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Abstract

We consider the problem of partitioning n integers into two subsets of given cardi-
nalities such that the discrepancy, the absolute value of the difference of their sums,
is minimized. The integers are i.i.d. random variables chosen uniformly from the set
{1, . . . ,M}. We study how the typical behavior of the optimal partition depends on
n,M and the bias s, the difference between the cardinalities of the two subsets in the
partition. In particular, we rigorously establish this typical behavior as a function of
the two parameters κ := n−1 log2M and b := |s|/n by proving the existence of three
distinct “phases” in the κb-plane, characterized by the value of the discrepancy and
the number of optimal solutions: a “perfect phase” with exponentially many opti-
mal solutions with discrepancy 0 or 1; a “hard phase” with minimal discrepancy
of order Me−Θ(n); and a “sorted phase” with an unique optimal partition of order
Mn, obtained by putting the (s+ n)/2 smallest integers in one subset.

1 Introduction

Phase transitions in random combinatorial problems have been the subject
of much recent attention. The random optimum partitioning problem is the
only NP-hard problem for which the existence of a sharp phase transition has
been rigorously established, as have many detailed properties of the transition
([2], see [3] for a short overview). Here we study a constrained version of the
random optimum partitioning problem, and extend some of the results of [2]
to that case. Complete proofs of the results announced here will be given in
[1].

The integer optimum partitioning problem is a classic problem of combina-
torial optimization in which a given set of n integers is partitioned into two
subsets in order to minimize the absolute value of the difference between the
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sum of the integers in the two subsets, the so-called discrepancy. Notice that
for any given set of integers, the discrepancies of all partitions have the same
parity, namely that of the sum of the n integers. We call a partition perfect
if its discrepancy is 0, when this sum is even, or 1, when this sum is odd.
The decision question is whether there exists a perfect partition. In the uni-
formly random version, an instance is a given a set of n i.i.d. integers drawn
uniformly at random from {1, 2, . . . ,M}. We will sometimes use the notation
m = log2M ; notice that each of the random integers has m binary bits. Pre-
vious work had established a sharp transition as a function of the parameter
κ := m/n, characterized by a dramatic change in the probability of a perfect
partition. For M and n tending to infinity in the limiting ratio κ = m/n, the
probability of a perfect partition tends to 0 for κ < 1, while the probability
tends to 1 for κ > 1. This result was suggested by the work of one of the
authors [13] and proved in a paper by the three other authors [2]. See [9] for a
beautiful introduction to the optimum partitioning phase transition and some
of its properties.

Here we consider a constrained variant of the problem in which we require that
the two subsets have given cardinalities; we say that the difference of the two
cardinalities is the bias, s, of the partition. We establish the phase diagram of
the random constrained integer partitioning problem as a function of the two
parameters κ := m/n and b := |s|/n. In the language of statistical physics, b
would be called the magnetization, and the problem considered here, where b is
constrained to assume a particular value, would be called the “microcanonical”
integer partitioning problem. Microcanonical random problems are known to
be much more difficult than their unconstrained analogues.

There has been a good deal of rigorous and nonrigorous work on the random
optimum partitioning problem in the theoretical computer science ([10], [4],
[11], [12]), artificial intelligence ([8]), theoretical physics ([7]; [5], [6], [13], [14])
and mathematics ([3], [2]) communities. For our purposes here, the most rel-
evant work is the rigorous analysis by three of the authors of this paper ([3],
[2]), motivated by the theoretical statistical physics arguments by the other
author of this paper [13]. Among other things, they established the existence of
a transition at κc = 1 below which the probability of a perfect partition tends
to one with n andm, and above which it tends to zero, and also gave the finite-
size scaling window of the transition: namely, in terms of the more detailed
parametrization m = κn with κn = 1− log2 n/(2n)+λn/n, the probability of a
perfect partition tends to 1, 0, or a computable λ-dependent constant strictly
between 0 and 1, depending on whether λn tends to −∞,∞, or λ ∈ (−∞,∞),
respectively. The analysis also determined the distribution of the number of
perfect partitions, the distribution of the minimum discrepancy, and the joint
distribution of the k smallest discrepancies, which give the entropy, the ground
state energy and the bottom of the energy spectrum, respectively.
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The location of the phase transition for the unconstrained problem immedi-
ately yields a one-dimensional phase diagram as a function of κ: For κ ∈ (0, κc)
with κc = 1, the system is in a “perfect phase” in which the probability of
a perfect partition tends to 1 as M and n tend to infinity in the fixed func-
tion κ. For κ ∈ (κc,∞), the probability of a perfect partition tends to 0, and
moreover, there is an unique optimal partition. We call this the “hard phase,”
since for κ > κc, it is presumably computationally difficult to find the optimal
partition.

