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Abstract

Bargaining networks model the behavior of a set of
players who need to reach pairwise agreements for
making profits. Nash bargaining solutions in this
context correspond to solutions which are stable and
balanced. Kleinberg and Tardos [19] proved that, if
such solutions exist, then they can by calculated in
polynomial time. This left open the question: Are there
dynamics which can describe the bargaining process of
real-world players, and which converge quickly to a Nash
bargaining solution? This paper provides an affirmative
answer to that question.

The contribution of this paper is threefold: (1) We
introduce a single-stage local dynamics which models
the way in which actual players could bargain. We show
that (approximate) fixed points of our dynamics are
in one-to-one correspondence with (approximate) Nash
bargaining solutions. (2) We prove that our dynamics
converges to an ǫ-fixed point in O(1/ǫ2) iterations
independent of the network size when the potential
earnings (weights) are uniformly bounded. We use this
to prove that an approximate Nash bargaining solution
is reached in time polynomial in 1/ǫ, the network
size and 1/g. Here g is the difference between the
weights of the two corners of the matching polytope
having largest weights, and controls the behavior of
fast message passing algorithms for maximum weight
matching (matching naturally arises as a subproblem
of Nash bargaining). (3) Our proof introduces a new
powerful technique from functional analysis to this set of
problems. The technique allows us to extend our results
in various directions. We believe the tools introduced
here will be useful in many related problems.

As a corollary, for bipartite graphs we prove polyno-
mial time convergence to an approximate Nash bargain-
ing solution, with probability close to one under small
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random perturbations.

1 Introduction and main results

Exchange networks model social and economic relations
among individuals under the premise that any relation-
ship has a potential value for its partners. In a purely
economic setting, one can imagine that each relation
corresponds to a trading opportunity, and its value is
the amount of money to be earned from the trade. A fas-
cinating question in this context is that of how network
structure influences the power balance between nodes
(i.e. their earnings).

Controlled experiments [32, 21, 29] have been car-
ried out by sociologists in a set-up that can be sum-
marized as follows. A graph G = (V,E) is defined,
with positive weights wij > 0 associated to the edges
(i, j) ∈ E. A player sits at each node of this network,
and two players connected by edge (i, j) can share a
profit of wij dollars if they agree to trade with each
other. Each player can trade with at most one of her
neighbors (this is called the 1-exchange rule), so that
a set of valid trading pairs forms a matching M in the
graph G. It is often the case that players are provided
information only about their immediate neighbors.

Network exchange theory studies the possible out-
comes of such a process. While each instance admits a
multitude of outcomes, special classes of outcomes are
selected on the basis of ‘desirable’ properties. In this
paper, we focus on ‘balanced outcomes’, a solution con-
cept that dates back to Nash’s bargaining theory [23],
and was generalized in [24, 10, 19]. In balanced out-
comes, earnings are such that each transaction follows
the Nash bargaining solution given the earnings in the
rest of the network. Alternative solution concepts for
bargaining on networks were studied in [9].

We define an outcome or trade outcome as a pair
(M,γ) where M ⊆ E is a matching of G, and γ = {γi :
i ∈ V } is the vector of players’ profits. This means,
γi ≥ 0, and (i, j) ∈ M implies γi + γj = wij , whereas



for every unmatched node i /∈ M we have γi = 0.
A balanced outcome, or Nash bargaining (NB)

solution, is a trade outcome that satisfies the additional
requirements of stability and balance. Denote by ∂i the
set of neighbors of node i in G.
Stability. If player i is trading with j, then she cannot
earn more by simply changing her trading partner.
Formally γi + γj ≥ wij for all (i, j) ∈ E \M .
Balance. If player i is trading with j, then the surplus of
i over her best alternative must be equal to the surplus
of j over his best alternative. Mathematically,

γi − max
k∈∂i\j

(wik − γk)+ = γj − max
l∈∂j\i

(wjl − γl)+(1.1)

for all (i, j) ∈ M .
It turns out that the interplay between the 1-

exchange rule and the stability and balance conditions
results in highly non-trivial predictions regarding the
influence of network structure on individual earnings.
Some of these predictions agree with experimental find-
ings, but alternative predictive frameworks exist as well
[29].

1.1 Related work and our contribution Recall
the LP relaxation to the maximum weight matching
problem

maximize
∑

(i,j)∈E

wijxij ,(1.2)

subject to
∑

j∈∂i

xij ≤ 1 ∀i ∈ V,

xij ≥ 0 ∀(i, j) ∈ E .

The dual problem to (1.2) is

minimize
∑

i∈V

yi,(1.3)

subject to yi + yj ≥ wij ∀(i, j) ∈ E,

yi ≥ 0 ∀i ∈ V.

Stable outcomes were studied by Sotomayor [28].

Proposition 1.1. [28] Stable outcomes exist if and
only if the linear programming relaxation (1.2) of the
maximum weight matching problem on G admits an
integral optimum. Further, if (M,γ) is a stable solution
then M is a maximum weight matching and γ is an
optimum solution to the dual LP (1.3).

Following [24, 10], Kleinberg and Tardos [19] first
considered balanced outcomes on general exchange net-
works and proved that: a network G admits a balanced
outcome if and only if it admits a stable outcome.

The same paper describes a polynomial algorithm
for constructing balanced outcomes. This is in turn
based on the dynamic programming algorithm of As-
pvall and Shiloach [1] for solving systems of linear in-
equalities. However, [19] left open the question of how
the actual bargaining process converges to balanced out-
comes.

