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Abstract—There are many advantages to voting schemes in
which voters rank all candidates in order, rather than just
choosing their favourite. However, these schemes inherently suffer
from a coercion problem when there are many candidates,
because a coercer can demand a certain permutation from a
voter and then check whether that permutation appears during
tallying. Recently developed cryptographic voting protocols allow
anyone to audit an election (universal verifiability), but existing
systems are either not applicable to ranked voting at all, or reveal
enough information about the ballots to make voter coercion
possible.

We solve this problem for the popular single transferable vote
(STV) ranked voting system, by constructing an algorithm for the
verifiable tallying of encrypted votes. Our construction improves
upon existing work because it extends to multiple-seat STV and
reveals less information than other schemes. The protocol is
based on verifiable shuffling of homomorphic encryptions, a well-
studied primitive in the voting arena. Our protocol is efficient
enough to be practical, even for a large election.

I. INTRODUCTION

In elections of all kinds it is important that votes are
tallied correctly, individual votes are private, voters are free of
coercion, and that these properties are not just present but also
clearly apparent to all. Electronic voting could improve the
situation: some schemes offer universal verifiability, meaning
that anyone can check that the announced tally is correct.
Ideally it should be unnecessary to trust either the implemen-
tors of the program or the security of the computer used for
voting. However, such voting systems must take particular care
to prevent voters from being able to prove to coercers how
they voted. This property is known as “receipt-freeness” or
“coercion-resistance”. Without it, coercers can either promise
to reward voters if they show they voted in a particular way
or threaten to cause harm to them if they do not.

Although many electronic voting systems are designed for
simple plurality voting, richer voting schemes allow voters to
express more than simply their single favourite candidate. The
tally method we target is known as Single Transferrable Vote
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(STV) 1. It can be used to fill single or multiple vacancies
and with the latter, achieves a form of “proportional repre-
sentation”. The multiple-vacancy case is used in Australia,
Ireland, Malta, Scotland, and Cambridge MA (USA). It is
particularly susceptible to coercion and is the main focus of
this paper. Single-seat STV is more widespread, with uses
including the London Mayoral race and various other examples
throughout the United States and the British Commonwealth.
In this case, the coercion problem might still apply if there
are many candidates. Hence our algorithm (with an obvious
simplification) might still be useful.

If votes contain little information, for example, they are
just “yes” or “no”, or a choice of one of a small number
of possible candidates, they can rarely be used to identify
individual voters.2 However, with STV a voter can specify
any permutation of the candidates; this has much greater
information content. Hence the “short ballot assumption” [2]
fails even when there are not very many candidates. If all
individual votes are ultimately revealed then this introduces a
coercion problem, sometimes called the “Italian attack”. For
example, voters can be coerced to give a particular candidate
their first preference, then the remaining preferences can be
used to encode the identity of the voter. (A typical Australian
Senate election has about 70 candidates, so there can be 70!
different possible votes.) It is easy for a coercer to choose
one vote that is very unlikely to occur, demand that a voter
cast that particular vote, and then look through the ballots
to see whether that vote appears. Indeed, there are so many
possible votes that a coercer can choose a different required
vote for a very large number of voters even when imposing
some political constraints on the votes, such as only requiring
those with the coercer’s favourite candidate first. Although this
method of coercion requires some work for the coercer, it is
feasible and the risk has been described in the voting literature
[3]. The problem has created a tradeoff between verifiability
and coercion-resistance for paper-based STV elections,3 but
it applies even more strongly to electronic systems in which
votes are posted on a bulletin board. Complete disclosure of all
ballots exposes the voters to coercion, but incomplete exposure

1Sometimes known as “Quota Preferential”, “instant run-off” or “alternative
vote.”

2This assumes that ballot separation is used so that only one race or question
appears on each ballot.

3Until recently, the Australian Electoral Commission revealed the exact
numbers of voters who selected the ticket (i.e., recommended vote) of a major
party, but released only the first preference of those who chose their own
permutation. In practice this was usually enough to verify 3 or 4 of the 6 seats
to be filled in each state. After pressure from voters’ organisations advocating
transparency, the AEC began releasing complete data.
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can make verification far more difficult.

A. Cryptography background

We can roughly classify existing cryptographic voting
schemes into two types by how they prove the correctness
of the tally:
• Homomorphic Tally Schemes. In voting systems of this

type, the encryption scheme of the ballot used in the
voters’ receipts has a “homomorphic” property: given
E(x), an encryption of x, and E(y), an encryption of
y, it is possible to compute E(x + y) without knowing
x, y or the secret key of the encryption. This property
can be used to compute the sum of all the votes (e.g.,
think of a case when a vote for Alice is represented by
an encryption of 1 and a vote for Bob by an encryption
of 0). The final value can be verifiably decrypted and
compared to the tally without revealing anything about
individual votes.

• Mixing Schemes. Schemes of this type are the cryp-
tographic equivalent of shuffling ballots in a box and
then revealing the contents. Loosely speaking, a new set
of encrypted ballots is published together with a proof
that the new ballots encrypt a permutation of the values
encrypted by the original encrypted ballots. This proof
hides the permutation itself, however, so the new ballots
can be verifiably decrypted (and compared to the tally).

Homomorphic tally schemes are usually simpler to code and
understand, but are only applicable to social choice functions
that can be computed from sums of individual votes (such
as plurality elections). Mixing schemes are more general, but
they require the contents of the ballots to be revealed as part of
the tally correctness proof. For some social choice functions,
such as STV, the contents of a ballot can suffice to identify
individual voters, even when the explicit connection between
voter and ballot is hidden by the mixing protocol.

B. Our Contributions

In this paper we construct an efficient protocol called
shuffle-sum for verifiably tallying STV elections without re-
vealing the ballot contents. To do this, we propose a new way
to combine homomorphic tallying and mixing schemes. The
main idea is to use different ballot representations for different
operations on ballots, such that for a given operation, the ballot
representation allows homomorphic tallying techniques to be
used efficiently. We use publicly-verifiable mixing schemes
to verifiably convert one ballot representation to another. The
authorities produce a transcript in which each step of the
tallying process can be independently verified while revealing
very little information about the individual ballot contents, thus
reducing the opportunities for coercion. We also provide an
alternative data structure that allows for faster tallying at the
expense of much less efficient setup. This variant, called table-
sum, is described in Section III-A. In addition, we show how
to reduce further the information revealed, as long as none of
the authorities collude with the coercer (Section III-B).

Our tallying scheme receives as input a table of encrypted
votes. The initial table of encrypted votes could be derived

from an electronic voting scheme or from inputting and then
encrypting paper ballots (though verification of the latter
would be difficult). One example of an end-to-end verifiable
election scheme that produces the right format is contained in
Appendix A.

We have implemented the table-sum version of our scheme
and tested it on a subset of the real data for the Victorian State
election. Although the computation is expensive, it is feasible
for real elections. See Section IV-B for details.

The remainder of this section gives an overview of STV
and existing work on coercion-resistant STV tallying, then an
overview of our main contribution, an algorithm for provably
correct STV tallying that reveals very little unnecessary in-
formation. Section II contains a more complete description.
Section III describes some optimisations and alternatives,
including, in Section III-B1, some examples of coercion that
can still occur even under (some) apparently coercion-resistant
schemes. Analysis and the sketch of a security proof appear
in Section IV. Finally, in Section V, we show how the same
techniques can be applied to demonstrating a stable solution
to the hospitals and residents problem.

C. STV Tallying

Single Transferable Vote is a social choice function (actually
a family of similar functions) that attempts to reduce “wasted
votes”. In this paper we consider only one of the many slightly
differing variations of STV4. However, our techniques will
work for most of them with minor modifications. In the variant
of STV we consider, many candidates are competing for a
small number of seats. Voters must rank all the candidates.5

Once voters have cast their ballots, a quota is computed: the
quota is the number of votes required for a candidate to be
elected. We will use the Droop quota: q ←

⌊
n

s+1

⌋
+ 1, where

n is the number of voters and s is the number of seats to
be filled. This is the minimum number of votes required such
that the number of candidates elected is never more than the
number of open seats.

Tallying is an iterative process consisting of multiple rounds,
each consisting of several steps:

1) Compute first-preference tallies. For each candidate,
sum the weight of the ballots containing that candidate
first in the ranking (all ballots initially have weight 1,
but the weight may be reduced in successive rounds, as
described below).

2) Elect or eliminate candidates. Every candidate who
reached the quota in first-preference votes for this round
is declared elected. If no candidate has reached the
quota, the candidate with the fewest first-preference
votes is eliminated.

3) Reweight votes. For every elected candidate, the ballots
on which that candidate appears as a first-preference
must be reweighted. This is achieved by multiplying by
the transfer value, defined as m−q

m , where q is the quota

4One set of rules can be found at http://www.prsa.org.au
5It would be straightforward to modify our protocols to relax this restriction,

but we make it here for simplicity. See Sections II-F, III-A2 and III-B3 for
details of how to alter each variant of our algorithm.
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and m is the total weight of first-preference ballots for
the candidate. Informally, we can think of a vote as being
only “partially used” if more votes were cast than were
needed to guarantee election. The remainder of the vote
will be transferred to the next preference on the ballot.
If a candidate is eliminated, the transfer value is 1 (i.e.,
the entire vote will be transferred to the next preference).
Ballots on which the first-preference candidate is neither
elected nor eliminated also have transfer value of 1. Note
that each ballot is reweighted at most once in every
round in which a candidate is elected, using the transfer
value for the first-preference candidate on that ballot
(regardless of how many candidates are elected).

