
Decoding STAR Code for Tolerating Simultaneous Disk Failure and Silent Errors

Jianqiang Luo
Wayne State University

Detroit, MI 48202
jianqiang@wayne.edu

Cheng Huang
Microsoft Research
Redmond, WA 98052

cheng.huang@microsoft.com

Lihao Xu
Wayne State University

Detroit, MI 48202
lihao@cs.wayne.edu

Abstract

As storage systems grow in size and complexity, various
hardware and software component failures inevitably occur,
resulting in disk malfunction in failures, as well as silent
errors. Existing techniques and schemes overcome the fail-
ures and silent errors in a separate fashion. In this paper,
we advocate using the STAR code as a unified and system-
atic mechanism to simultaneously tolerate failures on one
disk and silent errors on another. By exploring the unique
geometric structure of the STAR code, we propose a novel
efficient decoding algorithm – EEL. Both theoretical and
experimental performance evaluations show that EEL con-
stantly outperforms a naive Try-and-Test approach by large
factors in overall decoding throughput.

1 Introduction

As storage systems grow in size and complexity, vari-
ous hardware and software component failures inevitably
occur [18, 23, 2, 13], which often result in various user data
losses and errors [3, 1, 2]. From an application’s point of
view, a data loss can be either failure or silent error. Here
a failure refers to a data loss with explicit error report from
a disk drive to the whole system or application. The sim-
plest and most common one is an entire disk drive failure in
a fail-and-stop fashion, resulting in whole data loss on the
disk. Another failure case is the latent sector failure within
a disk drive [1, 2, 22], which can also be detected and re-
ported during the scrubbing process using a disk driver’s
internal error control codes1 [24]. A silent error, however,
refers to a data corruptionwithout any error indication from
the disk drive itself to the system. This type of error in-
cludes corrupted data, torn writes, lost writes, misdirected
writes and wrong reads, which usually results from vari-
ous bugs in the firmware on disk controllers and various

1Error control code is a general term for erasure correcting code, error
detecting code and error correcting code.

other related software in the storage stacks along a data I/O
path [21, 2, 13, 11, 9].

Failures have been known for a long time, and various
techniques have been developed to cope with them, from
data mirroring to simple replication to more advanced error
control code based RAID-5 and RAID-6 type of data pro-
tection schemes [7, 5, 10, 4, 8]. In contrast, silent errors
are less well-understood and not as sufficiently accounted
for. By detecting and converting silent errors into failures,
checksum at disk sector or block level is an effective and the
most common technique to combat silent errors. Unfortu-
nately, recent studies [2, 13, 28] show that checksum may
not be sufficient by itself. For example, a silent error from a
write to a wrong sector or block due to a firmware bug can-
not be detected by the checksum on the very sector or block
at all. As a result, various band-aids have been proposed as
additional measures to deal with silent errors. These pro-
posals include write verification, physical and logical iden-
tity, version mirroring, and implementing checksum in file
system level [2, 13, 6].

From a different perspective, now that error control
codes [4, 8] have been used in storage systems to tolerate
disk failures, it’s natural to ask: why not extend error con-
trol codes to deal with silent errors as well? Indeed, for stor-
age systems which already employ error control codes for
data reliability, we advocate using these codes to overcome
both failures and silent errors simultaneously as a more uni-
fied and systematic mechanism. It has been recently shown
that RAID-6 codes have limitations on data reliability as
hard disk capacity grows dramatically, and it calls for us-
ing triple parity codes to address this problem [14]. The
STAR code [12] is such a code and a very suitable candi-
date for such purpose. The STAR code was recently intro-
duced to tolerate three simultaneous disk failures in a stor-
age system. While initially designed to tolerate only disk
failures, well known results from information theory dictate
that it can also protect simultaneous failures on one disk
and silent errors in another disk [17]. Note that this is a
common property of any code which can tolerate three disk
failures, not unique to the STAR code, as will be elaborated

in Section 3.1. Nevertheless, the STAR code is unique in
its geometric structure, which allows us to design a special
decoding algorithm that can recover failures and errors very
efficiently. Therefore, the very focus of this paper is to pro-
vide such a decoding algorithm so that the STAR code can
be used to effectively and efficiently deal with failures and
silent errors at the same time, and thus significantly improve
the data reliability of storage systems.

The decoding algorithm can be used in two situations.
One situation is during an inter-disk scrubbing process. Dif-
ferent from intra-disk scrubbing process which uses check-
sums at sector or block level to detect disk errors, an inter-
disk scrubbing process collects data frommultiple disks and
check the data consistency according to certain constraints,
such as the parity constraint imposed by the STAR code. In
this situation, even if failures are present, the decoding al-
gorithm can still detect silent errors and correct them. The
second situation is in a data reconstruction process. When
one disk completely fails, temporal correlations can result
in the probability of silent errors in other similar disks used
in the same systemmuch higher than normal [2, 13]. Hence,
when recovering the disk failure, using the decoding algo-
rithm to perform error detection and correction at the same
time can achieve much higher data reliability.

The main contributions of this paper include: 1) the de-
sign of an efficient decoding algorithm named EEL (Effi-
cient Error Locating) for the STAR code to tolerate one
failure and one silent error at the same time; 2) a rigorous
correctness proof of the decoding algorithm; and 3) perfor-
mance evaluation of the decoding algorithm with thorough
comparisons to a naive try-and-test decoding algorithm for
the same purpose.

