
Journal of Machine Learning Research 6 (2005) 1265–1295 Submitted 10/03; Revised 4/04; Published 9/05

An MDP-Based Recommender System∗

Guy Shani SHANIGU@CS.BGU.AC.IL
Computer Science Department
Ben-Gurion University
Beer-Sheva, Israel 84105

David Heckerman HECKERMA@MICROSOFT.COM

Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA

Ronen I. Brafman BRAFMAN@CS.BGU.AC.IL
Computer Science Department
Ben-Gurion University
Beer-Sheva, Israel 84105

Editor: Craig Boutilier

Abstract
Typical recommender systems adopt a static view of the recommendation process and treat it as

a prediction problem. We argue that it is more appropriate toview the problem of generating
recommendations as a sequential optimization problem and,consequently, that Markov decision
processes (MDPs) provide a more appropriate model for recommender systems. MDPs introduce
two benefits: they take into account the long-term effects ofeach recommendation and the expected
value of each recommendation. To succeed in practice, an MDP-based recommender system must
employ a strong initial model, must be solvable quickly, andshould not consume too much memory.
In this paper, we describe our particular MDP model, its initialization using a predictive model, the
solution and update algorithm, and its actual performance on a commercial site. We also describe
the particular predictive model we used which outperforms previous models. Our system is one
of a small number of commercially deployed recommender systems. As far as we know, it is the
first to report experimental analysis conducted on a real commercial site. These results validate the
commercial value of recommender systems, and in particular, of our MDP-based approach.
Keywords: recommender systems, Markov decision processes, learning, commercial applications

1. Introduction

In many markets, consumers are faced with a wealth of products and information from which they
can choose. To alleviate this problem, many web sites attempt to help users by incorporating a
recommender system(Resnick and Varian, 1997) that provides users with a list of items and/or web-
pages that are likely to interest them. Once the user makes her choice, a newlist of recommended
items is presented. Thus, the recommendation process is a sequential process. Moreover, in many
domains, user choices are sequential in nature – for example, we buy a book by the author of a
recent book we liked.

∗. Parts of this paper appeared in the proceedings of UAI’02 under the title“An MDP-Based Recommender System,”
and the proceedings of ICAPS’03 under the title “Recommendation as a Stochastic Sequential Decision Problem.”

c©2005 Guy Shani, Ronen I. Brafman and David Heckerman.

SHANI , BRAFMAN AND HECKERMAN

The sequential nature of the recommendation process was noticed in the past (Zimdars et al.,
2001). Taking this idea one step farther, we suggest that recommendationis not simply a sequential
prediction problem, but rather, a sequential decision problem. At each point the Recommender
System makes a decision: which recommendation to issue. This decision shouldtake into account
the sequential process involved and the optimization criteria suitable for the recommender system,
such as the profit generated from selling an item. Thus, we suggest the use of Markov decision
processes (MDP) (Puterman, 1994), a well known stochastic model of sequential decisions.

With this view in mind, a more sophisticated approach to recommender systems emerges. First,
one can take into account the utility of a particular recommendation – for example, we might want
to recommend a product that has a slightly lower probability of being bought, but generates higher
profits. Second, we might suggest an item whose immediate reward is lower, but leads to more
likely or more profitable rewards in the future.

These considerations are taken into account automatically by any good or optimal policy gen-
erated for an MDP model of the recommendation process. In particular, anoptimal policy will take
into account the likelihood of a recommendation to be accepted by the user, theimmediate value to
the site of such an acceptance, and the long-term implications of this on the user’s future choices.
These considerations are taken with the appropriate balance to ensure thegeneration of the maximal
expected reward stream.

For instance, consider a site selling electronic appliances faced with the option to suggest a
video camera with a success probability of 0.5, or a VCR with a probability of 0.6.The site may
choose the camera, which is less profitable, because the camera has accessories that are likely to
be purchased, whereas the VCR does not. If a video-game console is another option with a smaller
success probability, the large profit from the likely future event of sellinggame cartridges may tip
the balance toward this latter choice. Similarly, when the products sold are books, by recommending
a book for which there is a sequel, we may increase the likelihood that this sequel will be purchased
later.

Indeed, in our implemented system, we observed less obvious instances of such sequential
behavior: users who purchased novels by the well-known science fiction author, Roger Zelazny,
who uses many mythological themes in his writing, often later purchase books on Greek or Hindu
mythology. On the other hand, users who buy mythology books do not appear to buy Roger Zelazny
novels afterwards.

The benefits of an MDP-based recommender system discussed above are offset by the fact
that the model parameters are unknown. Standard reinforcement learning techniques that learn
optimal behaviors will not do – they take considerable time to converge and their initial behavior
is random. No commercial site will deploy a system with such behavior. Thus, we must find ways
for generating good initial estimates for the MDP parameters. The approachwe suggest initializes a
predictive model of user behavior using data gathered on the site prior to the implementation of the
recommender system. We then use the predictive model to provide initial parameters for the MDP.

Our initialization process can be performed usinganypredictive model. In this paper we suggest
a particular model that outperforms previous approaches. The predictive model we describe is
motivated by our sequential view of the recommendation process, but constitutes an independent
contribution. The model can be thought of as ann-gram model (Chen and Goodman, 1996) or,
equivalently, a (first-order) Markov chain in which states correspondto sequences of events. In this
paper, we emphasize the latter interpretation due to its natural relationship with an MDP. We note
that Su et al. (2000) have described the use of simplen-gram models for predicting web pages.

1266

AN MDP-BASED RECOMMENDERSYSTEM

Their methods, however, yield poor performance on our data, probablybecause in our case, due to
the relatively limited data set, the use of the enhancement techniques discussed below is needed.

Validating recommender system algorithms is not simple. Most recommender systems, such
as dependency networks (Heckerman et al., 2000), are tested on historical data for their predictive
accuracy. That is, the system is trained using historical data from sites that do not provide recom-
mendations, and tested to see whether the recommendations conform to actualuser behavior. We
present the results of a similar test with our system showing it to perform better than the previous
leading approach.

However, predictive accuracy is not an ideal measure, as it does nottest how user behavior is
influenced by the system’s suggestions or what percentage of recommendations are accepted by
users. To obtain this data, one must employ the system at a real site with real users, and compare the
performance of this site with and without the system (or with this and other systems). The extent
to which such experiments are possible is limited, as commercial site owners are unlikely to allow
experiments which can degrade the performance or the “look-and-feel”of their systems. However,
we were able to perform a certain set of experiments using our commercial system at the online
bookstore Mitos (www.mitos.co.il) by running two models simultaneously on different users: one
based on a predictive model and one based on an MDP model. We were alsoable, for a short period,
to compare user behavior with and without recommendations. These results,which to the best of
our knowledge are among the first reports of online performance in a commercial site, are reported
in Section 6, providing very encouraging validation to recommender systems ingeneral, and to our
sequential optimization approach in particular.

The main contributions of this paper are: (1) A novel approach to recommender systems based
on an MDP model together with appropriate initialization and solution techniques.(2) A novel
predictive model that outperforms previous predictive models. (3) One of a small number of com-
mercial applications based on MDPs. (4) The first (to the best of our knowledge) experimental
analysis of a commercially deployed recommender system.

We note that the use of MDPs for recommender systems was previously suggested by Bohnen-
berger and Jameson (2001). They used an MDP to model the process ofa consumer navigating
within an airport. The state of this MDP was the consumer’s position and rewards were obtained
when the consumer entered a store or bought an item. Recommendations wereissued on a palm-top,
suggesting routes and stores to visit. However, the MDP model was hand-coded and experiments
were conducted with students rather than real users.

The paper is structured as follows. In Section 2 we review the necessarybackground on rec-
ommender systems, MDPs, and reinforcement learning. In Section 3 we describe the predictive
model we constructed whose goal is to accurately predict user behaviorin an environment without
recommendations. In Section 4 we present our empirical evaluation of the predictive model. In Sec-
tion 5 we explain how we use this predictive model as a basis for a more sophisticated MDP-based
model for the recommender system. In Section 6 we provide an empirical evaluation of the actual
recommender system based on data gathered from our deployed system. We conclude the paper in
Section 7 discussing our current and future work.

2. Background

In this section we provide the necessary background on recommender systems,N-gram models, and
MDPs.

1267

SHANI , BRAFMAN AND HECKERMAN

2.1 Recommender Systems

Early in the 1990s, when the Internet became widely used as a source of information,information
explosionbecame an issue that needed addressing. Many web sites presenting a wide variety of
content (such as articles, news stories, or items to purchase) discovered that users had difficulties
finding the items that interested them out of the total selection.Recommender Systems(Resnick and
Varian, 1997) help users limit their search by supplying a list of items that mightinterest a specific
user. Different approaches were suggested for supplying meaningful recommendations to users and
some were implemented in modern sites (Schafer et al., 2001). Traditional datamining techniques
such as association rules were tried at the early stages of the developmentof recommender systems.
Initially, they proved to be insufficient for the task, but more recent attemptshave yielded some
successful systems (Kitts et al., 2000).

Approaches originating from the field ofinformation retrieval (IR)rely on thecontentof the
items (such as description, category, title, author) and therefore are known ascontent-based rec-
ommendations(Mooney and Roy, 2000). These methods use some similarity score to match items
based on their content. Based on this score, a list of items similar to the ones the user previously se-
lected can be supplied.Knowledge-basedrecommender systems (Burke, 2000) go one step farther
by using deeper knowledge about the user and the domain. In particular,the user is able to introduce
explicit information about her preferences. Thus, for instance, the user could specify interest in Thai
cuisine, and the system might suggest a restaurant serving some other south-Asian cuisine.