In this work, we consider the constrained optimum partitioning problem with
bias s, as first proposed in [5], and extend the phase diagram to the two-
dimensional κb-plane. See Figure 1. In addition to the extensions of the perfect
and hard phases, we establish the existence of a new phase which we call the
“sorted phase.”
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Fig. 1. Phase diagram of the constrained integer partitioning problem.

The sorted phase is easy to understand. One way to meet the bias constraint
is to take the (s + n)/2 smallest integers and put them in one subset of the
partition. 1 It is not difficult to see that the resulting “sorted partition” is
optimal if the total weight of this subset is at least half of the sum of all n
integers. We define the sorted phase as the subset of the κb-plane where the
sorted partition is optimal. We prove that the sorted phase is given by the
condition

b > bc :=
√
2− 1, (1.1)

see region III in Figure 1. Moreover, we show that the minimal discrepancy in
this phase is of the order Mn. The region b >

√
2− 1 is precisely where Fer-

reira and Fontanari [5] observed that the corresponding statistical mechanical
problem becomes “self-averaging.”

1 Note that the task of finding this partition is even easier than the task of sorting
the n integers, which would take, on average, θ(n logn) comparisons. Instead, the
(s+ n)/2 smallest integers can be found in strictly linear time in n.
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Our analysis of the perfect and hard phases for b < bc is much more difficult. In
this region, we use integral representations for the number of partitions with
a given discrepancy and bias; these representations generalize those used in
[2]. The asymptotic analysis of the resulting two-dimensional random integrals
leads to saddle point equations for a saddle point described in terms two real
parameters η and ζ. For discrepancies of order o(M) (including, in particular,
the case of perfect partitions), the saddle point equations determining ζ and
η are:

1
∫

0

x tanh(ζx+ η) dx = 0,

1
∫

0

tanh(ζx+ η) dx = −b. (1.2)

The solution (ζ, η) of these equations can be used to define the two convex
curves in Figure 1. To this end, let 2

L(ζ, η) := bη +

1
∫

0

log(2 cosh(ζx+ η)) dx (1.3)

ρ(ζ, η) := 1− tanh(ζ + η)− tanh(η)
2ζ

. (1.4)

For (ζ, η) a solution of (1.2), we then define

κ−(b) := − log2 ρ(ζ, η), κc(b) :=
1
log 2

L(ζ, η). (1.5)

From bottom to top, the two convex curves joining (0, bc) and (1, 0) in Figure
1 are then given by κ = κ−(b) and κ = κc(b).

Our results prove that, in the region κ < κ−(b), with probability tending to
one as n tends to infinity (or, more succinctly, with high probability, w.h.p.)
there exist perfect partitions; see region I in Figure 1. Moreover the number
of perfect partitions is about 2(κc−κ)n in this “perfect phase.” We also prove
that w.h.p. there are no perfect partitions in the region b < bc and κ > κc(b).
As in the unconstrained problem, we call this the “hard phase.” Our results
leave open the question of what happens in the narrow region κ− < κ < κc,
and also whether the optimal partition is unique in the hard phase.

We are also able to prove that these phase transitions correspond to qualitative
changes in the solution space of the associated linear programming problem
(LPP). In the actual optimum partitioning problem, each integer is put in one
subset or the other. The relaxed version is defined by allowing any fraction of
each integer to be put in either of the two partitions. Using our theorems on the
typical behavior of integer partitioning problem and some general properties
of the LPP, we show the following. In the sorted phase, i.e. for b > bc =

√
2−1,

w.h.p. the LPP has a unique solution given by the sorted partition itself. For

2 It turns out the solutions of the saddle point equations 1.2 are just the stationary
points of the function L(ζ, η)
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b < bc, i.e. in the perfect and hard phases, w.h.p. the relaxed minimum discrep-
ancy is zero, and the total number of optimal basis solutions is exponentially
large, of order 2kc(b)n+Op(n1/2). Finally, in the perfect and hard phases, we con-
sider the fraction of these basis solutions whose integer-valued components
form an optimal integer partition of the subproblem with the corresponding
subset of the weights. We show that this fraction is exponentially small. More-
over, except for the crescent-shaped region between κ = κ−(b) and κ = κc(b),
we show that the fraction is strictly exponentially smaller in the hard phase
than in the perfect phase. This fraction thus represents some measure of the
algorithmic difficulty of the problem..

The outline of the paper is as follows. In the next section, we define the
problem in detail, and precisely state our main results. In Section 3, we intro-
duce our integral representation and show how it leads to the relevant saddle
point equations. We also give a brief heuristic derivation of some of the phase
boundaries. The complete proofs are quite involved, and are presented in the
full paper version [1] of this extended abstract.

2 Statement of Main Results

Let X1, . . . , Xn be n independent copies of a generic random variable which is
distributed uniformly on {1, . . . ,M}. We are interested in the case when M
grows exponentially with n, and define κ as the exponential rate, i.e.

