
Average Case Analysis of QuickSort and Insertion Tree Height

using Incompressibility

Tao Jiang, Ming Li, Brendan Lucier

September 26, 2005

Abstract

In this paper we study the Kolmogorov Complexity of a Binary Insertion Tree. We obtain a simple
incompressibility argument that yields an asymptotic analysis of average tree height. This argument
further implies that the QuickSort algorithm sorts a permutation of n elements in Θ(n log n) comparisons
on average.

1 Introduction

In this paper we use an incompressibility argument to show that the QuickSort algorithm runs in time
Θ(n lg n) on average. We do this by showing that the Recursion tree for the QuickSort algorithm, which is
isomorphic to the so-called Binary Insertion Tree, has average height Θ(lg n). This is interesting because
while the QuickSort algorithm has a simple traditional average-case analysis, the traditional analysis of the
average height of a Binary Insertion Tree is far more difficult.

In Section 2 we make necessary definitions and give an overview of known and general results. In Section
3 we give our core incompressibility argument as Theorem 3.2. In Section 4 we apply our incompressibility
result to give our average case analyses. Conclusions and avenues for future research are outlined in Section
5.

2 Definitions and Known Results

2.1 Permutations

A permutation is a sequence of integers such that no integer occurs more than once. Except when otherwise
stated, it is assumed that a permutation contains precisely the values {1, . . . , n} for some n ≥ 0. Given a
permutation π, the value π[i] refers to the sequence element in position i of π, for 1 ≤ i ≤ n.

In permutation π, the element π[1] is referred to as the pivot for π. The subpermutation πL is π restricted
to values less than π[1]. The subpermutation πR is π restricted to values greater than π[1]. Note that π is
uniquely determined by π[1], πL, πR, and the locations of the elements of πL or πR, since we can reconstruct
π by shuffling πL and πR in the appropriate manner and prepending π[1].

2.2 Binary Insertion Trees

Given permutation π, we wish to define the Binary Insertion Tree T (π). Let T (π) be the binary search tree
obtained by beginning with the empty tree and inserting the elements of π in order, as leaves. That is, the
tree is not rotated as it is created; each new entry is added as a leaf to the existing tree. Let h(π) denote
the height of T (π). Given y ∈ π, let d(y) denote the depth of y, 1 ≤ d(y) ≤ h(π).

Given y ∈ π, we denote by T (y) the subtree of T (π) rooted at y consisting of all descendents of y. Let
R(y) denote the number of nodes in T (y). Suppose x and z are the (possibly null) children of y in T (π).

1

We say x is the lesser child (or simply a lesser node) if R(x) < R(z) or if R(x) = R(z) and x is the left child
of y. Heuristically, the lesser child of y is the root of the smaller of its two subtrees. We also say that y is
balanced if R(x), R(z) > 1

4R(y). Heuristically, y is balanced if it occurs in the middle half of its range.
A k-path of T (π) is a sequence Y = (y1, . . . , yk) of nodes such that y1 is the root of T (π) and yi is the

parent of yi+1 for each i. Let B(Y) and U(Y) denote the number of balanced and unbalanced nodes in Y ,
so B(Y) + U(Y) = k. Let L(Y) denote the number of lesser nodes in Y .

Now, for each i, if yi is a lesser child then R(yi) ≤ 1
2R(yi−1). Since R(y1) = n and R(yj) ≥ 1 for all j,

we conclude that
L(Y) ≤ lg n. (1)

Similarly, if yi is balanced then R(yi+1) ≤
3
4R(yi). We conclude that

B(Y) ≤ log 4

3

n. (2)

2.3 The QuickSort Algorithm

We consider the deterministic QuickSort algorithm, which is described in pseudo-code below.

1. QuickSort(Array π)
2. If |π| = 0 return
3. Let p = π[1]
4. Let πL = (x ∈ π, x < p) in stable order
5. Let πR = (x ∈ π, x > p) in stable order
6. QuickSort(πL)
7. QuickSort(πR)
8. π = πLpπR

The value p is referred to as a pivot. The determinism of this algorithm stems from the fact that the
pivot always chosen as the first element in a subpermutation. This motivates our definition of a pivot in the
previous section.

In lines 4 and 5, the pivot p is compared with the other n−1 elements of π. The values are then partitioned
into those less than (and those greater than) p, retaining their order in π. These subpermutations are sorted
recursively and recombined to give π in sorted order.