Azar and co-authors [2] first studied the question
as to whether a balanced outcome can be produced by
a local dynamics, and were able to answer it positively.
Their results left, however, two outstanding challenges:
(I) The bound on the convergence time proved in [2]
is exponential in the network size, and therefore does
not provide a solid justification for convergence to NB
solutions in large networks; (II) The algorithm analyzed
by these authors first selects a matching M in G using
the message passing algorithm studied in [5, 16, 6, 26],
corresponding to the pairing of players that trade. In a
second phase the algorithm determines the profit of each
player. While such an algorithm can be implemented
in a distributed way, Azar et al. point out that it is
not entirely realistic. Indeed the rules of the dynamics
change abruptly after the matching is found. Further, if
the pairing is established at the outset, the players lose
their bargaining power.

The present paper aims at tackling these challenges.
First we introduce a natural dynamics that is inter-
pretable as a realistic negotiation process. We show
that the fixed points of the dynamics are in one to one
correspondence with NB solutions, and prove that it
converges to such solutions. Moreover, we show that the
convergence to approximate NB solutions is fast. Fur-
thermore we are able to treat the more general case of
nodes with unsymmetrical bargaining powers and gen-
eralize the result of [19] on existence of NB solutions to
this context. These results are obtained through a new
and seemingly general analysis method, that builds on
powerful quantitative estimates on mappings in the Ba-
nach spaces [3]. For instance, our approach allows us
to prove that a simple variant of the edge balancing
dynamics of [2] converges in polynomial time (see Ap-
pendix A, esp. Section A.2).

Natural dynamics and its analysis have similarities
with a series of papers on using max-product belief
propagation for the weighted matching problems [5, 16,
6, 26]. We discuss that connection and extensions of our
results to those settings in Appendix F.

Rochford [24], and recent work by Bateni et al [4],
relate the exchange networks problem to the extensive
literature on cooperative game theory. A consequence
of the connection established is that the results of
Kleinberg and Tardos [19] and Azar et al [2] are implied
by previous work in the economics literature. However,



[24, 4] also leave open the twin questions of finding
(i) a fast local dynamics, and (ii) a natural model for
bargaining. Another work worth mention is by Faigle
et al [13]: it provides a polynomial time algorithm for
finding balanced outcomes (in a more general setting).
The algorithm involves local ‘transfers’, alternating with
a non-local LP based step after every O(n2) transfers.

In a parallel work by one of us [17], it is shown
that the natural dynamics may take exponentially long
to converge in the case of unequal bargaining powers.
Other algorithms like that of Kleinberg and Tardos [19]
fail to generalize. However, a suitable modification to
the bargaining process is shown to be an FPTAS even
for unequal bargaining powers.

1.2 A natural dynamics It is a fundamental open
question whether NB solutions describe the outcomes of
actual bargaining processes. The stream of controlled
experiments on small networks will surely help to get
an answer [32, 8]. [8], in particular, provides supportive
evidence while also indicating the presence of some un-
modeled effects. On the other hand, an important step
forward in our theoretical understanding was achieved
by Kleinberg and Tardos [19] who proved that NB so-
lutions can be constructed in polynomial time.

However, even a superficial look at experimental
conditions, e.g. in [8], reveals that players cannot pos-
sibly run the algorithm described in [19]. The algo-
rithm requires the solution of a sequence of linear pro-
grams (involving global information), that successively
fix node earnings. There are two possibilities: Either
there exists a realistic model for the bargaining dy-
namics that converges to NB solutions, or the solution
concept has to be revised. For the former possibility,
the underlying dynamics should satisfy the following re-
quirements: (1) It should converge rapidly to NB solu-
tions; (2) It should be natural.

While the first requirement is easy to define and
motivate, the second one is more subtle but not less
important. A few properties of a natural dynamics are
the following ones: It should be local, i.e. involve lim-
ited information exchange along edges and processing at
nodes; It should be time invariant, i.e. the players’ be-
havior should be the same/similar on identical local in-
formation at different times; It should be interpretable,
i.e. the information exchanged along the edges should
have a meaning for the players involved, and should be
consistent with reasonable behavior for players.

In the model we propose, at each time t, each player
sends a message to each of her neighbors. The message
has the meaning of ‘best current alternative’. We denote
the message from player i to player j by αt

i\j . Player i

is telling player j that she (player i) currently estimates

earnings of αt
i\j elsewhere, if she chooses not to trade

with j.
The vector of all such messages is denoted by αt ∈

R
2|E|
+ . Each agent i makes an ‘offer’ to each of her

neighbors, based on her own ‘best alternative’ and that
of her neighbor. The offer from node i to j is denoted
by mt

i→j and is computed according to

mt
i→j = (wij − αt

i\j)+ − 1

2
(wij − αt

i\j − αt
j\i)+ .(1.4)

It is easy to deduce that this definition corresponds
to the following policy: (i) An offer is always non-
negative, and a positive offer is never larger than
wij − αt

i\j (no player is interested in earning less than

her current best alternative); (ii) Subject to the above
constraints, the surplus (wij − αt

i\j − αt
j\i) (if non-

negative) is shared equally. We denote by mt ∈ R
2|E|
+

the vector of offers.
Notice that mt is just a deterministic function of αt.

In the rest of the paper we shall describe the network
status uniquely through the latter vector, and use m|αt

to denote mt defined by (1.4) when required so as to
avoid ambiguity.

Each node can estimate its potential earning based
on the network status, using

γt
i ≡ max

k∈∂i
mt

k→i,(1.5)

the corresponding vector being denoted by γt ∈ R
|V |
+ .

Notice that γt is also a function of αt.
Messages are updated synchronously through the

network, according to the rule

αt+1
i\j = (1− κ)αt

i\j + κ max
k∈∂i\j

mt
k→i .(1.6)

Here κ ∈ (0, 1) is a ‘damping’ factor: (1 − κ) can be
thought of as the inertia on the part of the nodes to
update their current estimates (represented by outgoing
messages). The use of κ < 1 eliminates pathological
behaviors related to synchronous updates. In particular,
we observe oscillations on even-length cycles in the
undamped synchronous version. We mention here that
in Appendix B we present extensions of our results to
various update schemes (e.g., asynchronous updates,
time-varying damping factor).