κ = n−1 log2M. (2.1)

To avoid trivial counterexamples, we will always assume that κ stay bounded
away from both 0 and ∞ as n → ∞. We will use P and E, with or without
subindex n, to denote the probability measure and the expectation induced
by X = (X1, . . . , Xn).

A partition of integers into two disjoint subsets is coded by an n-long binary
sequence σ = (σ1, . . . , σn), σj ∈ {−1, 1}; so the subsets are {j : σj = 1} and
{j : σj = −1}. Obviously σ and −σ are the codes of the same partition.
Given a partition σ, we define its discrepancy (or energy), d(X,σ), and bias
(or magnetization), s(σ), as

d(X,σ) =|σ ·X|, with σ ·X =
n
∑

j=1

σjXj, (2.2)

s(σ) =σ · e = |{j : σj = 1}| − |{j : σj = −1}|. (2.3)

Here e is the vector (1, . . . , 1). Clearly s(σ) is an integer in {−n, . . . , n}, so
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let s ∈ {−n, . . . , n} and define the bias density

b = |s|/n (2.4)

so that b ∈ [0, 1]. Note that by symmetry it suffices to consider s(σ) ∈
{0, . . . , n}, so we will often take a non-negative integer s ∈ {0, . . . , n}, in
which case s = bn. We define an optimum partition as a partition σ that
minimizes the discrepancy d(X,σ) among all the partitions with bias equal
to s, and a perfect partition as a partition σ with |d(X,σ)| ≤ 1.

Theorems B, C and D below describe our main results on the phases labelled I,
II, and III in Figure 1 in the introduction. In the statement of these theorems
we will use the parameters ζ, η, κc(b) and κ−(b) defined in (1.2) – (1.5). Before
getting to principal results, we must begin with an existence statement for the
parameters ζ, η.

Theorem A Let b < bc, where bc =
√
2− 1. Then the saddle point equations

(1.2) have a unique solution (ζ, η) = (ζ(b), η(b)).

Let
Zn(`, s) = Zn(`, s;X) (2.5)

denote the random number of partitions σ with σ ·X = ` and σ ·e = s. Since
s(σ) has the same parity as n, and d(X,σ) has the same parity as

∑n
j=1Xj,

we will only consider values of s which have the same parity as n, and values
of ` which have the same parity as

∑n
j=1Xj. In the theorems below, we will

not state these restrictions explicitly.

Our central goal is to use the saddle point solution in order to bound the
Zn(`, s) for various given values of ` and s. To formulate our results in a
compact, yet unambiguous form, we use a shorthand an < a (an > a, resp.)
instead of lim sup an < a (lim inf an > a, resp.), even when the n-dependence
of an is only implicit, as in κ = n−1 log2M and b = |s/n|. We will also use the
notation fn = Op(gn) and fn = op(hn) if fn/gn is bounded in probability and
fn/hn goes to zero in probability, respectively. Also, as is customary, we will
say that an event happens with high probability (w.h.p.) if the probability of
this event approaches 1 as n→∞. In all our statements n, M , s and ` will be
integers with n ≥ 1, M ≥ 1 and s ≥ 0. Our main results in the perfect phase
are summarized in the next theorem and remark.

Theorem B Let ` = o(Mn1/2), b < bc and κ < κ−(b). Then w.h.p. Zn(`, s) ≥
1 and

Zn(`, s) = 2
[κc(b)−κ]neSnn

1/2+o(n1/2), (2.6)

where Sn converges in probability to a Gaussian with mean zero and variance
σ2 = Var(log(2 cosh(ζU + η))), with U uniformly distributed on [0, 1]. Conse-
quently, w.h.p., there exist exponentially many perfect partitions, with ` = 0 if
∑

j Xj is even, and |`| = 1 if
∑

j Xj is odd.
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Remark 2.1 Under the conditions of Theorem B, we actually prove a much
more accurate estimate. Namely, we show that there are 2×2 positive definite
matrices R and K with deterministic entries, and a constant q < 1 such that,
with probability 1−O(qlog

2 n),

Zn(`, s) = exp



ζ
`

M
+ ηs+

n
∑

j=1

log(2 cosh(ζXj/M + η))





× exp(−
1
4
τ nR

−1
τ

′
n)

πMn
√
det R

(1 + o(1)). (2.7)

Here τ n is a two-dimensional random vector which converges in probability to
a Gaussian vector τ with zero mean and covariance matrix K. See Section 5
of the full paper [1].

The above expression for Zn(`, s) is much more complicated than its analogue
in the unconstrained case, see equation (2.6) in [2]. Both the sum in the first
exponent and the entire second exponent represent fluctuations which were
not present in the unconstrained case, and which make the analysis of the
perfect phase much more difficult here.