We can view the operation of the QuickSort algorithm on π as a tree, which we will call the QuickSort
Tree TQ(π). In this tree, we take p from line 2 as the root, with left and right subtrees TQ(πL) and TQ(πR).

Lemma 2.1. For any π, TQ(π) = T (π).

Proof. We proceed by induction on |π|. If |π| = 0 then both T (π) and TQ(π) are the empty tree. If |π| > 0
then the root of T (π) is the first element of π, while the root of TQ(π) is the pivot obtained on the first pass
of the QuickSort algorithm which is the first element of π. The roots of T (π) and TQ(π) are therefore the
same.

The left subtree of TQ(π) is simply TQ(πL), the QuickSort tree of πL. The left subtree of T (π) is created
by inserting all values less than the root in the order in which they are encountered in π, which is simply
πL. Thus the left subtree of T (π) is T (πL). But TQ(πL) = T (πL) by induction. Similarly, the right subtrees
of TQ(π) and T (π) are the same (and equal T (πR)). We conclude TQ(π) = T (π).

We can now drop the notation TQ(π) and use T (π) to refer to both the QuickSort Tree and the Binary
Insertion Tree for π. We shall also carry over the notation from T (π) to QuickSort: for each y ∈ π, there is
an associated QuickSort Subtree T (y). Also, note that R(y) is the size of the subpermutation of which y is
a pivot.

Lemma 2.2. The running time for QuickSort on π is
∑

y∈T (π) R(y) − n.

2

Proof. For each y in T (π), R(y) is the number of elements being considered when y is chosen as a pivot. Since
y is compared with all of these elements besides itself, the number of elements with which y is compared as
a pivot is R(y) − 1. Thus the total number of comparisons is

∑

y∈T (π)

(R(y) − 1) =
∑

y∈T (π)

R(y) − n

as required.

2.4 Kolmogorov Complexity Results

In this paper, a string is a finite binary sequence of 0’s and 1’s. The length of a string x is the number of
characters it contains, denoted |x|. String y is a prefix (respectively, suffix) of string x if there exists string
z such that yz = x (zy = x). Given a Turing Machine T and string x, T (x) denotes the output of T when
x is the initial string on the input tape. Given n strings x1, . . . , xn, the value T (x1, . . . , xn) denotes the
output of T when given xi as input strings in a distinguishable way, such as being given on separate input
tapes. Finally, we shall not distinguish between integers and binary representations thereof when denoting
input to a Turing Machine. That is, for integer i, T (i) is equivalent to T ([i]2) where [i]2 denotes the binary
representation of i.

The Kolmogorov Complexity of a string x can be informally defined as the length of the shortest binary
program that generates x when given as input to a fixed universal Turing Machine. It is a well-known result
that this definition is independent of the choice of Universal Turing Machine up to an additive factor [3].
We can therefore denote the Kolmogorov Complexity of a string x unambiguously as C(x). The Conditional
Kolmogorov Complexity C(x|y) is the length of the shortest binary program that generates x when the
additional input y is known.

More formally, take an enumeration T1, T2, . . . of all Turing Machines. Let U be a Universal Turing
Machine such that

U(i, y) = Ti(y)

for all y ∈ {0, 1}∗ and i ≥ 1. Then

C(x|y) = min
q∈{0,1}∗

{|q| : U(q, y) = x}

and C(x) = C(x|ǫ).
We now review some general results regarding Kolmogorov Complexity. The following result is the core

concept behind incompressibility arguments. We include the statement for completeness and future reference;
for a proof, see [5].

Lemma 2.3. Let δ be a positive integer. For every fixed y, every set S with |S| = m has at least m(1−2−δ)+1
elements x with C(x|y) ≥ ⌊lg m⌋ − δ.

The next lemma will also be quite useful. It shows that a binary string with linearly more 0s than 1s is
linearly compressible. Let H(α) = −α lg α− (1−α) lg(1−α) be the entropy function. Given a binary string
x, let n1(x) denote the number of 1s in x.

Lemma 2.4. Suppose x ∈ {0, 1}n with n1(x) ≤ αn where α ≤ 1
2 . Then if n is known there is a self-delimiting

encoding E(x) such that |E(x)| ≤ H(α)n + O(lg n).

Proof. Our string E(x) will specify n1(x) then give the positions of the 1s by indexing into the
(

n
n1(x)

)

possibilities. Note n1(x) can be represented in ⌈lg n⌉ bits. Also, since αn ≤ 1
2n,

(

n
n1(x)

)

≤
(

n
αn

)

. We therefore

3

get

|E(x)| ≤

⌈

lg

(

n

αn

)⌉

+ ⌈lg n⌉

= lg

[

nn

(αn)αn(n − αn)n−αn

]

+ O(lg n) + O(lg n) (using Sterling’s Approximation)

= n lg n − αn lg(αn) − (1 − α)n lg(n − αn) + O(lg n)

= H(α)n + O(lg n).