Another possibility is to avoid using information about the content, but rather use historical
data gathered from other users in order to make a recommendation. These methods are widely
known ascollaborative filtering (CF)(Resnick et al., 1994), and we discuss them in more depth
below. Finally, some systems try to create hybrid models that combine collaborative filtering and
content-based recommendations (Balabanovic and Shoham, 1997; Burke, 2002).

2.2 Collaborative Filtering

The collaborative filtering approach originates in human behavior: peoplesearching for an inter-
esting item they know little of, such as a movie to rent at the video store, tend to rely on friends
to recommend items they tried and liked. The person asking for advice is using a(small) commu-
nity of friends that know her taste and can therefore make good predictions as to whether she will
like a certain item. Over the net however, a larger community that can recommenditems to our
user is available, but the persons in this large community know little or nothing about each other.
Conceptually, the goal of a collaborative filtering engine is to identify those users whose taste in
items is predictive of the taste of a certain person (usually called aneighborhood), and use their
recommendations to construct a list of items interesting for her.

To build a user’s neighborhood, these methods rely on a database of past users interactions with
the system. Early systems usedexplicit ratings. In such systems, users grade items (e.g., 5 stars to
a great movie, 1 star to a horrible one) and then receive recommendations.1 Later systems shifted
toward implicit ratings. A common approach assumes that people like what they buy. A binary
grading method is used when a value of 1 is given to items the user has boughtand 0 to other items.
Many modern recommender systems successfully implement this approach. Claypool et al. (2001)
have suggested the use of other implicit grading methods through a special web browser that keeps
track of user behavior such as the time spent looking at the web page, the scrolling of the page by

1. An example of such a system can be found at http://www.movielens.umn.edu/.

1268

AN MDP-BASED RECOMMENDERSYSTEM

t Xt−2 Xt−1 Xt

1 – – x1

2 – x1 x2

3 x1 x2 x3

4 x2 x3 x4

Table 1: An auto-regressive transformation of the sequencex1,x2,x3,x4 for k = 2.

the user, and movements of the mouse over the page. Their evaluation, however, failed to establish
a method of rating that gave results consistently better than the binary method mentioned above.

As described in Breese et al. (1998), collaborative filtering systems areeither memory based
or model based. Memory-based systems work directly with user data. Given the selections of a
given user, a memory-based system identifies similar users and makes recommendations based on
the items selected by these users. Model-based systems compress such user data into a predictive
model. Examples of model-based collaborative filtering systems are Bayesiannetworks (Breese
et al., 1998) and dependency networks (Heckerman et al., 2000). In this paper, we consider model-
based systems.

2.3 The Sequential Nature of the Recommendation Process

Most recommender systems work in a sequential manner: they suggest items tothe user who can
then accept one of the recommendations. At the next stage a new list of recommended items is
calculated and presented to the user. This sequential nature of the recommendation process, where
at each stage a new list is calculated based on the user’s past ratings, willlead us naturally to our
reformulation of the recommendation process as a sequential optimization process.

There is yet another sequential aspect to the recommendation process. Namely, optimal rec-
ommendations may depend not only on previous items pruchased, but also onthe order in which
those items are purchased. Zimdars et al. (2001) recognized this possibledependency and sug-
gested the use of an auto-regressive model (ak-order Markov chain) to represent it. They divided
a sequence of transactionsX1, . . . ,XT (for example, product purchases, web-page views) into cases
(Xt−k, . . . ,Xt−1,Xt) for t = 1, . . . ,T as shown in Table 1. They then built a model (in particular, a
dependency network) to predict the last column given the other columns, under the assumption that
the cases were exchangeable. Our model will also incorporate this sequential view.

2.4 N-gram Models

N-gram models originate in the field of language modeling. They are used to predict the next
word in a sentence given the lastn− 1 words. In the simplest form of the model, probabilities
for the next word are estimated via maximum likelihood; and many methods exist for improv-
ing this simple approach including skipping, clustering, and smoothing. Skippingassumes that
the probability of the next wordxi depends on words other than just the previousn−1. A sepa-
rate model is built using skipping and then combined with the standardn-gram model. Clustering
is an approach that groups some states together for purposes of predicting next states. For ex-
ample, we can group items such a basketball, football, and volleyball into a “sports ball” class.
Such grouping helps to address the problem of data sparsity. Smoothing is ageneral name for

1269

SHANI , BRAFMAN AND HECKERMAN

methods that modify the estimates of probabilities to achieve higher accuracy byadjusting zero
or low probabilities upward. One type of smoothing is finite mixture modeling, whichcombines
multiple models via a convex combination. In particular, givenk component models forxi given
a prior sequenceX—pM1(xi |X), . . . , pMk(xi |X)—we can define thek-component mixture model
p(xi |X) = π1 · pM1(xi |X)+ · · ·+ πk · pMk(xi |X), where∑k

i=1 πi = 1 are its mixture weights. Details
of these and other methods are given in Chen and Goodman (1996).

2.5 MDPs

An MDP is a model for sequential stochastic decision problems. As such, it iswidely used in
applications where an autonomous agent is influencing its surrounding environment through actions
(for example, a navigating robot). MDPs (Bellman, 1962) have been known in the literature for quite
some time, but due to some fundamental problems discussed below, few commercial applications
have been implemented.

An MDP is by definition a four-tuple:〈S,A,Rwd, tr〉, whereS is a set of states,A is a set of
actions,Rwd is a reward function that assigns a real value to each state/action pair, andtr is the
state-transition function, which provides the probability of a transition between every pair of states
given each action.

In an MDP, the decision-maker’s goal is to behave so that some function ofits reward stream is
maximized – typically the average reward or the sum of discounted reward. An optimal solution to
the MDP is such a maximizing behavior. Formally, a stationary policy for an MDPπ is a mapping
from states to actions, specifying which action to perform in each state. Given such an optimal
policy π, at each stage of the decision process, the agent need only establish what states it is in and
execute the actiona = π(s).

Various exact and approximate algorithms exist for computing an optimal policy. Below we
briefly review the algorithm known aspolicy-iteration(Howard, 1960), which we use in our imple-
mentation. A basic concept in all approaches is that of thevalue function. The value function of
a policyπ, denotedVπ, assigns to each states a value which corresponds to the expected infinite-
horizon discounted sum of rewards obtained when usingπ starting froms. This function satisfies
the following recursive equation:

Vπ(s) = Rwd(s,π(s))+ γ ∑
sj∈S

tr(s,π(s),sj)V
π(sj) (1)

where 0< γ < 1 is the discount factor.2 An optimalvalue function, denotedV∗, assigns to each state
s its value according to an optimal policyπ∗ and satisfies

V∗(s) = max
a∈A

[Rwd(s,a))+ γ ∑
sj∈S

tr(s,a,sj)V
∗(sj)]. (2)

To find aπ∗ andV∗ using the policy-iteration algorithm, we search the space of possible poli-
cies. We start with an initial policyπ0(s) = argmax

a∈A
Rwd(s,a). At each step we compute the value

2. We use discounting mostly for mathematical convenience. True discounting of reward would have to take into account
the actual time in which each book is purchased, which does not seem worth the extra effort involved.

1270

AN MDP-BASED RECOMMENDERSYSTEM

function based on the former policy and update the policy given the new value function:

Vi(s) = Rwd(s,πi(s))+ γ ∑
sj∈S

tr(s,πi(s),sj)Vi(sj), (3)

πi+1(s) = argmax
a∈A

[Rwd(s,a)+ γ ∑
sj∈S

tr(s,a,sj)Vi(sj)]. (4)

These iterations will converge to an optimal policy (Howard, 1960).
Solving MDPs is known to be a polynomial problem in the number of states (via a reduction to

linear programming (Puterman, 1994)). It is usually more natural to represent the problem in terms
of states variables, where each state is a possible assignment to these variables and the number of
states is hence exponential in the number of state variables. This well known“curse of dimension-
ality” makes algorithms based on an explicit representation of the state-spaceimpractical. Thus, a
major research effort in the area of MDPs during the last decade has been on computing an optimal
policy in a tractable manner using factored representations of the state space and other techniques
(for example Boutilier et al. (2000); Koller and Parr (2000)). Unfortunately, these recent methods
do not seem applicable in our domain in which the structure of the state space isquite different –
that is, each state can be viewed as an assignment to a very small number of variables (three in the
typical case) each with very large domains. Moreover, the values of the variables (describing items
bought recently) are correlated. However, we were able to exploit the special structure of our state
and action spaces using different techniques. In addition, we introduceapproximations that exploit
the fact that most states – that is, most item sequences – are highly unlikely to occur (a detailed
explanation will follow in Section 3).

MDPs extend the simpler Markov chain (MC) model – a well known model of dynamic systems.
A Markov chain is simply an MDP without actions. It contains a set of states and a stochastic
transition function between states. In both models the next state does not depend on any states other
than the current state.