Our next theorem, which describes our main results on the hard phase, has two
parts: The first shows that there are no perfect partitions above κ = κc(b), and
the second gives a bound on the number of optimum partition for κ > κ−. To
state the theorem, let dopt = dopt(n; s) denote the discrepancy of the optimal
partition, and let Zopt = Zopt(n; s) denote the number of optimal partitions.

Theorem C Let b < bc.

a) If κ > κc(b), then there exists a δ > 0 such that with probability 1 −
O(e−δ log2 n) there are no perfect partitions, and moreover

dopt ≥ 2n[κ−κc(b)]−Op(n1/2). (2.8)

b) If κ > κ−(b) and ε > 0, then there exists a constant δ > 0 such that

dopt ≤ 2n[κ−κ−(b)+ε] and Zopt ≤ 2n[κc(b)−κ−(b)+ε], (2.9)

both with probability 1−O(e−δ log2 n).

Remark 2.2 We believe that the bound in (2.8) is actually sharp. If we as-
sume that this is the case, in fact, even if we assume that the weaker bound

dopt = 2
n(κ−κc+op(1)) (2.10)

holds w.h.p. whenever κ > κc, then we can significantly improve the second
bound (2.9). Indeed, under the assumption (2.10), Zopt grows subexponentially
with n whenever κ > κc(b).
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The optimum partition problem is much simpler for b > bc. Our main result
on the sorted phase is the following theorem.

Theorem D Let b > bc. Then w.h.p. the optimal partition is uniquely ob-
tained by putting (s + n)/2 smallest integers Xj in one part, and the re-
maining (n − s)/2 integers into another part. W.h.p., dopt is asymptotic to
Mn
4

[

(1 + b)2 − 2
]

, i.e., of order Mn.

By this theorem, for b sufficiently large, the partition is determined by the
decreasing order of weights Xj, but not by the actual values of Xj.

It is a rather common idea to approximate an optimization problem defined
with integer-valued variables by its relaxed version, where the variables are
now allowed to assume any value within the real intervals whose endpoints are
the admissible values of the original integer variables. In our case, the relaxed
version is a linear programming problem (LPP) which can be stated as follows.
Find the minimum value dopt of d, subject to linear constraints

−d ≤
∑

j

σjXj,
∑

j

σjXj ≤ d,
∑

j

σj = s, −1 ≤ σj ≤ 1, (1 ≤ j ≤ n).

(2.11)
As usual, the LPP has at least one basis solution, i.e. a solution (σ, dopt),
which is an extreme (vertex) point of the polyhedron defined by the constraints
(2.11). Let N(σ) := |{j : σj ∈ (−1, 1)}| be the number of components of σ
which are non-integer. It is easy for the reader to verify that N(σ) is either 0
or 2 for all basis solutions σ.

Our next theorem shows that the LPP inherits the phase diagram of the
optimum partition problem, and moreover provides a limited way to quantify
the relative algorithmic difficult of the optimal partition problem in the three
regions. For b > bc the solutions of the initial partition problem and of its
LPP version coincide. For b < bc they are very far apart, in terms of the ratio
of respective optimal discrepancies. To state this precisely, we define Fn(κ, b)
to be the fraction of basis solutions σ with the property that the deletion of
the N(σ) components of σ with values in (−1, 1) produces an optimal integer
partition for the corresponding subproblem with weights Xi. Henceforth, we
will call this the “optimal subpartition property.”

Theorem E a) If b > bc, then w.h.p. the sorted partition is a unique solu-
tion of the LPP, and thus dLPP

opt = Θ(Mn) and Fn(κ, b) = 1.
Let b < bc.

b) Then w.h.p. dLPP
opt = 0. In addition, w.h.p. there are 2[κc(b)+o(1)]n basis

solutions, each having either none or exactly two components σi 6= ±1.
c) W.h.p. Fn(κ, b) = 2

−[κ+o(1)]n for κ < κ−(b), and 2
−[κc(b)+o(1)]n ≤ Fn(κ, b) ≤

2−[κ−(b)+o(1)]n for κ > κ−(b).
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Remark 2.3 (i) If one assume that the number of optimal partitions Zopt

in the hard phase grows subexponentially with probability at least 1 − o(n−2)
(see Remark 2.2 for a motivation of this assumption), our upper bound on the
fraction Fn(κ, b) in the hard phase can be improved to match the lower bound,
yielding Fn(κ, b) = 2

−n[κc(b)+o(1) ] in the hard phase.

(ii) If, on the other hand, the asymptotics of Remark 2.1 hold up to κc, more
precisely, if one assumes that for b < bc and κ < κc(b)

Zn(`, s) = 2
n[κc(b)−κ+o(1))] (2.12)

holds with probability least 1 − o(n−2), then a bound of the form Fn(κ, b) =
2−n[κ+o(1)] can be extended to all κ < κc.