(3)

This final lemma is due to Tao [2]. It allows us to encode a set of choices, the number of options for each
depending on the previous choices, without requiring extra bits per choice. Suppose we define sets A1, . . . , At

incrementally, such that A1 is fixed, and Ai+1 depends on a choice of element ai ∈ Ai for each i ≥ 1. For
any incremental choice of values a = (a1, . . . , at), we say that the corresponding set of options A1 × · · · ×At

is the decision space for a.

Lemma 2.5. Suppose a is an incremental choice of values with decision space size d. Then a can be encoded
in lg d + 1 bits.

Proof. Suppose a = (a1, . . . , at) in decision space A1 × · · · × At. Let ki be the index of ai in Ai for each i.

Define integer k = k1 + k2|A1|+ k3|A1||A2|+ · · ·+ kt

∏t−1
j=1 |Aj |. Then k is a value between 0 and

∏t−1
j=1 |Aj |.

Our encoding is simply the binary representation of k, which has length ⌈lg[
∏t−1

j=1 |Aj |]⌉ ≤ lg d + 1.
To decode (a1, . . . , at) from k, proceed as follows. Since |A1| is fixed and known, we can take k1 = k

mod |A1|. This gives us a1, which determines |A2|. We now take k2|A1| + k1 = k mod |A1||A2|. This gives
us k2 and hence a2, which determines |A3|. Proceeding in this way, we can retrieve all of (a1, . . . , at).

3 Compressing Binary Insertion Trees

We now describe a technical analysis of the Kolmogorov Complexity of Binary Insertion Trees. The key
idea behind this analysis is the development of a special encoding scheme for permutations that reflects the
structure of a Binary Insertion Tree. We then show how to compress such an encoding if the height of the
corresponding tree is sufficiently large. This will imply, by incompressibility, a bound on the average height
of Binary Insertion Trees.

3.1 Encoding Permutations

Let π be a permutation of length n. We shall describe π recursively as a series of decisions. We simultaneously
show that the corresponding decision space for π has size n!, by induction.

If n is 0 or 1, there is only one possibility for π so no description is necessary, and 1 = 0! = 1!. If n > 1 then
we first choose the pivot p = π[1], for which there are n choices. We then choose the positions for the p − 1
elements of π less than p, for which there are

(

n−1
p−1

)

choices. Finally, we recursively describe the permutations
πL of size p − 1 and πR of size n − p. Induction gives us that πL and πR can be reconstructed from their
descriptions, and their decision spaces have sizes (p − 1)! and (n − p)! respectively. By the discussion of
Section 2.1, π can be reconstructed from these four pieces of information, and can therefore be reconstructed
from this recursive decision process. Finally, the decision space for π has size n

(

n−1
p−1

)

(p − 1)!(n − p)! = n!.
Now note that the choices for πL, πR, and the value positions depend on the choice of p, but they occur

after the choice for p in our description. Thus Lemma 2.5 applies, so we can encode the choices made by
this process as E(π), with |E(π)| ≤ lg n! + 1.

4

3.2 Compression

We now define a method for compressing E(π). Suppose Y = (y1, . . . , yk) is a k-path of T (π). Let xY be a
k-bit binary string such that xY [i] = 1 iff yi is balanced. Let zY be a k-bit binary string such that zY [i] = 1
iff yi+1 occurs in the smaller subrange of yi for i < k. Set zY [k] = 0.

Define E(π|xY , zY) to be E(π) with the following change. Whenever a yi is chosen as a pivot in the
decision process encoded by E(π), we modify the set of choices for yi. We choose yi only among those values
that are balanced (resp: unbalanced) if yi is balanced (unbalanced). Since half of the values in any given
range are unbalanced, this change reduces the size of the decision space by half for each value yi. Thus the
decision space is reduced by a factor of 2−k overall. Lemma 2.5 then implies that |E(π|xY , zY)| ≤ lg n!−k+1.

We now show how to retrieve E(π) from E(π|xY , zY), xY , and zY . Starting at i = 1, use bit i of xY to
determine whether yi is balanced or not, so the indexing of the choice for yi can be expanded to a choice
among all values. Replace the encoding for yi with this expanded version. Now bit i of zY can be used to
determine which child of yi is yi+1. The choice for yi+1 can then be found in E(π|xY , zY) and expanded
with the next bit of xY , etc.. Thus all modified choices can be expanded, and the result is E(π).