In the context of recommender systems, if we equate actions with recommendations, then an
MDP can be used to model user behavior with recommendations – as we show below – whereas an
MC can be used to model user behavior without recommendations. Markov chains are also closely
related ton-gram models. In a bi-gram model, the choice of the next word depends probabilistically
on the previous word only. Thus, a bi-gram is simply a first-order Markovchain whose states
correspond to words. Ann-gram is an−1-order Markovian model in which the next state depends
on the previousn− 1 states. Such variants of MDP-models are well known. A non-first-order
Markovian model can be converted into a first-order model by making eachstate include information
related to the previousn−1 states. More general transformation techniques that attempt to reduce
the size of the state space have been investigated in the literature (for example, see Bacchus et al.
(1996); Thíebaux et al. (2002)).

3. The Predictive Model

Our first step is to construct a predictive model of user purchases, that is, a model that can predict
what item the user will buy next. This model does not take into account its influence on the user, as
it does not model the recommendation process and its effects. Nonetheless, we shall use a Markov
chain, with an appropriate formulation of the state space, as our model. In Section 4 we shall

1271

SHANI , BRAFMAN AND HECKERMAN

show that our predictive model outperforms previous models, and in Section 5 we shall intialize our
MDP-based recommender system using this predictive model.

3.1 The Basic Model

A Markov chain is a model of system dynamics – in our case, user “dynamics.” To use it, we need
to formulate an appropriate notion of a user state and to estimate the state-transition function.
States. The states in our MC model represent the relevant information that we haveabout the user.
This information corresponds to previous choices made by users in the form of a set of ordered
sequences of selections. We ignore data such as age or gender, although it could be beneficial.3

Thus, the set of states contains all possible sequences of user selections. Of course, this formulation
leads to an unmanageable state space with the usual associated problems—data sparsity and MDP
solution complexity. To reduce the size of the state space, we consider only sequences of at mostk
items, for some relatively small value ofk. We note that this approach is consistent with the intuition
that the near history (for example, the current user session) often is more relevant than selections
made less recently (for example, past user sessions). These sequences are represented as vectors of
sizek. In particular, we use〈x1, . . . ,xk〉 to denote the state in which the user’s lastk selected items
werex1, . . . , xk. Selection sequences withl < k items are transformed into a vector in whichx1

throughxk−l have the valuemissing. The initial state in the Markov chain is the state in which every
entry has the valuemissing.4 In our experiments, we used values ofk ranging from 1 to 5.
The Transition Function. The transition function for our Markov chain describes the proba-
bility that a user whosek recent selections werex1, . . . ,xk will select the itemx′ next, denoted
trMC(〈x1,x2, . . . ,xk〉,〈x2, . . . ,xk,x′〉). Initially, this transition function is unknown to us; and we
would like to estimate it based on user data. As mentioned, a maximum-likelihood estimatecan be
used:

trMC(〈x1,x2,x3〉,〈x2,x3,x4〉) =
count(〈x1,x2,x3,x4〉)

count(〈x1,x2,x3〉)
(5)

wherecount(〈x1,x2, ...,xk〉) is the number of times the sequencex1,x2, ...,xk was observed in the
data set. This model, however, still suffers from the problem of data sparsity (for example, see
Sarwar et al. (2000a)) and performs poorly in practice. In the next section, we describe several
techniques for improving the estimate.

3.2 Some Improvements

We experimented with several enhancements to the maximum-likelihoodn-gram model on data
different from that used in our formal evaluation. The improvements described and used here are
those that were found to work well.

One enhancement is a form ofskipping(Chen and Goodman, 1996), and is based on the ob-
servation that the occurrence of the sequencex1,x2,x3 lends some likelihood to the sequencex1,x3.
That is, if a person boughtx1,x2,x3, then it is likely that someone will buyx3 afterx1. The particular

3. Those user attributes could be incorporated into our model by adding state variables. Attributes with large domains,
such as age, can be joined into a (small) number of groups (for example, age groups) to avoid an explosion of the
state space. Our similarity and clustering methods (see below) can be adapted to share training data between states
with different, but related, attribute values (such as age group 25-30 and age group 30-40).

4. To accommodate systems that collect explicit rather than implicit ratings,each itemxi would be replaced by an
item-rating element – for example,xi =high.

1272

AN MDP-BASED RECOMMENDERSYSTEM

skipping model that we found to work well is a simple additive model. First, the count for each
state transition is initialized to the number of observed transitions in the data. Then, given a user se-
quencex1,x2, ...,xn, we add the fractional count 1/2(j−(i+3)) to the transition from〈xi ,xi+1,xi+2〉 to
〈xi+1,xi+2,x j〉, for all i +3 < j ≤ n. This fractional count corresponds to a diminishing probability
of skipping a large number of transactions in the sequence. We then normalize the counts to obtain
the transition probabilities:

trMC(s,s′) =
count(s,s′)

∑s′ count(s,s′)
(6)

wherecount(s,s′) is the (fractional) count associated with the transition froms to s′.
A second enhancement is a form of clustering that we have not found in the literature. Motivated

by properties of our domain, the approach exploits similarity of sequences.For example, the state
〈x,y,z〉 and the state〈w,y,z〉 are similar because some of the items appearing in the former appear
in the latter as well. The essence of our approach is that the likelihood of transition from s to s′

can be predicted by occurrences fromt to s′, wheres andt are similar. In particular, we define the
similarity of statessi andsj to be

sim(si ,sj) =
k

∑
m=1

δ(sm
i ,sm

j) · (m+1) (7)

whereδ(·, ·) is the Kronecker delta function andsm
i is themth item in statesi . This similarity is

arbitrary up to a constant. In addition, we define thesimilarity countfrom states to s′ to be

simcount(s,s′) = ∑
si

sim(s,si) · tr
old
MC(si ,s

′) (8)

wheretrold
MC(si ,s′) is the original transition function, with or without skipping (we shall compare the

models created with and without the benefit of skipping). The new transition probability froms′ to
s is then given by5

trMC(s,s′) =
1
2

trold
MC(s,s′)+

1
2

simcount(s,s′)

∑s′′ simcount(s,s′′)
(9)

A third enhancement is the use of finite mixture modeling.6 Similar methods are used inn-
gram models, where—for example—a trigram, a bigram, and a unigram are combined into a single
model. Our mixture model is motivated by the fact that larger values ofk lead to states that are more
informative whereas smaller values ofk lead to states on which we have more statistics. To balance
these conflicting properties, we mixk models, where theith model looks at the lasti transactions.
Thus, fork = 3, we mix three models that predict the next transaction based on the last transaction,
the last two transactions, and the last three transactions. In general, we can learn mixture weights
from data. We can even allow the mixture weights to depend on the given case(and informal
experiments on our data suggest that such context-specificity would improve predictive accuracy).
Nonetheless, for simplicity, we useπ1 = · · · = πk = 1/k in our experiments. Because our primary
model is based on thek last items, the generation of the models for smaller values entails little
computational overhead.

5. We examined several weighing techniques and the one described yielded the best results. The use of more complex
techniques as well as attempts to learn the proper weights resulted in very minor changes.

6. Note that Equation 9 is also a simple mixture model.

1273

SHANI , BRAFMAN AND HECKERMAN

4. Evaluation of the Predictive Model

Before incorporating our predictive model into an MDP-based recommender system, we evaluated
the accuracy of the predictive model. Our evaluation used data corresponding to user behavior
on a web site (without recommendation) and employed the evaluation metrics commonly used in
the collaborative filtering literature. In Section 6 we evaluate the MDP-basedapproach using an
experimental approach in which recommendations on an e-commerce site are manipulated by our
algorithms.

4.1 Data Sets

We base our evaluations on real user transactions from the Israeli online bookstoreMitos(www.mitos.co.il).
Two data sets were used: one containing user transactions (purchases) and one containing user
browsing paths obtained from web logs. We filtered out items that were bought/visited less than
100 times and users who bought/browsed no more than one item as is commonly done when eval-
uating predictive models (for example, Zimdars et al. (2001)). We were left with 116 items and
10820 users in the transactions data set, and 65 items and 6678 users in the browsing data set.7 In
our browsing data, no cookies were used by the site. If the same user visited the site with a new IP
address, then we would treat her as a new user. Also, activity on the sameIP address was attributed
to a new user whenever there were no requests for two hours. These data sets were randomly split
into a training set (90% of the users) and a test set (10% of the users).

The rational for removing items that were rarely bought is that they cannotbe reliably predicted.
This is a conservative approach which implies, in practice, that a rarely visited item will not be
recommended by the system, at least initially.

We evaluated predictions as follows. For every user sequencet1, t2, .., tn in the test set, we
generated the following test cases:

〈t1〉,〈t1, t2〉, ...,〈tn−k, tn−k+1, ..., tn−1〉 (10)

closely following tests done by Zimdars et al. (2001). For each case, we then used our various mod-
els to determine the probability distribution forti giventi−k, ti−k+1, ..., ti−1 and ordered the items by
this distribution. Finally, we used theti actually observed in conjunction with the list of recom-
mended items to compute a score for the list.

4.2 Evaluation Metrics

We used two scores: Recommendation Score (RC) (Microsoft, 2002) andExponential Decay Score
(ED) (Breese et al., 1998) with slight modifications to fit into our sequential domain.

4.2.1 RECOMMENDATION SCORE

For this measure of accuracy, a recommendation is deemed successful if the observed itemti is
among the topm recommended items (m is varied in the experiments). The scoreRC is the percent-
age of cases in which the prediction is successful. A score of 100 means that the recommendation
was successful in all cases. This score is meaningful for commerce sitesthat require a short list of
recommendations and therefore care little about the ordering of the items in the list.