2 Related Work

Directly related to this work is certainly the STAR
code design [12]. The STAR code is designed to tolerate
three disk failures, and it has shown much better encod-
ing/decoding performance than other similar codes [12].
The decoding algorithm presented in [12], however, can
only correct up to three disk failures. In coding theory,
though, various decoding algorithms have been designed
to correct erasures and errors at the same time for cer-
tain codes, such as the BCH code and the Reed-Solomon
code [17, 25]. However, there is no general erasure-and-
error decoding algorithm for any code, except the naive one
which will be described and compared later in Section 5. It
is worth noting that any RAID-6 code can be used to cor-
rect one silent disk error in a RAID type system. Indeed
such decoding algorithms, namely, error correcting algo-
rithms, have been designed and published for some of the
existing RAID-6 codes, such as the EVENODD code [4],
the X-Code [26] and the B-Code [27]. Such decoding al-

gorithms can be designed for other RAID-6 codes, such as
the RDP code [8] and the Liberation code [19], which the
corresponding original papers did not provide. However, if
there is a disk failure, RAID-6 codes can not correct any
disk error, thus causing data lost.

The results presented in this paper complement various
techniques [6, 21, 13] developed to cope with silent errors.
All these techniques, such as employing checksum tech-
nique in file system, only use the redundancy within a disk
to detect errors; however, our approach utilizes inter-disk
redundancy of the STAR code. Hence, they are orthogonal
and can be used together. In fact, use of the STAR code with
our 1-erasure-and-1-error decoding algorithm will address
the parity pollution issue as raised in [13], where a silent er-
ror in a data block spreads to other data blocks through var-
ious parity (checksum) calculations. With the STAR code,
silent errors can be corrected within their data blocks with-
out further spreading to other blocks.

3 Basics of Coding Theory and the STAR
Code

In this section, we first list some related basic terms and
results from information and coding theory as what can be
achieved by using an error control code, and then give a
brief description of the STAR code.

3.1 Related Coding Theory Terms and
Results

An (n, k) error control code uses mathematical means to
transform a user data of k symbols into a block of n (same
size) symbols by adding (n−k) parity symbols. The result-
ing n-symbol block is called a codeword. This computation
process of obtaining a codeword from k data symbols is
called an encoding operation. Each parity symbol is com-
puted using a parity constraint (usually a linear equation)
from a subset of the k data symbols and the parity symbol.
In a storage system, when data is read from a disk, some
of its symbols may get lost, and some other symbols may
get corrupted. A lost symbol is called an erasure, and a
corrupted symbol is called an error in coding theory. The
difference between an erasure and an error is that the era-
sure’s location in its codeword is known while the error’s is
unknown. Neither of their values is known. Hence when
an error control code is used in a storage system, an erasure
corresponds to a disk failure, and an error corresponds to a
silent error. Obviously an erasure is easier to deal with than
an error, since only its value needs to be recovered. To cor-
rect an error, though, its location needs to be first identified
before its value is recovered.

When it is used to deal with errors, an error control code
can be used to detect and/or correct certain number of errors

within its designed error control capability using different
decoders (or decoding algorithms). A code’s error control
capability is mainly measured by itsminimum distance [17].
The larger distance a code has, the more error control capa-
bility it has. Also a code’s minimum distance depends on
the number of its parity symbols. Usually, though not al-
ways, the more parity symbols a code has, the larger mini-
mum distance it can have.

The simplest decoder is a pure error detection decoder,
which only decides whether there is error in a received
codeword2 or not, by analyzing at least k+1 symbols. How-
ever, it does not and cannot tell the number of errors in the
codeword. Hence the output from an error detection de-
coder is only one bit: whether the received codeword is a
valid codeword or not. Such a decoder usually can be re-
alized very efficiently by simply checking if all the parity
constraints of the code are satisfied. The parity constraints
can be checked by computing syndromes. The syndrome as-
sociated with a parity symbol is a function, usually just the
XOR sum, of the parity symbol and all the data symbols it
is derived from. For example, if p = a1 ⊕ a2, where a1 and
a2 are two data symbols, and p is a parity symbol, then the
corresponding syndrome s is s = p ⊕ a1 ⊕ a2, where ⊕ is
the binary exclusive-XOR operation. A nonzero syndrome
indicates there is error in the codeword.

Upon error detection, an error correction decoder can be
further invoked to locate and correct error(s) in a received
codeword. An error correction decoder corrects all the er-
rors within its designed correction capability. When there
are more errors in a received codeword, however, it can de-
clare a decoding failure event, which simply reports that
there are too many errors for the decoder to correct. This is
a useful piece of information. It is then upon the upper layer
to decide what to do next, e.g., re-read the whole codeword
in a storage system, or simply discard the whole erroneous
codeword and inform the user/application.

When there are more errors in a received codeword than
the code can cope with, it is very often that a detection de-
coder is fooled into regarding the received codeword as a
valid codeword, albeit one different from the original code-
word. For example, for a single-parity code used in RAID-
5, an error detection decoder has no way to tell a codeword
with no error from a codeword with even number of errors.
When this event happens, it is called a decoding error. A
decoding error can similarly occur to an error correction
decoder where the decoder “corrects” a received codeword
into a valid but different codeword from the original (in-
tended) one. The consequences of a decoding error event
in a data system are usually severe, since the system then

2We borrow this term from communication systems to refer to a code-
word read from a disk, even though in storage systems a data I/O unit is a
block rather than a codeword, as a codeword can be easily extracted and
assembled from a data block.

uses wrong data without knowing it, often resulting in sys-
tem/application crash. Hence a decoding error should be
avoided as much as possible.

