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ABSTRACT
Inspired by social choice theory in voting and other contexts
[2], we provide the first axiomatic approach to community
identification in social and information networks. We start
from an abstract framework, called preference networks [3],
which, for each member, gives their ranking of all the other
members of the network. This preference model enables us
to focus on the fundamental conceptual question:

What constitutes a community in a social network?

Within this framework, we axiomatically study the forma-
tion and structures of communities in two different ways.
First, we apply social choice theory and define communi-
ties indirectly by postulating that they are fixed points of
a preference aggregation function obeying certain desirable
axioms. Second, we directly postulate six desirable axioms
for communities to satisfy, without reference to preference
aggregation. For the second approach, we prove a taxonomy
theorem that provides a structural characterization of the
family of axiom-conforming community rules as a lattice.
We complement this structural theorem with a complex-
ity result, showing that, while for some rules in the lattice,
community characterization is straightforward, it is coNP-
complete to characterize subsets according to others. Our
study also sheds light on the limitations of defining com-
munity rules solely based on preference aggregation, namely
that many aggregation functions lead to communities which
violate at least one of our community axioms. These include
any aggregation function satisfying Arrow’s “independence
of irrelevant alternatives” axiom, as well as commonly used
aggregation schemes like the Borda count or generalizations
thereof. Finally, we give a polynomial-time rule consistent
with five axioms and weakly satisfying the sixth axiom.
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1. INTRODUCTION
A fundamental problem in network analysis is the charac-

terization and identification of subsets of nodes in a network
that have significant structural coherence. This problem is
usually studied in the context of community identification
and network clustering. Like other inverse problems in data
mining and machine learning, this one is conceptually chal-
lenging: There are many possible ways to measure the de-
gree of coherence of a subset and many possible interpreta-
tions of preferences and affinities to model network data. As
a result, various seemingly reasonable/desirable conditions
to qualify a subset as a community have been studied in the
literature [17, 14, 13, 19, 25, 9]. However, direct comparison
of different community characterizations is quite difficult.

A community is formed by a group of individuals, while
an information/social network is usually specified by data
describing each individual’s direct neighbors, or the indi-
viduals’ affinities or preferences for other members in the
network. Thus, in order to answer the fundamental ques-
tion, “What constitutes a community in a social network?,”
it is desirable to first answer

How do individual preferences (affinities or con-
nectivities) result in group preferences?

In this paper, we take what we believe is a novel and prin-
cipled approach to the problem of community identification.
Inspired by work on clustering [12], and, more conceptually,
by classic work in social choice theory [2], we propose an ax-
iomatic approach towards understanding network communi-
ties, both providing a framework for comparison of different
community characterizations, and relating community iden-
tification to well-studied problems in social choice theory.



1.1 Preference Networks and Community
Identification Functions

Our axiomatic approach uses an abstract social network
framework. Our framework is analogous to the clustering
approach of Kleinberg [12] in which network nodes are clus-
tered according to similarity, specified by a similarity ma-
trix derived from a metric over nodes. In Kleinberg’s view,
a clustering algorithm inputs a similarity matrix, and out-
puts a set of non-overlapping subsets called clusters. Analo-
gously, we view community detection as an algorithmic prob-
lem which inputs a preference network, and outputs a set of
(overlapping) subsets identified as communities.

To formalize this, consider a non-empty finite set V , let
L(V ) denote the set of all linear orders π on V , with π(u)
denoting the rank of member u, from 1 for the highest rank
to |V | for the lowest. For π ∈ L(V ) and i, j ∈ V , we use the
notation i �π j if i is ranked higher than j, i.e., π(i) < π(j).

Definition 1.1 (Preference Networks). A prefer-
ence network is a pair A = (V,Π), where V is a non-empty
finite set and Π is a preference profile on V , defined as an el-
ement Π = {πi}i∈V ∈ L(V )V . Here πi specifies the ranking
of V in the order of i’s preference. We denote the collection
of all preference networks1 by A.

The preference network framework is inspired by social
choice theory [2]. This framework is already used exten-
sively — for voting, college admissions, medical residency
assignments [8, 21, 10], for studying coalition formation in
collaborative games [5, 22], for specifying routing prefer-
ences in the Border Gateway Protocol between autonomous
systems of the Internet [20, 6], to name just a few contexts.

Community Identification Rules
The preference framework provides a complete-information
network model that enables us to focus on the fundamental
conceptual question regarding how to transform individual
preferences into community identification rules. Like the
work of Arrow [2] and Kleinberg [12], our axiomatic theory
identifies basic desirable axioms which consistent commu-
nity characterizations should satisfy, and also specifies the
structures of consistent rules and the communities that they
identify. Within the framework of preference networks, we
can define the community-identification rules, the main sub-
ject of our study, as set-theoretical functions.

Definition 1.2 (Community Functions). A commu-
nity function or rule is a function C that maps a prefer-
ence network A = (V,Π) onto a collection of non-empty sets

S ⊂ V , A 7→ C(A) ∈ 22V −{∅}. We say a subset S ⊆ V is a
community in a preference network A = (V,Π) according to
a community function C if and only if S ∈ C(A).

The preference network framework offers a natural, al-
though highly selective, community rule, which we call the
Clique Rule (Cclique). We say S ⊆ V is a clique in prefer-
ence network A = (V,Π) if each member of S prefers every
member of S over every non-member.

Rule 1. (Clique Rule) Cliques and only cliques are com-
munities.

1To avoid paradoxes, we assume that V is a subset of some
reference set V, say the set of natural numbers.

Another example of natural rules for community identifica-
tion is the rule defined in Balcan et al. [3] — which we will
denote by Cdemocratic — based on “democratic voting:” For
a preference network A = (V,Π), let φΠ

S (i), for S ⊆ V and
i ∈ V , denote the number of votes that i would receive when
each member s ∈ S casts one vote for each of its |S| most
preferred members according to its preference πs.

Rule 2 (Democratic Rule). S is a democratically-
certified community in a preference network A = (V,Π), if
every member in S receives more votes from S than every
non-member, i.e., minu∈S φ

Π
S (u)−maxv 6∈S φ

Π
S (v) > 0.

The set-theoretical formulation of community rules of Def-
inition 1.2 implies some direct comparison of community
rules. For example, we say a community function C1 is more
selective than another community function C2 if, for all pref-
erence networks A = (V,E), C1(A) ⊆ C2(A). Clearly, Cclique
is more selective than Cdemocratic.

1.2 Our Work
Within the framework of preference networks, we axiomat-

ically study the formation and structures of communities in
two related approaches:

1. Axiomatization and Characterization Commu-
nity Rules: We postulate six desirable axioms for
community-identification rules to satisfy as well as pro-
vide a structural characterization of the family of axiom-
conforming community rules in terms of a lattice. We
also complement this structural theorem with a com-
plexity result.

2. Understanding Social-Choice Aggregation-Based
Community Rules: We examine a family of natu-
ral community-identification rules inspired by the clas-
sic social-choice theory from the lens of our axiomatic
framework. We present two impossibility results that
illustrate the limitation of defining community rules
solely based on social-choice preference aggregation.

We now present the highlight of these results.

Axiomatization
We use axioms to state properties, such as fairness and con-
sistency, that a desirable community function should have
when applied to all preference networks. Our framework
characterizes community-identification rules using a natural
set of six axioms which will be defined formally in Section 2.
Below, we summarize these axioms, which can be organized
into three sets:

Social-Choice Fundamentals: The first three axioms are
inspired by social choice theory. They reflect the intuition
that community identification in preference networks is a
form of social choice within each subset in the network.
The two most fundamental axioms are Anonymity (Axiom
1) and Monotonicity (Axiom 2). The former states that a
community rule should be isomorphism-invariant, i.e., they
should not use the individuals’ labels. The latter captures
that the community characterization of a subset should be
monotonically consistent — if community members’ prefer-
ences change in favor of its members, then the community
should remain a community. The third axiom, Embedding
(Axiom 3), states that, if newcomers join the population of a
preference network in such way that members of the existing



population all retain their orignal preferences for each other,
and prefer them over any new member, then the community
characterization regarding members of the original network
should remain unchanged in this bigger network, indepen-
dent of the preferences towards and of the newcomers.

Cliques and the Entire Population: The fouth axiom,
World Community (Axiom 4), is a basic one, stating that the
entire population V of any preference network A = (V,Π) is
a community of A. Note that V is a clique of A = (V,Π).
In fact, if we replace Axiom World Community by the axiom
that “all cliques are communities,” we obtain an equivalent
axiomatic system.