Remark 1.1. An update under the natural dynamics
requires O(|E|) operations in total.

Let W ≡ max(ij)∈E wij . Often in the paper we take
W = 1, since this can always be achieved by rescaling
the problem, which is the same as changing units. It
is easy to see that αt ∈ [0,W ]2|E|, mt ∈ [0,W ]2|E| and
γt ∈ [0,W ]|V | at all times (unless the initial condition
violates this bounds). Thus we call α a ‘valid’ message
vector if α ∈ [0,W ]2|E|.



1.3 Main results: Fixed point properties and
convergence Our first result is that fixed points of
the update equations (1.4), (1.6) (hereafter referred to
as ‘natural dynamics’) are indeed in correspondence
with Nash bargaining solutions when such solutions
exist. Note that the fixed points are independent of
the damping factor κ. The correspondence with NB
solutions includes pairing between nodes, according to
the following notion of induced matching.

Definition 1.1. We say that a state (α,m, γ) (or just
α) induces a matching M if the following happens. For
each node i ∈ V receiving non-zero offers (m·→i > 0), i
is matched under M and gets its unique best offer from
node j such that (i, j) ∈ M . Further, if γi = 0 then i is
not matched in M . In other words, pairs in M receive
unique best offers that are positive from their respective
matched neighbors whereas unmatched nodes receive no
non-zero offers.

Consider the LP relaxation to the maximum weight
matching problem (1.2). A feasible point x for LP (1.2)
is called half-integral if for all e ∈ E, xe ∈ {0, 1, 12}. It is
well known that problem (1.2) always has an optimum
x∗ that is half-integral [27]. An LP with a fully integer
x∗ (x∗

e ∈ {0, 1}) is called tight.

Theorem 1.1. Let G be an instance admitting one
or more Nash bargaining solutions, i.e. the LP (1.2)
admits an integral optimum.
(a) Unique LP optimum (generic case): Suppose the
optimum is unique corresponding to matching M∗.
Let (α,m, γ) be a fixed point of the natural dynamics.
Then α induces matching M∗ and (M∗, γ) is a Nash
bargaining solution. Conversely, every Nash bargaining
solution (M ′, γ

NB
) has M ′ = M∗ and corresponds to a

unique fixed point of the natural dynamics with γ = γ
NB
.

(b) Let (α,m, γ) be a fixed point of the natural
dynamics. Then (M∗, γ) is a Nash bargaining solution
for any integral maximum weight matching M∗. Con-
versely, if (M ′, γ

NB
) is a Nash bargaining solution, M ′

is a maximum weight matching and there is a unique
fixed point of the natural dynamics with γ = γ

NB
.

We prove Theorem 1.1 in Section 3. Theorem D.1 in
Appendix D extends this characterization of fixed points
of the natural dynamics to cases where Nash bargaining
solutions do not exist.

Remark 1.2. The condition that a tight LP (1.2) has
a unique optimum is generic (see Appendix D, Remark
D.1). Hence, fixed points induce a matching for almost
all instances (cf. Theorem 1.1(a)). Further, in the

non-unique optimum case, we cannot expect an induced
matching, since there is always some node with two
equally good alternatives.

The existence of a fixed point of the natural dynam-
ics is immediate from Brouwer’s fixed point theorem.
Our next result says that the natural dynamics always
converges to a fixed point.

Theorem 1.2. The natural dynamics has at least one
fixed point. Moreover, for any initial condition with
α0 ∈ [0,W ]2|E|, αt converges to a fixed point.

Note that Theorem 1.2 does not require any condi-
tion on LP (1.2). It also does not require uniqueness of
the fixed point.

The proof is in Section 2.
With Theorems 1.1 and 1.2, we know that in

the limit of a large number of iterations, the natural
dynamics yields a Nash bargaining solution. However,
this still leaves unanswered the question of the rate of
convergence of the natural dynamics. Our next theorem
addresses this question, establishing fast convergence to
an approximate fixed point.

However, before stating the theorem we define the
notion of approximate fixed point.

Definition 1.2. We say that α is an ǫ-fixed point, or
ǫ-FP in short, if, for all (i, j) ∈ E we have

∣

∣αi\j − max
k∈∂i\j

mk→i

∣

∣ ≤ ǫ ,(1.7)

and similarly for αj\i. Here, m is obtained from α
through Eq. (1.4) (i.e., m = m|α).
Note that ǫ-fixed points are also defined independently
of the damping κ.

Theorem 1.3. Let G = (V,E) be an instance with
weights (we, e ∈ E) ∈ [0, 1]|E|. Take any initial
condition α0 ∈ [0, 1]2|E|. Take any ǫ > 0. Define

T ∗(ǫ) =
1

πκ(1− κ)ǫ2
.(1.8)

Then for all t ≥ T ∗(ǫ), αt is an ǫ-fixed point. (Here
π = 3.14159 . . .)

Thus, if we wait until time t, we are guaranteed to

obtain an
(

1/
√

πκ(1 − κ)t
)

-FP. Theorem 1.3 is proved

in Section 2.

Remark 1.3. For any ǫ > 0, it is possible to construct
an example such that it takes Ω(1/ǫ) iterations to reach
an ǫ-fixed point. This lower bound can be improved
to Ω(1/ǫ2) in the unequal bargaining powers case (cf.
Section 5). However, in our constructions, the size of
the example graph grows with decreasing ǫ in each case.



We are left with the problem of relating approxi-
mate fixed points to approximate Nash bargaining solu-
tions. We use the following definition of ǫ-Nash bargain-
ing solution, that is analogous to the standard definition
of ǫ-Nash equilibrium (e.g., see [11]).

Definition 1.3. We say that (M,γ) is an ǫ-Nash bar-
gaining solution if it is a valid trade outcome that is
stable and satisfies ǫ-balance. ǫ-balance means that for
every (i, j) ∈ M we have

∣

∣[γi − max
k∈∂i\j

(wik−γk)+]− [γj − max
l∈∂j\i

(wjl−γl)+]
∣

∣ ≤ ǫ .