Depending on a system’s needs, hybrid decoders can
be designed to deal with error detection, error correction
and erasure recovery simultaneously, as long as the fol-
lowing information theoretical bound is met [17, Ch.1.3]:
d + e + E ≤ D − 1, and e ≤ d, where d is the number
of detectable errors, e the number of correctable errors, E
the number of recoverable erasures, and D the minimum
distance [17, Ch.1.3] of the code. For example, for a code
with its minimum distance of four (such as the STAR code),
the code can 1) recover up to three erasures, or 2) recover
one erasure and correct another one error simultaneously by
using a different decoder. The very focus of this paper is on
the design of an efficient decoding algorithm to handle the
second case for the STAR code.

3.2 Notations

Table 1 lists all the notations to be used in the rest of the
paper. A letter in lower case denotes a symbol or a value,
such as ai,j , and a letter in upper case denotes a column,
such as Cj . All the symbols are within one codeword.

Notation Definition
〈x〉p x mod p
ai,j original symbol at row i and column j
ci,j symbol read at row i and column j
Cj column read (of symbols) at index j
ei,j error symbol at row i and column j
Ej column (of error symbols) at index j
Sj column (of syndromes) at index j⊕

i ai XOR all symbol ai’s (return one symbol)⊕
j Cj XOR all column Cj’s (return one column)

C
⊕

a XOR each symbol in column C with symbol a
(return one column)

Ci

⊕
Cj XOR column Ci and Cj (return one column)

f↓(C, i) cyclic shifting column C downward by i
positions

Table 1. Notations defined

Note that ai,j denotes an original symbol. It is the correct
value in a codeword. ci,j denotes the symbol read from a
disk. It may be unknown due to a disk failure or incorrect
due to a silent error. ei,j denotes the error symbol causing
ai,j flip to ci,j . If ei,j is 0, then there is no error; otherwise,
the read symbol is corrupted with ci,j = ai,j ⊕ ei,j .

parity I parity II

(b) 1st diagonal parity(a) horizontal parity
1st adjuster

parity III

(b) 2nd diagonal parity
2nd adjuster

Figure 1. Construction of the STAR code

3.3 STAR code: A Brief Description

The STAR code can be described by a (k − 1) × (k +
3) 2-dimensional array. For best storage and computation
performance, k = p, where p is a prime number, though
a general STAR code for arbitrary k can be easily derived
from its closest p [12, 20]. For simplicity, we only limit our
discussion for k = p throughout the paper.

A STAR codeword consists of p user data columns and
3 parity columns. The 1st parity column is a horizontal
parity column, which is calculated by XORing all the data
symbols in the same row. The 2nd parity column is a diag-
onal parity column. Its computation is as follows. First, an
adjuster is computed from the data symbols along the main
diagonal of slope 1. Second, the data symbols along other
slope 1 diagonals are computed as diagonal parity symbols.
Third, the adjuster is complemented to all the diagonal par-
ity symbols. The 3rd parity column follows a similar con-
struction as the 2nd parity column, except that it is com-
puted along diagonals of slope -1.

Figure 1 shows the construction of the STAR code for
p = 5. Together with the (5−1)× (5+3) two dimensional
array, the figure also contains an imaginary 5th row, where
all the data symbols are set to 0. It is shown only to help
understand the adjuster and parity calculation. Without the
3rd parity column, the STAR code reduces to the (p + 2, p)
EVENODD code [4]. The algebraic construction of the
three parity columns is defined as follows (0 ≤ i < p − 1):

ai,p =

p−1⊕
j=0

ai,j ;

ai,p+1 = t1 ⊕

(
p−1⊕
j=0

a<i−j>p,j

)
,where t1 =

p−1⊕
j=0

a<−1−j>p,j ;

ai,p+2 = t2 ⊕

(
p−1⊕
j=0

a<i+j>p,j

)
,where t2 =

p−1⊕
j=0

a<−1+j>p,j .

Here, t1 and t2 are the adjusters for the 1st and 2nd
diagonal parity columns, respectively.

When a column is treated as a super symbol, the STAR
code is a (p+3, p) code, and its minimum (column) distance
is four [12]. (When used in storage systems, a column usu-
ally is mapped to a disk drive.) An efficient decoding algo-
rithm for recovering three erasures for the STAR code was
presented in [12]. In this paper, however, our focus is on
how to simultaneously correct one erasure and one error for
the STAR code.

4 Error Detection for the STAR code

In general, correcting a codeword with errors involves
two steps: error detection and error correction. The error
detection step determines whether there is any error in a
codeword, and, if so, the error correction step is invoked
to correct the error. Depending on the positions of erasure
and error, both the detection and correction algorithms vary
slightly. Nevertheless, the essence stays the same. Hence,
for illustration purpose, it’s sufficient to focus on one single
error type in the rest of the paper, namely, both the erasure
and error columns are among the data columns.

Assume the erasure column is Cu. Let R0
u denote the

column recovered from the horizontal parity column, R1
u

from the 1st diagonal parity column and R2
u from the 2nd

diagonal parity column. R0
u, R1

u and R2
u can be calculated

as follows:

R
0
u =

p⊕
j=0,j �=u

Cj ;

R
1
u = f↓(Cp+1

⊕⎛
⎝ p−1⊕

j=0,j �=u

f↓(Cj , j)

⎞
⎠⊕ r

1
u,−u),

where r
1
u =

p−1⊕
j=0

c<−1−j+u>p,j

⊕
c<−1+u>p,p+1;

R
2
u = f↓(Cp+2

⊕⎛
⎝ p−1⊕

j=0,j �=u

f↓(Cj ,−j)

⎞
⎠⊕ r

2
u, u),

where r
2
u =

p−1⊕
j=0

c<−1+j−u>p,j

⊕
c<−1−u>p,p+2.