We have now shown the following:

Lemma 3.1. Let Y be a k-path of T (π), and define xY , zY as above. Then C(π|n, xY , zY) ≤ lg n!−k+O(1).

Proof. Provide E(π|xY , zY) to a a constant-sized program that retrieves E(π) as above. Then π can be
reconstructed from E(π).

3.3 Tree Height

We now calculate the amount of compression achieved by Lemma 3.1, and use this result to bound the height
of T (π) for most π.

Theorem 3.2. There exists a constant c such that any permutation π with h(π) ≥ c lg n is lg n-compressible.

Proof. Let k = c lg n for sufficiently large c. Suppose h(π) ≥ c lg n, so T (π) has a k-path Y = (y1, . . . , yk).
Define strings xY , zY , and E(π|xY , zY) as in Lemma 3.1.

Now we consider an encoding for xY and zY . From (2), n1(xY) = B(Y) ≤ α lg n, where α = 1
lg(4/3) .

Similarly, n1(zY) = L(Y) ≤ lg n by (1). Thus |xY zY | = 2c lg n, but n1(xY zY) ≤ (α + 1) lg n. By Lemma 2.4
we therefore know xY zY can be encoded as E(xY zY) if c > α + 1.

Since E(xY zY) is self-delimiting given n, we get that

C(π|n, p) ≤ |E(xY zY)| + C(π|xY , zY , n)

≤ 2cH

(

α + 1

2c

)

lg n + O(lg lg n) + lg(n!) − c lg n + O(1) (by Lemma 2.4, Lemma 3.1)

= lg(n!) − c

(

1 − 2H

(

α + 1

2c

))

lg n + O(lg lg n).

(4)

Thus, if

γ = c

(

1 − 2H

(

1 + α

2c

))

> 1 (5)

we get that C(π|n, p) ≤ lg n! − γ lg n + O(lg lg n), and hence π is lg n-compressible for sufficiently large n.
But the value in (5) approaches ∞ as c → ∞, so (5) will be true for sufficiently large c. A computer-aided
calculation shows that c = 16.965 . . . is the minimal solution to (5).

5

3.4 Analyzing the Constant Factor

In this section we provide a method for improving the constant c in Theorem 3.2. Let xY and zY be
defined as in the proof of Theorem 3.2. We now present a more complex compression method for xY and zY

which results in a tighter constant c. Encode xY as E(xY) using the standard compression technique as in
Lemma 3.1. Then |E(xY)| = H(α

c)c lg n, since n1(xY) ≤ α lg n.
We now define an encoding E(zY |xY) for zY . Note that if zY [i] = 1 and xY [i] = 0 for some 1 ≤ i ≤ c lg n,

then yi is unbalanced and yi+1 lies in the smaller subtree of yi. Thus R(yi+1) ≤
1
4R(yi). We conclude that

at most log4 n = 1
2 lg n values i can satisfy zY [i] = 1 and xY [i] = 0. Suppose there are t such values of i.

Then, given xY , we can encode zY by specifying n1(zY) and t, describing the positions of the 1s that occur
where xY has a 0, then describing the positions of the 1s that occur where xY has a 1.

Recall that n1(zY) ≤ lg n, so we can first specify n1(zY) and t in O(lg lg n) bits. We then specify the

choices for locations of 1s in zY . There are
(

c lg n−n1(xY)
t

)

and
(

n1(xY)
n1(zY)−t

)

choices for locations of 1s in zY

where the corresponding digit of xY is 0 or 1, respectively. Subject to the constraints on n1(zY), n1(xY),
and t, this number of choices is maximized when n1(xY) = α lg n, n1(zY) = lg n, and t = 1

2 lg n.
We now have that

|E(zY |xY)| ≤ O(lg lg n) + lg

(

(c − α) lg n
1
2 lg n

)

+ lg

(

α lg n
1
2 lg n

)

≤ H

(

1

2(c − α)

)

(c − α) lg n + H

(

1

2α

)

α lg n + O(lg lg n)

(6)

using the same analysis as in Lemma 2.4.
But now π can be encoded as E(xY)E(zY |xY)E(π|xY , zY). We conclude that

C(π|n, p) ≤ |E(xY)| + E(xY |zY)| + C(π|xY , zY , n)

≤ H
(α

c

)

c lg n + H

(

1

2(c − α)

)

(c − α) lg n + H

(

1

2α

)

α lg n + O(lg lg n) + lg(n!) − c lg n + O(1)

= lg(n!) −

(

c − H
(α

c

)

c − H

(

1

2(c − α)

)

(c − α) − H

(

1

2α

)

α

)

lg n + O(lg lg n).