7. There are more items and users in the transaction data set since we used transactions over one year, whereas browsing
data was collected only during one week.

1274

AN MDP-BASED RECOMMENDERSYSTEM

4.2.2 EXPONENTIAL DECAY SCORE

This measure of accuracy is based on the position of the observedti on the recommendation list,
thus evaluating not only the content of the list but also the order of items in it. The underlying
assumption is that users are more likely to select a recommendation near the top of the list. In
particular, it is assumed that a user will actually see themth item in the list with probability

p(m) = 2−(m−1)/(α−1),(m≥ 1) (11)

whereα is the half-life parameter—the index of the item in the list with probability 0.5 of being
seen. The score is given by

100·
∑c∈C p(m= pos(ti |c))

|C|
(12)

whereC is the set of all cases,c = ti−k, ti−k+1, ..., ti−1 is a case, andpos(ti |c) is the position of the
observed itemti in the list of recommended items forc. We usedα = 5 in our experiments in order
to be consistent with the experiments of Breese et al. (1998) and Zimdars etal. (2001). The relative
performance of the models was not sensitive toα.

4.3 Comparison Models

4.3.1 COMMERCE SERVER 2000 PREDICTOR

A model to which we compared our results is thePredictor tool developed by Microsoft as a part
of Microsoft Commerce Server 2000, based on the models of Heckerman et al. (2000). This tool
builds dependency-network models in which the local distributions are probabilistic decision trees.
We used these models in both a non-sequential and sequential form. Thesetwo approaches are
described in Heckerman et al. (2000) and Zimdars et al. (2001), respectively. In the non-sequential
approach, for every item, a decision tree is built that predicts whether the item will be selected
based on whether the remaining items were or were not selected. In the sequential approach, for
every item, a decision tree is built that predicts whether the item will be selected next, based on the
previousk items that were selected. The predictions are normalized to account for the fact that only
one item can be predicted next. Zimdars et al. (2001) also use a “cache” variable, but preliminary
experiments showed it to decrease predictive accuracy. Consequently, we did not use the cache
variable in our formal evaluation.

These algorithms appear to be the most competitive among published work. Thecombined
results of Breese et al. (1998) and Heckerman et al. (2000) show that(non-sequential) dependency
networks are no less accurate than Bayesian-network or clustering models, and about as accurate
asCorrelation, the most accurate (but computationally expensive) memory-based method.Sarwar
et al. (2000b) apply dimensionality reduction techniques to the user rating matrix, but their approach
fails to be consistently more accurate than Correlation. Only the sequential algorithm of Zimdars
et al. (2001) is more accurate than the non-sequential dependency network to our knowledge.

We built five sequential models 1≤ k≤ 5 for each of the data sets. We refer to the non-sequential
Predictor models as Predictor-NS, and to the Predictor models built using the data expansion meth-
ods with a history of lengthk as Predictor-k.

1275

SHANI , BRAFMAN AND HECKERMAN

(a) Transactions data set.

(b) Browsing data set.

Figure 1: Exponential decay score for different models.

4.3.2 UNORDEREDMCS

We also evaluated a non-sequential version of our predictive model, where sequences such as〈x,y,z〉
and〈y,z,x〉 are mapped to the same state. If our assumption about the sequential nature of recom-

1276

AN MDP-BASED RECOMMENDERSYSTEM

mendations is incorrect, then we should expect this model to perform better than our MC model,
as it learns the probabilities using more training data for each state, gatheringall the ordered data
into one unordered set. Skipping, clustering, and mixture modeling were included as described in
section 2. We call this model UMC (Unordered Markov chain).

(a) Transactions data set.

4.4 Variations of the MC Model

In order to measure how eachn-gram enhancement influenced predictive accuracy, we also evalu-
ated models that excluded some of the enhancements. In reporting our results, we refer to a model
that uses skipping and similarity clustering with the terms SK and SM, respectively. In addition, we
use numbers to denote which mixture components are used. Thus, for example, we use MC 123 SK
to denote a Markov chain model learned with three mixture components—a bigram, trigram, and
quadgram—where each component employs skipping but not clustering.

4.5 Experimental Results

Figure 1(a) and figure 1(b) show the exponential decay score for thebest models of each type
(Markov chain, Unordered Markov chain, Non-Sequential Predictormodel, and Sequential Predic-
tor Model). It is important to note thatall the MC models using skipping, clustering, and mixture
modelling yielded better results thanevery one ofthe Predictor-k models and the non-sequential
Predictor model. We see that the sequence-sensitive models are better predictors than those that
ignore sequence information. Furthermore, the Markov chain predicts best for both data sets.

Figure 2(a) and Figure 2(b) show the recommendation score as a functionof list length (m).
Once again, sequential models are superior to non-sequential models, and the Markov chain models
are superior to the Predictor models.

1277

SHANI , BRAFMAN AND HECKERMAN

(b) Browsing data set.

Figure 2: Recommendation score for different models.

(a) Transactions data set. (b) Browsing data set.

Figure 3: Exponential decay score for different Markov chain versions.

Figure 3(a) and Figure 3(b) show how different versions of the Markov chain performed under
the exponential decay score in both data sets. We see that multi-component models out-perform
single-component models, and that similarity clustering is beneficial. In contrast, we find that skip-
ping is only beneficial for the transactions data set. Perhaps users tend tofollow the same paths
in a rather conservative manner, or site structure does not allow users to“jump ahead”. In either

1278

AN MDP-BASED RECOMMENDERSYSTEM

case, once recommendations are available in the site (thus changing the site structure), skipping
may prove beneficial.

5. An MDP-Based Recommender Model

The predictive model we described above does not attempt to capture the short and long-term effect
of recommendations on the user, nor does it try to optimize its behavior by takinginto account such
effects. We now move to an MDP model that explicitly models the recommendation process and
attempts to optimize it. The predictive model plays an important role in the construction of this
model.

We assume that we are given a set of cases describing user behavior within a site that does
not provide recommendations, as well as a probabilistic predictive model ofa user acting without
recommendations generated from this data. The set of cases is needed to support some of the
approximations we make, and in particular, the lazy initialization approach we take. The predictive
model provides the probability the user will purchase a particular itemx given that her sequence of
past purchases isx1, . . . ,xk. We denote this value byPrpred(x|x1, . . . ,xk), wherek = 3 in our case.
It is important to stress that the approach presented here is independentof the particular technique
by which the above predictive value is approximated. Naturally, in our implementation we used the
predictive model developed in Section 3, but there are other ways of constructing such a model (for
example, Zimdars et al. (2001); Kadie et al. (2002)).

5.1 Defining the MDP

Recall that to define an MDP, we need to provide a set of states, actions, transition function, and a
reward function. We now describe each of these elements. The states of the MDP for our recom-
mender system arek-tuples of items (for example, books, CDs), some prefix of which may contain
null values corresponding to missing items. This allows us to model shorter sequences of purchases.

The actions of the MDP correspond to a recommendation of an item. One can consider multiple
recommendations but, to keep our presentation simple, we start by discussingsingle recommenda-
tions.

Rewards in our MDP encode the utility of selling an item (or showing a web page) as defined by
the site. Because the state encodes the list of items purchased, the reward depends on the last item
defining the current state only. For example, the reward for state〈x1,x2,x3〉 is the reward generated
by the site from the sale of itemx3. In this paper, we use net profit for reward.

The state following each recommendation is determined by the user’s response to that recom-
mendation. When we recommend an itemx′, the user has three options:

• Accept this recommendation, thus transferring from state〈x1,x2,x3〉 into 〈x2,x3,x′〉

• Select some non-recommended itemx′′, thus transferring the state〈x1,x2,x3〉 into 〈x2,x3,x′′〉.

• Select nothing (for example, when the user terminates the session), in whichcase the system
remains in the same state.

Thus, the stochastic element in our model is the user’s actual choice. The transition function for the
MDP model:

tr1
MDP(〈x1,x2,x3〉,x

′,〈x2,x3,x
′′〉) (13)

1279

SHANI , BRAFMAN AND HECKERMAN

is the probability that the user will select itemx′′ given that itemx′ is recommended in state
〈x1,x2,x3〉. We writetr1

MDP to denote that only single item recommendations are used.

5.1.1 INITIALIZING trMDP

Proper initialization of the transition function is an important implementation issue in our system.
Unlike traditional model-based reinforcement learning algorithms that learn the proper values for
the transition function and hence an optimal policy online, our system needs tobe fairly accurate
when it is first deployed. A for-profit e-commerce8 site is unlikely to use a recommender system
that generates irrelevant recommendations for a long period, while waiting for it to converge to an
optimal policy. We therefore need to initialize the transition function carefully. We can do so based
on any good predictive model, making the following assumptions:

• A recommendation increases the probability that a user will buy an item. This probability
is proportional to the probability that the user will buy this item in the absence ofrecom-
mendations. This assumption is made by most collaborative filtering models dealingwith
e-commerce sites.9 We denote the proportionality constant for recommendationr in states
by αs,r , whereαs,r > 1.

• The probability that a user will buy an item that was not recommended is lower than the
probability that she will buy when the system issues no recommendations at all,but still
proportional to it. We denote the proportionality constant for recommendationr in states by
βs,r , whereβs,r < 1.