Baseline Stability and Self-Respect: The next two ax-
ioms are inspired by the classical game-theoretical studies
of stable marriage and coalition formation [8, 21, 10, 5, 22].
The first, Self-Approval (Axiom 5), states that a commu-
nity should have the necessary “self-respect:” It is not the
case that everyone in the community “unanimously prefers”
an outside group of the same size over the community it-
self. The last, Group Stability (Axiom 6), states that a com-
munity should have the necessary stablility: No subgroup
in the community is replaceable by an equal-sized group of
non-members who are “unanimously” preferred by the rest
of community members.

Structural Characterization Community Rules
The set-theoretical formulation of community rules also pro-
vides the following natural definiton.

Definition 1.3. (Operations over Community Rules)
For two community functions C1 and C2, we define their in-
tersection and union, C1 ∩C2 and C1 ∪C2, respectively, to be
the community functions which, for all preference networks
A = (V,Π) characterize subsets of V according to

(C1 ∩ C2)(A) := C1(A) ∩ C2(A) (1)

(C1 ∪ C2)(A) := C1(A) ∪ C2(A). (2)

Note that C1 ∩ C2 is more selective than both C1 and C2,
and C1∪C2 is more inclusive than both C1 and C2. Our main
structural result is the following taxonomy theorem and the
complete characterization of the most comprehensive and
the most selective community rules consistent with all our
community axioms.

The set of axiom-conforming community rules is
not empty, and forms a lattice under the opera-
tions of union and intersection defined above.

This result provides an interesting contrast to the classic ax-
iomatization result of Arrow [2] and the more recent result
of Kleinberg on clustering [12] that inspired our work. Un-
like voting or clustering where the basic axioms lead to im-
possiblity theorems, the preference network framework has a
natural community rule, the Clique Rule. Indeed, the Clique
Rule satisfies all our axioms. One may ask:

Is the Clique rule the only axiom-conforming com-
munity identification rule?

Our initial attempt to prove the “impossibility beyond the
Clique rule” conjecture in fact led us to another community
rule consistent with all axioms.2 We call this rule the Com-
prehensive Rule (Ccomprehensive) because our proof shows the
2“If we knew what we were doing it wouldn’t be research”,
Einstein once said.

following: For any community rule C satisfying all axioms,
for all preference network A:

Cclique(A) ⊆ C(A) ⊆ Ccomprehensive(A). (3)

Thus, Cclique(A) and Ccomprehensive(A) form a lower and
upper bound, respectively, for the lattice of axiom-comforming
community rules. We complement this structural theorem
with a complexity result: We show that while identifying a
community by the Clique Rule is straightforward, it is coNP-
complete to determine if a subset satisfies the Comprehensive
Rule.

Communities as Fixed Points of Social Choice:
Schema and Limitation
Our approach of starting from preference networks to study
community identification connects community formation to
social choice theory [2], thus providing a theoretical frame-
work for understanding the problem of combining individual
preferences into a community preference. One way to define
communities is to generalize the principle of the Clique rule
by classifying a set S ⊆ V to be a community if, collec-
tively, the members of S prefer every member in S to every
element outside of S — community members collectively
“certify themselves.” To formalize what “collectively prefer”
means, we use the notion of preference aggregation functions
from social choice theory [2].

A preference aggregation function is a function which gen-
erates a single aggregate preference from a set of individual
preferences. In this context, it is useful to allow for ties in
the aggregate preference. To formalize this, we introduce
the set L(V ) of rankings with ties (see Section 4 for the pre-
cise definition), and then define preference aggregation as

a function F : L(V )∗ → L(V ), where L(V )∗ is the union
of L(V )S over all non-empty, finite subsets of a countable
reference set, which here we take as the union V of all pos-
sible groundsets V . Given a non-empty finite set S ⊂ V and
a preference profile ΠS = {πs : s ∈ S} ∈ L(V )S , we say
the image F (ΠS) is the aggregated preference of S according
to ΠS .

Definition 1.4. (Communities as Fixed Points of So-

cial Choice) Let F : L(V )∗ → L(V ) be a preference ag-
gregation function. For A = (V,Π), define fF as the map
on non-empty subsets S ⊂ V which maps S to the subset
fF (S) := {v ∈ V | F (ΠS)(v) ≤ |S|}. A non-empty subset
S ⊂ V is called a community of A with respect to F if and
only if fF (S) = S. The function CF mapping A into the set
of communities defined above is called the fixed-point rule
with respect to F .

The fixed-point rule captures the strongest notion of “col-
lective self-preference” based on social-choice aggregation.

While Definition 1.2 is convenient for studying the mathe-
matical structures of our theory, community identification is
a computational problem as much as a mathematical prob-
lem. Thus, it is desirable that communities can be charac-
terized by a constructive community function C that is:

• Consistent: C satisfies all (or nearly all) axioms;

• Constructive: Given a preference networkA = (V,Π),
and a subset S ⊆ V , one can determine in polynomial-
time (in n = |V |) if S ∈ C(A).



The above mentioned co-NP completness of the Comprehen-
sive Rule highlights the computational difficulty of commu-
nity identification based on axiom-conforming rules, raising
the question of whether there are natural community rules
that are indeed constructive. In this context, communities
defined in terms of fixed point rules provide a rich source of
candidates in terms of various aggregation functions studied
in social choice; indeed, any aggregation function that can
be calculated in polynomial time gives rise to a constructive
community rule via the fixed point Definition 1.4. Defin-
ing community rules in terms of aggregation functions also
gives us another perspective on community rules, since we
can examine aggregation functions themselves through the
lens of social choice theory, and connect the properties of
the aggregation functions with the properties of their fixed
rules from the lens of our axiomatic framework.

Our studies shed light on the limitations of formulating
community rules solely based on preference aggregation: We
show that, although the fixed-point community rules sys-
tematically generalizes the Clique rule, many aggregation
functions lead to rules which violate at least one of our com-
munity axioms. We prove two impossibility theorems.

1. For any aggregation function satisfying Arrow’s In-
dependence of Irrelevant Alternatives axiom, its fixed-
point rule must violate one of our axioms.

2. Any fixed-point rule based on commonly-used weighted
aggregation schemes like Borda count or generaliza-
tions thereof is inconsistent with (at least) one of our
axioms.

The second impossibility result was more surprising to
us than the first one: While weighted fixed-point rules are
natural from a social choice viewpoint, it turns out that
the fixed-point rules of several weighted aggregation func-
tions, including Cdemocratic, are inconsistent with the Axiom
Monotonicity! We believe this violation is illustrative of the
fundamental subtlety of community rules. This leads us to
consider fixed-point rules, Charmonious, which are not given
in terms of weighted voting schemes, such as the following.

Rule 3 (Harmonious Communities). Let A = (V,Π)
be a preference network. A non-empty subset S ⊆ V is a
harmonious community of A if for all u ∈ S and v ∈ V −S,
the majority of {πs : s ∈ S} prefer u over v.

This rule can be formulated as a fixed-point rule of a topo-
logically defined aggregation function — see Proposition 4.9
— and satisfies Axioms 1-5, as well as a weaker form of
Axiom Group Stability.

2. COHERENT COMMUNITIES: AXIOMS
We now define our six core axioms. Below, we fix a ground

set V and a community function C.

Axiom 1 (Anonymity (A)). Let S, S′ ⊂ V and Π,Π′ be
such S′ = σ(S) and Π′ = σ(Π) for some permutation σ :
V → V . Then S ∈ C(V,Π)⇐⇒ S′ ∈ C(V,Π′).

This is a standard axiom: labels should have no effect on
a community function.

Axiom 2 (Monotonicity (Mon)). Let S ⊂ V . If Π and
Π′ are such that ∀s ∈ S, ∀u ∈ S and ∀v ∈ V , u �π′

s
v =⇒

u �πs v, then S ∈ C(V,Π′) =⇒ S ∈ C(V,Π).

The Axiom Monotonicity states that, if the profile changes
so that the rank of a community member increases without
decreasing the rank of other members, then this remains
a community in the new ranking. Mon also allows non-
members to change arbitrarily, as long as their positions
relative to any members remains the same or worse. To
state the next axiom, we define the projection A|V ′ of a
preference network A = (V,Π) onto a subset V ′ ⊂ V as
the preference network A|V ′ = (V ′, Π|V ′) where Π|V ′ =
{π′s}s∈V ′ is defined by setting π′s to be the ranking on V ′

which maintains the relative ordering of all members of V ′,
i.e., for all s, u, v ∈ V ′, u �π′

s
v ⇐⇒ u �πs v. We say that

A′ is embedded into A if A′ = A|V ′ for some V ′ ⊂ V .