4) Eliminate Candidates. The candidates that were elected
or eliminated in the previous step must now be removed
from all of the ballots. In this step, the first preference
on the ballot may change if the previous first preference
candidate was elected or eliminated.

The tallying process continues until all seats have been filled
or until the number of remaining candidates equals the number
of open seats (in which case those candidates are elected).

D. Prior work

There has been great progress in recent years on universally
verifiable election schemes. Some schemes [4], [5], [6], [7]
use homomorphic encryption and tally the encrypted ballots,
revealing only the total. However, none of these schemes
supports preferential voting. Other very successful schemes
are based on mix networks [8], [9], [10].

Of these, Prêt à Voter [8] easily incorporates preferential
voting [11], and most of the others could be modified to
support it. While none of these schemes introduce a coercion
problem directly, they all end with a step that decrypts all the
votes and then publicly tallies them, and the publication of
these raw votes may provide opportunities for coercion . The
aim of this paper is to devise a tallying step for STV that can
be used at the end of a voting scheme without introducing a
coercion problem. We do this by using homomorphic encryp-
tion. We assume a particular format for the encrypted ballot,
which could easily be achieved by modifying Prêt à Voter as
described in Appendix A.

There are several existing cryptographic schemes for verifi-
able STV tallying that limit the information revealed. Heather
[12] describes how to implement STV counting securely in
Prêt à Voter. McMahon [13], Keller and Kilian [14], and Goh
& Gollé [15] describe structures for secure STV tallying that
are not attached to a particular electronic voting scheme. None
of these allow the re-weighting necessary for the multiple-
seat case. More subtly, every one of these works reveals every
candidate’s running tally after every redistribution, which still
leaves open the possibility of some coercion, especially if there
are many candidates. This is described in Sections III-B1b
and III-B1c. (Our scheme also reveals this information, but
can be modified (at some cost) to hide it if necessary—see
Section III-B.) Wen and Buckland [16] describe an alternative
scheme which includes many variants of multiple-seat STV
and other counting schemes and has the same asymptotic

complexity as Shuffle-Sum and Tally-Sum. Their scheme does
not need to reveal any more than the set of candidates
that were elected, but is structured very differently from
ours. Specifically, Wen and Buckland depend very heavily
on general primitives for secure multiparty computation, and
is consequently much less efficient than ours in practice. A
similar coercion problem was addressed for the Condorcet
voting scheme in [17], but their techniques do not extend
to STV. The main advantages of our scheme are that it can
perform the re-weighting step and hence tally multiple-seat
races, and that it reveals much less information than other
schemes.

We know of no existing definition of privacy for electronic
voting that explicitly considers the possibility that just re-
vealing anonymised votes allows coercion. Crutchfield et. al.
[18] consider the privacy violations of publicly-released voting
statistics, but their model is specifically for single-selection
voting schemes, so it does not apply to our case. (They are
interested in cases where precinct-based election results are
unanimous or nearly so.) Previous cryptography literature has
concentrated on receipt-freeness [19], which means that a voter
cannot prove to the coercer how she voted, even if she wants
to. Often this is used interchangeably with the term coercion-
resistance, introduced in [20], though sometimes a distinc-
tion is made between a coercer who can communicate with
the voter before or during the election (requiring coercion-
resistance) and one who cannot (requiring receipt-freeness,
which is then a weaker property). In this paper we consider
only the stronger version, and call it coercion-resistance.

Moran and Naor [6] define coercion-resistance in a more
general sense (extending [21] by Canetti and Gennaro).
Loosely speaking, a scheme is coercion-resistant by their
definition if any successful coercion attack against it would
also succeed in an ideal world, in which — instead of running
the protocol — a trusted third party (the ideal functionality)
collects the voters’ inputs and then announces the results.

In simple plurality elections, the ideal functionality reveals
the number of voters for each candidate, which is equivalent
to revealing all the (anonymised) votes. For STV, defining the
ideal functionality is much harder: as we have just argued,
an ideal functionality that revealed all the votes would expose
voters to coercion via the Italian attack. The simplest function-
ality for STV would be one that outputs the set of winners
and nothing else, though this is probably overly restrictive,
making the problem too difficult and denying voters access
to statistics that they may be interested in. In general the
question of whether a particular scheme securely implements
a particular ideal functionality is independent of the question
of whether coercion is still possible under that functionality.

For most of this paper we assume the output of the ideal
functionality is the number of first-preference votes each
candidate received in each election round and the transfer
values used to reweight the votes after candidates are elim-
inated (this, or similar data, is usually revealed in current
STV implementations). In Section III-B the ideal functionality
reveals only the order of candidate eliminations or elections,
and an approximation to each transfer value.

We describe only the tally mechanism of an election,
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which takes place without any voter interaction. Thus, we
cannot claim our scheme is coercion-resistant (according to
any of the above definitions) without taking into account the
particular voter input stage used in the implementation. Our
claim is that our scheme does not reveal any information
about the votes beyond that revealed by the ideal functionality.
Thus, given that the voter input scheme has appropriate
coercion-resistence properties, the complete scheme will also
be coercion-resistant.

E. Informal Protocol Description

In this section we give an informal description of the
protocol and the intuitions behind it. Our protocol is only
concerned with tallying published, encrypted ballots — we
assume the existence of some other mechanism for casting
votes and convincing voters that the published ballots are
consistent with their choices. Schemes that can achieve this
include Heather’s version of Prêt à Voter [12] as well as [22],
[23]. Variants of Neff’s scheme [9] or the related Moran-Naor
input mechanism [6] can also be used, giving a more secure
but also more complicated voter interface. For simplicity of
the presentation, we assume the candidates are numbered
consecutively from 1 to m.

1) Data structures: The originally published ballots must
contain all the information necessary to tally the votes, without
revealing the voters’ preferences. The general idea is to use the
easiest ballot representation for each step of the tally process
and change between representations using mixing. We use four
different representations for a ballot:

• Candidate-order ballot. A list of encrypted preferences
in candidate order (i.e., the ballot consists of an en-
cryption of the ranking of candidate 1, followed by an
encryption of the ranking of candidate 2, etc.). This is
just an encrypted version of the usual STV paper ballot.
An example is shown in Table I in section II-C.

• Preference-order ballot. A list of encrypted candidates
in preference order (i.e., a ballot consists of an encryption
of the index of the first-preference candidate, followed by
an encryption of that of the second-preference candidate,
etc). An example is shown in Table II in section II-C.

• Candidate elimination ballot. Just like the preference-
order ballot, but with an encrypted flag “Eliminated” for
each candidate, which is 1 if the candidate has been
eliminated and 0 otherwise. (The list of preferences is
also present, in order but encrypted.)

• First-preference ballot. A list of encrypted weights
in candidate order, such that the voter’s current first
preference has the correct overall weight for this vote,
and all other weights are zero. An example is shown in
Table III in section II-C.

(We defer a fifth ballot representation, table-of-comparisons
form, until Section III.)

In all cases we require the encryption scheme to be
an additively homomorphic encryption scheme with verifi-
able threshold-decryption (e.g., the threshold version of the
Damgård-Jurik scheme [24]). The trustees for the election will

hold the secret-key shares to allow decryption — if a pre-
determined minimum number of trustees are honest, ballot
secrecy will be guaranteed6 (integrity is guaranteed even if
all the trustees are corrupt). A more efficient version of the
protocol can be used if there is only a single voting authority,
which would then know the contents of all votes (this might
be the case if the Shuffle-Sum protocol is used to provide
additional verifiability to the currently used tally methods,
which are performed by a single election authority).

a) Mixing Schemes: We use a mixing scheme as a sub-
protocol for verifiably shuffling tuples of encrypted values. For
our security guarantee to hold, we require the mixing scheme
to output a zero-knowledge argument that the decryption of
the values at the output of the mix is a permutation of the
decryptions of the values at the input to the mix. Efficient mix-
ing schemes exist with this property for most homomorphic
public-key encryption schemes (for example, the Groth shuffle
[25]). It may be possible to implement the protocol using
mixing schemes that do not have the zero-knowledge property
(such as the extremely efficient randomized partial checking
scheme [26]), however in this case the security claims and
proofs for the tally protocol must be modified as well.

b) Notation: Homomorphic addition is denoted by ⊕,
homomorphic subtraction by 	, and homomorphic multipli-
cation (by an unencrypted constant) by ⊗.

2) Algorithm: Going over the steps in order:
1) Compute first-preference tallies. Since we are comput-

ing sums, we are naturally led to use the homomorphic
property of the encryption scheme. However, neither the
preference-order nor the candidate-order representations
are easily used to perform the tally, so we first convert
each ballot into first-preference form. An example of the
first-preference tally computation appears in Figure I.1.
Numbers surrounded by a black square represent en-
crypted values. From ballots in first-preference form,
we can directly compute the encrypted first-preference
tally for a candidate by homomorphically summing the
encrypted values for that candidate in all the first-
preference ballots
The trustees then cooperate to decrypt the first-
preference tallies.