Although R0
u, R1

u and R2
u are computed from differ-

ent parity columns, they represent the same data column.
Hence, we can simply compare them to detect whether there
is an error in the codeword. If they are all equal, then there
is no error. The erasure column can be simply recovered by
setting it to R0

u, and the decoding process completes. Oth-
erwise, there must exist at least one error column.

5 A Naive Decoding Algorithm: Try-and-
Test

As there is no published erasure-and-error decoding al-
gorithm to compare with, we first describe a simple decod-
ing algorithm. The idea is straightforward: simply use a try-
and-test approach – whenever an error is detected, the algo-
rithm tests each of the survival columns sequentially until
the error column is found. For each column being tested,
the algorithm first treats it as another erasure column and
then checks parity consistency of the remaining columns.

The parity consistency is checked as follows. Assume
both u and v are data columns. u denotes the original era-
sure column and v denotes the tested error column. Then,
all the three parity columns are available. The Try-and-Test
approach uses the first two parity columns to decode col-
umn u and v, following the erasure decoding algorithm of
the STAR code [12]. It then re-encodes the 3rd parity col-
umn from all the data columns, and compares it with the
original one. If they are equal, then column v is indeed the
error column, and as a byproduct, both columns u and v are
recovered during this process. Otherwise, it tests the next
column similarly until the error column is found or all the
columns are tested. If all the columns are tested, but none
of them can be deemed as an error, then there are more than
one error column, and the decoding algorithm declares a
decoding failure event.

The above parity consistency check can be readily gener-
alized to other cases, where both column u and v are parity
columns, or one is a data column while the other is a par-
ity column. In addition, interested readers can easily prove
that the Try-and-Test approach can indeed correct one era-
sure column and one error column for the STAR code. we
simply skip these simple but tedious discussions here due to
space limit.

6 The EEL Algorithm

Now we propose a new decoding algorithm - the EEL
(Efficient Error Locating) Algorithm. The EEL Algorithm
leverages the unique intrinsic geometric structure of the

STAR code and locates the error column without perform-
ing the Naive Algorithm’s try-and-test operation in locating
the error column, which in turn greatly improves the de-
coding efficiency. Although the EEL Algorithm presented
here is for 1-erasure-and-1-error case, the algorithm can be
simplified for 1-error case. The details are left to interested
readers again.

The EEL Algorithm consists of three steps: computing
syndrome, locating error column, and recovering erasure
and error columns.

6.1 Syndrome Computation

Recall from Section 3.1, as it has three parity constraints,
the STAR code has three syndromes, and they can be com-
puted as follows, where syndrome S0 represents the hor-
izontal parity constraint, S1 the 1st diagonal parity con-
straint, and S2 the 2nd parity constraint.

S0 =

p⊕
j=0

Cj ;

S1 = Cp+1

⊕(
p−1⊕
j=0

f↓(Cj , j)

)⊕
t1,

where t1 =

p−1⊕
j=0

c<−1−j>p,j ;

S2 = Cp+2

⊕(
p−1⊕
j=0

f↓(Cj ,−j)

)⊕
t2,

where t2 =

p−1⊕
j=0

c<−1+j>p,j .

We note that the syndrome computation is time consum-
ing, as its complexity is in the order of p2. Fortunately, it
is possible to leverage the results produced in the error de-
tection step and thus greatly speedup this computation. In
the rest of this section, we focus on the most common and
hardest erasure and error pattern, where both the erasure
and error are data columns. Again, u denotes the index of
the erasure column, and no data is available from column u.
Hence, we set Cu = 0.

We obtain the following relationship between the syn-
dromes Sj’s and Rj’s, the results from the error detection
step:

S0 = R
0
u;

S1 = f↓(R
1
u

⊕
r
1
u

⊕
t1, u);

S2 = f↓(R
2
u

⊕
r
2
u

⊕
t2,−u).

Here, t1, t2, r1
u, and r2

u are calculated similarly as in the
syndrome computation.

