exploration-
based learning of mathematical functions. The main 
contribution of our work is a formal evaluation of ACE’s 
user model [4,8], showing that the inclusion of eye-
tracking information significantly improves the model 
assessment of both student self-explanation and 
exploration, compared with  models that use lower-level 
predictors such as number of actions and  action latency.  



 

Research Summary 

The Ace Environment  
The ACE environment provides a series of  activities to 
help students understand function-related concepts through 
exploration. Figure 1 shows the main interaction window 
for the Plot Unit, the activity we have used as a testbed for 
our research.  In the Plot Unit, a learner can explore the 
relationship between a function’s plot and equation by 
moving the plot in the Cartesian plane and observing the 

effects on the 
equation (displayed 
below the plot area 
in Figure 1). The 
student can also 
change the equation 
parameters and see 
how the change 
affects  the plot. 
Each function type 
(e.g., constant, 

linear and power) 
has an associated 

set of ‘exploration cases’ that together illustrate the full 
range of function attributes. For example, linear functions 
are defined by two parameters, the function slope and the 
y-intercept. Therefore, in order to gain a broad 
understanding of linear functions, the student should study 
positive and negative intercepts, and positive, negative and 
zero slopes.     
ACE’s original version  included a model of student 
exploration behavior that helped the system generate 
tailored interventions to improve those behaviors deemed 
to be suboptimal [2]. The model is  a  Dynamic Bayesian 
Network (DBN) that includes (i) nodes to represent all 
possible exploration cases; (ii)  nodes to represent student 
understanding of related mathematical concepts; (iii)  links 
representing how exploration of relevant cases relates to 
concept understanding. To assess whether a case has been 
explored effectively, this version of the ACE model  used 
solely  evidence of the occurrence of  student plot moves 
and equation changes.  
ACE used this model to warn the student when the model 
predicted insufficient exploration of a given exercise, and 
also to provide more detailed suggestions on which 
specific exploration cases the student should attend to.  
Initial studies of this version of the system generated 
encouraging evidence that it could help students learn 
better from exploration [2]. However, these studies also 
showed that sometimes ACE overestimated students’ 
exploratory behavior, because its user model  considered  
interface actions to be sufficient evidence of good 

exploration, without taking into account whether a student 
was reasoning, or  self-explaining the outcome of these 
actions. For instance, a student who quickly moves a 
function plot around the screen, but never  reflects on how 
these movements change the function equation,  performs 
many exploratory actions but can hardly learn from them. 
The initial ACE user model would likely judge this type of 
behavior as good exploration. 

Using Gaze-data in ACE’s User Model 
To overcome the aforementioned limitation in ACE’s 
original user model, we extended the model to  include the 
explicit assessment of student self-explanation of  
exploration cases. We also extended ACE’s interface so 
that, if the model predicts that the cause of suboptimal 
exploration is lack of self-explanation, then the system 
generates hints specifically designed to correct this 
behavior.   
But how can  the ACE model assess a student’s 
spontaneous self-explanation, i.e., something that happens 
in the student’s head?  One predictor that is simple to 
obtain from log data is the time between exploration cases. 
This predictor is not very reliable, however,  because a 
student may be distracted rather than engaged in reasoning 
during a long interval between exploration cases. Thus, we 
decided to study whether the addition of specific eye-gaze 
patterns would provide a better  estimate of self-
explanation. The data for our investigation was obtained 
through a user study during which each of 36 participants 
had his/her gaze monitored via an eye-tracker while 
interacting with ACE [4]. As part of the study, participants 
took a pre-test and a post-test on mathematical functions. 
While using ACE, the students were asked to verbalize all 
of their thoughts, and their interface actions were logged 
and synchronized with data from the eye tracker. We then 
used this data to include both latency between actions and 
gaze patterns as predictors of self-explanation for ACE. 
Gaze data was  limited to gaze shifts between the plot and 
equation area after a plot move or equation change, which 
intuitively should indicate the student’s reflection after 
these actions. Gaze  data  may also be relevant in relation 
to other interface actions available in the Plot Unit (e.g., 
moving to a new function, accepting the system’s 
suggestion to further explore the current function; see [1] 
for a complete list). This work, however,  was limited to 
equation and plot changes as a proof of concept, because of 
the effort required to generate the hand-labeled data 
necessary to train the model.  
Two researchers (to assure coding reliability) categorized 
student verbalizations after equation and plot changes as 
instances of student reasoning  vs. speech not conducive to 
learning. Then, they mapped these verbalizations onto 
presence/absence of gaze shifts and latency until the next 
action, to obtain  frequency data that we used to add gaze 
patterns and time as independent predictors of student self-