2) Reweight votes. The transfer value for each candidate
is publicly computed using the revealed first-preference
tallies. Then, the weight of each first-preference vote for
that candidate must be multiplied by the transfer value.
Multiplying by a public constant can be performed using
the homomorphic property of the encryption scheme.
However, we do not want to reveal which votes are
reweighted (since that would reveal the first prefer-
ences). The first-preference ballot representation turns
out to be suited for this task as well: the ballot contains
an encrypted weight for each candidate. We can multiply
each of the weights by that candidate’s transfer value,
and homomorphically sum all the weights. Since only
the weight corresponding to the first-preference candi-

6This number t can be chosen to be as small as one, but it may be desirable
to choose t > 1 because the protocol allows recovery from up to t−1 failures.
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Fig. I.1: An Example of Tallying and Reweighting

Fig. I.2: An Example of Candidate Elimination

date was nonzero, the resulting sum gives us the correct
weight. Figure I.1 shows an example of reweighting
a ballot. In the example, we are reweighting simulta-
neously for all three candidates, with weight 1.0 for
candidate 1, weight 0.8 for candidate 2 (which is this
voter’s first-preference) and weight 0.6 for candidate 3.7

3) Eliminate Candidates. This is the trickiest part. We
start out once again with the candidate-order ballot
representation. From this we generate a representation
that has the encrypted candidates in preference-order, but
in addition has an encrypted indicator for each candidate
that specifies which are the eliminated candidates (1
for the eliminated candidates and 0 for the others). We
then encrypt the preference values (without shuffling).
We call the resulting ballot form the candidate elimi-
nation representation. Using this representation, we can
homomorphically subtract from the encrypted preference

7Note that only a candidate that has been elected will carry a transfer value
less than one.

value of each candidate the number of eliminated candi-
dates that appear before it in the ranking (the difference
is the new preference value for the candidate). Now we
return to the encrypted preferences in candidate-order
representation, and can remove the eliminated candidate
and preference value. Figure I.2 gives an example of
a candidate elimination. In the example, candidate 3
is being eliminated. Light-colored numbers surrounded
by dotted squares represent the encrypted values whose
plaintexts are publicly known (we need them to be
encrypted so we can homomorphically add them to an
encrypted, unknown value).

II. SHUFFLE-SUM PROTOCOL DESCRIPTION

A. Technicalities of our STV implementation

Although the basic idea of STV is simple, the details are
complicated in practice. Indeed, intense debate rages over
the best methods for breaking ties and deciding where to
redistribute votes (see [27] for one example of debate over
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the best method for counting computerised STV votes). Most
variants are shortcuts which facilitate counting by hand. Even
now, with computerised counting almost ubiquitous, outdated
legislation often requires these shortcuts to be performed
electronically. If necessary, our scheme could be modified to
incorporate many of the common counting rules, but we would
strongly advocate modifying the legislation instead. We have
implemented the following variants:
• When a candidate is elected, we redistribute every vote

and we take the vote’s new weight to be the product of
the transfer value and its previous weight.8

• If two or more candidates have a quota, we elect them
all in the same step and redistribute each vote to the
next continuing candidate. The weight of each vote is
multiplied by the transfer value of the highest-ranked
candidate that is elected in that step.

• We assume that all votes are complete permutations. (In
Section II-F we show how to relax this requirement using
an idea from [12].)

B. Updating weights

In the informal protocol description given above, we de-
scribed multiplying weights by a non-integer transfer value,
but technically this is infeasible because it (often) requires
computing roots. Instead when the candidate’s transfer value
is announced, we produce a rational approximation a/d and
multiply the weight of every vote for the elected candidate by
a, and all other weights by d. We must then keep track of the
product of all the denominators d that have been used, because
the quota should be multiplied by that product in subsequent
rounds to decide which candidates should be elected.

Of course, it is possible to run the computation with exact
transfer values. As described in Section III-B1c, this introduces
its own coercion problems. We therefore leave the choice of
approximation as a parameter in our scheme. Any reasonable
method of taking approximations can be accommodated, as
long as it does not overflow the range of values that can
be represented (and efficiently decrypted) in the encryption
scheme.9 For example, using exact values with one million
voters and 5 seats could produce a denominator too large for
feasible decryption with exponential El Gamal.

This reweighting process can easily be completed in parallel
for more than one elected candidate. Let the elected candi-
dates’ transfer values be s1, . . . , sN , with rational approxima-
tions a1

d1
, . . . , aN

dN
respectively. These are publicly computed

using the revealed first-preference tallies. We can choose a
common denominator d′ = lcm(d1, . . . , dN ), and compute a
new representation for each approximation: a′

i

d′ = ai

di
, where

a′i = ai
d′

di
. The weight of each first-preference vote for an

elected candidate i would be multiplied by a′i, while the weight

8Different rule sets vary in their treatment of surpluses. Some only
redistribute votes obtained from the most recent distribution. Others take a
random sample of the votes for the candidate being elected. In Australia it
is common to redistribute all votes, giving all of them the same new weight,
which is then calculated in a slightly different way.

9There is a good argument for rounding down, because rounding up could
directly cause the election of candidates who do not really have a quota.

of each first-preference vote for a non-elected candidate will
be multiplied by d′.

C. Notation and Ballot Representations

We denote voter v’s preference permutation by σv; σv(i)
is the ranking of candidate i (conversely, the first-preference
candidate would be σ−1

v (1)). We denote E : G1 7→ G2 the
homomorphic encryption function (this is a randomized func-
tion), where G1 is an additive group and G2 a multiplicative
group. The encryption function satisfies, for every x and y:
E(x) ⊕ E(y) = E(x + y). We denote the corresponding
threshold decryption function D (for clarity, we ignore the
randomness and keys in the presentation). We define

⊕
to be

to ⊕ what
∑

is to +.
We regard the ballot representations as tables, with columns

corresponding to candidates/preferences and rows correspond-
ing to different things (depending on the representation). Ta-
ble I describes the candidate-order representation. The Weight
row in this table only contains a single value (the encrypted
weight for the entire ballot). Table II describes the preference-
order representation. The Weight row contains an encrypted
weight for each candidate (column); the weight of the first-
preference candidate is the ballot weight, and the weights for
the other candidates are zero. Table III describes the first-
preference representation. Table IV describes the candidate-i-
elimination representaton (used to eliminate candidate i). In
this representation, an extra “Eliminated” row is added that
contains an encrypted “flag” for each candidate: this is an
encryption of 1 for the candidates who are being eliminated,
and an encryption of 0 for the other candidates. The Preference
and Candidate rows in this representation are both encrypted
(although the plaintext values for the Preference row are
publicly known).

D. Tally Protocol

The tally protocol is an iterative protocol, with the same
overall structure as a standard STV tally. The top-level de-
scription is given as Protocol 1a. The subprotocols for per-
forming the different tasks are Protocol 1b for computing the
first-preference tallies, Protocol 1c for reweighting votes and
Protocol 1d for candidate elimination. In turn, these use “ballot
conversion protocols” as subroutines to convert the ballot from
one representation to another. The ballot conversion protocols
are described in Section II-E.

E. Ballot Conversion Protocols

Protocols 2, 3, and 4 convert between different ballot repre-
sentations. We denote the operation of encrypting (separately)
each value in a row by “encrypting a row” (i.e., we replace
the row with a new row, such that the ith value in the new
row is the encryption of the ith value in the old row). In the
same way, we refer to separately (threshold) decrypting each
value in a table row as “(threshold) decrypting a row”. In the
protocols below, encrypting a row can always be performed
deterministically (e.g., using publicly known randomness), so
that public verification of encryption is easy.
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TABLE I: “Candidate-Order” Ballot for Voter v
Candidate 1 2 · · · m
Preference Pv,1 = E(σv(1)) Pv,2 = E(σv(2)) · · · Pv,m = E(σv(m))

Weight Wv = E(wv)

TABLE II: “Preference-Order” Ballot for Voter v
Candidate E(σ−1

v (1)) E(σ−1
v (2)) · · · E(σ−1

v (m))
Preference 1 2 · · · m

Weight Wv = E(wv)

TABLE III: “First-Preference” Ballot for Voter v. This voter’s current first preference is candidate i. All other weights are 0.
Candidate 1 · · · i · · · m
Preference Pv,1 = E(σv(1)) · · · Pv,i = E(σv(i)) · · · Pv,m = E(σv(m))

Weight W ′v,1 = E(0) . . . W ′v,i = Wv · · · W ′v,m = E(0)

TABLE IV: “Candidates C Elimination” Ballot for Voter v. The encrypted “Eliminated” flag is set for every candidate in C,
zeroed for all other candidates.