To allow for a simpler representation of the equations, for a states= 〈x1, ...,xk〉 and a recommen-
dationr let us uses· r to denote the states′ = 〈x2, ...,xk, r〉. We usetrpredict(s,s· r) to denote the
probability that the user will chooser next, given that its current state issaccording to the predictive
model in which recommendations are not considered, that is,Prpred(r|s). Thus, withαs,r andβs,r

constant oversandr and equal toα andβ, respectively, we have

tr1
MDP(s, r,s· r) = α · trpredict(s,s· r), (14)

the probability that a user will buyr next if it was recommended;

tr1
MDP(s, r ′,s· r) = β · trpredict(s,s· r), r ′ 6= r, (15)

the probability that a user will buyr if something else was recommended; and

tr1
MDP(s, r,s) = 1− tr1

MDP(s, r,s· r)− ∑
r ′ 6=r

tr1
MDP(s, r,s· r ′), (16)

the probability that a user will not buy any new item afterr was recommended. We do not see a
reason to stipulate a particular relationship betweenα andβ, although we must have

tr1
MDP(s, r,s· r)+ ∑

r ′ 6=r

tr1
MDP(s, r ′,s· r) < 1. (17)

8. We use the term e-commerce, although our system, and recommender systems in general, can be used in content sites
and other applications.

9. Actually CF models do not refer to the presence of recommendations,but using such systems to generate recommen-
dations to users in commercial applications has the underlying assumption that the recommendation will increase the
likelihood that a user will purchase an item.

1280

AN MDP-BASED RECOMMENDERSYSTEM

The exact values ofαs,r andβs,r should be chosen carefully. Choosingαs,r andβs,r to be con-
stants over all states and recommendations (sayα = 2, β = 0.5) might cause the sum of transition
probabilities in the MDP to exceed 1. The approach we took was motivated by Kitts et al. (2000),
who showed that theincreasein the probability of following a recommendation is large when one
recommends items having highlift , defined to bepr(x|h)

pr(x) . Thus, it is not unreasonable to assume that
this increase in probability is proportional to lift:

pr(r|s, r)− pr(r|s, r ′) ∼ γ
p(r|s)
p(r)

(18)

wherep(r) is the prior probability of buyingr. Fixing αs,r to be a little larger than 1 as follows:

αs,r =
γ+ p(r)

p(r)
(19)

whereγ is a very small constant (we useγ = 1
1000), and solving forβs,r , we obtain

βs,r =
1−∑r ′ αs,r ′ p(s· r ′|s)

(n−1) p(s· r|s)
+αs,r . (20)

If βs,r is negative, we set it to a very small positive value and normalize the probabilities afterwards.
There are a few things to note abouttr1

MDP(s, r ′,s· r), the probability that a user will buyr if
something else was recommended, and its representation. First, sincetr1

MDP(s, r ′,s· r) = βs,r ·tr(s,s·
r), the MDP’s initial transition probability does not depend onr ′ because our initialization is based
on data that was collected without the benefit of recommendations. Of course, if one has access to
data that reflects the effect of recommendations (prpredict(s· r|s, r)), one can use it to provide a more
accurate initial model. Next, note that we can represent this transition function concisely using at
most two values for every state-item pair: the probability that an item will be selected in a state
when it is recommended (that is,pr(s· r|s, r)) and the probability that an item will be selected when
it is not recommended (that is,pr(s· r|s, r ′)). Because the number of items is much smaller than the
number of states, we obtain significant reduction in the space requirements of the model.

5.1.2 GENERATING MULTIPLE RECOMMENDATIONS

When moving to multiple recommendations, we make the assumption that recommendations are
independent. Namely we assume that for every pair of sets of recommendeditems,R,R′, we have
that

(r ∈ R∧ r ∈ R′)∨ (r /∈ R∧ r /∈ R′) =⇒ trMDP(s,R,s· r) = trMDP(s,R′,s· r) (21)

This assumption might prove to be false. It seems reasonable that, as the list of recommendations
grows, the probability of selecting any item decreases. Another more subtleexample is the case
where the system “thinks” that the user is interested in an inexpensive cooking book. It can then
recommend a few very expensive cooking books and one is reasonablypriced (but in no way cheap)
cooking book. The reasonably priced book will seem like a bargain compared to the expensive ones,
thus making the user more likely to buy it.

Nevertheless, we make this assumption so as not to be forced to create a larger action space
where actions are ordered combinations of recommendations. Taking the simple approach for rep-
resenting the transition function we defined above, we still keep only two values for every state–item

1281

SHANI , BRAFMAN AND HECKERMAN

pair:
trMDP(s, r ∈ R,s· r) = tr1

MDP(s, r,s· r), (22)

the probability thatr will be bought if it appeared in the list of recommendations; and

trMDP(s, r /∈ R,s· r) = tr1
MDP(s, r ′,s· r) for all r ′ 6= r, (23)

the probability thatr will be bought if it did not appear in the list.
As before,trMDP(s, r /∈ R,s· r) does not depend onr, and will not depend onR in the discussion

that follows. We note again, that these values are merely reasonable initial values and are adjusted
by our system based on actual user behavior, as we shall discuss.

5.2 Solving the MDP

Having defined the MDP, we now consider how to solve it in order to obtain anoptimal policy. Such
a policy will, in effect, tell us what item to recommend given any sequence of user purchases. For
the domains we studied, we found policy iteration (Howard, 1960)—with a fewapproximations to
be described—to be a tractable solution method. In fact, on tests using real data, we found that
policy iteration terminates after a few iterations. This stems from the special nature of our state
space and the approximations we make, as we now explain.

Our state space enjoys a number of features that lead to fast convergence of the policy iteration
algorithm:

Directionality. Transitions in our state space seem to have inherent directionality: First, a state
representing a short sequence cannot follow a state representing a longer sequence. Second, the
success of the sequential prediction model indicates that typically, ifx is likely to follow y, y is
less likely to followx – otherwise, the sequencex,y andy,x would have similar probabilities, and
we could simply use sets. Thus, loops, which in principle could occur in our MDP model because
we maintain only a limited amount of history, are not very likely. Indeed, an examination of the
loops in our state space graph reveals them to be small and scarce. Moreover, in the web site
implementation, it is easy enough to filter out items that were already bought by the user from our
list of recommendations. It is well-known that directionality can be used to reduce the running time
of MDP solution algorithm (for example, Bonet and Geffner (2003)).

Insensitivity to k. We have also found that the computation of an optimal policy is not heav-
ily sensitive to variations ink—the number of past transactions we encapsulate in a state. Ask
increases, so does the number of states, but the number of positive entries in our transition matrix
remains similar. Note that, at most, a state can have as many successors as there are items. When
k is small, the number of observed successors for a state can be large. When k grows, however, the
number of successors decreases considerably. Table 2 demonstratesthis relation in our implemented
model.

Despite these properties of the state space, policy evaluation still requires much effort given the
large state and action space we have to deal with. To alleviate this problem we resort to a number
of approximations.

Ignoring Unobserved States.The vast majority of states in our models do not correspond to
sequences that were observed in our training set because most combinations of items are extremely
unlikely. For example, it is unlikely to find adjacent purchases of a science-fiction and a gardening
book. We leverage this fact to save both space and computation time. First, wemaintain transition
probabilities only for states for which a transition occurred in our training data. These transitions

1282

AN MDP-BASED RECOMMENDERSYSTEM

k Number of states Average number of successors

1 16,859 15.56
2 79,640 11.98
3 89,221 3.92

Table 2: The number of initialized states and the average number of state successors for different
values ofk.

correspond to pairs of states of the forms ands· r. Thus, the number of transitions required per
state is bounded by the number of items rather than by an amount exponential ink in the worst case.
The non-zero transitions are stored explicitly, and as can be inferred from Table 2, their number
is much smaller than the total number of entries in the explicit transition matrix. And while much
memory is still required, in Section 6.2, we show that these requirements are not too large for
modern computers to handle.

Moreover, we do not compute a policy choice for a state that was not encountered in our training
data. When the value of such a state is needed for the computation of an optimalpolicy of some
observed state, we simply use its immediate reward. That is, if the sequence〈x,y,z〉 did not appear
in the training data, we do not calculate a policy for it and assume its value to beR(z)—the reward
for the last item in the sequence. Note that given the skipping and clusteringmethods we use, the
probability of making a transition from some (observed) sequence〈w,x,y〉 to 〈w,x,y〉 is not zero
even though〈x,y,z〉 was never observed. This approximation, although risky in general MDPs, is
motivated by the fact that in our initial model, for each state there is a relativelysmall number of
items that are likely to be selected; and the probability of making a transition into an un-encountered
state is very low. Moreover, the reward (that is, profit) does not change significantly across different
states, so, there are no “hidden treasures” in the future that we could miss.

When a recommendation must be generated for a state that was not encountered in the past,
we compute the value of the policy for this state online. This requires us to estimatethe transition
probabilities for a state that did not appear in our training data. We handle such new states in the
same manner that we handled states for which we had sparse data in the initial predictive model
– that is, using the techniques of skipping, clustering, and finite mixture of unigram, bigram, and
trigrams described in Section 3.2.