(1.9)

A subtle issue needs to be addressed. For an
approximate fixed point to yield an approximate Nash
bargaining solution, a suitable pairing between nodes is
needed. Note that our dynamics does not force a pairing
between the nodes. Instead, a pairing should emerge
quickly from the dynamics. In other words, nodes on the
graph should be able to identify their trading partners
from the messages being exchanged. As before, we use
the notion of an induced matching (see Definition 1.1).

Definition 1.4. Consider LP (1.2). Let H be the
set of half integral points in the primal polytope. Let
x∗ ∈ H be an optimum. Then the LP gap g is defined
as g = minx∈H\{x∗}

∑

e∈E wex
∗
e −

∑

e∈E wexe.

Theorem 1.4. Let G be an instance for which the LP
(1.2) admits a unique optimum, and this is integral, cor-
responding to matching M∗. Let the gap be g > 0. Let
α be an ǫ-fixed point of the natural dynamics, for some
ǫ < g/(6n2). Let γ be the corresponding earnings esti-
mates. Then α induces the matching M∗ and (γ,M∗)
is an (6ǫ)-Nash bargaining solution. Conversely, every
ǫ-Nash bargaining solution (M ′, γ

NB
) has M ′ = M∗ for

any ǫ > 0.

Note that g > 0 is equivalent to the unique optimum
condition (cf. Remarks 2, 5). The proof of this
theorem requires generalization of the analysis used to
prove Theorem 1.1 to the case of approximate fixed
points. Since its proof is similar to the proof of
Theorem 1.1, we defer it to Appendix E. We stress,
however, that Theorem 1.4 is not, in any sense, an
obvious strengthening of Theorem 1.1. In fact, this
is a delicate property of approximate fixed points that
holds only in the case of balanced outcomes. This
characterization breaks down in the face of a seemingly
benign generalization to unequal bargaining powers (cf.
Section 5 and [17, Section 4]).

Theorem 1.4 holds for all graphs, and is, in a sense,
the best result we can hope for. To see this, consider
the following immediate corollary of Theorems 1.3 and
1.4.

Corollary 1.1. Let G = (V,E) be an instance with
weights (we, e ∈ E) ∈ [0, 1]|E|. Suppose LP (1.2) admits
a unique optimum, and this is integral, corresponding
to matching M∗. Let the gap be g > 0. Then for any
α0 ∈ [0, 1]2|E|, there exists T ∗ = O(n4/g2) such that for
any t ≥ T ∗, αt induces the matching M∗ and (γt,M∗)

is an (6/
√

πκ(1− κ)t)-NB solution.

Proof. Choose T ∗ as T ∗(g/(10n2)) as defined in (1.8).
Clearly, T ∗ = O(n4/g2). From Theorem 1.3, αt is an
ǫ(t)-FP for ǫ(t) = 1/

√

πκ(1− κ)t. Moreover, for all
t ≥ T ∗, ǫ(t) ≤ g/(10n2). Hence, by Theorem 1.4, αt

induces the matching M∗ and (γt,M∗) is a (6ǫ(t))-NB
solution for all t ≥ T ∗.

Corollary 1.1 implies that for any ǫ > 0, the
natural dynamics finds an ǫ-NB solution in time
O
(

max
(

n4/g2, 1/ǫ2
))

.
This result is the essentially the strongest bound

we can hope for in the following sense. First, note that
we need to find M∗ (see converse in Theorem 1.4) and
balance the allocations. Max product belief propaga-
tion, a standard local algorithm for computing the max-
imum weight matching, requires O(n/g) iterations to
converge, and this bound is tight [6]. Similar results hold
for the Auction algorithm [7] which also locally com-
putes M∗. Moreover, max product BP and the natural
dynamics are intimately related (see Section F), with
the exception that max product is designed to find M∗,
but this is not true for the natural dynamics. Corollary
1.1 shows that natural dynamics only requires a time
that is polynomial in the same parameters n and 1/g
to find M∗, while it simultaneously takes rapid care of
balancing the outcome! This is very encouraging.

1.3.1 Example: Polynomial convergence to ǫ-
NB solution on bipartite graphs. The next result
further shows a concrete setting in which Corollary
1.1 leads to a strong guarantee on quickly reaching an
approximate NB solution.

Theorem 1.5. Let G = (V,E) be a bipartite graph
with weights (we, e ∈ E) ∈ [0, 1]|E|. Take any ξ ∈
(0, 1), η ∈ (0, 1). Construct a perturbed problem instance
with weights w̄e = we + ηUe, where Ue are indepen-
dent identically distributed random variables uniform in
[0, 1]. Then there exists C = C(κ) < ∞, such that for

T ∗ = C

(

n2|E|
ηξ

)2

,(1.10)

the following happens for all t ≥ T ∗ with probability
at least 1 − ξ. State αt induces a matching M that is
independent of t. Further, (γt,M) is a ǫ(t)-NB solution

for the perturbed problem, with ǫ(t) = 12/
√

πκ(1− κ)t.



ξ represents our target in the probability that a
pairing does not emerge, while η represents the size of
perturbation of the problem instance.

Theorem 1.5 implies that for any fixed η and ξ,
and any ǫ > 0, we find an ǫ-NB solution in time
τ(ǫ) = Kmax(n4|E|2, 1/ǫ2) with probability at least
1 − ξ, where K = K(η, ξ, κ) < ∞. Theorem 1.5 is
proved in Section 4.