Candidate C′v,1 = E(σ−1
v (1)) · · · C′v,i = E(σ−1

v (i)) · · · C′v,m = E(σ−1
v (m))

Preference P v,1 = E(1) · · · Pv.i = E(i) · · · Pv.m = E(m)
Eliminated Xv,1 = E(0) · · · Xv,i = E(1) · · · Xv,m = E(0)

Weight Wv = E(wv)

Protocol 1a STV Tally

1: q ←
⌊

#valid votes
#seats+1

⌋
+1 // Compute q, the quota required

for election.
2: while the number of remaining candidates is greater than

the number of open seats do
3: Compute First-Preference Tallies (cf. Protocol 1b).
4: if at least one candidate was elected (had tally greater

than q) then
5: Let S be the set of candidates with tally above q.
6: Announce that every candidate in S was elected.
7: Reweight Votes for Elected Candidates S and quota

q (cf. Protocol 1c).
8: Eliminate all candidates in S from ballots (cf. Proto-

col 1d).
9: else // No candidate was elected

10: Let i be the candidate with the least tally
11: Announce that i was eliminated.
12: Eliminate {i} from ballots (cf. Protocol 1d).
13: Announce that the remaining candidates were elected.

Protocol 1b Compute First-Preference Tallies
Input: All ballots in candidate-order form (cf. Table I)

1: for every voter v ∈ {1, . . . , n} do
2: Convert ballot v to first-preference representation. // cf.

Table III, Protocol 2
3: for every candidate i ∈ {1, . . . ,m} do
4: Ti ←

⊕n
v=1W

′
v,i // Homomorphically add encrypted

weights corresponding to candidate i.
5: Threshold decrypt tally ti ← D(Ti).

Protocol 1c Reweight Votes for Elected Candidates in S with
quota q
Input: All ballots in first-preference form (cf. Table III)

1: for every candidate i ∈ S do
2: si ← 1− q

ti
// Compute the transfer value for i.

3: Choose ai/di ≈ si // Approximate si.
4: Let d′ ← lcm(di : i ∈ S) // Compute the common

denominator.
5: for every voter v ∈ {1, . . . , n} do
6: for every candidate i ∈ S do
7: W ′v,i ← ai

d′

di
⊗W ′v,i // Homomorphically multiply

the ith encrypted weight by the numerator of the
corresponding scaling factor.

8: for every candidate j /∈ S do
9: W ′v,j ← d′ ⊗W ′v,j // Homomorphically multiply

the jth encrypted weight by the common denomina-
tor of the scaling factors for the elected candidates.

10: Wv ←
⊕m

i=1W
′
v,i // Homomorphically sum the

encrypted weights for all candidates to get the new
encrypted weight for vote v (note that at most one will
be non-zero).

We assume we have a verifiable shuffle protocol that can
shuffle arbitrary encrypted tuples; given a table consisting of
encrypted values, the shuffle protocol outputs a new table
created from the original by rerandomizing the encrypted
values and randomly permuting the columns. We refer to this
operation as “shuffling table columns”.

F. Dealing with incomplete permutations

So far we have assumed that all votes are complete per-
mutations. However, some jurisdictions do allow voters to
stop before numbering all candidates. Following Heather [12],
we could add a “STOP” candidate who is never elected
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Protocol 1d Eliminate Candidate set C
Input: All ballots in candidate-order form (cf. Table I)

1: for every voter v ∈ {1, . . . , n} do
2: Convert v’s ballot to Candidate C elimination form (cf.

Table IV, Protocol 3).
3: for every candidate ` ∈ {1, . . . ,m} do
4: Pv,` ← Pv,` −

⊕`
i=1Xv,i // Homomorphically

update the preference list to eliminate the tagged
candidates (Xv,i = E(1) for all i ∈ C).

5: Convert v’s ballot to modified candidate-order form.
(cf. Table I, Protocol 4). // it’s modified because the
preference list is no longer a permutation.

6: Remove every candidate in C (and the corresponding
encrypted preference) from the ballot.

Protocol 2 Convert from Candidate-Order Ballot to First-
Preference Ballot

1: Encrypt the candidate row.
2: Shuffle the table columns.
3: Threshold decrypt the preference row.
4: Sort columns in preference order
5: Add a “Weights” row, such that Wv,1 ←Wv and ∀i > 1 :
Wv,i ← E(0).

6: Encrypt the preference row.
7: Shuffle the table columns.
8: Threshold decrypt the candidate row.
9: Sort the columns in candidate order.

Protocol 3 Convert from Candidate-Order Ballot to Candidate
C Elimination Ballot
Input: A ballot from voter v in candidate-order form (cf.

Table I)
1: Add an “elimination-tag” row to the candidate-order bal-

lot, so that the tag Xv,i is E(1) if i ∈ C, and otherwise
Xv,i is E(0). // Note that the encrypted tags can use
publicly known randomness.

2: Encrypt the candidate row.
3: Shuffle the table columns.
4: Threshold decrypt the preference row.
5: Sort the table columns by preference.
6: Encrypt the preference row.

Protocol 4 Convert from Candidate C Elimination Ballot to
(modified) Candidate-Order Ballot

1: Shuffle the table columns.
2: Threshold decrypt the Candidate row.
3: Sort the table columns by candidate.

or eliminated, then place this candidate as the explicit next
preference of every incomplete vote, and then pad out the rest
of the vote (for privacy reasons) with the other candidates
listed in some order. This effectively turns an incomplete
vote into a complete permutation for the sake of tallying.
This technique would work for Shuffle-Sum, with the obvious
modifications to ensure that the STOP candidate was not
elected or eliminated. We might also have to recompute the
quota as the total number of votes diminishes—the exact way
to do this varies from one STV jurisdiction to another, and
would be as easy (or difficult) to do here as in any other STV
setting, since we have a continuing tally of the total weight of
exhausted votes.

III. SOME VARIANTS

A. Faster eliminations: Table-Sum

The most expensive part of the scheme presented above
is candidate elimination, because it requires converting from
candidate-order form to candidate-elimination form and back
again, each conversion using a few shuffles. In this section
we present an alternative data structure which allows for very
efficient construction of the candidate-order ballot after each
elimination. The downside is that the initial data structure is
large, O(m2) rather O(m) in size. If almost all the candidates
have to be eliminated (as they often do in practice), then this
still takes less space and time in total for tallying. However,
the efficiency of provably placing these votes on the bulletin
board in the first place should be considered—depending on
the scheme for doing so, this optimisation may or may not be
an improvement overall.

One way of verifiably generating the right input, based on
Heather’s modifications to Prêt à Voter [12], is contained in
Appendix A. Perhaps there is some alternative based on public
checking of the input and encryption of paper ballots. This
is clearly inferior from a security perspective, but it would
be very simple to add on to the existing Australian electoral
processes without rolling out an end-to-end verifiable voting
scheme.

It remains crucial that all votes be valid and complete
permutations. However, a proof of this fact is a side-effect
of the conversion from candidate to preference order (or vice
versa).

Recall that m is the number of candidates. The Table-of-
comparisons ballot form consists of a weight W and an m×m
matrix V with each cell separately encrypted. The diagonal of
the matrix is unimportant and can be omitted. For non-diagonal
values (with i 6= j), the interpretation of the matrix is that

Vij =

{
E(−1) if candidate i is preferred to candidate j,
E(0) otherwise.

Candidates are eliminated by simply ignoring the corre-
sponding row and column. The Candidate-order ballot form
can be recovered efficiently by homomorphic addition (cf.
Protocol 5), because the preference that should be given to
candidate j is the sum over all continuing candidates i of Vij

(plus 1, so that preference counting starts from 1).
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Protocol 5 Convert from Table-of-comparisons ballot to
candidate-order ballot
Input: All ballots in Table-of-comparisons form

1: for every voter v ∈ {1, . . . , n} do
2: for every continuing candidate j ∈ {1, . . . ,m} do
3: Pv,j ← E(1) −

⊕
i6=j Vij // Homomorphically add

the column of comparisons to that candidate.

Protocol 6 Eliminate Candidate i using Table-of-comparisons
ballot
Input: All ballots in Table-of-comparisons and candidate-

order form (cf. Table I)
1: for every voter v ∈ {1, . . . , n} do
2: for every continuing candidate j ∈ {1, . . . ,m} do
3: Pv,j ← Pv,j ⊕ Vij // Homomorphically update the

preference list to eliminate candidate i.

This gives us a fast alternative to Protocol 1d, shown in
Protocol 6.

In this way, redistributions can be performed without re-
vealing which votes are being redistributed and without doing
any mixing. An example is shown in Figure III.1. (The values
are shown in cleartext but would be encrypted).

1) Performance comparison: A detailed evaluation of the
efficiency of the table-of-comparisons form is contained in
Appendix B. It allows faster tallying when almost all candi-
dates are elected or eliminated, but the inefficiencies of our
best-known input method outweigh those benefits.

2) Dealing with incomplete permutations in Table-Sum:
Again Heather’s “STOP” candidate idea works perfectly well
here. Indeed, we can even omit the STOP candidate’s row in
the table, because it is never elected or eliminated.

Fig. III.1: An example of a vote being redistributed. Can-
didates are numbered from 1 to 5. All values are encrypted.
Squares marked × are ignored. This vote represents a first
choice of candidate 3, then candidate 5, then 4, 1 and 2. We
show what happens when candidate 4 is eliminated. Note that
the two least-preferred candidates are moved up in the ranks,
while the first two preferences are unchanged. This process
can be repeated for all elected or eliminated candidates.