We close this section with an additional theorem on the expected number
of perfect partitions. Consider the statements of Theorem C. Here again the
situation is much more complicated than in the unconstrained case. By The-
orem B and the lower bound in Theorem C(a), the minimum discrepancy
changes from being at most one to being exponentially large as κ crosses
the interval [κ−, κc]. However, we can also prove that the expected number of
perfect partitions remains exponentially large until κ reaches a value strictly
exceeding κc. This is the content of the following theorem and remark.

Theorem F Let ` ∈ {−1, 0, 1} and b ∈ (0, 1). Then

lim
n→∞

[

n−1 logE(Zn(`, s))−R(κ, b)
]

= 0 (2.13)

where

R(κ, b) = H((1 + b)/2) + λb+ log(λ−1 sinhλ)− κ log 2, (2.14)

with H(u) = u log(1/u) + (1 − u) log(1/(1 − u)), and λ satisfying cothλ =
λ−1 − b.

Remark 2.4 Graphing the curve R(κ, b) = 0, i.e.

κ = κe(b) :=
H((1 + b)/2) + λb+ log(λ−1 sinhλ)

log 2
, (2.15)

we see that it lies strictly above κ = κc(b), except at the only common point
κ = 1, b = 0. In particular, the curve intersects the b-axis at b = 0.56 · · · >
bc = 0.41 . . . . Thus for the points (κ, b) between the curves κ = κc(b) and
κ = κe(b), the expected number of perfect partitions grows exponentially, while
w.h.p. there are no perfect partitions at all. This complex behavior did not
manifest itself in the unconstrained optimum partitioning problem [2].
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3 Outline of Proof Strategy

In this section, we define our notation, give the heuristics of the proof, and
point out why naive extensions of the unconstrained analysis of [2] fail in the
constrained case. The complete proofs are quite involved, and will be given in
[1].

3.1 Sorted Partitions

We first discuss our strategy to prove that in region III, the optimal partition
is sorted and has discrepancy of orderMn. To this end, we consider n weights
X1, . . . , Xn, chosen uniformly at random from {1, . . . ,M}, and reorder them in
such a way that their sizes are increasing, Xπ(1) ≤ Xπ(2) ≤ · · · ≤ Xπ(n), where
π(1), . . . , π(n) is a suitable permutation of 1, . . . , n. Since M is assumed to
grow exponentially with n, we have, in particular, n2 = o(M), which implies
that w.h.p. no two weights are equal. So w.h.p. the permutation π is unique
and Xπ(1) < Xπ(2) < · · · < Xπ(n).

Given a bias s > 0, (with s ≡ n(mod 2)), we need to find an optimum partition
that puts k = (s+n)/2 integers in one part, and the remaining n− k integers
into another part. One such feasible partition is obtained if we select the k
smallest integers for the first part; we call it the sorted partition. It is coded
by the σ, with σπ(i) = 1 for i ≤ k and σπ(i) = −1 for i > k. If the total weight
of (n − k) largest weights is, at most, the total weight of k smallest weights,
then it is intuitively clear that the sorted partition is optimal. More precisely:
if

δs(X) =
k
∑

j=1

Xπ(j) −
n
∑

j=k+1

Xπ(j) ≥ 0 (3.1)

then the sorted partition is the unique, optimal partition, 3 and the minimal
discrepancy is

dopt = δs(X). (3.2)

See Section 6 of [1] for a formal proof.

To determine the phase boundary of the phase III, we thus have to deter-
mine the region of the phase diagram in which w.h.p. the sorted partition
meets the condition (3.1). Leaving the probabilistic technicalities out of our
heuristic discussion, let us replace the condition (3.1) by its mean version,

3 If δs(X) = −1, the sorted partition is still optimal (it is, in fact, perfect). But in
general, it is not the unique optimum partition.
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namely E(δs(X)) ≥ 0. Consider an arbitrary b ∈ (0, 1]. Let x0 = (1 + b)/2
and M0 = bx0Mc. For a typical set of weights X1, . . . , Xn, let us consider the
sorted partition with σj = 1 for Xj ≤ M0, and σj = −1 for Xj > M0. Since
the probability that Xj ≤M0 is equal to x̃0 =M0/M = x0 +O(M−1), we get
that the expected number of weights Xj with Xj ≤ M0 is nx̃0, implying that
the expected bias is 2nx̃0 − n = nb+O(n/M). The expected discrepancy can
be calculated in a similar manner, giving the expression

E

[

∑

j

XjI
(

Xj ≤ bx0Mc
)

−
∑

j

XjI
(

Xj > bx0Mc
)

]

=
n

M

[

M0(1 +M0)−
M(1 +M)

2

]

=
[

x20 −
1

2
+O(M−1)

]

Mn

=

[(

b+ 1

2

)2

− 1
2
+O(M−1)

]

Mn (3.3)

So, E(δs(X)) is large positive, of order Mn, iff (b + 1)2/4 − 1/2 > 0, or
equivalently b > bc =

√
2 − 1. In Section 6 of [1], we prove the condition

b > bc is both necessary and sufficient for δs(X) to be, w.h.p., positive, of
order Mn. In language of statistical mechanics, we show that, for b > bc,
δs(X) is “self-averaging,” i.e., its distribution is sharply concentrated around
E(δs(X)).