1.3.2 Other results A different analysis allows us
to prove exponentially fast convergence to a unique
Nash bargaining solution. We describe this briefly in
Section 2.1, referring to an earlier version of this paper
[18] for the proof. Second, we generalize to the case
of nodes with unsymmetrical bargaining powers. We
show that generalizations of the Theorems 1.1, 1.2 and
1.3 hold for a suitably modified dynamics. This is
described in Section 5. Third, if only a fast local
algorithm (as opposed to a natural dynamics) for the
Nash bargaining problem is desired: we provide a local,
poly(|V |, 1/ǫ) ‘reduction’ from the problem of finding
an ǫ-Nash bargaining solution to the maximum weight
matching problem (see Appendix A, Theorem A.1)).

1.4 Outline of the paper In Section 2, we prove
Theorems 1.2 and 1.3 regarding convergence of the
natural dynamics. We characterize fixed points in
Section 3 with a proof of Theorem 1.1 (the proof of
Theorem 1.4 is deferred to Appendix E). Section 4
shows polynomial time convergence on bipartite graphs
(proof of Theorem 1.5).

In Section 5 we extend some of our results to the
unsymmetrical case with nodes having different bar-
gaining powers. As a byproduct, we characterize the
existence of solutions in this more general setting. Ap-
pendix A shows that given a maximum weight match-
ing, an ǫ-Nash bargaining solution can be constructed in
time poly(|V |, 1/ǫ). Appendix B contains a discussion
on variations of the natural dynamics including time
and node varying damping factors and asynchronous up-
dates. We relate our dynamics with belief propagation
for maximum weight matching in Appendix F.

2 Convergence to fixed points: Proofs of
Theorems 1.2 and 1.3

Theorems 1.2 and 1.3 admit a surprisingly simple
proofs, that build on powerful results in the theory of
non-expansive mappings in Banach spaces.

Definition 2.1. Given a normed linear space L, and
a bounded domain D ⊆ L, a non-expansive mapping
T : D → L is a mapping satisfying ‖Tx−Ty‖ ≤ ‖x−y‖
for all x, y ∈ D.

Mann [22] first considered the iteration xt+1 = (1 −
κ)xt + κTxt for κ ∈ (0, 1), which is equivalent to
iterating Tκ = (1 − κ) I + κT. Ishikawa [14] and
Edelstein-O’Brien [12] proved the surprising result that,
if the sequence {xt}t≥0 is bounded, then ‖Txt − xt‖ →
0 (the sequence is asymptotically regular) and indeed
xt → x∗ with x∗ a fixed point of T.

Baillon and Bruck [3] recently proved a powerful
quantitative version of Ishikawa’s theorem: If ‖x0 −
xt‖ ≤ 1 for all t, then

‖Txt − xt‖ <
1

√

πκ(1− κ)t
.(2.11)

The surprise is that such a result holds irrespective of
the mapping T and of the normed space (in particular,
of its dimensions). Theorems 1.2 and 1.3 immediately
follow from this theory once we recognize that the
natural dynamics can be cast into the form of a Mann
iteration for a mapping which is non-expansive with
respect to a suitably defined norm.

Let us stress that the nonexpansivity property does
not appear to be a lucky mathematical accident, but
rather an intrinsic property of bargaining models under
the one-exchange constraint. It loosely corresponds to
the basic observation that if earnings in the neighbor-
hood of a pair of trade partners change by amounts
N1, N2, ..., Nk, then the balanced split for the part-
ners changes at most by max(N1, N2, . . . , Nk), i.e., the
largest of the neighboring changes.

Our technique seems therefore applicable in a
broader context. (For instance, it can be applied suc-
cessfully to prove fast convergence of a synchronous and
damped version of the edge-balancing dynamics of [2].)

Proof. [Proof (Theorem 1.2)] We consider the linear
space L = R

2|E| indexed by directed edges in G. On the
bounded domain D = [0,W ]2|E| we define the mapping
T : α 7→ Tα by letting, for (i, j) ∈ E,

(2.12) (Tα)i\j ≡ max
k∈∂i\j

mk→i|α ,

where mk→i|α is defined by Eq. (1.4). It is easy to
check that the sequence of best alternatives produced by
the natural dynamics corresponds to the Mann iteration
αt = T

t
κα

0. Also, T is non-expansive for the ℓ∞ norm

‖α− β‖∞ = max
(i,j)∈E

|αi\j − βi\j | .(2.13)

Nonexpansivity follows from:
(i) The ‘max’ in Eq. (2.12) is non expansive.
(ii) An offer mi→j as defined by Eq. (1.4) is non-
expansive. To see this, note that mi→j = f(αi\j , αj\i),
where f(x, y) : R2

+ → R+ is given by

f(x, y) =

{

wij−x+y

2 x+ y ≤ wij

(wij − x)+ otherwise.
(2.14)



It is easy to check that f is continuous everywhere
in R

2
+. Also, it is differentiable except in {(x, y) ∈

R
2
+ : x + y = wij or x = wij}, and satisfies ||∇f ||1 =

|∂f
∂x

| + |∂f
∂y

| ≤ 1. Hence, f is Lipschitz continuous in
the L∞ norm, with Lipschitz constant 1, i.e., it is non-
expansive in sup norm.

Notice that Tκ maps D ≡ [0,W ]2|E| into itself. The
thesis follows from [14, Corollary 1].

Proof. [Proof (Theorem 1.3)] With the definitions given
above, consider W = 1 (whence ‖Tαt − α0‖∞ ≤ 1 for
all t) and apply [3, Theorem 1].

2.1 Exponentially fast convergence to unique
Nash bargaining solution Convergence of the nat-
ural dynamics was studied in an earlier version of this
paper using a different (and much more laborious) tech-
nique [18]. While the results in Section 1.3 constitute a
large improvement in elegance and generality over those
of [18], the latter retain an independent interest. Indeed
the analysis of [18] shows that convergence is exponen-
tially fast in a well defined class of instances. We de-
cided therefore to retain the main result of that analysis
(recast from [18]).