Axiom 3 (Embedding (Emb)). If A′ = (V ′,Π′) is em-
bedded into A = (V,Π) and πi(j) = π′i(j) for all i, j ∈ V ′

then C(A′) = C(A) ∩ 2V
′
.

In other words, if a network is embedded into a larger
network in such a way that, with respect to the preferences
in the larger network, the members of the smaller network
prefer each other over everyone else, then the community
classification regarding members of the smaller network re-
mains unchanged. The next axiom is self explanatory.

Axiom 4 (World Community (WC)). For all preference
profiles Π, V ∈ C(V,Π).

To state the last two axioms, we start with a few defini-
tions to formalize the notion that a member prefers a group
over another of the same size. Given (V,Π) ∈ A and non-
empty disjoint sets G,G′ ⊂ V of equal size, we say that
s ∈ V prefers G′ over G if, after reordering the elements
g1, . . . , g|G| and g′1, . . . , g

′
|G| of G and G′ according to her

preferences, s prefers g′i to gi ∀i = 1, . . . , |G|. We sometimes
also refer to this preference as lexicographical preference. Let
(V,Π) ∈ A. A set S ⊂ V is called group stable with respect
to Π if for all non-empty G ( S there exists no G′ ⊂ V − S
that has the same size as G and is preferred to G by all
s ∈ S − G. S is called self-approving with respect to Π if
there exists set no G′ ⊆ V − S that has the same size as S
and is preferred to S by all s ∈ S.

Axiom 5 (Self-Approval (SA)). If Π is a preference pro-
file over V and S ∈ C(V,Π), then S is self-approving with
respect to Π.

Axiom 6 (Group Stability (GS)). If Π is a preference pro-
file over V and S ∈ C(V,Π), then S is group stable with
respect to Π.

Axiom Group Stability provides a type of game-theoretic
stability [16, 15, 4, 23, 24], and states that no subgroup in a
community can be replaced by an equal-size group of non-
members who are lexicographically preferred by the remain-
der of the community members, while Axiom Self-Approval
provides a stability notion of minimum self-respect, and re-
quires that there is no outside group of the same size as S
which is lexicographically preferred to S by everyone in S.
Note that the set V is trivially group stable for all Π, and
that any set S with |S| > |V |/2 is self-approving for all Π.

It is easy to check that the Clique Rule satisfies all six ax-
ioms. However, the clique rule has a structural feature which
essentially rules out any non-trivial overlap of communities,
while “Real-world” communities typically have non-trivial
overlaps among themselves.



Proposition 2.1. ∀A = (V,Π), if S1, S2 ∈ Cclique(A),
then either S1 ∩ S2 = ∅ or S1 ⊂ S2, or S2 ⊂ S1.

Given this property, it is desirable to answer the question
whether there are other community functions that satisfy all
axioms. The answer is yes, and in fact, the set of all axiom
conforming rules has interesting structural properties, which
we study of our next section.

3. LATTICE OF AXIOM-CONFORMING
COMMUNITY RULES

Let C denote the family of all axiom-conforming commu-
nity rules. Let CB be a superset of C consisting of all com-
munity rules satisfying Axioms 1-4. The main result of this
section is that both C and CB are not empty, and in fact,
they each form a lattice under the natural union and inter-
section operations given by Definition 1.3. Two community
rules are special for the lattice of C. The first one is the
Clique Rule (Cclique) defined in Section 1. The second one
is the following Comprehensive Rule:

Rule 4 (Comprehensive Rule). For any preference
network A, let CSA(A) and CGS(A) denote the subsets S ⊂
V which are self-approving and group stable, respectively.
Then, Ccomprehensive := CSA ∩ CGS .

Finally, let Call be the rule declaring every non-empty set S
to be a community.

3.1 Taxonomy of Community Rules

Theorem 3.1 (Lattice of Community Rules).

1. The algebraic structure,

T = (C,∪,∩, Cclique, Ccomprehensive)

is a bounded lattice, with Ccomprehensive and Cclique as
the lattice’s top and bottom.

2. The algebraic structure,

TB = (CB ,∪,∩, Cclique, Call)

is a bounded lattice, with Call and Cclique as the lattice’s
top and bottom.

Part 1 of the theorem implies that, for any axiom-conforming
community function C, it must be the case that, for every
preference network A,

Cclique(A) ⊆ C(A) ⊆ Ccomprehensive(A).

The following basic lemma is key for establishing our Tax-
onomy Theorem.

Lemma 3.2. (Intersection Lemma) For all community
rule C, if C ∈ CB then C ∩ CGS ∩ CSA ∈ C.

Proof. Let C̃ := C ∩ CGS ∩ CSA, where C ∈ CB . Because
CGS and CSA are both consistent with Axioms A, WC, and

Emb, C̃ remains consistent with these three axioms. To see C̃
satisfies Axiom Mon, choose Π,Π′ such that, for all u, s ∈ S
and v ∈ V , u �π′

s
v =⇒ u �πs v. We need to show that if

S ∈ C̃((V,Π′)) then S ∈ C̃((V,Π)). Suppose this is not the
case, then either (1) S 6∈ CGS((V,Π)) or (2) S 6∈ CSA((V,Π)).
In Case (1), there exists G ⊂ S, G′ ⊂ V − S, |G| = |G′|,

and bijections (fs : S → G′|s ∈ S − G) such that ∀s ∈
S − G,∀u ∈ G, u ≺πs fs(u). By Mon, u ≺π′

s
fs(u), which

shows S 6∈ CGS(A′). In Case (2), ∃G′ ⊂ V − S, bijections
(fs : S → G′) such that ∀s, u ∈ S, u ≺πs fs(u). By Mon,
u ≺π′

s
fs(u), which implies that S 6∈ CGS(A′).

Finally, by definition, C ∩ CGS ∩ CSA satisfies GS and SA.
Thus, C ∩ CGS ∩ CSA ∈ C.

Proof. (Proof of Theorem 3.1) We first prove that Cclique
and Ccomprehensive are, respectively, the most selective and
inclusive axiom-comforming community rules. On one hand
it is easy to see that for any rule that satisfies WC and Emb,
all cliques must be communities, showing that Cclique(A) ⊆
C(A) whenever C satisfies WC and Emb; see also Proposi-
tion 4.2 below. On the other hand, Call(A) = 2V−{∅} satis-
fies Axioms 1-4, and hence Call ∈ CB . Since Ccomprehensive =
Call∩CGS∩CSA, by the Intersection Lemma, Ccomprehensive ∈
C. Thus, for any C that satisfies all axioms, Cclique(A) ⊆
C(A) ⊆ Ccomprehensive(A).

The two operations ∩ and ∪ over the community functions
are both commutative and associative. They also satisfy the
absorption property. In other words, ∀C1, C2 ∈ C:

C1 ∪ (C1 ∩ C2) = C1 and C1 ∩ (C1 ∪ C2) = C1.

For example, to see the first one, for any affinity network
A, we have:

(C1 ∪ (C1 ∩ C2))(A) = C1(A) ∪ (C1 ∩ C2)(A)

= C1(A) ∪ (C1(A) ∩ C2(A))

= C1(A).

To complete the proof that T and TB are lattices, we
need to prove that T and TB are closed under ∩ and ∪. We
organize the arguments as following:

• A, WC: it is obvious that if C1 and C2 satisfy Axioms
A and WC, then both C1 ∪ C2 and C1 ∩ C2 also satisfy
Axioms A and WC.

• Mon: Suppose A = (V,Π) and A′ = (V,Π′) are two
preference networks considered in Axiom Mon, and
S ⊂ V . Then if C1 and C2 satisfy Mon, we have
S ∈ Ci(A′) ⇒ S ∈ Ci(A) for i ∈ 1, 2. Thus, if
S ∈ C1(A′) ∩ C2(A′) then S ∈ C1(A) ∩ C2(A), and if
S ∈ C1(A′) ∪ C2(A′) then S ∈ C1(A) ∪ C2(A). Thus,
both C1 ∪ C2 and C1 ∩ C2 also satisfy Axioms Mon.