× -1 0 0 0
0 × 0 0 0

Vote V = -1 -1 × -1 -1
-1 -1 0 × 0
-1 -1 0 -1 ×

Candidate order ballot. (Sum columns and add 1.)
s = 4 5 1 3 2

Eliminate candidate 4. Update s by adding row 4.
Candidate order ballot:

s = 4⊕−1 5⊕−1 1⊕ 0 × 2⊕ 0

= 3 4 1 × 2

B. Hiding the running tallies
This section describes how the authorties can prove which

candidate deserves to be elected or eliminated at each step
without revealing any of the tallies, except for demonstrating
what the reweighting factor should be. This is considerably
more computationally expensive than simply revealing the
appropriate values, and in most circumstances it is proba-
bly unnecessary to hide this information. However, both the
running tallies and the precise one-off tallies can reveal the
absence of particular permutations, and hence provide an
opportunity for coercion. Before we describe how to hide this
information, we analyse the extent of the problem caused by
revealing it.

1) Examples of coercion based on limited information:
The following examples demonstrate that coercion is still
possible even when a lot of information is hidden, if the
coercer can still infer the absence of some permutations.
This justifies our (rather computationally intensive) approach
rather than the simpler alternatives mentioned above. In each
case, the extent of the problem depends on the situation—
there may be many environments in which the risks described
here are acceptable and the advantages of a simple protocol
overwhelming. The most important variable is the number of
candidates. The more candidates there are, the more effective
are the coercion strategies described here. Our motivating
example is the Australian federal Senate elections, which often
have more than 70 candidates in large states. There are usually
about 50 candidates who are very unlikely to get a seat, and
both the coercer and the voters know this, so the coercer can
use them to encode a voter’s identity. We call these unlikely
candidates.

a) Coercion when only the “important” preferences are
revealed: Recent comments on the Irish election [28] have
suggested revealing only those preferences that are actually
used. This does not solve the coercion problem, because in
multi-seat STV, many votes have many of their preferences
used. The coercer could ask the voter to put the coercer’s
favourite candidate ccoercer first, followed by some particular
permutation of unlikely candidates. If ccoercer wins a seat
(and presumably they have a good chance of doing so, or
coercing voters would be pointless) then the vote will be
redistributed to a series of candidates that have been or will
be eliminated. This means that most of the vote’s preferences
will be publicised. There are a very large number of possible
votes of this form (about 50!), so coercion is still a serious
problem.

In some jurisdictions, including Ireland, surpluses are re-
distributed by randomly sampling some of the votes for the
elected candidate. This makes this particular kind of coercion
less effective, but it is still vulnerable to a closely related kind:
the coercer demands that the voter put ccoercer after the list
of unlikely candidates. This is a riskier strategy, but still likely
to succeed even with many coerced voters (say about 1%). If
none of the unlikely candidates are elected, then the coerced
voter’s vote passes to ccoercer with full weight and has all
previous preferences revealed.

b) Coercion when partial tallies are revealed: Existing
schemes for the secure counting of preferential votes all reveal
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each candidate’s tally after each (re)distribution. This can
reveal the absence of a certain permutation: if the elimination
of candidate c1 does not increase the tally of candidate c2,
then the coercer can infer that there was no vote in which the
highest continuing candidate was c1 and the next was c2.

This form of coercion only works if there are are reasonable
number of hopeless candidates, that is, candidates which,
when eliminated, are unlikely to effect the tally of many
other candidates. In the last Australian federal election, 27
candidates for the Victorian Senate seats received fewer than
100 first-preference votes. When these were eliminated, it was
common for many of the other tallies to remain constant, even
after several candidates had been eliminated.

Let H be the number of hopeless candidates—we will
assume H > 20. Here are some examples of how a coercer
could make voters pass their preferences to candidate ccoercer:

1) Choose a hopeless candidate h for each coerced
voter, and ask them to cast a vote that starts with
(h, ccoercer, . . .). Then check, when h is eliminated,
whether the tally of ccoercer increases. This could catch
H voters with reasonable probability, if the hopeless
candidates are eliminated before ccoercer is elected.

2) Just like Example 1, but coerce 100 times as many
voters, randomly choose H − 1 of them to be checked
in the same way as Example 1 using H − 1 of the
hopeless candidates, and demand that the rest cast a
vote of (hH , ccoercer, . . .) (where hH is the hopeless
candidate who isn’t being used to check the other
voters). Compared to Example 1, this has the potential
to catch 100 times as many voters, each with 1/100 the
probability. But this approach is less effective if coerced
voters have the opportunity to collude and determine that
they have been told to start their ballots with the same
hopeless candidate.

3) Just like Example 1, but ask the voters to put the hope-
less candidate after ccoercer. This could catch H voters
with reasonable probability, if the hopeless candidates
are eliminated after ccoercer is elected.

4) Demand, from each coerced voter, a different pair
(c1, c2) of hopeless candidates, to be followed by
ccoercer. When c1 is eliminated, check that c2’s tally
increases. Based on empirical analysis of the last Aus-
tralian election, a coercer in a large state could coerce
about 1000 voters and check nearly half of them. (Of
course, the voter could deceive the coercer partially by
submitting a vote with the correct prefix of hopeless
candidates, but not following it with ccoercer.) Details
of this analysis are in Appendix C-A.

Obviously many of these ideas could be combined.
c) Coercion when one tally is revealed with too much

precision: Suppose we retain weights and tallies to many
decimal places, and reveal final tallies (the ones when a
candidate gets elected or eliminated) to many decimal places.
Suppose that a coercer wants a voter to vote for candidate c1
in first place, then candidate c2. Suppose that c1 is elected
first and their votes redistributed, then c2’s tally is published.
Suppose it happens to be an integer to 7 decimal places.
Depending on the transfer value for c1, this tally for c2 may

or may not reveal much useful information. For example, if
the transfer value was 1/2, then all the coercer can infer is
that an even number of voters passed their preferences from
c1 to c2. It is probably plausible that two did. However, for
other transfer values, the coercer can be quite confident that
no voter put c1 first and then c2. Extending the example, if
the transfer value is 1/p for some prime p, then c2’s tally
being an integer implies that the number of voters who put
c1 first and then c2 is a multiple of p. If p is large, the only
reasonably likely multiple could well be zero. Even if there is
some small probability that p or 2p voters did so, it is far more
likely that the voter disobeyed. A reasonable coercer could not
be expected to pay up after that.

The extent of this problem depends on the probability
distribution of all votes. Again the probabilities involved are
small, but not negligible, and could possibly be used to coerce
a small number of voters and discredit the election.10 See
Appendix C-B for detailed analysis. For a practical example,
in the 2004 Australian Federal election, in the state of Victoria,
15 candidates’ tallies did not increase when the first two
elected candidates’ votes were redistributed. Since the transfer
values were 0.67533384 and 0.60324735, this fact would have
been evident from their tallies alone, at least with some degree
of confidence, even if running tallies were not revealed.

2) How to hide running tallies: The idea behind this section
is very simple: to prove that a certain candidate deserves a
seat, the authority need only prove that that candidate’s total
is more than a quota; to prove that a candidate deserves to be
eliminated, they need only to prove that nobody has a quota
and that that candidate has the lowest tally.

To simplify the description, we consider only a single
authority; if we assume none of the authorities collude with
a coercer, we can construct an efficient multiple-authority
version by having the all the authorities learn the exact tally
and then letting one of them perform the proof. There are
several different ways for the (single) holder of a private key
to prove that an encrypted value lies in a certain range [29],
[30], [24].

We break ties deterministically, based on candidates’ index
number. Schemes based on randomised tiebreaking can easily
be accommodated by choosing a random tiebreaking order
before the beginning of tallying. Our main motivation is to
avoid revealing that there was a tie.11

The first and most complicated protocol is for proving that a
candidate deserves a seat. We have to prove that their tally is at
least a quota, and we also want to prove what the transfer value
should be without revealing any more precise information
about the tally. Suppose candidate cwin won an excess of x
votes over quota q. Then the candidate wins a seat and their
preferences should be redistributed after having their weights
multiplied by a factor of x/(x+ q). We wish to approximate

10 Again the random sampling method used in Ireland is not susceptible to
this particular problem.

11There are a variety of other common tie-breaking rules, which we do
not accommodate. The PRSA rules (common in Australia) specify that the
candidate who was most recently behind in the count gets eliminated. The
Electoral Reform Society (UK) rules specify the candidate who was behind
earliest in the count gets eliminated first.
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that factor as some integer a over d, rounding down. 12 In
Section II we allowed any way of (publicly) approximating
the transfer value; now we will assume that the parameter d
is set in advance, so the authorities have to prove only that
they have chosen a correctly. This is described in Protocol 7.
It proves that the tally is within the range of values for which
a/d is the correct rounded transfer value. The protocol makes
use of encrypted range proofs: these are zero-knowlege proofs
that convince a verifier that an encrypted value is in a certain
range. The proof protocols used depend on the encryption
scheme; efficient range proofs exist for many of the common
homomorphic encryption schemes (e.g., [30], [24]).