Theorem 2.1. Assume W = 1. Let G be an instance
having unique Nash bargaining solution (M,γ) with
KT gap σ > 0, and let γ denote the corresponding
allocation. Then, for any ǫ ∈ (0, σ/4), there exists
T∗(n, σ, ǫ) = C n7

[

1/σ + log(σ/ǫ)
]

,such that, for any

initial condition with α0 ∈ [0, 1]2|E|, and any t ≥ T∗

the natural dynamics yields earning estimates γt, with
|γt

i − γi| ≤ ǫ for all i ∈ V . Moreover, αt induces the
matching M and (M,γt) is a (4ǫ)-NB solution for any
t ≥ T∗.

We refer to Appendix G for a definition of the KT gap σ
(here KT stands for Kleinberg-Tardos). Suffice it to say
that it is related to the Kleinberg-Tardos decomposition
of G and that it is polynomially computable [19].

As mentioned above, the proof is based on a very
different technique, namely on ‘approximate decoupling’
of the natural dynamics on different KT structures
under the assumptions σ > 0 (which is generic) and
that there is a unique NB solution. See preprint [18] for
a complete proof.

Let us stress here that, for fixed σ, T∗(n, σ, ǫ) is only
logarithmic in (1/ǫ) while it is proportional to 1/ǫ2 in
Theorem 1.3. In other words, for instances with KT
gap bounded away from 0, the natural dynamics con-
verges exponentially fast, while Theorem 1.3 guarantees
inverse polynomial convergence in the general case.

3 Fixed point properties: Proof of Theorem 1.1

Let S be the set of optimum solutions of LP (1.2). We
call e ∈ E a strong-solid edge if x∗

e = 1 for all x∗ ∈ S
and a non-solid edge if x∗

e = 0 for all x∗ ∈ S. We call
e ∈ E a weak-solid edge if it is neither strong-solid nor
non-solid.

Proof of Theorem 1.1: From fixed points to
NB solutions. The direct part follows from the
following set of fixed point properties. The proofs of
these properties are given in Appendix D. Throughout
(α,m, γ) is a fixed point of the dynamics (1.4), (1.6)
(with γ given by (1.5)).

(1) Two players (i, j) ∈ E are called partners if
γi + γj = wij . Then the following are equivalent: (a)
i and j are partners, (b) wij − αi\j − αj\i ≥ 0, (c)
γi = mj→i and γj = mi→j .

(2) Let P (i) be the set of all partners of i. Then
the following are equivalent: (a) P (i) = {j} and γi > 0,
(b) P (j) = {i} and γj > 0, (c) wij − αi\j − αj\i > 0,
(d) i and j receive unique best positive offers from each
other.

(3) We say that (i, j) is a weak-dotted edge if wij −
αi\j−αj\i = 0, a strong-dotted edge if wij−αi\j−αj\i >
0, and a non-dotted edge otherwise. If i has no adjacent
dotted edges, then γi = 0.

(4) γ is an optimum solution for the dual LP (1.3) to
LP (1.2) and mi→j = (wij−γi)+ holds for all (i, j) ∈ E.

(5) The balance property (1.1), holds at every edge
(i, j) ∈ E (with both sides being non-negative).

(6) An edge is strong-solid (weak-solid) if and only
if it is strongly (weakly) dotted.

Proof. [Proof of Theorem 1.1 (a), direct implication]
Assume that the LP (1.2) has a unique optimum that is
integral. Then, by property 6, the set of strong-dotted
edges form the unique maximum weight matching M∗

and all other edges are non-dotted. By property (3) for i
that is unmatched underM∗, γi = 0. Hence by property
(2), α induces the matching M∗. Finally, by properties
4 and 5 the pair (M∗, γ) is stable and balanced and thus
forms a NB solution.

The corresponding result for the non-unique optimum
case (part (b)) can be proved similarly: it follows
immediately Theorem D.1, Appendix D.

Remark 3.1. Properties 1-6 hold for any instance.
This leads to the general result Theorem D.1 in Ap-
pendix D shows that in general, fixed points correspond
to dual optima satisfying the unmatched balance prop-
erty (1.1).

Proof of Theorem 1.1: From NB solutions to
fixed points.



Proof. Consider any NB solution (M,γ
NB

). Using a
Proposition 1.1, M is a maximum weight matching.
Construct a corresponding FP as follows. Set mi→j =
(wij − γNB,i)+ for all (i, j) ∈ E. Compute α using
αi\j = maxk∈∂i\j mk→i. We claim that this is a FP
and that the corresponding γ is γ

NB
. To prove that we

are at a fixed point, we imagine updated offers mupd

based on α, and show mupd = m.
Consider a matching edge (i, j) ∈ M . We know

that γNB,i + γNB,j = wij . Also stability and balance
tell us γNB,i − maxk∈∂i\j(wik − γNB,k)+ = γNB,j −
maxl∈∂j\i(wjl−γNB,l)+ and both sides are non-negative.
Hence, γNB,i − αi\j = γNB,j − αj\i ≥ 0. Therefore
αi\j + αj\i ≤ wij ,

mupd
i→j =

wij − αi\j + αj\i

2
=

wij − γNB,i + γNB,j

2
= γNB,j = wij − γNB,i = mi→j .

By symmetry, we also have mupd
j→i = γNB,i = mj→i.

Hence, the offers remain unchanged. Now consider
(i, j) /∈ M . We have γNB,i + γNB,j ≥ wij and, γNB,i =
maxk∈∂i\j(wik −γNB,k)+ = αi\j . Similar equation holds
for γNB,j . The validity of this identity can be checked
individually in the cases when i ∈ M and i /∈ M . Hence,
αi\j+αj\i ≥ wij . This leads to mupd

i→j = (wij−αi\j)+ =
(wij−γNB,i)+ = mi→j . By symmetry, we know also that

mupd
j→i = mj→i.
Finally, we show γ = γ

NB
. For all (i, j) ∈ M , we

already found that mi→j = γj and vice versa. For any
edge (ij) /∈ M , we know mi→j = (wij −γNB,i)+ ≤ γNB,j .
This immediately leads to γ = γ

NB
. It is worth noting

that making use of the uniqueness of LP optimum we
know that M = M∗, and we can further show that
γi = mj→i > αi\j if and only if (ij) ∈ M , i.e., the fixed
point reconstructs the pairing M = M∗.