Remark 3.1 On the heuristic level presented here, the above arguments can
easily be generalized to an arbitrary distribution for the weights X1, . . . , Xn,
as long as these weights are independent copies of a generic (discrete) variable
X with a reasonably well behaved probability distribution. Assuming, e.g., that
the variable X/M has a limiting distribution with density µ, one obtains that
the critical value of b is given by bc = bc(µ) = 2

∫ x0

0 µ(x) dx − 1, where x0
is determined by the equation

∫ x0

0 xµ(x) dx =
∫∞
x0

xµ(x) dx. However, we have
not tried to extend all our results to this more general µ-density case.

3.2 Integral Representations

Let us now turn to the much more difficult region b < bc. Without loss of
generality, we may take s ≥ 0, so that b = s/n.

Let Zn(`, s) = Zn(`, s;X) denote the total number of partitions σ such that
σ ·X = ` and σ · e = s. Guided by the results of [2], one might hope to prove
that, as the parameter κ = n−1 log2M is varied, the model undergoes a phase
transition between a region with exponentially many perfect partitions and a
region with no perfect partitions. Since perfect partitions correspond to ` = 0
or ` = ±1, we will be mainly interested in Zn(`, s) for |`| ≤ 1, while s will
typically be chosen proportional to n.
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A starting point in [2] was an integral (Fourier-inversion) type formula for
Zn(`) = Zn(`;X), the total number of σ’s such that σ ·X = `, namely

Zn(`) =
2n

π

∫

x∈(−π/2,π/2]

cos(`x)
n
∏

j=1

cos(xXj) dx. (3.4)

We need to derive a two-dimensional counterpart of that formula for Zn(`, s).
To this end, let us first recall that by (2.3), s = 2|{j : σj = 1}| − n, so that a
generic value s of s(σ) must meet the condition n+s ≡ 0(mod 2). In a similar
way, we get that σ ·X has the same parity as the sum

∑

j Xj. Keeping this in
mind, we have that on the event {∑j Xj ≡ `(mod 2)}, for n+ s ≡ 0(mod 2),

I(σ ·X = `, σ · e = s) =
1

π2

∫∫

x,y∈(−π/2,π/2]

ei(σ·X−`)x ei(σ·e−s)y dxdy, (3.5)

thus extending (4.6) in [2]. Multiplying both sides of the identity by 2n, and
summing over all σ, we obtain

Zn(`, s) =
2n

π2

∫∫

x,y∈(−π/2,π/2]

e−i(`x+sy)
n
∏

j=1

cos
(

xXj + y
)

dxdy

= 2n P1/2
(

σ ·X = `, σ · e = s
∣

∣

∣X

)

,

(3.6)

where σ = (σ1, . . . , σn) is a sequence of i.i.d. Bernoulli random variables with
probability of σi = ±1 equal to 1/2.

We would like to estimate the asymptotics of the integral in (3.6), which is
equivalent to proving a local limit theorem for the conditional probability in
(3.6). In general, to compute—via local limit theorems—the probability that
some random variable A takes the value a, it must be the case that the corre-
sponding expectation of A is near a. Thus the analogue of the representation
(3.6) for the unconstrained problem was well adapted to the analysis of perfect
partitions. Indeed, in that case, we wanted to estimate P1/2(|σ · X| ≤ 1|X),
and we had E1/2(σ ·X|X) = 0. However, in the constrained case, this strat-
egy cannot be expected to work for b > 0, since s = bn is very far from the
expectation of σ · e, namely E1/2(σ · e|X) = 0.