Using the Independence of Recommendations.One of the basic steps in policy iteration is
policy determination. At each iteration, we compute the best action for each state s – that is, the
action satisfying:

argmax
R

[Rwd(s)+ γ∑s′∈Str(s,R,s′)Vi(s′)] =

argmax
R

[Rwd(s)+ γ(∑r∈RtrMDP(s, r ∈ R,s· r)Vi(s· r)+

∑r 6∈RtrMDP(s, r /∈ R,s· r)Vi(s· r))]

(24)

wheretr(s, r ∈ R,s· r) andtr(s, r /∈ R,s· r) follow the definitions above.
The above equation requires maximization over the set of possible recommendations for each

state. The number of possible recommendations isnκ, wheren is the number of items andκ is the
number of items we recommend each time. To handle this large action space, we make use of our

1283

SHANI , BRAFMAN AND HECKERMAN

independence assumption. Recall that we assumed that the probability that auser buys a particular
item depends on her current state, the item, and whether or not this item is recommended. It does
not depend on the identity of the other recommended items. The following method uses this fact to
quickly generate an optimal set of recommendations for each state.

Let us define∆(s, r) – the additional value of recommendingr in states:

∆(s, r) = (tr(s, r ∈ R,s· r)− tr(s, r /∈ R,s· r))V(s· r). (25)

Now define
Rs,κ

max∆ = {r1, . . . , rκ|∆(s, r1) ≥ . . . ≥ ∆(s, rκ) and
∀r 6= r i(i = 1, . . . ,κ),∆(s, rκ) ≥ ∆(s, r)}.

(26)

Rs,κ
max∆ is the set ofκ items that have the maximal∆(s, r) values.

Theorem 1 Rs,κ
max∆ is the set that maximizes Vi+1(s) – that is,

Vi+1(s) =
Rwd(s)+ γ(∑r∈Rs,κ

max∆
tr(s, r ∈ R,s· r)Vi(s· r)+

∑r /∈Rs,κ
max∆

tr(s, r /∈ R,s· r)Vi(s· r)).
(27)

Proof Let us assume that there exists some other set ofκ recommendationsR 6= Rs,κ
max∆ that maxi-

mizesVi+1(s). For simplicity, we shall assume that all∆ values are different. If that is not the case,
thenRshould be a set of recommendations not equivalent toRs,κ

max∆. Let r be an item inRbut not in
Rs,κ

max∆, andr ′ be an item inRs,κ
max∆ but not inR. Let R′ be the set we get when we replacer with r ′ in

R. We need only show thatVi+1(s,R) < Vi+1(s,R′):

Vi+1(s,R′)−Vi+1(s,R) =

Rwd(s)+∑s′ tr(s,R,s′)Vi(s′)− (Rwd(s)+∑s′ tr(s,R
′,s′)Vi(s′)) =

∑r ′′∈Rtr(s, r ′′ ∈ R,s· r ′′)Vi(s· r)+∑r ′′ /∈Rtr(s, r ′′ /∈ R,s· r ′′)Vi(s· r ′′)−

∑r ′′∈R′ tr(s, r ′′ ∈ R′,s· r ′′)Vi(s· r)−∑r ′′ /∈R′ tr(s, r ′′ /∈ R′,s· r ′′)Vi(s· r ′′) =

tr(s, r ∈ R,s· r)Vi(s· r)− tr(s, r ′ /∈ R,s· r ′)Vi(s· r ′)−

(tr(s, r ′ ∈ R′,s· r)Vi(s· r)− tr(s, r /∈ R′,s· r ′)Vi(s· r)) =

∆(s, r)−∆(s, r ′) > 0

(28)

To computeVi+1(s) we therefore need to compute all∆(s, r) and findRs,κ
max∆, making the compu-

tation ofVi+1(s) independent of the number of subsets (or even worse—ordered subsets) ofκ items.
The complexity of finding an optimal policy when recommending multiple items at each stage un-
der our assumptions remains the same as the complexity of computing an optimal policy for single
item recommendations.

1284

AN MDP-BASED RECOMMENDERSYSTEM

By construction, our MDP optimizes site profits. In particular, the system does not recommend
items that are likely to be bought whether recommended or not, but rather recommends items whose
likelihood of being purchased isincreasedwhen they are recommended. Nonetheless, when rec-
ommendations are based solely on lift, it is possible that many recommendations will be made for
which the absolute probability of a purchase (or click) is small. In this case, ifrecommendations
are seldom followed, users might start ignoring them altogether, making the overall benefit zero.
Our model does not capture such effects. One way to remedy this possible problem is to alter the
reward function so as to provide a certain immediate reward for the acceptance of a recommenda-
tion. Another way to handle this problem is to recommend a book with a large MDP score only if
the probability of buying it passes some threshold. We did not find it necessary to introduce these
modifications in our current system.

5.3 Updating the Model Online

Once the recommender system is deployed with its initial model, we need to update the model
according to actual observations. One approach is to use some form of reinforcement learning—
methods that improve the model after each recommendation is made. Although such models need
little administration to improve, the implementation requires many calls and computations bythe
recommender system online, which will lead to slower responses—an undesirable result. A simpler
approach is to perform off-line updates at fixed time intervals. The site need only keep track of the
recommendations and the user selections and, say, once a week use thosestatistics to build a new
model and replace it with the old one. This is the approach we used.

In order to re-estimate the transition function the following counts are obtainedfrom the recently
collected statistics:

• cin(s, r,s· r)—the number of times ther recommendation was accepted in states.

• cout(s, r,s· r)—the number of times the user took itemr in states even though it was not
recommended,

• ctotal(s,s· r)—the number of times a user took itemr while being in states, regardless of
whether it was recommended or not.

We compute the new counts and the new approximation for the transition functionat timet +1
based on the counts and probabilities at timet as follows:

ct+1
in (s, r,s· r) = ct

in(s, r,s· r)+count(s, r,s· r), (29)

ct+1
total(s,s· r) = ct

total(s, r,s· r)+count(s,s· r), (30)

ct+1
out (s, r,s· r) = ct

out(s, r,s· r)+count(s,s· r)−count(s, r,s· r), (31)

tr(s, r ∈ R,s· r) =
ct+1

in (s, r,s· r)

ct+1
total(s,s· r)

, (32)

tr(s, r /∈ R,s· r) =
ct+1

out (s, r,s· r)

ct+1
total(s,s· r)

. (33)

Note that at this stage the constantsαs,r andβs,r no longer play a role—they were used only to
generate the initial model. We still need to define how the counts at timet = 0 are initialized. We
showed in section 5.1.1 how the transition functiontr is initialized, and now we define:

1285

SHANI , BRAFMAN AND HECKERMAN

c0
in(s, r,s· r) = ξs · tr(s, r,s· r), (34)

c0
out(s, r,s· r) = ξs · tr(s, r,s· r), (35)

c0
total(s,s· r) = ξs, (36)

whereξs is proportional to the number of times the states was observed in the training data (in
our implementation we used 10· count(s)). This initialization causes states that were observed
infrequently to be updated faster than states that were observed frequently and in whose estimated
transition probabilities we have more confidence.10

To ensure convergence to an optimal solution, the system must obtain accurate estimates of the
transition probabilities. This, in turn, requires that for each states and for every recommendation
r, we observe the response of users to a recommendation ofr in states sufficiently many times.
If at each state the system always returns the best recommendations only,then most values for
count(s, r,s· r) would be 0, because most items will not appear among the best recommendations.
Thus, the system needs to recommend non-optimal items occasionally in order toget counts for
those items. This problem is widely known in computational learning as theexploration versus
exploitation tradeoff(for some discussion of learning rate decay and exploration vs. exploitationin
reinforcement learning, see, for example Kaelbling et al. (1996) and Sutton and Barto (1998)). The
system balances the need to explore unobserved options in order to improve its model and the desire
to exploit the data it has gathered so far in order to get rewards.

One possible solution is to select some constantε, such that recommendations whose expected
value isε-close to optimal will be allowed—for example, by following a Boltzmann distribution:

Pr(choose(r i)) =
expV(s·r i)

τ

∑n
j=1expV(s·r j)

τ

(37)

with an ε cutoff—meaning that only items whose value is withinε of the optimal value will be
allowed. The exact value ofε can be determined by the site operators. The price of such a conser-
vative exploration policy is that we are not guaranteed convergence to an optimal policy. Another
possible solution is to show the best recommendation on the top of the list, but show items less
likely to be purchased as the second and third items on the list. In our implementation we use a list
of three recommendations where the first one is always the optimal one, butthe second and third
items are selected using the Boltzman distribution without a cutoff.

We also had to equip our system to change with frequent changes (for example, addition and
removal of items). When new items are added, users will start buying them and positive counts for
them will appear. At this stage, our system adds new states for these new items, and the transition
function is expanded to express the transitions for these new states. Of course, prior to updating
the model, the system is not able to recommend those new items (the well-known “cold start” prob-
lem (Good et al., 1999) in recommender systems). In our implementation, when the first transition to
a states· r is observed, its probability is initialized to 0.9 the probability of the most likely next item
in stateswith ξs = 10. This approach causes the new items to be recommended quite frequently.

One possible approach to handling removed items is to do nothing to our system, inwhich
case the transition probabilities slowly decay to zero. Using this approach, however, we may still

10. This approach is similar to assigning an independent learning rate foreach state and decaying it based on the amount
of observed data.

1286

AN MDP-BASED RECOMMENDERSYSTEM

insert deleted items into the list of recommended items – an undesirable feature. Consequently,
in our Mitos implementation, items are programmatically removed from the model duringoffline
updates. Another solution that we have implemented but not evaluated is to useweighted data and
to exponentially decay the weights in time, thus placing more weight on more recently observed
transitions.