• Emb: If both C1 and C2 satisfy Emb, then for any A =
(V,Π) and any “embedded world” A′ = (V ′,Π′) such
that Π,Π′ satisfy the assumption of Axiom Emb, we

have Ci(A′) = Ci(A) ∩ 2V
′

for i ∈ {1, 2}. So

C1(A′) ∩ C2(A′) =
(
C1(A) ∩ 2V

′)
∩
(
C2(A) ∩ 2V

′)
= (C1(A) ∩ C2(A)) ∩ 2V

′

C1(A′) ∪ C2(A′) =
(
C1(A) ∩ 2V

′)
∪
(
C2(A) ∩ 2V

′)
= (C1(A) ∪ C2(A)) ∩ 2V

′
.

Thus, both C1 ∪ C2 and C1 ∩ C2 satisfy Axioms Emb.

Together, this shows that ∀C1, C2 ∈ CB , C1∩C2 ∈ CB and C1∪
C2 ∈ CB . Thus, TB = (CB ,∪,∩, Cclique, Call) is a lattice with
Call as the lattice’s top and Cclique as the lattice’s bottom.
(4) GS, SA: Assume C1 ∈ C and C2 ∈ C satisfy Axioms GS



and SA. We can then argue as for Axiom Mon above to show
that both C1 ∪ C2 and C1 ∩ C2 satisfy Axioms GS, SA. Thus,
T = (C,∪,∩) is a lattice.

3.2 Complexity of Community Rules
The first part of Theorem 3.1 shows that Ccomprehensive

and Cclique, respectively, are the most inclusive and selec-
tive axioms-conforming rules. While it is easy to determine
whether, for A = (V,Π), a subset of V lies in Cclique(A), the
rule Ccomprehensive turns out to be highly“non-constructive”.

Theorem 3.3 (Richness of Comprehensive Rule).
It is coNP-complete to determine whether given A = (V,Π),
S ⊂ V is a member of Ccomprehensive(A).

Before starting the proof, we introduce a notation which
we will use throughout this section. Given a preference pro-
file (V,Π) and a non-empty set S ⊂ V , we say that a set
G′ ⊂ V − S is a witness that S is not self-approving, if S
lexicographically prefers G′ to S, and we say that a pair
(G,G′) ⊂ S× (V −S) is a witness that S is not group-stable
if S−G lexicographically prefersG′ toG. We say thatG ⊂ S
threatens the stability of S if there exists a G′ ⊂ V −S such
that S − G lexicographically prefers G′ to G. Let’s first
characterize the complexity of Axiom Self-Approval.

Theorem 3.4. (Complexity of SA) It is coNP-complete
to determine whether a subset S ⊂ V is self-approving in a
given preference network A = (V,Π).

Proof. We reduce 3-SAT to this decision problem: Sup-
pose c = (c1, . . . , cm) is a 3-SAT instance with Boolean vari-
ables x = (x1, . . . , xn) (i.e., cj = {uj , vj , wj} ⊂ ∪ni=1{xi, x̄i}).
We define a preference network as follows:

• V = A ∪ B ∪ D ∪ X has m + n + m + 2n mem-
bers, where A = {a1, . . . , am}, B = {b1, . . . , bn}, D =
{d1, . . . , dm}, and X = {x1, . . . , xn, x̄1, . . . , x̄n}. The
distinguished subset will be S = A∪B, and for conve-
nience we will denote its complement as U = D ∪X.

• Since we will focus on subset S, here we only define
the preferences of members in S. The preferences of U
can be chosen arbitrarily.

– Member bi has preference D � A � {xi, x̄i} �
{bi} � X − {xi, x̄i} � B − {bi}, where prefer-
ences between elements of each set can be chosen
arbitrarily.

– Member aj has preference cj � {aj} � D ∪X −
cj � B ∪ A − {aj}, where again preferences be-
tween elements of each set are arbitrary.

Intuitively, members of A are used to enforce clause con-
sistency and members of B are used to enforce variable con-
sistency (no variable can be set to both true and false at the
same time). Subsets of X naturally constitute an assign-
ment of the variables, and D provides necessary padding in
order to apply Self-Approval. We now show that S is not
self-approving if and only if the 3-SAT instance is satisfiable.

In one direction, suppose Y = {y1, . . . , yn} where yi ∈
{x1, x̄i} is a satisfying assignment for the 3-SAT instance.
Let G′ = Y ∪D. Consider the bijection, f , where f(aj) = dj
and f(bi) = yi. Then for all s ∈ S and all i, f(s) �πbi s.
All that is left is to find similar bijections for each aj . First,

note that for aj all bijections fj trivially satisfy fj(s) �πaj s
where s ∈ B∪A−{aj}, since this set is ranked at the bottom
of πaj . Thus it is sufficient to show that there exists an
element of G′ that aj prefers to itself. This happens so long
as one of the literals from its clause is in G′, which must be
true by the fact that Y is a satisfying assignment. In the
other direction, suppose G′ ⊂ U = D ∪X is a witness that
S is not self-approving. Note the following:

• D ⊂ G′ otherwise any bi will have a member of A that
cannot be mapped to a more preferred member of G′.

• Let Y = X ∩G′. Then |Y | = n by the above fact and
the fact that |G′| = n+m.

• {xi, x̄i} ∩ G′ 6= ∅ by bi’s preference, and by the pi-
geonhole principle the literals of Y are consistent (i.e.
{xi, x̄i} * Y ).

• cj ∩ Y 6= ∅ by aj ’s preferences.

Thus, the variable assignment implied by Y is a satisfying
assignment for the 3-SAT instance.

The following lemma allows us to reduce various complex-
ity results concerning community axioms to Theorem 3.4.

Lemma 3.5 (Padding). Let ∅ 6=S ⊂ V ⊂ V ′ be such

that the size of S̃ = V ′−V is at least |S|, and let S′ = S∪ S̃.
Then each preference profile Π on V can be mapped onto a
preference profile Π′ on V ′ such that

(i) S′ ∈ CGS(V ′,Π′) ∩ CSA(V ′,Π′)⇔ S′ ∈ CGS(V ′,Π′).

(ii) S′ ∈ CGS(V ′,Π′)⇔ S ∈ CSA(V,Π).

Proof. Since |S̃| ≥ |S|, we can find a surjective map

g : S̃ → S. Given such a map, define Π′ arbitrarily, except
for the following two constraints:

• If s ∈ S, then π′s ranks all of S′ = S̃ ∪S before anyone
in V − S = V ′ − S′;

• If s̃ ∈ S̃, then π′s̃ ranks all of S̃ first, and then gives the
rank π′s̃(v) = |S̃|+ πg(s̃)(v) to every v ∈ V = V ′ − S̃.

Since every s ∈ S ⊂ S′ ranks all of S′ before V ′−S′, no sub-
set G′ ⊂ V ′−S′ can be lexicographically preferred by π′s to a
subset of S′. As a consequence, S′ is trivially self-approving
with respect to Π′, proving statement (i). Furthermore, G
cannot threaten the stability of S′ if G ⊂ S′ is such that
(S′ − G) ∩ S 6= ∅. If G ⊂ S′ threatens the stability of S′,
we therefore must have that G ⊃ S. On the other hand,
if G ) S, then G contains an element s̃ ∈ S̃ which means
that no set G′ can be lexicographically preferred G, since all
elements of S′ prefer all of S̃ to anyone in V ′ − S′.

Thus G can only threaten the stability of S′ if G = S.
In other words, S /∈ CGS(Π′) if and only if there exists

G′ ⊂ V ′ − S′ such that for all s̃ ∈ S̃ = S′ − G, G′ is
lexicographically preferred to S with respect to π′s̃ = πg(s̃).

Since by assumption, the image of S̃ under g is all of S,
this is equivalent to the statement that for all s ∈ S, G′ is
lexicographically preferred to S with respect to πs, which is
the condition that G′ is a witness to S /∈ CSA(Π), proving
statement (ii).

Given this lemma, both the next theorem and Theorem 3.3
are immediate consequences of Theorem 3.4.

Theorem 3.6. (Complexity of GS) It is coNP-complete
to determine whether a subset S ⊂ V is group-stable in a
given preference network A = (V,Π).