0

1

2

3

4

0 1 2 3 4 S 0 S1 S2

u0

u1

u2

u3

v0

v1

v2

v3

u0+v0

u1+v1

u2+v2

u3+v3

v3+u3+v2

u0+u3+v2

u1+v0+u3+v2

u2+v1+u3+v2

u1+v2+u0+v1

u2+v3+u0+v1

u3+u0+v1

v0+u0+v1

(a) Step 1: compute syndrome

0

1

2

3

4

0 1 2 3 4 S 0 S1 S2

u0

u1

u2

u3

v0

v1

v2

v3

u0+v0

u1+v1

u2+v2

u3+v3

v3+u3+v2

u0+u3+v2

u1+v0+u3+v2

u2+v1+u3+v2

u1+v2+u0+v1

u2+v3+u0+v1

u3+u0+v1

v0+u0+v1

u3+v2 u0+v1

(b) Step 2: compute adjuster syndrome

0

1

2

3

4

0 1 2 3 4 S 0 S1 S2

u0

u1

u2

u3

v0

v1

v2

v3

u0+v0

u1+v1

u2+v2

u3+v3

v3

u0

u1+v0

u2+v1

u1+v2

u2+v3

u3

v0

u3+v2 u0+v1

(c) Step 3: cancel adjuster syndrome

0

1

2

3

4

0 1 2 3 4 S 0 S1 S2

u0

u1

u2

u3

v0

v1

v2

v3

u0+v0

u1+v1

u2+v2

u3+v3

v0

v0+v1

v1+v2

v2+v3

v0+v1

v1+v2

v2+v3

v3

v3 v0

(d) Step 4: cancel erasure symbols

Figure 2. Locating error column in the EEL Algorithm

6.2 Locating the Error Column

6.2.1 An Example

Locating the error column is the key step in our decoding
algorithm. It is instructive to use an example to demon-
strate how this step works. Again the erasure u and er-
ror v are both data columns. For the error column v, we
know that each symbol equals the XOR sum of the corre-
sponding original data symbol and error symbol; that is,
ci,v = ai,v ⊕ ei,v. For simplicity, denote ei,v by vi. For
the erasure column u, we set Cu = 0, so ai,u = ei,u since
ai,u = ei,u ⊕ ci,u and ci,u = 0. Similarly, denote ai,u by
ui. In the example shown in Figure 2, u = 1 and v = 2; +
denotes the XOR operation. Note here ui’s, vi’s (the values
of the erasure and error columns) and v (the error column
location) are unknown, but u = 1 (the erasure column loca-
tion) is known.

The error column can be located in the following five
steps with explanations:

Step I – compute syndrome. We first show the rela-
tionship between symbols in the syndromes and the era-
sure/error columns. Using the first symbol of S0 as an ex-
ample (denoted as S0,0). From Section 6.1, we know that
S0,0 = ⊕5

j=0c0,j . For columns j = 0, 3, 4, 5 (neither era-
sure nor error), c0,j = a0,j . On the other hand, from the
STAR code’s encoding rule, a0,5 = ⊕4

j=0a0,j . Thus, by
simple substitution, we get S0,0 = u0 ⊕ v0. The rest of
the syndrome symbols can be derived similarly, as shown
in Figure 2(a).

Step II – compute adjuster. Now we simplify the syn-

dromes for further calculation. In particular, the adjuster for
the 1st diagonal parity column can be computed by XORing
all the symbols in syndrome column S0 and S1, as shown
in [4, 12]. We place the adjuster for S1 at the last row in
S1. The adjuster for the 2nd diagonal parity column can be
computed similarly. The results are shown in Figure 2(b).

Step III – complement adjuster. Then, we XOR the
adjuster in S1 with the rest of the symbols in S1. This can-
cels the adjuster from the rest of the syndrome column S1.
The same operation is applied on S2. Figure 2(c) shows the
results.

Step IV – cancel erasure symbols. Now we cancel the
symbols of the erasure column from S1 and S2, respec-
tively. For S1, this is achieved by shifting S1 downwards
by −u (or 4) positions and XORed with S0. For S2, it is
shifted downwards by u = 1 positions before XORed with
S0. All shifts are cyclic modular 5. The results are shown
in Figure 2(d).

Step V – locate error column. The last step is to locate
the error column. We observe that, if S1 is cyclically shifted
downwards by 4 positions, it matches S2 exactly. In fact,
the number of shifts (denoted as shift down position or h) is
completely determined by the positions of the erasure and
error column. It satisfies the following equation:

h = −v (error position)+ u (erasure position) (mod p)

In this example, u = 1, h = 4 and p = 5, so v = (u− h) =
(1−4) (mod 5) = 2 and the error column is finally located!

6.2.2 The Error Locating Algorithm

The above example illustrates how to locate the error col-
umn. The error locating algorithm follows the same steps
as those given in the example. Thus, the algorithm is quite
straightforward. Appendix A in [15] provides a formal
description of the algorithm together with its correctness
proof.

6.3 Recovering Erasure and Error
Columns

After the error column is located, the next step is to
correct both erasure and error columns. An intuitive ap-
proach is to treat the error column as another erasure col-
umn, then recover them using the STAR erasure decoding
algorithm [12]. This approach, however, is not efficient as
it does not utilize the intermediate results produced during
the above error locating process. Now we present a much
more efficient algorithm which can correct the erasure and
error columns directly by fully utilizing those intermediate
results. We first illustrate the algorithm by completing the
previous example and then give a formal description of the
algorithm itself.

6.3.1 An Example

We continue the example in Section 6.2.1 to demonstrate
how the correcting algorithm works. In Figure 2(d), there
are 5 rows in syndrome S1. We can treat each row as an
equation and each error symbol as a variable. Thus, there
are totally 5 equations and 4 variables. In row 4, there is
only one variable v3, so we can compute v3 from the equa-
tion represented by row 4. In row 3, there are two variables
v3 and v2. After v3 is solved, we can calculate v2. Follow-
ing the similar steps, we can solve v1 from row 2 and v0

from row 1. Now, all the error symbols in error column 2
are corrected.

The next step is to recover the erasure column 1. In syn-
drome S0, there are four rows, and each row is the XOR
sum of the symbols from erasure column 1 and error col-
umn 2. Each row is again treated as an equation. Since all
the error symbols of column 2 are now known, we can com-
pute u0 from row 0 of S0, u1 from row 1, u2 from row 2,
and u3 from row 4. All the erasure symbols of column 1 are
thus recovered.

Finally, the error correction process completes by XOR-
ing the error symbols of column 2 with C2 to recover the
original data column 2.

6.3.2 The Erasure and Error Recovery Algorithm

Now we present a formal description of the erasure and er-
ror recovery algorithm. The pseudocode of the algorithm is

described in Algorithm 1.

Algorithm 1 Recovering Erasure and Error columns
/*Step 1: Solve Ev , the error symbols*/

Ev

⊕
f↓(Ev, v − u) = S0

⊕
f↓(S1,−u);

/*Step 2: Recover Eu, the erasure column*/
Eu = S0

⊕
Ev;

/*Step 3: Recover the original data column Cv*/
Cv = Cv

⊕
Ev.