6. Evaluation of the MDP Recommender Model

The main thesis of this work is that (1) recommendation should be viewed as a sequential optimiza-
tion problem, and (2) MDPs provide an adequate model for this view. This is to be contrasted with
previous systems which used predictive models for generating recommendations. In this section,
we present an empirical validation of our thesis. We compare the performance of our MDP-based
recommender system (denoted MDP) with the performance of a recommendersystem based on our
predictive model (denoted MC) as well as other variants.

Our studies were performed on the online book store Mitos (www.mitos.co.il) from August,
2002 till April, 2004. During our evaluations, approximately 5000− 6000 different users visited
theMitos site daily. Of those, around 900 users inserted items into their basket, thus entering our
data-set.11 On average, each customer inserted 1.97 items into the shopping basket. Over 15,000
items were available for purchase on the site.

Users received recommendations when adding items to the shopping cart.12 The recommen-
dations were based on the lastk items added to the cart ordered by the time they were added. An
example is shown in Figure 4 where the three book covers at the bottom are the recommended items.
Every time a user was presented with a list of recommendations on either page,the system stored
the recommendations that were presented and recorded whether the userpurchased a recommended
item. Cart deletions were rare and ignored. Once every two or three weeks, a process was run to
update the model given the data that was collected over the latest time period.13

We compared the MDP and MC models both in terms of their value or utility to the site as well
as their computational costs.

6.1 Utility Performance

Our first set of results is based on the assumption that the transition functionwe learn for our
MDP using data collectedwith recommendations, provides the the best available model of user
behavior under recommendation. Under this assumption, we can measure the effect of different
recommendation policies. An important caveat is that the states in our MDP correspond to truncated
(that is, lastk) user sequences. Thus, the model does not exclude repeated purchases of the same
item. Despite this shortcoming, we proceeded with the evaluation.

As discussed above, a predictive model can answer queries in the formPr(x|h)—the probability
that itemx will be purchased given user historyh. Recommender systems may employ differ-
ent strategies when generating recommendations using such a predictive model. Assuming that an
MDP formalizes the recommendation problem well, we may use the learned MDP model to evaluate
these strategies. The evaluation of the quality of different possible policiesfor the MDP, each corre-

11. We do not supply accurate numbers for number of users and actual profits due to the request of the site owners.
12. Users also received recommendations when looking at the description of a book, but these recommendations where

based only on the user’s visit to the current page and not on her cart.
13. The update process was executed by the site administrator manually and therefore the update interval varies.

1287

SHANI , BRAFMAN AND HECKERMAN

Figure 4: Recommendations in the shopping cart web page.

sponding to a popular approach to recommending, may shed light on the preferred recommendation
strategy.

The MDP model was built using data gathered while the model was running in thesite with
incremental updates (as described above) for almost a year. We compared four policies, where the
first policy uses information about the effect of recommendations, and theremaining policies are
based on the predictive model solely:

• Optimal – recommends items based on optimal policy for the MDP.

• Greedy – recommends items that maximizePr(x|h) ·R(x) (wherePr(x|h) is the probability
of buying itemx given user historyh, andR(x) is the value ofx to the site – for example, net
profit).

• Most likely – recommends items that maximizePr(x|h).

• Lift – recommends items that maximizePr(x|h)
Pr(x) , wherePr(x) is the prior probability of buying

itemx.

To evaluate the different policies we ran a simulation of the interaction of a user with the system.
During the simulation the system generated a list of recommended itemsR, from which the simu-
lated user selected the next item, using the distributiontr(s,R,s· x)—the probability that the next
selected item isx given the current states and the recommendation listR, simulating the purchase
of x by the user. The length of user session was taken from the learned distribution of user session
length in the actual site. We ran the simulation for 10,000 iterations for each policy, and calculated
the average accumulated reward for user session.

1288

AN MDP-BASED RECOMMENDERSYSTEM

Policy Value

Optimal 118.5
Greedy 116.1
Most Likely 117.0
Lift 112.8

Table 3: Performance of different policies.

The results are presented in Table 3. The calculated value for each policyis the sum of dis-
counted profit in (New Israeli Shekels) averaged over all states. We used a weighted average, where
the weight of each state was the probability of observing it. Obviously, an optimal policy results in
the highest value. However, the differences are small, and it appears that one can use the predictive
model alone with very good results.

Next, we performed an experiment to compare the performance of the MDP-based system with
that of the MC-based system. In this experiment, each user entering the site was assigned a randomly
generated cart-id. Based on the last bit of this cart-id, the user was provided with recommendations
by the MDP or MC. Reported mean profits were calculated for each user session (a single visit to
the site). Data gathered in both cases was used to update both models.14

The deployed system was built using three mixture components, with history length ranging
from one to three for both the MDP model and the MC model. Recommendations from the different
mixture components were combined using an equal (0.33) weight. We used the policy-iteration
procedure and approximations described in Section 5 to compute an optimal policy for the MDP.
Our model encoded approximately 25,000 states in the two top mixture components (k = 2, k = 3).
The reported results were gathered after the model was running in the site with incremental updates
(as described above) for almost a year.

During the testing period, 50.7% of the users who made at least one purchase were shown
MDP-based recommendations and the other 49.3% of these users were shown MC-based recom-
mendations. For each user, we computed the average site profit per session for that user, leaving
out of consideration the first purchase made in each session. The firstitem was excluded as it
was bought without the benefit of recommendations, and is therefore irrelevant to the comparison
between the recommender systems.15

The average site profit generated by the users was 28% higher for the MDP group.16 We used
a permutation test (see, for example, Yeh (2000)) to see how likely it would be for a difference
this large to emerge if there were in fact no systematic difference in the effectiveness of the two
recommendation methods.17 We randomly generated 10000 permutations of the assignments of

14. We update the MC model by recording the transition without consideringthe recommendation used.
15. This is not entirely accurate as the site also provides recommendationsfor items in the book description page. We

do not present here any experimental results for those recommendations and do not model their effect on the user,
but we note that a user that received MDP recommendations in the cart page, got MDP recommendations in the book
description page; users who got MC recommendations in the basket gotMC recommendations in the description
page as well.

16. We are not at liberty to provide accurate numbers.
17. We used a permutation test to establish the validity of our results, as this test is non-parametric, and does not require

any prior assumptions about the distribution of the data, and is quite robustto noise in the data. We used the one-tailed
version of the test as the directional hypothesis that the MDP recommender is better than the MC recommender has
been theoretically motivated above.

1289

SHANI , BRAFMAN AND HECKERMAN

session profits to users, for each permutation computing the ratio of averagesession profits between
the MDP and the MC groups. With only 8% of these random assignments was theratio as large as
(or larger than) 1.282. Therefore, the better performance of the MDP recommender is statistically
significant withp = 0.08 by a one-tailed permutation test.

There are two possible sources for the observed improvement—the MDP maybe generating
more sales or sales of more expensive items. In our experiment, the average number of items
bought per user session was 6.8% in favor of the MDP-based recommender (p= 0.15), whereas the
average price of items was 4% higher in favor of the MDP-based recommender (p = 0.04). Thus,
both effects may have played a role.

In our second and last experiment, we compared site performance with andwithout a recom-
mender system. Ideally, we would have liked to assign users randomly to an experience with and
without recommendations. This option was ruled-out by the site owner because it would have led to
a non-uniform user experience. Fortunately, the site owner was willing to remove the recommender
system from the site for one week. Thus, we were able to compare averageprofits per user session
during two consecutive weeks – one with recommendations and one without recommendations.18

We found that, when the recommender system was not in use, average site profit dropped 17%
(p = 0.0). Although, we cannot rule out the possibility that this difference is due toother factors
(for example, seasonal effects or special events), these result arequite encouraging.

Overall, our experiments support the claims concerning the added value ofusing recommenda-
tions in commercial web sites and the validity of the MDP-based model for recommender systems.

6.2 Computational Analysis

In this section, we compare computational costs of the MDP-based and the Predictor recommender
system.

Our comparison uses the transaction data set and corresponding models described in Section 4.
In addition to using the full data set, we measured costs associated with smaller versions of the data
in which transactions among only the the topN items were considered, in order to demonstrate the
effect of the size of the data-set on performance.

N = 15231 N = 2661 N = 1142 N = 354 N = 86

MDP 112 63 58 41 16
Predictor-NS 3504 631 177 80 25

Table 4: Required time (seconds) for model building.

First, let us consider the time it takes to make a recommendation. Recommendation time is
typically the most critical of computational costs. If recommendation latency is noticeable, no
reasonable site administrator will use the recommender system. Table 5 shows the number of rec-
ommendations generated per second by the recommender system. The resultsshow that the MDP
model is faster. This result is due to the fact that, with the MDP model, we do almost no com-
putations online. While predicting, the model simply finds the proper state and returns the state’s
pre-calculated list of recommendations.

18. We display recommendations between 3/27/2003 and 4/3/2003, and without recommendations from 3/19/2003 to
3/26/2003.

1290

AN MDP-BASED RECOMMENDERSYSTEM

N = 15231 N = 2661 N = 1142 N = 354 N = 86

MDP 250 277 322 384 1030
Predictor-NS 23 74 175 322 1000

Table 5: Recommendations per second.

The price paid for faster recommendation is a larger memory footprint. Table 6shows the
amount of memory needed to build and store a model in megabytes. The MDP model requires more
memory to store than the Predictor model, due to the structured representation of the Predictor
model using a collection of decision trees.

Finally, we consider the time needed to build a new model. This computational costis perhaps
the least important parameter when selecting a recommender system, as model building is an off-
line task executed at long time intervals (say once a week at most) on a machine that does not affect
the performance of the site. That being said, as we see in Table 4, the MDP model has the smallest
build times.