3.3 Paths up the Taxonomy Lattice
The Intersection Lemma provides us with a tool for ex-

ploring the taxonomy of community rules. Together with
Theorem 3.1, it gives us the following scheme to map an
arbitrary community rule, C, to an axiom-conforming com-
munity rule: First take the unique smallest (with respect to
the lattice TB) rule C that contains C and satisfies all axioms
besides SA and GS. Then, remove all communities which are
not both self-approving and group stable. In other words,
the map is: C 7−→ C∩CSA∩CGS . By moving up lattice TB ,
we can apply the Intersection Lemma to define more inclu-
sive axiom-conforming community rules. We now give two
example paths up taxonomy lattice, and state their algorth-
mic and complexity consequences.

Rule 5. (Relaxed Clique Rule: CClique(g)) For a non-
negative function g : N→ N∪{0}, a non-empty subset S ⊆ V
is a community in A = (V,Π) if and only if ∀u, s ∈ S,
πs(u) ∈ [1 : |S|+ g(|S|)].

CClique(g) ∈ CB and hence (CClique(g)∩CGS∩CSA) satisfies
all axioms. As g varies from 0 to ∞, CClique(g) moves up
the lattice TB from Cclique to Call. The intersection with
CSA ∩ CGS provides a “vertical” glimpse of the taxonomy
lattice T . In particular, as the community rules along this
vertical path become more inclusive (when g increases), they
become less constructive for community identification.

Proposition 3.7. Given a preference network A = (V,Π)
and a subset S ⊆ V , we can determine in O(2g|S|g+3) time
whether or not S ∈ (CClique(g)∩CGS∩CSA)(A). Particularly,
if g = Θ(1), then this decision problem is in P. However, the
decision problem is co-NP complete for g = |S|δ for any con-
stant δ ∈ (0, 1].

Rule 6. (Harmonious Path: Charmonious(λ)) For λ ∈
[0 : 1], a non-empty subset S is a λ-harmonious community
in A = (V,Π) if ∀u ∈ S, v ∈ V − S, at least λ-fraction of
{πs : s ∈ S} prefer u over v.

Charmonious(λ) ∈ CB . Thus, Charmonious(λ) ∩ CGS ∩ CSA sat-
isfies all axioms, Therefore, as λ varies from 1 to 0, the
community function Charmonious(λ) moves up the lattice TB
from Charmonious(1) = Cclique to Charmonious(0) = Call.

Proposition 3.8. Given A = (V,Π) and a subset S ⊆
V , we can determine whether S ∈ (Charmonious(λ) ∩ CGS ∩
CSA)(A) in polynomial time, if (1 − λ)|S| < 2, while it is
co-NP complete to answer this question if (1− λ)|S| ≥ 16.

3.4 Number of Potential Communities

Proposition 3.9. Assume that n ≥ 8. There exists a
preference network A such that Ccomprehensive(A) ≥ 2n/2.

Proof. The preference profile, ΠH&S , that is about to be
described has been dubbed the “hero and sidekick” example
as will soon become clear. Consider a world composed of
n/2 hero-sidekick duos. Each member of a hero-sidekick
duo first prefers the hero of that duo then the sidekick of
the duo, then all other heroes, followed lastly by all other
sidekicks (in some fixed but arbitrary order). Now consider a
subset, S, that is composed of all heroes and an arbitrary set
of sidekicks. Note that because there are 2n/2 different sets
of sidekicks, it is sufficient to show that S is a community in

Ccomprehensive([n],ΠH&S). First, note that S clearly satisfies
SA. To show that S satisfies GS, consider two sets G ⊂ S and
G′ ⊂ V −S of equal size. We first note that it will be enough
to consider the case where (S − G) × G contains no hero-
sidekick pair (u, v), since otherwise u would prefer v over
everyone else, in particular over everyone in G′. Applying
this to the sidekicks in G, we conclude that G must contain
at least as many heros as sidekicks. On the other hand, G′

can’t be lexicographically preferred to G if G contains at
least two heros, showing that only two cases are possible:
G consisting of a hero-sidekick pair, or G made up of just
a single hero. But neither one leads to a counterexample if
|S − G| > |G| = |G′|, since then we can find an s ∈ S − G
which is not the partner of any sidekick in G′, which means
that s prefers the hero in G to everyone in G′. Since S
contains all heros by assumption, we see that S is group
stable as soon as n ≥ 8.

4. FIXED-POINT RULES AND LIMITATION
OF SOCIAL-CHOICE AGGREGATION

We now examine aggregation functions and their commu-
nity rules through the lens of our axiomatic framework. We
prove two impossibility results which may help to shed light
on the limitations of defining community rules solely based
on preference aggregation.

4.1 Social Choice Axioms and Implications for
Fixed-Point Community Rules

We first review the basic axioms from the traditional social
choice theory [2]. To this end, we begin by formally defining

the set, L(V ), of preferences with ties (or indifference) as the
set of all maps π : V → {1, . . . , |V |} such that whenever k
elements v1, . . . , vk have the same rank π(v1) = · · · = π(vk),
then we skip the ranks π(vk) + 1, . . . , π(vk) + k − 1. So for
example, if 3 elements are tied at rank 2, the next rank in
the image of π will be 5. L(V ) is also known as the ordered
partition of V . We also need the notion of an election, which
will be defined as a triple (V, F, S) where V and S are finite
sets (called the set of candidates and voters, respectively),

and F : L(V )∗ → L(V ) is a preference aggregation function.

Social Choice Axiom 1 (Unanimity (U)). An election
(V, F, S) satisfies Unanimity if, for all preference profiles,
ΠS = {πs : s ∈ S} ∈ L(V )S and all pairs of candidates,
{i, j} ⊆ V , πs(i) > πs(j), ∀s ∈ S =⇒ F (ΠS)(i) > F (ΠS)(j).

The question then is: what properties capture the intu-
ition behind Unanimity and how do they relate to this social
choice axiom? To answer this, we define the following two
properties:

Property 1 (Pareto Efficiency (PE)). A community func-
tion, C, is Pareto Efficient if, given A ∈ A and S ∈ C(A), for
all u ∈ S, v /∈ S, there is a s ∈ S such that u �πs v.

Property 2 (Clique (Cq)). A community function C sat-
isfies the Clique Property if for all A ∈ A, u �πs v,∀u, s ∈
S,∀v /∈ S =⇒ S ∈ C(A).

Property Pareto Efficiency is a negative property that states
that subsets in which a non-member is preferred to a mem-
ber by everyone inside the subset should not be a commu-
nity. In contrast, Clique is a positive property that states



that a completely self-loving group (i.e., a clique) must be
a community. It turns out that both of these properties are
implied by Unanimity, and that the second is implied by the
Axioms World Community and Embedding.

Proposition 4.1. Fix V and a preference aggregation func-
tion F , and let CF be the fixed point rule with respect to F .
If all elections (V, F, S) with S ( V satisfies Unanimity, then
CF satisfies the properties Pareto Efficiency and Clique.

Proposition 4.2. Let C be a community rule that satis-
fies the World Community and Embedding Axioms. Then C
must also satisfy the Clique Property.

Social Choice Axiom 2 (Non-Dictatorship (ND)). An
election (V, S, F ) is Non-Dictatorial if there exists no dicta-
tor, i.e., no voter i ∈ S such that F (ΠS) = πi for all pref-
erence profiles ΠS ∈ L(V )S.

Instead of showing properties implied by ND as we did
with Unanimity, we do the inverse, and show that a dicta-
torship violates some of our axioms.

Proposition 4.3. Fix V and a preference aggregation func-
tion F . If CF , the fixed point rule with respect to F , satisfies
Group Stability or Anonymity, then all elections (V, F, S) with
S ⊂ V and 1 < |S| < |V | satisfy Non-Dictatorship.

Social Choice Axiom 3. (Independence of Irrelevant Al-
ternatives) An election (V, F, S) satisfies Independence of Ir-
relevant Alternatives (IIA) if, for all preference profiles, ΠS

and Π′S ∈ L(V )S and all candidates a, b ∈ V , we have that(
∀s ∈ S, a �πs b⇔ a �π′

s
b
)

=⇒
(
a �F (ΠS) b⇔ a �F (Π′

S
) b
)
.

This axiom can reasonably be considered the strongest of
the three, in that it says that the aggregate preference be-
tween two candidates does not depend on the preferences
voters have between either of the two and some other can-
didate. Arrow’s celebrated impossibility result immediately
leads to impossibility results in our settings, showing in par-
ticular that Independence of Irrelevant Alternatives for the
aggregation function is inconsistent with at least one of Ax-
ioms 3, 4, or 6.