To resolve this substantial difficulty, we introduce a two-parameter family
of distributions for σj as follows: Given ξ, η ∈ R, let σ = (σ1, . . . , σn) be
a sequence of random variables such that, conditioned on X, σ1, . . . , σn are
mutually independent, and

P(σj = 1|X) = P (ξXj + η), P(σj = −1|X) = 1− P (ξXj + η), (3.7)

where

P (u) :=
e−u

2 cosh u
. (3.8)
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In terms of these random variables, Zn(`, s) can be rewritten as

Zn(`, s) = enLn(ξ,η;X) P
(

σ ·X = `, σ · e = s|X
)

= enLn(ξ,η;X)
1

π2

∫∫

x,y∈(−π/2,π/2]

e−i(`x+sy)E
(

exp(i(xσ ·X+ yσ · e))|X
)

dxdy,

(3.9)
where

Ln(ξ, η;X) :=
`ξ

n
+

sη

n
+
1

n

n
∑

j=1

log(2 cosh(ξXj + η)). (3.10)

Indeed, fix ξ, η ∈ R. Then Zn(`, s) can be rewritten as

Zn(`, s) =
∑

τ∈{−1,+1}n

I(τ ·X = `, τ · e = s)

=
∑

τ :τ ·X=`,
τ ·e=s

eξ(`−τ ·X)+η(s−τ ·e) = eξ`+ηs
∑

τ :τ ·X=`,
τ ·e=s

n
∏

j=1

e−(ξXj+η)τj

=

[

eξ`+ηs
n
∏

j=1

(2 cosh(ξXj + η))

]

∑

τ :τ ·X=`,
τ ·e=s

n
∏

j′=1

P
(

(ξXj′ + η)τj′

)

= enLn(ξ,η;X)
∑

τ :τ ·X=`,
τ ·e=s

n
∏

j=1

P(σj = τj|X)

= enLn(ξ,η;X)P(σ ·X = `,σ · e = s|X),

(3.11)

since P (−u) = 1− P (u), see equation (3.8).

3.3 Saddle Point Equations and their Solution

Given ξ, η, we now face the problem of determining an asymptotic value of the
local probability in (3.9). This will obviously be easier if the chosen parameters
` and s are among the more likely values of σ ·X and σ · e, respectively. A
natural choice is to take ` and s equal to their expected values, that is

E
(

σ ·X|X
)

= `, E
(

σ · e|X
)

= s, (3.12)

or explicitly (using (3.8), (3.7))

n
∑

j=1

Xj tanh(ξXj + η) = −`,
n
∑

j=1

tanh(ξXj + η) = −s. (3.13)

Note that the equations (3.13) also arise naturally in an apparently different
approach to estimate the integral in (3.6), the “method of steepest descent.”
In our context, this corresponds to a complex shift of the integration path, i.e.,
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to changing the path of integration for x to the complex path from −π/2+ iξ
to −π/2 + iξ, and the path of integration for y to the complex path from
−π/2 + iη to −π/2 + iη, where ξ and η are determined by a suitable saddle
point condition. For general ξ and η, this leads to (3.9), while the saddle point
conditions turn our to be nothing but (3.13). In fact, this is how we first
obtained (3.9) and (3.13).

Both approaches raise the question of uniqueness and existence of a solution
to the saddle point equations (3.13). In this context, it is useful to realize that
the conditions (3.13) can be rewritten as

∂Ln(ξ, η;X)

∂ξ
= 0,

∂Ln(ξ, η;X)

∂η
= 0. (3.14)

Therefore any solution (ξ, η) is a stationary point of the strictly convex func-
tion Ln(ξ, η;X). If a solution exists, it is therefore the unique minimum point
of Ln. Using the first equation in (3.9), we see also that (ξ, η) maximizes the
local probability P(σ ·X = `,σ · e = s|X), and hence makes it easier to do an
asymptotic analysis. This observation justifies our choice of ξ, η.

In the actual proof, we modify this approach a little since the solution ξ =
ξ(X), η = η(X) does not lend itself to a rigorous analysis of P(σ · X =
`,σ · e = s|X). Instead, we will resort to “suboptimal” ξ = ζ/M, η, where ζ, η
are nonrandom constants, and (ζ, η) is a solution of nonrandom equations,
obtained by replacing the (scaled) sums in (3.13) with their weak-law limits,
see equations (3.18) below. This way we will be able to establish an explicit
asymptotic formula for Zn(`, s), which will ultimately lead us to determine
the phase boundaries.

In Section 4 of [1], we will show that these deterministic equations have a
(unique) solution ζ = ζ(b), η = η(b) iff b < bc =

√
2 − 1, the same bc that

determines the sorted phase. In other words, the threshold bc plays two seem-
ingly unrelated roles: both as a threshold value of b for solvability of the
deterministic saddle point equations (3.18), and as a threshold for the sorted
partition being optimal. On an informal level, the reason for the coincidence
is as follows: For simplicity, suppose that the weights Xj are all distinct, so
that X1 < · · · < Xn after reordering. As b approaches the point where the
solutions (ζ, η) to the saddle point equations (3.18) stop existing, these solu-
tions actually diverge, one tending to +∞ and the other to −∞. According to
equations (3.7) and (3.8), this in turn means that P(σj = 1|X) tends to zero
or one, depending on whether j < jo or j > jo, where jo = |{j : σj = −1}| is
the cutoff of the sorted partition for X with bias s = nbc. Hence, the product
measure P(σ ·X = `,σ · e = s|X) tends to a delta function on the (unique)
sorted partition which is the solution to the number partitioning problem for
X at b = bc. See Subsection 7.1 of [1] for details.
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3.4 Asymptotic behavior of Zn(`, s).