N = 15231 N = 2661 N = 1142 N = 354 N = 86

MDP 138 74 55.7 33.3 11.4
Predictor-NS 50.1 26 25 22.3 18

Table 6: Required memory (megabytes) for building a model and generating recommendations.

Overall the MDP-based model is quite competitive with the Predictor model. It provides the
fastest recommendations at the price of more memory use, and builds models more quickly.

7. Discussion

This paper describes a new model for recommender systems based on an MDP. Our work presents
one of a few examples of commercial systems that use MDPs, and one of the first reports of the
performance of commercially deployed recommender system. Our experimental results validate
both the utility of recommender systems and the utility of the MDP-based approachto recommender
systems.

To provide the kind of performance required by an online commercial site, we used various
approximations and, in particular, made heavy use of the special properties of our state space and
its sequential origin. Whereas the applicability of these techniques beyond recommender systems is
not clear, it represents an interesting case study of a successful real system. Moreover, the sequential
nature of our system stems from the fact that we need to maintain history of past purchases in order
to obtain a Markovian state space. The need to record facts about the past in the current state
arises in various domains, and has been discussed in a number of paperson handling non-first-order
Markov reward functions (see, for example, Bacchus et al. (1996) or Thiébaux et al. (2002)).

Another interesting technique is our use of off-line data to initialize a model thatcan provide
adequate initial performance.

In the future, we hope to improve our transition function on those states that are seldom encoun-
tered using generalization techniques, such as skipping and clustering, that are similar to the ones

1291

SHANI , BRAFMAN AND HECKERMAN

we employed in the predictive Markov chain model. Other potential improvementsare the use of a
partially observable MDP to model the user. As a model, this is more appropriatethan an MDP, as
it allows us to explicitly model our uncertainty about the true state of the user (Boutilier, 2002).

In fact, our current model can be viewed as approximating a particular POMDP by using a finite
– rather than an unbounded – window of past history to define the current state. Of course, the com-
putational and representational overhead of POMDPs are significant, and appropriate techniques for
overcoming these problems must be developed.

Weaknesses of our predictive (Markov chain) model include the use ofad hocweighting func-
tions for skipping and similarity functions and the use of fixed mixture weights. Although the
recommendations that result from our current model are (empirically) useful for ranking items, we
have noticed that the model probability distributions are not calibrated. Learning the weighting
functions and mixture weights from data should improve calibration. In addition, in informal ex-
periments, we have seen evidence that learning case-dependent mixtureweights should improve
predictive accuracy.

Our predictive model should also make use of relations between items that canbe explicitly
specified. For example, most sites that sell items have a large catalogue with hierarchical struc-
ture such as categories or subjects, a carefully constructed web structure, and item properties such
as author name. Finally, our models should incorporate information about users such as age and
gender.

Acknowledgments

We would like to thank the Israeli online bookstore Mitos for allowing the wide range of experiments
reported in this paper, for their willingness to try new ideas and for the great effort they have put
into implementing our system.

We would also like to thank the thorough reviewers of this paper that suggested many useful
improvements, and helped us properly present our results in a clear manner.

Ronen Brafman is partially supported by the Paul Ivanier Center for Robotics and Production
Management.

References

F. Bacchus, C. Boutilier, and A. J. Grove. Rewarding behaviors. InProceedings of the Thirteenth
National Conference on Artificial Intelligence, Vol. 2, pages 1160–1167, Portalnad, OR, 1996.

M. Balabanovic and Y. Shoham. Combining content-based and collaborative recommendation.
Communications of the ACM, 40(3):62—72, March 1997.

R. E. Bellman.Dynamic Programming. Princeton University Press, 1962.

T. Bohnenberger and A. Jameson. When policies are better than plans: decision-theoretic planning
of recommendation sequences. InIUI ’01: Proceedings of the 6th international conference on
Intelligent user interfaces, pages 21–24, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-
325-1.

1292

AN MDP-BASED RECOMMENDERSYSTEM

B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with uncertainty and full
feedback. In G. Gottlob, editor,18th International Joint Conf. on Artificial Intelligence, pages
1233–1238, Acapulco, Mexico, 2003. Morgan Kaufmann Publishers Inc.

C. Boutilier. A POMDP formulation of preference elicitation problems. InEighteenth national con-
ference on Artificial intelligence, pages 239–246, Edmonton, Alberta, Canada, 2002. American
Association for Artificial Intelligence.

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming withfactored
representations.Artificial Intelligence, 121(1-2):49–107, 2000.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collab-
orative filtering. InProceedings of the 14th conference on Uncertainity in Artificial Inteligence,
pages 43–52, San Francisco, California, 1998. Morgan Kaufmann Publishers Inc.

R. Burke. Knowledge-Based Recommender Systems, volume 69 ofEncyclopedia of Library and
Information Systems, supplement 32. A. Kent, New York, 2000.

R. Burke. Hybrid recommender systems: Survey and experiments.User Modeling and User-
Adapted Interaction, 12(4):331–370, 2002.

S. F. Chen and J. Goodman. An empirical study of smoothing techniques forlanguage modeling.
In Arivind Joshi and Martha Palmer, editors,Proceedings of the Thirty-Fourth Annual Meeting
of the Association for Computational Linguistics, pages 310–318, San Francisco, 1996. Morgan
Kaufmann Publishers Inc.

M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators.In IUI ’01: Proceedings
of the 6th international conference on Intelligent user interfaces, pages 33–40, Santa Fe, New
Mexico, United States, 2001. ACM Press.

N. Good, J. Ben Schafer, J. A. Konstan, A. Borchers, B. M. Sarwar, J. L. Herlocker, and J. Riedl.
Combining collaborative filtering with personal agents for better recommendations. In AAAI
’99/IAAI ’99: Proceedings of the sixteenth national conference on Artificial intelligence and the
eleventh Innovative applications of artificial intelligence conference innovative applications of
artificial intelligence, pages 439–446, Orlando, Florida, United States, 1999. American Associa-
tion for Artificial Intelligence.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. M. Kadie. Dependency net-
works for inference, collaborative filtering, and data visualization.Journal of Machine Learning
Research, 1:49–75, 2000.

R. A. Howard.Dynamic Programming and Markov Processes. MIT Press, 1960.

C. M. Kadie, C. Meek, and D. Heckerman. CFW: A collaborative filtering system using posterios
over weights of evidence. In18th Conference on Uncertainty in AI (UAI’02), pages 242–250,
2002.

L. P. Kaelbling, M. L. Littman, and A. P. Moore. Reinforcement learning: Asurvey. Journal of
Artificial Intelligence Research, 4:237–285, 1996.

1293

SHANI , BRAFMAN AND HECKERMAN

B. Kitts, D. Freed, and M. Vrieze. Cross-sell: a fast promotion-tunable customer-item recommen-
dation method based on conditionally independent probabilities. InKDD ’00: Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery anddata mining, pages
437–446, Boston, Massachusetts, United States, 2000. ACM Press.

D. Koller and R. Parr. Policy iteration for factored mdps. InUAI ’00: Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence, pages 326–334, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

Microsoft. Recommendation score.Microsoft Commerce Server 2002 Documentation, 2002.

R. J. Mooney and L. Roy. Content-based book recommending using learning for text categorization.
In DL ’00: Proceedings of the fifth ACM conference on Digital libraries, pages 195–204, San
Antonio, Texas, United States, 2000. ACM Press.

M. Puterman.Markov Decision Processes. Wiley, New York, 1994.

P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open Architecture
for Collaborative Filtering of Netnews. InProceedings of ACM 1994 Conference on Computer
Supported Cooperative Work, pages 175–186, Chapel Hill, North Carolina, 1994. ACM.

P. Resnick and H. R. Varian. Recommender systems.Special issue of Communications of the ACM,
pages 56–58, March 1997.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recom-
mender systems: a case study. InACM WebKDD 2000 Web Mining for E-Commerce Workshop,
August 2000a.

B. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Analysis of recommendation algorithms for
e-commerce. InEC ’00: Proceedings of the 2nd ACM conference on Electronic commerce, pages
158–167, New York, NY, USA, 2000b. ACM Press. ISBN 1-58113-272-7.

J. B. Schafer, J. A. Konstan, and J. Riedle. E-commerce recommendationapplications.Data Mining
Knowledge Discovery, 5(1-2):115–153, 2001.

Z. Su, Q. Yang, and H. J. Zhang. A prediction system for multimedia pre-fetching in internet. In
MULTIMEDIA ’00: Proceedings of the eighth ACM international conference on Multimedia,
pages 3–11, Marina del Rey, California, United States, 2000. ACM Press.

R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

S. Thíebaux, F. Kabanza, and J. Slaney. Anytime state-based solution methods for decision pro-
cesses with non-Markovian rewards. In18th Conference on Uncertainty in AI (UAI’02), pages
501–510, Edmonton, Canada, July 2002. Morgan Kaufmann.

A. Yeh. More accurate tests for the statistical significance of result differences. InProceedings of
the 17th conference on Computational linguistics, pages 947–953, Saarbrcken, Germany, 2000.
Association for Computational Linguistics.

1294

AN MDP-BASED RECOMMENDERSYSTEM

A. Zimdars, D. M. Chickering, and C. Meek. Using temporal data for makingrecommendations.
In UAI ’01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pages
580–588, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

1295