4 Polynomial convergence on bipartite graphs:
Proof of Theorem 1.5

Theorem 1.5 says that on a bipartite graph, under a
small random perturbation on any problem instance,
the natural dynamics is likely to quickly find the max-
imum weight matching. Now, in light of Corollary 1.1,
this simply involves showing that the gap g of the per-
turbed problem instance is likely to be sufficiently large.
We use a version of the well known Isolation Lemma to
for this. Note that on bipartite graphs, there is always
an integral optimum to the LP (1.2).

Next, is our Isolation lemma (recast from [15]). For
the proof, see Appendix C.

Lemma 4.1. (Isolation Lemma) Consider a bipar-
tite graph G = (V,E). Choose η > 0, ξ > 0. Edge
weights are generated as follows: for each e ∈ E, w̄e is

chosen uniformly in [we, we+η]. Denote by M the set of
matchings in G. Let M∗ be a maximum weight match-
ing. Let M∗∗ be a matching having the maximum weight
in M\M∗. Denote by w̄(M) the weight of a matching
M . Then

Pr[ w̄(M∗)− w̄(M∗∗) ≥ ηξ/(2|E|) ] ≥ 1− ξ(4.15)

Proof. [Proof of Theorem 1.5] Using Lemma 4.1, we
know that the gap of the perturbed problem satisfies
ḡ ≥ ηξ/(2|E|) with probability at least 1 − ξ. Now,
the weights in the perturbed instance are bounded by
W̄ = 2. Rescale by dividing all weights and messages by
2, and use Corollary 1.1. The theorem follows from the
following two elementary observations. First, an (ǫ/2)-
NB solution for the rescaled problem corresponds to an
ǫ-NB solution for the original problem. Second, induced
matchings are unaffected by scaling.

We remark that Theorem 1.5 does not generalize to
any (non-bipartite) graph with edge weights such that
the LP (1.2) has an integral optimum, for the following
reason. We can easily generalize the Isolation Lemma to
show that the gap g of the perturbed problem is likely to
be large also in this case. However, there is a probability
arbitrarily close to 1 (depending on the instance) that a
random perturbation will result in an instance for which
LP (1.2) does not have an integral optimum, i.e. the
perturbed instance does not have any Nash bargaining
solutions!

5 Extension: The case of unequal bargaining
powers

It is reasonable to expect that not all edge surpluses
on matching edges are divided equally in an exchange
network setting. Some nodes are likely to have more
‘bargaining power’ than others. This bargaining power
can arise, for example, from ‘patience’; a patient agent
is expected to get more than half the surplus when
trading with an impatient partner. This phenomenon
is well known in the Rubinstein game [25] where nodes
alternately make offers to each other until an offer is
accepted – the node with a smaller discount factor
earns more in the subgame perfect Nash equilibrium.
Moreover, a recent experimental study of bargaining in
exchange networks [8] found that patience correlated
positively with earnings.

A reasonable approach to model this effect would be
to assign a positive ‘bargaining power’ to each node, and
postulate that if a pair of nodes trade with each other,
then the edge surplus is divided in the ratio of their
bargaining powers. We choose instead, a more general
setting where on each edge (ij) there is an expected
surplus split fraction quantified by rij ∈ (0, 1). Namely,



rij is the fraction of surplus that goes to i if i and j
trade with each other, and similarly for rji. Note that
we have rij +rji = 1. We call a weighted graph G along
with the postulated split fraction vector r an unequal
division (UD) instance.

The balance condition is replaced by correct division
condition

[rij ]
−1

[

γi − max
k∈∂i\j

(wik − γk)+
]

(5.16)

UD
== [rji]

−1
[

γj − max
l∈∂j\i

(wjl − γl)+
]

,

on matched edges (ij). We retain the stability condi-
tion. We call trade outcomes satisfying (5.16) and sta-
bility unequal division (UD) solutions. A natural modi-
fication to our dynamics in this situation consists of the
following redefinition of offers.

mt
i→j

UD
== (wij − αt

i\j)+ − rij(wij − αt
i\j − αt

j\i)+ .

(5.17)

We call the dynamics resulting from (5.17) and the
update rule (1.6) the UD-natural dynamics. One can
check that T defined in (2.12) is non-expansive for offers
defined as in (5.17). It follows that Theorems 1.2 and 1.3
hold for the UD-natural dynamics with damping. (We
retain Definition 1.2 of an ǫ-FP). Further, Theorem 1.1
can also be extended to this case. The proof involves
exactly the same steps as for the natural dynamics (cf.
Section 3). Properties 1-6 in the direct part all hold
(proofs nearly verbatim) and an identical construction
works for the converse.

Theorem 5.1. Let G be an instance for which the LP
(1.2) admits an integral optimum. Let (α,m, γ) be a
fixed point of the UD-natural dynamics. Then (M∗, γ)
is a UD solution for any maximum weight matching M∗.
Conversely, for any UD solution (M,γ

UD
), matching M

is a maximum weight matching and there is a unique
fixed point of the UD-natural dynamics with γ = γ

UD
.

Further, if the LP (1.2) has a unique integral
optimum, corresponding to matching M∗, then any fixed
point α induces matching M∗.

We note that the following generalization of the
result on existence of Nash bargaining solutions [19]
follows from Theorem 5.1 and the existence of fixed
points.

Lemma 5.1. UD solutions exist if and only if a stable
outcome exists (i.e. LP (1.2) has an integral optimum.)