Proceeding with our heuristic discussion, let us simply assume that the equa-
tions (3.13) do have a solution ξ = ξ(X), η = η(X). Then we may hope that,
with this choice of the parameters ξ = ξ(X), η = η(X), we have a reasonable
chance to prove—at least for the likely values of X—a local limit theorem for
the conditional probability in (3.9), namely that w.h.p.

P
(

σ ·X = `,σ · e = s|X) ∼ 2

π
√
det Q

, (3.15)

where

Q =







Var(σ ·X) cov(σ ·X,σ · e)
cov(σ ·X,σ · e) Var(σ · e)





 . (3.16)

Here the (co)variances are conditioned on X, so, e.g., Q11 = Var(σ ·X|X). If
(3.15) holds then by (3.11), w.h.p.,

Zn(`, s) ∼ enLn(ξ,η;X)
2

π
√
det Q

= enLn(ξ,η;X)
2

πnM
√
det R(n)

, (3.17)

where R(n) is the matrix with matrix elements R
(n)
11 =

1
nM2Var(σ ·X), R(n)12 =

R
(n)
21 =

1
nM
cov(σ ·X,σ · e) and R

(n)
22 =

1
n
Var(σ · e).

Note that, in the limitM →∞, Xj/M are independent, uniform random vari-
ables in [0, 1]. We therefore expect that as M,n → ∞ with κ = n−1 log2M
fixed, both ζ(X) := Mξ(X) and η(X) are close, in probability, to the deter-
ministic ζ, η, defined as the roots of the averaged version of the “saddle point
equations” (3.13), namely

1
∫

0

x tanh(ζx+ η) dx = − `

Mn
,

1
∫

0

tanh(ζx+ η) dx = −b, b =
s

n
. (3.18)

Recall that, without loss of generality, we have taken s ≥ 0, so b ≥ 0.

Furthermore, approximating ξ(X) and η(X) by Mζ and η, respectively and
using the bound |d cosh u/du| ≤ 1, it is easy to see that, because of the weak
law of large numbers, w.h.p.

Ln(ξ(X), η(X);X) =
1

n

n
∑

j=1

log
(

e`ξ(X)+sη(X)2 cosh(ξ(X)Xj + η(X))
)

∼ `

Mn
ζ + bη +

1
∫

0

log(2 cosh(ζx+ η)) dx, (3.19)
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and similarly for the matrix elements of R(n),

R
(n)
ij ∼

1
∫

0

x2−(i+j)(1− tanh2(ζx+ η)) dx. (3.20)

Putting everything together, we thus may hope to prove that for |`| ≤ 1 and
M growing exponentially with n, (i.e. log2M ∼ κn for some n-independent
κ), we have w.h.p.

1

n
logZn(`, s) ∼

1
∫

0

log(2 cosh(ζx+ η)) dx+ bη − κ = κc(b)− κ, (3.21)

suggesting that for κ < κc(b) there are exponentially many perfect partitions,
while for κ > κc(b) there are none.

However, this informal argument is too naive. Equation (3.21) could not pos-
sibly hold for κ > κc(b). Indeed, Zn(`, s) is an integer, and thus cannot be
asymptotically equivalent to an exponentially small, yet positive number. This
means that a rigorous proof of (3.21) must be based on the condition κ < κc(b).
But our heuristic discussion provides no clue as to how this condition might
enter the picture. Furthermore, our attempts to find such a proof are stymied
by mutual dependence of the random variables P(σj = 1|X), (1 ≤ j ≤ n), a
consequence of the fact that (ξ(X), η(X)) depends, in an unwieldy manner,
on the whole X. This complicated dependence of (ξ(X), η(X)) on X would
have made it very hard to gain an insight into the random fluctuations of the
sum in (3.19), even if we had found a proof.

Fortunately, once we have informally connected (ξ(X), η(X)) to (ζ, η) via
ξ(X) = (1 + op(1))ζ/M , η(X) = (1 + op(1))η, we may try to use the sub-
optimal parameters (ζ/M, η) instead. The corresponding random variables
P(σj = 1|X) each depend on their own Xj, and are thus mutually inde-
pendent. A key technical issue is whether the suboptimal parameters are
good enough to get an asymptotic formula for the corresponding probabil-
ity P(σ ·X,σ ·X = s|X), given that now the random equations (3.13) may
hold only approximately. Our proof in [1] shows that they are indeed sufficient.
With those parameters, we will be able to get a sharp explicit approximation
for logZn(`, s), at least in the range κ < κ−(b).
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