Theorem 4.4. (Impossibility of Fixed-Point Rule
with IIA Aggregation) Let F be an aggregation function
such that the fixed point rule with respect to F satisfies the
Clique Property and the Group Stability Axiom. Then no
election (V, F, S) with S ⊆ V and 1 < |S| < |V | satisfies IIA.

Proof. Let S ⊆ V such that 1 < |S| < |V |. Assume
that the election (V, F, S) satisfies IIA, and the resulting fixed
point rule CF satisfies Cq and GS. We will first show that the
election (V, F, S) must satisfy Unanimity. In the following
preference profiles, Π, Π′, Π′′ ∈ L(V )S , we assume that
every member of S has the same preference, π, π′, and π′′

respectively. First, let π rank all members of S above non-
members. By the Clique Property, S ∈ CF (V,Π) and thus

∀s ∈ S, v /∈ S, s �F (Π) v. (4)

Thus, by IIA, if s ∈ S is unanimously preferred to v /∈ S, s
must be strictly preferred to v in the aggregate preference.
Now let π′ be the same as π only with the least preferred
member of S, s′, and the most preferred non-member, v′,

switched in rank. By the partial Unanimity property (4), in
the aggregate F (Π′), all members of S − {s′} are preferred
to all v /∈ S, and all members of S are preferred to all
v ∈ V − S − {s′}. But, by GS, S /∈ CF (Π′), which is only
possible is if v′ �F (Π′) s

′. Applying the partial Unanimity
property once more yields the following two statements:

∀s ∈ S−{s′}, s �F (Π′) s
′ and ∀v /∈ S∪{v′}, v′ �F (Π′) v,

and by IIA, this in turn implies

∀s ∈ S − {s′}, s �F (Π) s
′ and ∀v /∈ S ∪ {v′}, v′ �F (Π) v.

(5)
By IIA, this means that for any two members or two non-
members, if one is unanimously preferred to the other, then
it must be strictly preferred in aggregate preference. Indeed,
consider, e.g., s, s′ ∈ S and a profile Π̃S such that s �π̃i s′
for all i ∈ S. Choose Π in such a way that every member has
the same profile, s′ has rank |S| and s �πi s′ for all i ∈ S.
By IIA, s �F (Π̃) s

′ ⇐⇒ s �F (Π) s
′, so by (5), s is preferred

to s′ in aggregate.
Finally, consider π′′ where v′ is switched with the second

lowest ranked member, s′′. By the above additional partial
Unanimity property, s′ must be strictly preferred to s′′ in the
aggregation F (Π′′), and thus v′ must be strictly rather than
weakly preferred to s′′ in the aggregate preference. Again
by IIA, if a non-member, v /∈ S, is unanimously preferred
to a member s ∈ S, v must be strictly preferred to s in the
aggregate preference. Taken together, these three partial
Unanimity properties constitute Unanimity. Since the elec-
tion (V, F, S) satisfies both IIA and Unanimity, by Arrow’s
Impossibility Theorem [2], it must be a dictatorship, con-
tradicting Proposition 4.3.

4.2 Weighted-Aggregations and Limitations of
Their Fixed-Point Rules

There are many preference aggregation functions satisfy-
ing the other two standard axioms of social choice theory,
Unanimity and Non-Dictatorship, e.g., the well-known Borda
count [27]. Moreover, there are many interesting fixed point
rules generalizing Borda count, several of which can be cast
as weighted voting schemes as follows: Let W = (w1, w2, . . . )
be a sequence of weight vectors wi ∈ RV . For ΠS ∈ L(V )∗,
we then define the aggregate preference FW (ΠS) on V by

i �F (Πs) j ⇐⇒
∑
s∈S

w
|S|
πs(i) >

∑
s∈S

w
|S|
πs(j).

For Borda count, wk = (|V |, |V | − 1, ..., 1) ∀k, and for the
Cdemocratic rule of [3], wk consists of k ones followed by
(|V | − k) zeros, implying that every voter has to choose k
candidates, with all votes counting equally.

Definition 4.5 (Weighted Fixed Point Rule). For
a sequence of vectors W = (w1, w2, . . . ) in Rn, CW is the
fixed point rule with respect to FW .

Proposition 4.6. All weighted fixed-point rules satisfy
Axiom Anonymity. They satisfy Property Clique iff ∀k ∈
[n − 1] the vector wk is such that wki > wkj for i ≤ k and
j > k.

While weighted fixed-pointed rules are natural from a so-
cial choice viewpoint, it turns out that they are again in-
compatible with at least one of Axioms 3, 4, or 6. We first
note that Cdemocratic violates both Axioms Mon and GS.



Theorem 4.7. Cdemocratic does not satisfy Axioms Mono-
tonicity or Group Stability. It satisfies all other axioms, as
well as Properties Pareto Efficiency and Clique.

Proof. From its voting function φΠ
S , Cdemocratic satisfies

Axioms A, WC, Emb, and Properties PE and Cq. Suppose
Cdemocratic does not satisfy SA. Then, there exists a prefer-
ence network A = (V,Π), S ∈ Cdemocratic(A), T ⊆ V − S,
and a tuple of bijections (fs : S → T ) that for all s, u ∈ S,
u ≺πs fs(u). It follows that ∀s ∈ S, the numbers of votes
cast by s for S according to φΠ

S is less than the numbers
of votes that s casts for T . Summing up the votes from S,
the average votes that members of T receive is larger than
the average votes that members of S receive, contradicting
the assumption that everyone in S receives more votes than
everyone in T . Thus, Cdemocratic satisfies SA.

Let V = [1 : 6], S = [1 : 3], let Π = (π1, ..., π6) be the
preference profile

π1 = [142356], π2 = [253416], π3 = [631425]

π4 = [456123], π5 = [156423], π6 = [165423]

and let Π′ be the preference profile

π′1 = [142356], π′2 = [234516], π′3 = [314625]

π′4 = π4, π′5 = π5, π′6 = π6.

Then S = [1 : 3] ∈ Cdemocratic(V,Π), as each members of S
receives two votes while everyone in [4 : 6] receives only one
vote. However, in violation of Axiom Mon, S is no longer a
Cdemocratic community w.r.t Π′, since 4 now receives three
votes, one more than 1, 2 and 3.

Note also T = (1, 5, 6) ∈ Cdemocratic(V,Π). Let G =
{5, 6} ⊂ T and G′ = (2, 4) ⊂ V − T . As member 1 prefers 2
to 5 and 4 to 6, T does not satisfy Group Stability.

The violation of the monotonicity axiom was initially sur-
prising and rather counterintuitive to us, and indeed moti-
vated some of the research in this paper. This violation is
illustrative of the subtlety of community rules. It leads
us to the following general impossibility result, which to-
gether with Theorem 4.4, illustrates some basic limitations
of fixed-point community rules.

Theorem 4.8. (Impossibility of Weighted Aggre-
gation Schema) Weighted Fixed Point Rules are inconsis-
tent with either the Group Stability or the Clique Property.

Proof. Let A = (V,Π) be a preference network, S ⊂ V ,
and CW a weighted fixed point rule satisfying the the Clique
Property. Throughout the the proof, we will take

V = {a, b, c, d, e} and S = {a, b, c},

and consider preference profiles such that S violates Group
Stability. In order for CW to obey the Axiom GS, we would
need the weight vector w3 ∈ R5 to be such that S /∈ C(V,Π)
for all Π considered in this proof. Our goal is to show that
this will lead to a contradiction. We start under the assump-
tion that the weights are decreasing, i.e., in addition to the
already established fact that w3

i > w3
j when i = 1, 2, 3 and

j = 4, 5 (since CW satisfies the the Clique Property), we first
assume that w3

1 ≥ w3
2 ≥ w3

3 and w3
4 ≥ w3

5.
Consider the following scenario: πa = [adebc], πb = πc =

[abcde]. Since a prefers d and e over b and c, S is not group
stable and cannot be a community. By our assumption that
w3

1 ≥ w3
2 ≥ w3

2 > w3
4 ≥ w3

4, we have that a �FW (ΠS)

b �FW (Πs) c �FW (ΠS) e and b �FW (ΠS) d. Thus, the only
way S cannot be a community is that d �FW (ΠS) c, i.e.,

w3
2 + 2w3

4 ≥ 2w3
3 + w5. This implies that we cannot have

both w3
2 = w3

3 and w3
4 = w3

5.
Now consider a modified preference profile: π′a = π′b =

[abdce], π′c = [caebd]. In this profile a and b prefer d over c,
so again S violates GS and hence cannot be a community.
On the other hand, we now have a �FW (Π′

S
) b, b �FW (Π′

S
)

d �FW (Π′
S

) e. Thus we must have either b ∼FW (Π′) d or

d �FW (Π′
S

) c. The former, however, implies w3
2 = w3

3 and

w3
4 = w3

5 and is hence a contradiction. Therefore the latter
must be true which implies 2w3

3 + w3
5 ≥ w3

1 + 2w3
4.