Protocol 7 Prove that candidate c’s tally is at least a quota
and what the transfer value should be.
Input: Tc, an encryption of the total first-preference vote for

c, and also quota q and denominator d.
1: Announce the correct value of a which is the largest

integer such that a/d ≤ x/(x+ q).
2: Prove using a range proof that

Decrypt((d− a)⊗ Tc) ≥ Decrypt(d⊗ E(q))

and

Decrypt((d− a− 1)⊗ Tc) < Decrypt(d⊗ E(q)).

The current tallies are contained in the encrypted tally
vector T, with Tj being an encryption of candidate j’s tally,
i.e. weighted total votes after reweighting and redistribution.
13 When L candidates have been elected and their votes
redistributed, all tallies are dL times the real tally (as in
a traditional paper-based count). Obviously this means that
the necessary quota is the real quota times dL. Recall that
n is the number of votes. The maximum tally at any point
is ndL, and the next power of 2 is 2dlog2(ndL)e, which we
denote by MaxTally(L). Whenever we require a proof that
some encrypted tally is nonnegative we use a range proof to
show that the value is in the range [0,MaxTally(L)]. 14

When no candidate deserves a seat, the authorities must
prove that no-one has a quota and then prove which candidate
has the smallest tally. First we show how to prove that a certain
candidate’s tally is less than a quota. The authority proves
that they do not have a quota, by subtracting that candidate’s
(encrypted) tally from a quota minus 1, then proving that the
resulting encrypted value is non-negative.

It then identifies the candidate cmin that should be elimi-
nated.

12We should round down since rounding up would increase the total value
of all votes and risk an extra candidate gaining a quota (i.e., electing more
candidates than we should).

13In some literature, the word “tally” means a sheet containing lots of
information; here, we use it only to mean one candidate’s current total.

14The parameters must be chosen so that MaxTally(L) is always less than
half the group size, otherwise this range proof is meaningless. The main
problem occurs with too many seats. The worst case in Australia is the NSW
Legislative Council election, with about 4 million voters and 21 seats. Then
with d = 1000 the maximum plaintext is ndseats−1 ≈ 4 ∗ 106 ∗ 100020 ≈
2221, which is well within range of 1024-bit Paillier (or Damgård-Jurik)
encryption, but may be too large for 160-bit EC El-Gamal.

Protocol 8 Prove that candidate c’s tally is less than a quota.
Input: Tc, an encryption of the total first-preference vote for

c. Also quota q. Recall that L is the number of candidates
elected before this step.

1: Prove in Zero Knowledge using a range proof that

Decrypt(E(q)	 E(1)	 Tc) ∈ [0,MaxTally(L)].

Recall that we refer to candidates by an index number, and
break ties by index number, so there are different facts to be
proved for the other candidates’ tallies, depending on whether
the other candidate has a higher or lower index number. For
each continuing candidate c with a higher index number than
cmin, the EC proves that c has a strictly higher tally. Similarly,
for each candidate with a lower index number than cmin, the
EC proves that its tally is greater than or equal to that of cmin.

Protocol 9 Prove that candidate cmin has the lowest tally.
Input: Tc, an encryption of the total first-preference vote for

c. Also quota q. Recall that L is the number of candidates
elected before this step.

1: for each continuing candidate c with a higher index
number than cmin do

2: Prove in Zero Knowledge using a range proof that

Decrypt(Tc 	 E(1)	 Tcmin) ∈ [0,MaxTally(L)].

3: for each continuing candidate c with a lower index number
than cmin do

4: Prove that

Decrypt(Tc 	 Tcmin) ∈ [0,MaxTally(L)].

We can now give the complete protocols for proving that
a certain candidate deserves to be eliminated or elected. An
important part of the protocol is proving that other candidates
do not have a quota. It suffices to prove this only for continuing
candidates who will win a seat but haven’t yet. At first
glance a similar proof seems necessary for candidates who
will not eventually win a seat, but it is not. If the candidate
is eliminated, then at that point they will be proven to have
the smallest tally, which must be less than a quota. If they
are not eliminated, they will remain at the conclusion of the
count when #seats quotas have been subtracted from the total.
Because of the careful definition of the quota, it is impossible
for them to have a quota at that point. Since tallies do not
decrease, either of these cases implies that the candidate could
never have had a quota. In practice this is a significant saving
because often the number of candidates is much greater than
the number of seats.

The first protocol, Protocol 10, is for proving which can-
didates deserve to be elected and with what transfer values.
This protocol should be considered as an alternative to step 5
in Protocol 1a.

The proof that a candidate deserves to be eliminated,
Protocol 11, consists of proving that no one has a quota, then
that cmin has the lowest tally. It should be considered as an
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Protocol 10 Election: Prove which candidates should be
elected and with what approximate transfer values.

1: For each continuing candidate c, let Tc be an encryption
of the total first-preference vote for c. Let q be the quota.
Recall that L is the number of candidates elected before
this step.

2: for all continuing candidates c with at least a quota do
3: prove using Protocol 7 that c has a quota and what the

appropriate transfer value approximation is.
4: for all candidates c′ who will eventually win a seat but

have not yet do
5: prove using Protocol 8 that c′ does not have a quota.

alternative to step 10 in Protocol 1a.

Protocol 11 Elimination: Prove that candidate cmin should
be eliminated.

1: For each continuing candidate c, let Tc be an encryption
of the total first-preference vote for c. Let q be the quota.
Recall that L is the number of candidates elected before
this step.

2: for all continuing candidates c′ who will eventually win
a seat but have not yet do

3: prove using Protocol 8 that c′ does not have a quota.
4: Prove, using Protocol 9, that cmin has the lowest tally.

3) Dealing with incomplete permutations while hiding tal-
lies: This is the only section in which the STOP candidate
modification doesn’t automatically work. If the quota is held
constant throughout the computation, then the proofs above are
still valid. However, many STV jurisdictions apply (often very
complex) rules for decreasing the quota as votes are exhausted.
In some of these cases, the proofs above may not suffice—
the details would depend on the exact rules being applied. It
would of course be possible for the authority to prove the total
weight of exhausted votes - this is just the total “vote” for the
STOP candidate.

IV. ANALYSIS

A. Security

Our main security claim is that the public transcript of the
Shuffle-Sum tally scheme is a non-interactive zero-knowledge
proof (in the random-oracle model) that the encrypted input
votes correspond to the published result (consisting of the
elected candidates, eliminated candidates, running tallies, and
transfer values).

Below, we sketch a proof of this claim. We consider
separately the soundness and zero-knowledge properties. Note
that both the claim and the proof-sketch apply to the Table-
Sum tally scheme as well.

a) Soundness: A proof system is said to be sound if
a verifier will not accept an incorrect claim with more than
negligible probability. In our case, the tally scheme is sound
if corrupt authorities cannot produce an “incorrect” result that
will pass verification with more than negligible probability

(incorrect means that the result does not match the encrypted
input votes).

The soundness of the tally scheme depends on the mixing
scheme used and the zero-knowledge proofs of decryption. If
the mixing scheme and decryption proofs are unconditionally
sound, the entire tally is also unconditionally sound. If they
are only computationally sound (i.e., sound only when the
prover is computationally bounded), the scheme is actually a
zero-knowledge argument rather than a proof.

We can consider, w.l.o.g, the case in which only a single,
corrupt, election authority is the prover. Note that the only
operations performed by the authority that cannot be repro-
duced directly from the public transcript are the decryptions
and shuffles: encryption of constant values, homomorphic ad-
ditions, and multiplications by a constant can all be performed
using publicly available information. Thus, for the announced
results to be incorrect, either the decryptions must be incorrect
(in which case the decryption proof’s soundness is broken),
or the mixing must be incorrect (in which case the mixing
scheme’s soundness is broken).

To see that these are the only possible cases, consider the
contrapositive: suppose all the decryptions are correct and all
the mixing is performed correctly. Since the rest of the actions
must be performed correctly (they are deterministic functions
of the public transcript), proving that the entire tally is correct
boils down to showing that the protocol is complete: that an
honest authority following the protocol will output the correct
tally. This can be done fairly easily by induction on the tally
rounds.

b) Zero-Knowledge: A proof of some claim is said to be
zero-knowledge if anything that can be learned from looking
at a transcript of the proof can be learned just from the
correctness of the claim. More formally, to show the protocol
for tally scheme is zero-knowledge, we must prove there exists
an efficient simulator that, given only the encrypted input votes
and the final results, can output a transcript that is computa-
tionally indistinguishable from a real transcript with the same
results. Note that our tally schemes are computational zero-
knowledge proofs: the zero-knowledge property only holds
when the verifier is computationally bounded. This restriction
is reasonable in our case, since an unbounded verifier could
completely violate voter privacy by breaking the encryption
on the original ballots.

The tally protocol simulator, S, works by using the sim-
ulators for the the mixing scheme and decryption proofs
as subroutines: these sub-protocols are also zero-knowledge,
hence must have their own simulators. The simulator for
the decryption proof, given any ciphertext e and plaintext p,
produces a transcript “proving” that p is a valid decryption of e
(without actually knowing the decryption of e). This transcript
is indistinguishable from that produced by a real prover,
assuming the encryption scheme is semantically secure. In the
same way, the simulator for the mixing scheme is given as
input any two sets of ciphertexts, and produces a transcript
“proving” one of the sets is a permutation of re-encryptions
of the other.