In Step 1, we have a group of p linear equations gener-
ated from the error locating algorithm, and we need to solve
p variables vi’s (0 ≤ i ≤ p−1) from the equations. Observe
that

1. each equation is the XOR sum of two variables, one
from Ev and the other from f↓(Ev, v − u);

2. each variable vi appears exactly twice in the equations;

3. v<−1>p
= 0, since it is in the imaginary row p − 1.

Hence the above equations in turn can be efficiently
solved in a zig-zag fashion just as in the erasure decoding
for the EVENODD code [4] by the following 3 steps:

1. Step 1a: start from the last row of the equa-
tions, which contains two variables v<−1>p

from Ev

and v<−1−1∗(v−u)>p
from f↓(Ev, v − u). Since

v<−1>p
= 0, then the only one unknown variable

v<−1−1∗(v−u)>p
is solved. And now we are at row

〈−1 − l ∗ (v − u)〉p (l=0). Go to Step 1b.

2. Step 1b: row 〈−1 − l ∗ (v − u)〉p of the equations,
consists of two variables v<−1−l∗(v−u)>p

fromEv and
v<−1−(l+1)∗(v−u)>p

from f↓(Ev, v − u). Since vari-
able v<−1−l∗(v−u)>p

is known, the only one unknown
v<−1−(1+1)∗(v−u)>p

can be recovered.

3. Step 1c: in step 1b we are at row v<−1−l∗(v−u)>p
. If

l = p− 2, this process stops; otherwise, go to the next
row 〈−1 − (l + 1) ∗ (v − u)〉p and repeat step 1b.

After Step 1 is finished, Step 2 and 3 can be performed
to recover the erasure and error columns.

7 Performance Evaluation

Now we evaluate the computation performance of our
decoding algorithm by comparing it with the naive decod-
ing algorithm described in Section 5. We first count the
number of XOR needed for both algorithms, since XOR is

Erasure Error Error Detection Correction (EEL) Total (EEL) Correction (Naive) Total (Naive)
Data No 3p2 − 3p 0 3p2 − 3p 0 3p2 − 3p
Parity No 2p2 − 2p p2 − p 3p2 − 3p p2 − p 3p2 − 3p
Data Data 3p2 − 3p 21p− 16 3p2 + 18p − 16 6.5p2 − 6.5p 9.5p2 − 9.5p
Data Parity 3p2 − 3p 20p− 15 3p2 + 17p − 15 13p2 − 22p 16p2 − 25p
Parity Data 2p2 − 2p p2 + 14p − 13 3p2 + 12p − 13 4.5p2 − p 6.5p2 − 3p
Parity Parity 2p2 − 2p p2 + 4p − 5 3p2 + 2p − 5 8p2 − 8p 10p2 − 10p

Table 2. Decoding cost comparison (in XORs)

the most frequent operation in decoding and thus dominates
decoding performance. Then we measure the wall time of
the decoding algorithms through experiments.

7.1 XOR Numbers

There are six possible erasure and error pattern combi-
nations, as listed in the first two columns in Table 2. For
both decoding algorithms, the XOR number needed to cor-
rect different pattern is different. Therefore, we first com-
pute the number of XORs needed for each pattern. Then,
by assuming each column has the same probability to be an
erasure or an error column, we calculate the average num-
ber of XORs as the cost for a decoding algorithm.

7.1.1 XOR number for the EEL Algorithm

Table 2 shows that there are four possible erasure and error
patterns when there is an error. We stick to the most com-
mon one - an erasure and an error in two data columns - to
demonstrate how to count the number of XORs needed for
decoding. The XOR numbers for the other patterns can be
counted similarly.

Recall that there are in total four steps in our EEL decod-
ing algorithm: 1) error detection, 2) syndrome computation,
3) error locating and 4) erasure and error recovery.

1. As shown in Section 4, the error detection step com-
putes R0

u, R
1
u and R2

u, each costing p ∗ (p− 1) XORs.
Hence the total cost for this step is 3p2 − 3p. Note the
symbols in the last imaginary row are not involved in
computation.

2. As discussed in Section 6.1, the syndrome computation
step computes syndromes S0, S1 and S2 from R0

u, R
1
u

and R2
u obtained in the error detection step. S0 needs

p − 1 XORs, and S1 and S2 each need 4p − 2 XORs.
Hence the total cost of this step is 9p − 5.

3. The error locating step first simplifies syndromes S1

and S2; each computation needs 4p − 3 XORs. Then
vector equivalence test is conducted using shift and

compare. In the test, however, no XOR operation is
needed. As a result, the total cost for this step is only
8p − 6 XORs.

4. The erasure and error recovery step needs 2p − 3
XORs in solving the erasure symbol Eu and the er-
ror symbol Ev , and then 2p − 2 XORs for recovering
the erasure column Eu and error column Ev; hence,
4p − 5 XORs in total.

Adding all the XOR numbers in the above steps, we get
the decoding cost, which is 3p2 + 18p− 16 XORs. Similar
analysis can be conducted for the other erasure and error
patterns, as listed in details in Table 2. If a number contains
a constant value less than 5, the constant value is ignored. In
Table 2, The first two columns specify an erasure and error
pattern. In the second column, a no means there is no error.
The 3rd column is the XOR numbers needed in the error
detection step; the 4th column is the number of XORs for
the erasure and error correction step; the 5th column is the
total number of XORs performed in decoding process.

7.1.2 XORs Needed for the Naive Algorithm

The Naive Algorithm also consists of two steps, the error
detection and the error correction. The error detection step
is exactly the same as in our decoding algorithm, so we just
focus on the error correction step.