This brings us to the final preference profile:

π′′a = [abdce], π′′b = [dcabe], π′′c = [cbaed].

Again a and b prefer d to c, so the profile violates GS,
and hence again can’t be a community. Now a �FW (Π′′)

c �FW (Π′′) b and d �FW (Π′′) e, showing that for S not to
be a community, we must have d �FW (Π′′) b, which gives

w3
1 + w3

3 + w3
5 ≥ 2w3

2 + w3
4.

Defining di = w3
i−w3

i−1, we can write the bounds obtained
so far as (1) d4 ≤ d3 + d5, (2) d2 + d3 + d5 ≤ d4, (3) d3 +
d4 + d5 ≤ d2. Chaining up these three bounds, we get

d3 + d5 ≥ d4 ≥ d2 + d3 + d5

≥ d3 + d4 + d5 + d3 + d5 = 2(d3 + d5) + d4,

contradicting our assumption di ≥ 0 and the fact that Cq
implies d4 > 0.

To relax the constraint that the weights are ordered, we
observe that all three profiles in the proof are such that,
under arbitrary permutations of the first three and the last
two positions, S still violates GS: for any permutation σ of
[1 : 5] that leaves [1 : 3] and [4 : 5] invariant, S violates GS
under the profiles {σ◦πs}s∈S , {σ′◦πs}s∈S , and {σ′′◦πs}s∈S .
Choosing the permutation such that w̃3

i = w3
σ(i) are ordered,

we obtain the above three inequalities for the weights w̃3
i ,

leading again to a contradiction.

4.3 Harmonious Communities
We will close this section with a discussion of the har-

monious community rule, Charmonious, of Section 1. First,
we prove Charmonious is a fixed-point rule associated with a
topologically defined aggregation function.

Proposition 4.9. There exists a preference aggregation
function FH : L(V )∗ → L(V ) such that defines Charmonious.

Proof. Given V , a finite set S, and a preference pro-
file ΠS ∈ L(V )S , we consider the following directed graph
GΠS = (V,EΠS ) where (i, j) ∈ EΠS if at least half of S
prefers i to j. Note that if |S| is an odd number, then GΠS

is a tournament graph. If |S| is an even number, then EΠS

contains both (i, j) and (j, i) if exactly half of ΠS prefer i to
j. GΠS is total since for all i, j ∈ V , either (i, j) ∈ EΠS or

(j, i) ∈ EΠS . Because GΠS is total, the graph ĜΠs ob-
tained from GΠS by contracting each strongly connected
component into a single vertex is an acyclic, tournament
graph. Thus, the graph ĜΠs has exactly one Hamiltonian
path that totally orders its vertices. Let (V1, ..., Vt) be the
strongly connected components of GΠS , sorted by the or-
der determined by the Hamiltonian path. The partition
(V1, ..., Vt) of V then defines an ordered partition FH(ΠS),
with Vi �FH(ΠS) Vj iff i ≤ j.



Next, we consider a subset T ⊂ V . It is then easy to check
that if T is of the form T = ∪j≤iVj for some i ∈ [1 : t], then
for all u ∈ T, v ∈ V − T , a majority of S prefers u to v, and
vice versa. Specializing to S = T , we see that Charmonious
is defined by the preference aggregation function FH.

Theorem 4.10. Charmonious satisfies Axioms 1-5. but it
does not satisfy GS.

Proof. One easily establish that Charmonious satisfies Ax-
ioms A, Mon, Emb and WC. We will now prove that Charmonious
satisfies SA: If S ∈ Charmonious(A) does not satisfy SA, then
there exists a T ⊂ V − S of the same size as S such that
each s ∈ S lexicographically prefers T over S. This implies
that, for each s ∈ S, there are at least (1+2+ · · ·+ |S|) pairs
(u, v) ∈ S×T such that s prefers v over u. Thus the number
of triples (s, u, v) such that s ∈ S prefers v ∈ T over u ∈ S
is at least |S|2(|S|+ 1)/2. However, S ∈ Charmonious(A) im-
plies that this number has to be strictly smaller than |S|3/2.
The set T in the proof of Theorem 4.7 is also an example
that Charmonious violates Axiom GS.

While Charmonious does not satisfy the GS Axiom, it sat-
isfies the following weaker property.

Property 3. Weak Group Stability For all preference
profiles Π on V and all S ∈ C(V,Π), S is weakly group stable.
Here a set S ⊂ V is called weakly group stable if for all
G ⊂ S, G′ ⊂ V − S s.t. 0 < |G| = |G′| ≤ |S|/2, and all
bijections (f : G → G′, i ∈ S − G) there exists s ∈ S − G,
u ∈ G such that u �πs f(u).

Note that the property is weaker than the GS Axiom in
two ways: we restrict ourselves to groups G of size at most
|S|/2, and we only allow for a global bijection f , rather than
individual bijections fs.

Proposition 4.11. Charmonious is weakly group stable, while
Cdemocratic and CBorda are not.

Proof. Consider a set S ∈ Charmonious(V,Π), subsets
G ⊂ S and G′ ⊂ V − S such that 0 < |G| = |G′| ≤ |S|/2,
and a bijection f : G → G′. For each u ∈ G the majority
of S prefer u to f(u) (who is not a member of S), and since
|G| ≤ |S|/2, this implies that there must be at least one
s ∈ S −G such that s prefers u to f(u), as required.

To give a counterexample for both Cdemocratic and CBorda,
consider V = [1 : 6], G = [3 : 4] and G′ = [5 : 6], with
preference profiles

π1 = [125463], π2 = [126354], π3 = [341256], π4 = [341256].

Then 1 and 2 prefer 5 over 4, and 6 over 3, but S is a
community both with respect to Cdemocratic (where 1 and 2
get four votes, 3 and 4 get three votes, and 5 and 6 get only
one vote), and with respect to Borda count (with counts
20, 16, 18, 16, 10, 8 for 1, . . . , 6, respectively).

We will now compare fixed-point community rules based
on the three aggregation functions that we have discussed
so far: Borda voting, democratic voting, and FH. While all
three have their own appealing simplicity and intuition, and
all satisfy Axioms A, SA, Emb, and WC, they have signif-
icant differences with respect to Axioms Mon and GS, and
the Outsider Departure property. (1) Outsider Departure: A
harmonious community S remains a harmonious commu-
nity when any outsider v 6∈ S leaves the system, since the

departure does not alter any pairwise preferences. How-
ever, for a Cdemocratic or CBorda community S, the departure
of an outsider can increase the votes for other outsiders to
destabilize the community. (2) Monotonicity: The harmo-
nious rule satisfies Axiom Mon. The other two only satisfy
the weaker Outsider Respecting Monotonicity property3. (3)
Group Stability: The subset T in the proof of Theorem 4.7 is
a community according to all these three community rules.
But T violates GS because 1 prefers outsiders over 5 and 6,
even though 5 and 6 prefer 1 over everyone else: Element
1 is an “arrogant” member of its community. All aggrega-
tion functions satisfying Unanimity seem to be prone to exis-
tence of “arrogant” members. The harmonious rule satisfies
the stability of majority subgroup under a global bijection
f . Cdemocratic and CBorda essentially have no guarantee on
group stability. (4) Small World: We say a community func-
tion C satisfies the Small World property if

S ∈ C((V,Π)) if and only if S ∈ C(S ∪ U,Π|S∪U ),
∀U ⊆ V − S, |U | < |S|.

This Helly-type property [7] localizes the identification of a
community. Note that the Small World property includes
some form of Outsider Departure together with the prop-
erty that every community is “locally” verifiable. One can
easily show that Cdemocratic and CBorda do not have the
Small World property, while Charmonious enjoys the following
stronger variant of the small world property

S ∈ Charmonious((V,Π)) if and only if ∀v ∈ V − S,
S ∈ Charmonious(S ∪ {v},Π|S∪{v}).