The only decryption operations used in the tally protocols
are decrypting an entire ballot’s preference row, decrypting
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a ballot’s candidate row, and decrypting the first-preference
tallies. Since each of the shuffles uses an independent, random
permutation, the results of decrypting the preference or can-
didate row is always a random permutation of known values.
Thus S can simulate the transcript by choosing random per-
mutations itself, running the simulator for the mixing scheme
to generate a fake shuffle proof, then running the simulator
for the decryption proof to reveal the pre-chosen permutation.
When the protocol calls for decrypting first-preference tallies,
S uses the corresponding real first-preference tally from the
results as input to the decryption simulator. From the zero-
knowledge properties of the mixing and decryption proofs and
the semantic security of the encryption scheme, the resulting
transcript must be indistinguishable from a real transcript with
the same encrypted input votes and results.

B. Computational requirements

We implemented the Table-Sum scheme (in the single-
authority version), with the tally-hiding from Section III, using
both standard and Elliptic Curve El Gamal. We then tested it
on a subset of the votes from the last Victorian State election.15

The Elliptic Curve version would be quite reasonable for
verifying the whole of that election — extrapolating from
our results, it would take a standard home computer about
10,000 hours to compute and produce a transcript of size
about 400GB. Since the tally is highly parallelisable, the
time is inversely proportional to the speed and number of
processors performing the tally; five quad-core servers could
perform the same computation in about 500 hours (this is
acceptable for Australia because the data entry already takes
weeks). Furthermore, verifying is also highly parallelisable
(in particular, individual voters could download only a small
part of the transcript — for example the votes for their own
polling place — and verify that these ballots were all handled
correctly).

Verifying an Australian federal election would require con-
siderably more resources, because there are up to three times
as many candidates and ten times as many voters, but would be
quite feasible if a large number of computers were committed
to the task.

V. APPLICATION TO THE HOSPITALS AND RESIDENTS
PROBLEM

In the United States, hospitals and candidate residents
are matched annually by application of a stable matching
algorithm. Each of the H hospitals provides a preferentially-
ordered list of residents, and each of the R candidate residents
provides a preferentially-ordered list of hospitals. Each resi-
dent will be assigned to one hospital, and each hospital has
a quota of residents’ places to be filled. An assignment is a
function from residents to hospitals that sends each hospital the
correct quota. (We are assuming that the sum of the quotas is
equal to the number of residents.) The important correctness
property of an assignment is stability, which means that no

15The Victorian state elections have about 3 million voters divided into 8
regions, each of which elects 5 candidates. We used a 1.4GHz Pentium M
with 512MB DDR.

hospital can improve its situation by employing a resident
who was assigned elsewhere but would prefer to have been
assigned there.

Definition 1. An assignment A is stable if for all residents r,
for all hospitals h that r preferred to A(r), h employed only
residents they preferred to r.

We will assume that the hospitals’ lists are public (partly
because this is good for transparency in many applications, and
partly because our encrypted data structure is infeasible if we
assume there are hundreds of items to be listed). However,
there are good reasons to keep the residents’ preferences
secret, because residents may be unwilling to let their future
employers learn that they were not their first choice. Indeed,
residents may even lie about their preferences if they believe
they will be publicised. Hence we will use the same table-of-
comparisons data structure for residents’ preferences that we
used in section III-A for votes (omitting the weights), and say
that for i 6= j,

Decrypt(Vij) =

{
−1 if hospital i is preferred to hospital j,
0 otherwise.

Now consider how the administrators can prove, without
revealing any residents’ preferences, that their assignment is
stable. They can simply prove, for each resident, that the
assignment satisfies the condition given above. Since the
hospitals’ lists are public, it will be immediately obvious that
some hospitals employed only residents they preferred to r.
Let H ′ be the other hospitals, i.e. those (other than A(r)) that
employed residents they liked less than r. Then it suffices to
show that for all h ∈ H ′, r preferred A(r) to h. This can
be done with |H ′| (public) homomorphic additions and one
(proven-correct) decryption: the administrator simply proves
that ⊕

h ∈ H ′
VhA(r) = 0

(where V is resident r’s vote, i.e. list of preferences).
Our solution is much simpler and more efficient than pre-

vious work on private stable matching [31], [32], [33], for the
simple reason that we have addressed a much easier problem
by allowing one side’s preferences to be public. Obviously
this is not appropriate for all applications of private stable
matching. However, in the particular example of real hospitals
and residents there is a strong argument for transparency of
hospitals’ preferences, to show that they make their employ-
ment selections fairly.

VI. CONCLUSION AND FURTHER WORK

This paper presents a way of tallying votes for multi-
seat STV that protects voters against coercion if reasonable
assumptions are made about the other voters’ behaviour. It is
intended to be added on as the final stage of an electronic
voting scheme, though it could also be used after some other
(paper-based) method of achieving an agreed-upon list of
encrypted votes.

Although the scheme is specifically intended for Australian
elections, it could also be appropriate for any electorate that
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uses STV with a reasonably small number of seats at a
time (about a dozen at most). This includes Ireland, Malta,
Scotland, Cambridge MA and a few others. The scheme would
also work for single-seat STV, also called preferential voting
and instant runoff voting. This is much more common than
multi-seat STV, being used in Papua New Guinea, Fiji, and
some local jurisdictions in the USA and the UK (including
electing the mayor of London). The coercion problem we
address here is caused by having a large number of candidates,
which might happen even when electing only one person. The
scheme could be considerably simplified for this case, because
the complicated re-weighting step could be removed.
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APPENDIX A
VOTE INPUT

Our counting method was not designed with a specific
front-end e-voting system in mind. All that we require is
that the votes be printed on the bulletin board in the format
we use, in such a way that everyone believes the set of
published votes matches the set cast in the election, and votes
remain encrypted. Heather [12] describes one appropriate way
to produce preference-order ballots, based on Prêt à Voter.
These could be converted to candidate-order ballots using a
(very slight) variant of Protocol 4, and could then be used
immediately as input to Protocol 1a.

The rest of this section shows how to produce instead the
table-of-comparisons ballot form from section III. We take the
ballot construction from the point at which every vote is in
prefence-order form. Unlike [12], we do not allow incomplete
permutations in the input phase. The algorithm is given in
Protocol 12:

For example, suppose we have the (preference-order) ballot
with encrypted unknown candidate names:

http://www.brics.dk/DS/03/9/index.html
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Protocol 12 Construct table-of-comparisons ballot form
Input: A ballot in preference-order form (cf. Table II)

1: for every pair of (encrypted) candidate numbers
E(σ−1

v (i)), E(σ−1
v (j))) with i < j in the ballot do

2: Construct tuples (E(−1), E(σ−1
v (i)), E(σ−1

v (j))) and
(E(0), E(σ−1

v (j)), E(σ−1
v (i))). // This is a public

computation, i.e. can be done without the secret key.
3: Shuffle the tuples.
4: Threshold-decrypt the 2nd and 3rd elements of each tuple.

5: Place the (encrypted) first element of each tuple into the
row and column indicated by the 2nd and 3rd elements.
// This is a public operation.

[E(c3), E(c1), E(c4), E(c2)]. Then it is a public operation to
produce the triples:
(EZR(−1), E(c3), E(c1)) (EZR(−1), E(c3), E(c4))
(EZR(−1), E(c3), E(c2)) (EZR(−1), E(c1), E(c4))
(EZR(−1), E(c1), E(c2)) (EZR(−1), E(c4), E(c2))
(EZR(0), E(c1), E(c3)) (EZR(0), E(c4), E(c3))
(EZR(0), E(c2), E(c3)) (EZR(0), E(c4), E(c1))
(EZR(0), E(c2), E(c1)) (EZR(0), E(c2), E(c4))
These are then mixed (within each vote) and the candidate
names decrypted. Producing the table-of-comparisons ballot is
then a simple, public matter of placing the correct encryption
in the correct candidates’ row and column.

This construction preserves the security assumptions that
were made in the body of the paper: the trustees can decrypt
each vote if more than the threshold collude, but do not learn
which vote corresponds to which voter (unless the mix servers
all collude too). They otherwise do not learn any information
about the contents of any votes.

The following section compares the efficiency of the alter-
native data structures.

APPENDIX B
EVALUATING THE EFFICIENCY OF THE VARIANTS FROM

SECTION III

In this section we evaluate the efficiency of the table-of-
comparisons data structure from Section III. It has a greater
setup cost (in both time and space) but allows for the tallying
algorithm to run much more efficiently, particularly candidate
eliminations. Overall, it is still less efficient than the original
form of the protocol, although they are similar when almost all
candidates are elected or eliminated. In practice this is often,
but not always, the case.

The most important complexity measure is the size of
the data that must be downloaded from the bulletin board—
it makes a huge difference whether a verifier is expected
to download 1Gb or 100Gb. The time complexity is also
important. However, both the generation and the verification
of the proofs are highly parallelisable. Partial verification is
also possible, in which a verifier could choose some fraction
of the proofs to check. Hence we concentrate on the size of
the bulletin board data.

With either variant, the only operations that actually take
space on the bulletin board are shuffles and threshold decryp-
tions, as these are the ones that must be done by the authorities
(and hence require proof to be output). Other operations, such
as sorting columns, performing homomorphic additions, etc.
can be performed by anyone during verification and do not
have to be explicitly written on the bulletin board.