We observe that as in the EEL Algorithm, the Naive
Algorithm can greatly reduce XORs needed in the error
correction step by utilizing the results from the error de-
tection step. When the erasure column is a data column,
the cost to test whether a data column is an error or not
is 13p − 13 when the results from the error detection step
are used. Otherwise that cost would be 3p2 − 3p. So the
cost reduction is significant. Assume that the average num-
ber of try and test is p/2 since there are in total p data
columns, then the total average cost is (13p − 13) ∗ p/2 =
6.5p2−6.5pXORs for correctingwhen both the erasure and
error are data columns. When the error is a parity column,
(13p − 13) ∗ (p − 1) XORs are needed on the p − 1 data
columns, and 4p tests on the parity columns, hence the total

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20

N
or

m
al

iz
ed

 C
or

re
ct

io
n

T
hr

ou
gh

pu
t

p

Estimated throughput by XOR number
Measured throughput on Pd
Measured throughput on Pc2q

(a) Correction throughput of the EEL Algorithm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 5 10 15 20

N
or

m
al

iz
ed

 D
ec

od
in

g
T

hr
ou

gh
pu

t

p

Estimated throughput by XOR number
Measured throughput on Pd
Measured throughput on Pc2q

(b) Decoding throughput of the EEL Algorithm

Figure 3. Comparison of Throughput

cost is then 13p2 − 22p XORs. Costs for correcting other
erasure and error patterns can be counted similarly, as again
listed in details in Table 2.

7.1.3 Comparison

When there is one erasure but no error, Table 2 shows that
the EEL Algorithm performs the same as the Naive Algo-
rithm, since both only conduct the same error detection step
without invoking error correction. The real comparison is
when there is one error. The table shows that the EEL Al-
gorithm greatly outperforms the Naive Algorithm.

7.2 Measured Decoding Throughput

7.2.1 Experiment Setup

We have implemented both decoding algorithms in C lan-
guage. We then measure their decoding times with random
codewords. Codewords are kept in main memory, so there
is no disk I/O involved. For a (p + 3, p) STAR code, there
are in total p+3 columns in a codeword. There are thus p+3
possible locations for an erasure or an error, and (p + 3)2

combinations for one erasure and one error to occur in a
codeword. Note here if the error and the erasure occur on
the same column, then that column is treated as an erasure
column. In each test, all the (p + 3)2 possible erasure-error
patterns are decoded to measure the average decoding time,
where the value of an error is randomly generated. Such
tests are repeated 3000 times to get stable decoding times
to experimentally compare the performance of the two al-
gorithms.

The experiments are conducted on two platforms, one
with Intel Pentium Dual Core CPU (named Pd) and the
other with Intel Pentium Core 2 Quad CPU (named Pc2d).
Both platforms run 64-bit Linux. On both platforms, the
decoding algorithms are compiled by gcc with −O2 flag,

a common choice for the optimization flag [16]. We use
gettimeofday() system call to capture the time consumed
in decoding, and the time elapsed in the decoding process is
used as the decoding time. The ratio of the standard devia-
tion to the average decoding time is at most 5%.

We use an optimization technique employed in [20, 16],
where a large packet size can greatly improve encod-
ing/decoding performance. Packet size means how many
bytes in one symbol, and large packet size provides good
data locality when performing XOR operation. In our ex-
periments, the packet size is set to be 512 bytes so that one
symbol naturally maps to one sector in a hard disk.

7.2.2 Decoding Throughput Comparison

Instead of comparing absolute values of XOR numbers
and decoding throughput, we normalize the performance of
the EEL Algorithm by that of the Naive Algorithm. The
throughput is defined as the reciprocal of the decoding time
or the XOR number. Note that both algorithms employ the
exact same error detection process, and both algorithms in-
clude two steps: error detection and error correction. The
error correction step is invoked only when error is detected,
which is the focus of this paper.

The decoding throughput in the error correction step
measured from experiments are plotted in Figure 3(a), to-
gether with their corresponding XOR numbers, where the
X-axis is the parameter p of a (p+3, p) STAR code, and the
Y-axis is the normalized decoding throughput for the error
correction step of the corresponding STAR code. On both
test platforms, the throughput estimated by the XOR num-
ber nicely matches the measured ones in the experiments.
As p increases, the normalized throughput of the EEL Al-
gorithm also increases.

Finally the overall decoding throughput of the EEL Al-
gorithm is shown in Figure 3(b), again normalized by that of
the Naive Algorithm, together with the corresponding XOR

number. The overall decoding operation includes both the
error detection step and the error correction step. Again the
normalized overall decoding throughput of the EEL Algo-
rithm is always greater than one, and also increases as p
increases.

8 Conclusions

This paper presents an efficient decoding algorithm for
the STAR code to simultaneously tolerate one whole disk
failure and another silent disk error in a storage system. In
addition to a correctness proof of the algorithm, both the-
oretical analysis and experimental measurement show our
decoding algorithm can outperform the best naive decoding
algorithm we can think of by large factors in overall decod-
ing throughput, and more in the error correction process.

Our future work is to improve error detection perfor-
mance. Although the EEL Algorithm achieves much better
error correction performance than the naive algorithm, the
need of performing error correction is relatively rare given
that the probability of silent disk errors is low. (Certainly,
error correction performance is very important when errors
are detected.) A more general operation in a storage system
is error detection since it is on regular I/O path and per-
formed more often. Therefore, improving error detection
performance would have higher impact in storage system’s
performance.

Acknowledgments

We would like to thank James Plank for his insightful
suggestions on an earlier version of the paper. We also thank
our shepherd, Jay Wylie, and anonymous reviewers for their
constructive feedback and comments. This research was
supported in part by the National Science Foundation un-
der grant IIS-0541527.