Figure 1: ACE's Plot Unit 



explanation in ACE’s DBN user model. We then formally 
evaluated the new model against  (i) a model using only 
time as predictor of  self-explanation and (ii) the original 
ACE model that ignores self-explanation and uses only the 
number of interface actions as a predictor of effective 
exploration. Table 1 shows the results of a leave-one-out 
cross-validation over the 36 study participants (see [4, 8] 
for additional data analysis). This procedure involved 
isolating each of the 36  participants  in turn, setting model 
parameters using  the data from all remaining 35 
participants, and then using  the resulting model to assess 
self-explanation and exploration behavior for the test 
subject.  Table 1 reports the average accuracy over all 36 
participants.  Here model accuracy is the average of the 
model’s sensitivity (or true positive rate) and specificity (or 
true negative rate). We found that  
 The model including both gaze and time  data  

provides better  assessment of student self-explanation 
than the  model using only time. The difference is 
statistically significant (p < 0,05, one-tailed t-test). 

 Assessing  self-explanation improves the assessment 
of student exploratory behavior, and the accuracy of 
the latter increases with increased accuracy of self-
explanation assessment. All improvements are 
statistically significant (as per ANOVA analysis with 
adjusted t-tests for pairwise comparisons) 

 No SE Time only Time and gaze 
Accuracy on self-
explanation 

N/A 67.2% 76.4% 

Accuracy on 
exploration 

68.4% 70.4% 77.5% 

 
Table 1: Model accuracies with different types of evidence 

Discussion and Implications for IUI 
We believe these results are important because they 
provide support for the effort required to build the type of 
sophisticated user modeling described here. In the early 
1980s, John Self, one of the precursors of user modeling 
research,  wrote a seminal paper pointing  out the 
challenges involved in providing a computer system with a 
good understanding of its users [14]. He gave “do not 
overmodel” as one of the key solutions to these challenges. 
Do not overmodel means including  in a  user model only 
information that is useful, either because the system can 
directly use it to adapt the interaction to the user,  or 
because it increases the model’s accuracy along other 
dimensions important for effective adaptation.  
As simple as this guideline seems, it is not always obvious  
what it means in the context of specific applications. In 
particular, there are few research results showing when and 
how the complexity of modeling one or more additional 
user traits/behaviors  in an adaptive system is worth the 
effort. We showed that adding information on user-