A. The Complexity of the Protocol

Let there be n votes, m candidates, t mixes and r rounds
of tallying. Let s(k,m, t) be the size of the proofs provided
by t servers of shuffling m k-tuples, preserving the order of
plaintexts within each tuple.

1) Complexity of the Tallying Step: This assumes we
already have n Candidate-order ballots and n Table-of-
comparisons ballots and compares the space complexity of
the two tallying algorithms. We have:

• r rounds of tallying, common to both approaches: r×
Protocol 1b, with µ, the number of continuing candidates,
running from m to m− r + 1.

– Protocol 1b is: n× Protocol 2 plus µ threshold
decryptions

– Protocol 2 is: s(2, µ, t) plus s(3, µ, t) plus 2µ thresh-
old decryptions

• r rounds of ‘elimination’: without the table-of-
comparisons structure, this means r× Protocol 1d, again
with µ running from m to m− r + 1.

– Protocol 1d is: n× Protocol 3 plus n× Protocol 4.
– Protocol 3 is: s(3, µ, t) plus µ threshold decryptions.
– Protocol 4 is: s(3, µ, t) plus µ threshold decryptions.

• r rounds of ‘elimination’: with the table-of-comparisons
structure, this means r× Protocol 6.

– Protocol 6 is: 0 shuffles plus 0 threshold decryptions.
The “Tally” column of Table V gives the totals.
For many useful shuffle proofs, including the Neff and Groth

shuffle protocols [34], [25], as well as Randomised Partial
Checking [26], s(k, n, t) = αnkt for some constant α. Table
VI summarizes the results if we let s(k,m, t) = αmkt (i.e.
assume the complexity is linear) and r = m (i.e. assume
almost all candidates are elected or eliminated).

This shows that the total space used by the tallying proofs
when all candidates are elected or eliminated is approximately
halved by using the table-of-comparisons data structure. Un-
fortunately, the setup cost is likely to be higher than the saving,
as shown in the next section.

2) Complexity of the Vote Input Step: Since our scheme is
designed without a particular front end in mind, this section is
only approximate, based upon the example vote input method
given in Appendix A. The setup costs are summarized in
Tables V (for the general case) and VI (after setting reasonable
parameters). The details follow:

We begin at the stage when each vote is a list of encrypted
candidate names in preference order, i.e. a Preference-order
ballot form (Table II), without the weight or the cleartext
preference numbers.
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TABLE V: Efficiency in the general case. (S: Standard Shuffle-Sum; T: Table-of-comparisons)

Tally Setup
shuffle size # decryptions shuffle size # decryptions

S
Pm−r+1
µ=m n(s(2, µ, t) + 3s(3, µ, t)) (4n+ 1)r(2m− r + 1)/2 ns(2,m, t) mn

T
Pm−r+1
µ=m n(s(2, µ, t) + s(3, µ, t)) (2n+ 1)r(2m− r + 1)/2 ns(3,m2 −m, t) 2nm(m− 1)

TABLE VI: Efficiency when s(k,m, t) = αmkt, r = m (S: Standard Shuffle-Sum; T: Table-of-comparisons).

Tally Setup Total
shuffle size # decryptions shuffle size # decryptions shuffle size # decryptions

S 11ntαm(m+ 1)/2 (4n+ 1)m(m+ 1)/2 2αnmt nm (11m+ 15)αnmt/2 2m2n+ 3mn+m2/2 +m/2
T 5ntαm(m+ 1)/2 (2n+ 1)m(m+ 1)/2 3(m− 1)αnmt 2nm(m− 1) (11m− 1)αnmt/2 3m2n−mn+m2/2 +m/2

a) Cost of Producing Candidate-order Ballots: From
a preference-order ballot, we can produce a candidate-order
ballot by encrypting the preference row, performing a shuffle
of cost s(2,m, t), then decrypting the candidate row (using m
threshold decryptions). Hence the cost is ns(2,m, t) cipher-
texts plus mn decryptions.

b) Cost of Producing Table-of-comparisons Ballots: We
calculate the cost of Protocol 12 from Appendix A. The shuffle
proof has size ns(3,m2 −m, t). This is followed by another
2nm(m− 1) threshold decryptions (of candidate names).

B. Conclusions

The calculations above measure space complexity of the
data that would be written on the bulletin board, counting
the space taken by shuffles and the number of threshold
decryptions. The bottom line is that using candidate-order
ballots alone is more efficient. However it is possible that,
for some methods of vote input, for elections with roughly
as many rounds as candidates, it might be worthwhile to
introduce the table-of-comparisons ballot data structure.

APPENDIX C
ANALYSIS OF COERCION STRATEGIES

A. Coercion when partial tallies are revealed (Section III-B1b)

Suppose there are about H candidates who all receive a very
small number of first-preference votes. Call them hopeless
candidates. For simplicity, we begin by assuming that these
candidates receive no votes other than the ones influenced
by the coercer. We then argue that this assumption can be
removed. The coercer will watch the partial tallies announced
during the count to check whether the coerced voters have
obeyed or not. This is a very beneficial form of coercion
because all these votes are very likely to be passed to ccoercer
fairly early in the tallying and with weight 1.

Consider the predicament of a voter v asked to choose the
sequence c1, c2, ccoercer, . . . , (and then allowed to follow
it with anything). She knows that, with high probability,
candidates c1 and c2. Suppose she disregards the coercer’s
demands entirely and instead votes for some other candidate.
Then she will be detected if, at any point in the eliminations,
a tally that was supposed to increase instead remains constant.
If candidates c1 and c2 are eliminated in order (not necessarily

consecutively), then both of those eliminations gives the
coercer a chance to check for v’s vote. For example, if c1
has already been eliminated then when c2 is eliminated, the
coercer can check to see that ccoercer’s tally increases.

Now for the argument that it really isn’t necessary to assume
that only coerced voters vote for hopeless candidates. All we
really need to assume is that (coerced voters believe that) a
reasonable number of eliminations will not cause ccoercer’s
tally to increase. Based on available data (from the Australian
Senate) this assumption seems reasonable. We analysed this
empirically for the last federal Australian election, in the
state of Victoria. If the coercer chose the 33 candidates who
received the lowest first-preference vote and gave each of
33 × 32 = 1056 coerced voters one pair of these candidates,
then they could have checked 441 of them. Furthermore,
the coercer could make it more plausible by fielding some
colluding candidates who agreed not to campaign at all. They
would probably still get some extra votes, but not very many.
This would cost a bond (which is $AU500 in Australia) per
candidate, probably a small expenditure for an organisation
seriously trying to steal an election.

Of course, the voter could deceive the coercer only par-
tially, submitting a vote with the correct prefix of hopeless
candidates, but not following it with ccoercer. Although this
would not satisfy our definition of avoiding coercion, the voter
could still affect the election outcome in almost any way they
wished. The interesting social/psychological question of how
many voters would understand STV well enough to realise
they could do this is beyond the scope of this paper. (But note
that at least 5% can’t even manage to write a list of consecutive
numbers.)

B. Coercion when one tally is revealed with too much preci-
sion (Section III-B1c)

This section analyses the extent of the problem described in
Section III-B1c, where tallies are revealed to too many decimal
places. Recall that the setup involved a coercer who wants a
voter to vote for candidate 1 in first place, then candidate
2. Candidate 1 is elected first and their votes redistributed,
then candidate 2’s tally is published. Suppose it happens
to be an integer to many decimal places, enough that the
coercer is confident it truly is an integer. Remember that the
transfer value for candidate 1 is public, being computed as
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1−q/Tc1. Let n12 be the number of voters who put candidate
1 first and candidate 2 later (with no continuing candidates
between).Then the coercer can infer that n12 is a multiple of
N = Tc1/ gcd(Tc1 − q, Tc1) = Tc1/ gcd(q, Tc1).

As already discussed, this only causes a problem if N is
fairly large, at least a few hundred—the exact value depends
on the coercer’s suspicion threshold and their probability
distribution on other votes. On the other hand this is actually
quite a probable scenario. Write q as pa1

1 p
a2
2 , . . . , p

ak

k with
p1 > p2 > . . . > pk all prime. Very often gcd(q, Tc1) will be
small.

For example the proportion of Tc1 in the range, say [q, 2q−
1], such that gcd(q, Tc1) ≤ p1 is at least

ϕ(q) + ϕ(q/p1) + . . .+ ϕ(q/pk)
q

=

(1− 1
p1

) . . . (1− 1
pk

)(1 +
1

(p1 − i1)
+ . . .+

1
(pk − ik)

)

where ik is an indicator variable of whether ai = 1 or not.
For comparison, in the worst case that Q = 22.32.5.7.11.13

(for q < 106) the proportion 0.68. (The approximation above
gives 0.46). Thus typically there will be a substantial propor-
tion of Tc1, for which n12 must be a multiple of N ≥ Tc1

p1
.

Of course, neither q nor Tc1 is really a randomly distributed
variable, so this calculation gives only a rough lower bound on
the extent of the problem. It is large enough to be considered
seriously. (Another approximation can be obtained from the
well-known result that the probability of two randomly chosen
numbers being coprime is (6/π2) ≈ 60%)
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