4.4 Stability of Communities
In real-world social interactions, some communities are

more stable or durable than others, when people’s interests
and preferences evolve over time. For example, some music
bands stay together longer than others. We consider the fol-
lowing stability model that is inspired by the work of Balcan
et al. [3] and Mishra et al. [14].

Definition 4.12. (Preference Perturbations) Let C
be a community rule and A = (V,Π) be a preference network.
For δ ∈ (0, 1), we say a community S ∈ C(A) is stable under
δ-perturbations if S ∈ C((V,Π′)) for all preference profiles
Π′ such that |{i ∈ S : πi(v) 6= π′i(v)}| ≤ δ|S|, ∀v ∈ V .

In other words, stable communities remain communities even
after some changes to their members’ preferences.

Both the community rule C and stability parameter δ can
impact community structures. The main result of Balcan et
al. [3] can be restated as:

Theorem 4.13. ([3]) For δ ∈ (0, 1), every preference net-

work A = (V,Π) has nO(log(1/δ)/δ) democratic communities,
that are stable under δ-perturbations of Π.

Definition 4.12 can be directly applied to Charmonious,
which is connected with the following natural notion of ro-
bust harmonious communities: For δ ∈ [0 : 1/2], a non-
empty subset S is a (δ + 1/2)-harmonious community in
A = (V,Π) if ∀u ∈ S, v ∈ V − S, at least (1/2 + δ)-fraction
of {πs : s ∈ S} prefer u over v.

3Again, we can use the profiles from the proof of Theo-
rem 4.7 to show that the Borda count rule does not satisfy
Mon.



Proposition 4.14. For any δ ∈ [0 : 1/2), and preference
network A, every (1/2 + δ)-harmonious community is sta-
ble under δ/2-perturbations. Conversely, any community in
Charmonious that is stable under δ perturbations is a (1/2+δ)-
harmonious community.

Using a simple probabilistic argument, we can establish the
following bound:

Theorem 4.15. For any δ ∈ [0 : 1/2), the number of δ-
stable harmonious communities in any preference network is

at most n12 logn/δ2 .

Proof. Let S be a δ-stable harmonious communities. For
any multi-set T ⊆ S, we say T identifies S if for all u ∈ S
and v ∈ V − S, the majority of T prefer u to v. Note
that such a T determines S once the size of S is set. To
see this, note that the condition implies that u �F (ΠT ) v
for all (u, v) ∈ S × (V − S), which in turn implies that
S is of the form V1 ∪ · · · ∪ Vi where (V1, V2, . . . ) are the
components of the ordered partition F (ΠT ), ordered in such
a way that V1 �F (ΠT ) V2, ... (see Proposition 4.9 and its
proof). Thus once F (ΠT ) and the size of S are fixed, S is
uniquely determined.

We now show that ∃T ⊂ V of size 12 logn/δ2 that iden-
tifies S. To this end, we consider a sample T ⊂ S of
k = 12 logn/δ2 randomly chosen elements (with replace-
ments). We analyze the probability that T identifies S.
Let T = {t1, ..., tk}, and for each u ∈ S and v ∈ V − S,

let x
(u,v)
i = [u �πti v], where [B] denotes the indicator

varable of an event B. Then T identifies S iff
∑k
i=1 x

(u,v)
i >

k/2, ∀u ∈ S, v ∈ V − S. We now focus on a particular (u, v)

pair and bound Pr
[∑k

i=1 x
(u,v)
i ≤ k/2

]
. We first note that

E

[
k∑
i=1

x
(u,v)
i

]
=

k∑
i=1

E
[
x

(u,v)
i

]
≥
(

1

2
+ δ

)
· k.

By a standard use of the Chernoff-Hoeffding bound

Pr

[
k∑
i=1

x
(u,v)
i ≤ k/2

]

≤ Pr

[
k∑
i=1

x
(u,v)
i ≤ (1 + 2δ)−1E

[
k∑
i=1

x
(u,v)
i

]]

≤ Pr

[
k∑
i=1

x
(u,v)
i ≤ (1− δ)E

[
k∑
i=1

x
(u,v)
i

]]

≤ e−
δ2

2
(1/2+δ)k ≤ e−

δ2

4
k ≤ 1

n3
,

where we used that (1+2δ)−1 ≤ 1−δ in the third step. If T
fails to identify S, then there exists (u ∈ S, v ∈ V − S) such

that
∑k
i=1 x

(u,v)
i ≤ k/2. As there are at most |S||V −S| ≤ n2

such (u, v) pairs to consider, by the union bound,

Pr [T identifies S] ≥ 1−
∑

u∈S,v∈V−S

Pr

[
k∑
i=1

x
(u,v)
i ≤ k/2

]
> 1− 1/n> 0.

Thus, if S is a δ-stable harmonious communities, then there
exists a multi-set T ⊂ V of size 12 logn/δ2 that identifies
S. We can thus enumerate all δ-stable harmonious commu-
nities by enumerating all (T, t) pairs, where T ranges from

all multi-subsets of V of size 12 logn/δ2 and t ∈ [1 : n] and
check if T can identify a set of size t.

5. REMARKS
Our work can be partially applied to other network mod-

els. With simple modifications to our axioms, we can ex-
tend results of this paper to preference networks that al-
low indifferences. In other words, each preference network
A = (V,Π) is now given by n ordered partitions π1, ..., πn ∈
L(V ). By allowing indifference, we can partially apply our
results to practical social networks, where community iden-
tification is posted as the problem of detecting communities
in an observed social network, G = (V,E), which is usually
sparse. To apply our framework, we first define an affin-
ity network (V, [w1, ...,wn]), where wv is the personalized
PageRank vector of vertex v [11]. We then obtain a pref-
erence network AG = (V,Π): For each v ∈ V , we extract

a preference vector, πv ∈ L(V ) from wv, by sorting entries
in wv — elements with the same weight are assigned to the
same partition. In other words, πv ∈ L(V ) ranks vertices
in V by v’s PageRank contributions [1] to them. Although
this conversion may lose some valuable affinity information
encoded in the numerical values, it offers a path to apply
our community identification theory to network analysis.

To better model preferences in practical social networks,
we can also use multifaceted preference networks [3], in which
each node can have more than one ranking of other nodes.
For example, one member may have three rankings — one
based on“family/friends”, one based on“academic interests”,
and one based on “business interests.” Meanwhile, another
member may have two rankings — one based on“sports”and
one based on “music”. Formally, in a multifaceted preference
network A = (V,Π), each u ∈ V specifies du preferences in
Π. We call du the preference degree of u. Our results extend
to multifaceted preference networks.

A real-world (observed) social network may be viewed as
sparse, observed social interactions induced by an underlying
preference/affinity network. Thus, the conceptural question
of community identification studied in this paper is a basic
question in Network Sciences regarding both network forma-
tion and network structures. Our work suggests that simul-
taneous axiomatization of network formation and commu-
nity characterization could be beneficial and essential. We
expect that an axiomatization theory, for (1) personalized
ranking in networks and (2) for community characterization
in preference networks with partially ordered preferences,
will offer us new insight for addressing the two fundamental
mathematical questions, that are essential for understanding
community formation in social/information networks:

• Inference of the underlying network model from ob-
served networks.

• Community formulation from individual affinities and
preferences (based on the underlying network model).

Extending our work to preference networks with partially
ordered preferences will provide a concrete step to under-
stand community formation in networks with incomplete or
incomparable preferences. Like our current study, we believe
that the existing literature in social choice — e.g., [18] —
will be valuable to our understanding. For both fundamen-
tal problems, we can also consider other frameworks, such as



the game-theory based incentive networks [26], for formulat-
ing the underlying network model from observed networks.
These network models offer richer structures for capturing
interactions among members in networks. As both parts of
theory become sufficiently well developed, well-designed ex-
periments with real-world social networks will be necessary
to further enhance this theoretical framework.

In summary, our taxonomy theorem provides the basic
structure of communities in a preference network, while the
complexity (coNP-Completeness) result illustrates the algo-
rithmic challenges for community identification in addition
to community enumeration. On the other hand, our analysis
of the harmonious rule and the work of [3] seem to suggest
some efficient notion of communities can be defined. How-
ever, it remains an open question if there exists a natural,
constructive and axiom-conforming community rule that al-
lows overlapping communities, and has stable communities
which are polynomial-time samplable and enumerable. Fi-
nally, we hope that we can further develop our axiomatic
system to better connect with practical networks.
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