attention patterns to ACE’s user model is indeed useful 
because it increases the model’s accuracy in assessing user 
self-explanation. Accurate assessment of self-explanation, 
in turn, is useful both because ACE can directly use it to 
generate more precise interventions to help students 
explore effectively, and because it improves the model’s 
accuracy in assessing student exploration, the main meta-
cognitive process  that ACE is designed to stimulate.  
Thus, we have provided ground for further investigating 
eye-tracking data on user attention as a form of non-
intrusive evidence when it is important to model the user’s 
high-level mental processes in an adaptive interface.  
Next we want to investigate how important it is to  have 
fine-grained  information on the user’s high-level mental 
states in  the type of interaction supported by ACE. 
Obtaining this information for ACE’s user model required 
understanding both the connection between exploration 
and self-explanation, as well as the connection between 
self-explanation and its potential  predictors. We will refer 
to this model as knowledge-based, because, although it is 
partially built from data, these data were- hand-labeled by 
means of laborious protocol analysis.  We want to explore 
how this fine-grained user model compares with a coarser 
model based on a fully  data-based approach on the  same 
type of data, i.e., interface actions and gaze information. 
By fully data-based, we mean an approach that does not 
require hand-labeled data (as is the case for unsupervised 
machine learning techniques). The advantage of fully  
data-based approaches is that they are less resource-
intensive because they do not rely on human  knowledge. 
The disadvantage is that the models they generate tend to 
be black boxes, which do not allow one to understand the 
relationship  between  input data and model prediction. We 
want to investigate  how this reduction in model 
information affects the quality of interaction  adaptation.  
We have taken a step in this direction by  exploring a fully 
data-based   approach to develop a student model for ACE 
[1]. This approach  combines unsupervised and supervised 
machine learning to automatically develop user models 
from interaction data. Unsupervised clustering  is used to 
identify classes (clusters) of interaction behaviors that can 
influence interaction effectiveness. Supervised machine 
learning is applied to these clusters for on-line recognition 
of user  types.   This  approach is especially promising for 
applications that support novel, unstructured activities, 
because  it does not require human experts to foresee how 
the many possible user behaviors may relate to interaction 
efficacy (as would be necessary with a knowledge-based 
approach). Instead, since unsupervised clustering requires 
representing individual user interactions as 
multidimensional vectors of raw data features, human input 
is limited to  deciding  which features to use. Because 
adding features does not involve substantial extra work, it 
is possible to consider  a much larger variety of features 
than when  using knowledge-based approaches.  For 



instance, when we applied this approach  to  ACE, we 
extracted from the log data described in the previous 
section   features  for  all the 13  exploration actions 
available in the Plot Unit (e.g., overall number, as well as 
mean and standard deviation of the latency after each 
action type). We also included the presence/absence of 
gaze shifts after each of the possible actions.  We found 
that by using these features, unsupervised clustering (based 
on the k-means algorithm in this particular application) 
was able to distinguish two groups of students, one 
including students  who learned well with ACE, one 
including students with poor learning. Post-hoc cluster 
analysis revealed that  distinguishing interaction behaviors 
included both the  intuitive patterns we analyzed in the 
previous section (i.e., gaze shifts after equation changes), 
as well as less intuitive combinations of behaviors  that 
would have  been difficult to identify  via intuition or 
observation [1]. When we trained a  supervised classifier 
on the two student clusters identified in the unsupervised 
phase, it  achieved an encouraging level of accuracy  in 
dynamically  classifying students as successful vs. 
unsuccessful learners as they  interacted  with ACE.  
Although these results are preliminary and need to be 
validated with larger datasets, they begin to show the 
potential of data-based approaches to reduce development 
effort for user modeling in novel  interaction tasks with 
rich input data.  Still, the 2-level classifier  model  learned 
using this approach  suffers from the drawback common to 
many purely data-based models of being a black box  that 
provides limited information on why  certain patterns of 
input data  result in a given user classification. For 
instance, it does  not allow for isolating the specific 
behaviors that are causing the student to be classified in a 
specific cluster at any given time. Thus, if ACE were to 
use this model, it would not be able to generate precise 
interventions targeting the suboptimal behavior(s) that 
cause a student to be a poor learner. We plan to investigate 
the impact of this loss of precision on the effectiveness of 
ACE’s adaptive interventions by empirically comparing 
the interactions supported by the more detailed knowledge-
based model and by the coarser data-based model. There 
have been very few such studies to date, but we believe 
they are key to understanding how different AI techniques 
can contribute to the design of interfaces capable of 
effective autonomous adaptation, and to generally improve 
Human Computer Interaction. 
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