(7)

Thus, if
(

c − H
(α

c

)

c − H

(

1

2(c − α)

)

(c − α) − H

(

1

2α

)

α

)

> 1 (8)

we get that π is lg n-compressible for sufficiently large n, as in Theorem 3.2. We can therefore take c to
be the minimal solution to (8). This minimal solution is c = 15.498 . . . , which is indeed better than the
constant 16.965 . . . that results from (5).

4 Applications to Binary Tree Analysis

We now apply Theorem 3.2 of the previous section to obtain asymptotic analyses of Binary Insertion Tree
height and QuickSort runtime. It should be noted that these results are not new: an analysis of Binary
Insertion Tree height can be found at [1], and the traditional analysis of the QuickSort algorithm is well-
known (see, for example, [4]). Although these results are not new, we feel that our analysis of average Binary
Insertion Tree height is simpler than that in [1]. We therefore present these alternate proofs as an illustration
of how easily one can obtain asymptotic analyses using incompressibility.

Theorem 4.1. The average height of a binary insertion tree over permutations on n elements is Θ(lg n).

Proof. The lower bound follows trivially from the height of a balanced binary tree. From Theorem 3.2 we
know that any lg n-incompressible permutation π has h(π) < c lg n. But by Lemma 2.3 there are (1−2− lg n)n!

6

such permutations. Thus only (2− lg n)n! = (1/n)n! permutations can have tree heights larger than c lg n.
Since tree heights are trivially bounded by n, we get that the average tree height is no more than

1

n!

[

((

1 − 2− lg n
)

n!
)

c lg n +

((

1

n

)

n!

)

n

]

< c lg n + 1 = O(lg n) (9)

as required.

Theorem 4.2. The average runtime of the QuickSort algorithm over all permutations on n elements is
Θ(n lg n).

Proof. The lower bound follows trivially from the lower bound on sorting algorithms. By Lemma 2.2 we
know that the runtime of QuickSort is less than

∑

y∈T (π) R(y). But then, since T (y) are disjoint for all y at
the same depth, the total cost of QuickSort is

CQ(π) <
∑

y∈T (π)

R(y) =

h(π)
∑

i=1

∑

y∈T (π)
d(y)=i

R(y) <

h(π)
∑

i=1

n = nh(π). (10)

Since h(π) = O(lg n) on average by Theorem 4.1, the average cost for QuickSort is nO(lg n) = O(n lg n).

5 Conclusions and Future Research

We have used Kolmogorov Complexity to show that the average height of a Binary Insertion Tree is O(lg n).
It follows from this result that the average cost of QuickSort is O(n lg n). While this QuickSort result
is certainly interesting and encouraging for the success of the incompressibility method, there are simpler
(although, perhaps, less illuminating) analyses that achieve a better constant factor.

The traditional analysis of the average height of a Binary Insertion Tree, however, is not so simple. This
problem was first solved in [1] and the analysis is quite difficult. We feel that the Kolmogorov Complexity
approach presented in this report is much simpler, and hence a useful contribution to the area of study.

An avenue of future research is to apply the methods of this paper to analyze other algorithms involving
binary trees. In particular, the method by which we both specified a path in the tree and gave balancing
information about it (i.e. the string xz in the proof of Theorem 3.2) in fewer bits than nodes in the path
may prove useful in future analyses. Also, Lemma 2.5 was shown to be quite powerful, and likely has other
uses as well.

References

[1] Devroye, Luc. A note on the height of binary search trees. JACM, 33(3), 489-498, July 1986.

[2] Jiang, Tao. Personal Correspondence. July 2005.

[3] Li, Ming and Vitanyi, Paul. An introduction to Kolmogorov complexity and its applications, Springer-
Verlag, New York, 2nd Edition, 1997.

[4] Skiena, Steven. Analysis of Algorithms, Lecture 5 - quicksort, 1997. Retrieved July 2005 from
[http://www.cs.sunysb.edu/∼algorith/lectures-good/node5.html].

[5] Vitanyi, Paul. Analysis of Sorting Algorithms by Kolmogorov Complexity (A Survey). December 18,
2003.

7