References

[1] L. Bairavasundaram, G. Goodson, S. Pasupathy, and J. Schindler. An
Analysis of Latent Sector Errors in Disk Drives. In SIGMETRICS
’07: Proc. of ACM International Conference on Measurement and
Modeling of Computer Systems, June 2007.

[2] L. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. An Analysis of Data Corrup-
tion in the Storage Stack. In FAST ’08: Proc. of the 6th USENIX
Conference on File and Storage Technologies, February 2008.

[3] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Ma-
niatis, T. Giuli, and P. Bungale. A Fresh Look at the Relia-
bility of Long-term Digital Storage. In EuroSys ’06: 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems, April
2006.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An Effi-
cient Scheme for Tolerating Double Disk Failures in RAID Architec-
tures. IEEE Transactions on Computers, 44 (2):192–202, February
1995.

[5] V. Bohossian, C. C. Fan, P. S. LeMahieu, M. D. Riedel, J. Bruck,
and L. Xu. Computing in the RAIN: A Reliable Array of Indepen-
dent Nodes. IEEE Transaction on Parallel and Distributed Systems,
12(2):99–114, 2001.

[6] J. Bonwick and B. Moore. ZFS: The Last Word in File Systems.
http://www.opensolaris.org/os/community/zfs/docs.

[7] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patter-
son. Raid – High-Performance, Reliable Secondary Storage. ACM
Computing Surveys, 26 (2):145–185, 1994.

[8] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar. Row-Diagonal Parity for Double Disk Failure Cor-
rection. In FAST ’04: Proc. of the 3rd USENIX Conference on File
and Storage Technologies, March 2004.

[9] J. G. Elerath and M. Pecht. Enhanced Reliability Modeling of RAID
Storage Systems. In DSN ’07: International Conference on Depend-
able Systems and Networks, June 2007.

[10] S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File Sys-
tem. In SOSP ’03: Proc. of the 19th ACM Symposium on Operating
Systems Principles, 2003.

[11] J. L. Hafner, V. Deenadhayalan, W. Belluomini, and K. Rao. Unde-
tected Disk Errors in RAID Arrays. IBM Journal of Research and
Development, 52(4/5):413–425, July/September 2008.

[12] C. Huang and L. Xu. STAR: An Efficient Coding Scheme for Cor-
recting Triple Storage Node Failures. IEEE Transactions on Com-
puter, 57(7):889–901, July 2008.

[13] A. Krioukov, L. Bairavasundaram, G. R. Goodson, K. Srinivasan,
R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Parity
Lost and Parity Regained. In FAST ’08: Proc. of the 6th USENIX
Conference on File and Storage Technologies, February 2008.

[14] A. Leventhal. Triple-Parity RAID and Beyond.
http://queue.acm.org/detail.cfm?id=1670144.

[15] J. Luo, C. Huang, and L. Xu. Decoding STAR Code for Toler-
ating Simultaneous Disk Failure and Silent Errors. Tech. Report,
http://nisl.wayne.edu, December 2009.

[16] J. Luo, L. Xu, and J. S. Plank. An Efficient XOR-Scheduling Algo-
rithm for Erasure Codes Encoding. In DSN ’09: The International
Conference on Dependable Systems and Networks, June 2009.

[17] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correct-
ing Codes. Amsterdam: North-Holland, 1977.

[18] E. Pinheiro, W. Weber, and L. A. Barroso. Failure Trends in a Large
Disk Drive Population. In FAST ’07: Proc. of the 5th USENIX Con-
ference on File and Storage Technologies, February 2007.

[19] J. S. Plank. The RAID-6 Liberation Codes. In FAST ’08: Proc. of the
6th Usenix Conference on File and Storage Technologies, February
2008.

[20] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn.
A Performance Evaluation and Examination of Open-Source Erasure
Coding Libraries For Storage. In FAST ’09: Proc. of the 7th Usenix
Conference on File and Storage Technologies, February 2009.

[21] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, A. C. Arpaci-
Dusseau H. S. Gunawi, and R. H. Arpaci-Dusseau. IRON File Sys-
tems. In SOSP ’05: Proc. of the 20th ACM Symposium on Operating
Systems Principles, October 2005.

[22] B. Schroeder, S. Damouras, and P. Gill. Understanding Latent Sector
Errors and How to Protect Against Them. In FAST ’10: Proc. of the
6th USENIX Conference on File and Storage Technologies, February
2010.

[23] B. Schroeder and G. A. Gibson. Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You? In FAST
’07: Proc. of the 5th USENIX Conference on File and Storage Tech-
nologies, February 2007.

[24] T. Schwarz, Q. Xin, E. Miller, D. Long, A. Hospodor, and S. Ng.
Disk Scrubbing in Large Archival Storage Systems. In Proceed-
ings of the The IEEE Computer Society’s 12th Annual International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS), September 2004.

[25] Stephen B. Wicker. Error Control Systems for Digital Communica-
tion and Storage. Prentice Hall, 1994.

[26] L. Xu. X-Code: MDS Array Codes with Optimal Encoding. IEEE
Transactions on Information Theory, 45 (1):272–276, January 1999.

[27] L. Xu and J. Bruck. Low Density MDS Code and Factors of Com-
plete Graphs. IEEE Transactions on Information Theory, 45:1817–
1826, 1999.

[28] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. End-to-end Data Integrity for File Systems: A ZFS Case
Study. In FAST ’10: Proc. of the 6th USENIX Conference on File
and Storage Technologies, February 2010.