Proof. The direct part of Theorem 5.1, along with the
existence of fixed points of the UD natural dynamics
(from Brouwer’s fixed point theorem, also first part of

Theorem 1.2 for UD) shows that UD solutions exist
if LP (1.2) has an integral optimum. The converse is
trivial since if LP (1.2) has no integral optimum, then
there are no stable solutions (see Proposition 1.1) and
hence no UD solutions.

Characterizing approximate fixed points in the
UD case: It is possible to derive a characterization
similar to Theorem 1.4 also for the UD case. However,
the bound on ǫ needed to ensure that the right pairing
emerges in an ǫ-FP turns out to be exponentially small
in n. As such, we are only able to show that a pairing
emerges in time 2O(n)/g2. Our work [17], shows that,
in fact, it does take exponentially long for a pairing to
emerge in worst case.
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A Polynomial time local algorithm for
balancing given max weight matching

In this section, we show the following:

Theorem A.1. Consider any instance admitting a NB
solution, i.e. such that the LP (1.2) has an integral
optimum. There is a local algorithm that takes a
maximum weight matching M∗ as input, and constructs
an ǫ-NB solution with computational effort O(|E|2 +
|E|/ǫ2) = O(poly(|V |, 1/ǫ)).
Note that we require no conditions on the LP (1.2),
other than that it possesses an integral optimum. The
LP gap g may be arbitrarily small, or even 0. Thus, if a
polynomial time local algorithm for finding maximum
weight matching is discovered, Theorem A.1 directly
implies a polynomial time local algorithm for finding
ǫ-NB solutions.

Our local procedure involves two steps:
(1) Construct a dual optimum, i.e., a stable allo-

cation. This takes at most 2|E| iterations of message
passing as described in Section A.1.

(2) Run edge balancing that preserves stability and
leads to ǫ-balance as in our work [17].

A.1 Constructing a dual optimum from M∗ Our
definition of ǫ-NB solutions retains a strict version of
stability while relaxing the balance requirement to ǫ bal-
ance (cf. 1.2). In the first phase of our local algorithm,
we use max-product belief propagation to find a stable
allocation, given a maximum weight matching M∗. This
is achieved locally and in polynomial time.

We use α and m for max-product BP mes-
sages in the rest of this subsection. (cf. Appendix
F). Consider the standard undamped synchronous BP
updates given by:

mt
i→j = (wij − αt

i\j)+

αt+1
i\j = max

k∈∂i\j
mt

k→i(A.1)

We use a carefully chosen initialization (different
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from the usual all-zero) to achieve our objective:

m0
i→j =

{

wij if (ij) ∈ M∗

0 otherwise
(A.2)

Let the version of max-product BP message passing
defined by (A.1) and (A.2) be denoted by A.

Our key result on A is the following:

Claim 1. Algorithm A converges to an exact fixed point
in 2|E| iterations.

A stable allocation follows immediately from a fixed
point m∗ of A (see Section F, Eq. (F.14)). The
allocation γi of node i is simply the mean of the two
largest values in the set {mk→i : k ∈ ∂i} (if i has only
one neighbor, take the second largest offer to be 0).

We omit the proof of Claim 1 in the interest of
space (the full version of our related work [17] contains
a proof).

A.2 Balancing a stable allocation The balancing
phase proceeds via the algorithm Edge Rebalancing
in our work [17], specialized to the balanced case. The
key idea is that rebalancing updates preserve stability,
while ensuring that balance is quickly achieved.

B Variations of the natural dynamics

Now that we have a reasonable dynamics that converges
fast to balanced outcomes, it is natural ask the question
“What can be say about variations of the natural dy-
namics that would also be expected to yield balanced
outcomes?” Can we handle asynchronous updates, dif-
ferent nodes updating at different rates, damping factors
that vary across nodes and in time, and so on? We dis-
cuss some of these questions in this section, focussing
on some situations in which we can prove convergence
with minimal additional work. Note that we are only
concerned with extending our convergence results since
the fixed point properties remain unchanged.

B.1 Node dependent damping Consider that the
damping factor may be different for different nodes, but
unchanging over time. Denote by κ(v), the damping
factor for node v. Assume that κ(v) ∈ [1− κ∗, κ∗] ∀v ∈
V for some κ∗ ∈ [0.5, 1), i.e. damping factors are
uniformly bounded away from 0 and 1. Define operator
T : [0, 1]|E| → [0, 1]|E| by

(Tα)i\j =

(

κ(i)

κ∗

)

max
k∈∂i\j

mk→i +

(

κ∗ − κ(i)

κ∗

)

αi\j

(B.3)

T is non-expansive. Now, the dynamics can be written
as αt+1 = κ∗

Tαt + (1 − κ∗)αt. Clearly, convergence

to fixed points (Theorem 1.2) holds in this situation.
Note that fixed points of T are the same as fixed points
of the natural dynamics. Moreover, we can use [3] to
assert that ||αt −Tαt||∞ = O(1/

√
t) and hence αt is an

O(1/
√
t)-FP. In short, we don’t lose anything with this

generalization!

B.2 Time varying damping Now consider instead
that the damping may change over time, but is the same
for all nodes. Denote by κt the damping factor at time
t, i.e.

αt+1 = κt max
k∈∂i\j

mt
k→i + (1 − κt)α

t(B.4)

The result of [14] implies that, as long as
∑∞

t=0 κt = ∞
and limt→∞ supκt < 1, the dynamics is guaranteed to
converge to a fixed point. Note that again the fixed
points are unchanged. [20] provides a quantitative esti-
mate of the rate of convergence in this case, guaran-
teeing in particular that an ǫ-FP is reached in time
exp(O(1/ǫ)) if κt is uniformly bounded away from 0
and 1. Note that this estimate is much weaker than the
one provided by [3], leading to Theorem 1.3. It seems
intuitive that the stronger O(1/

√
k) bound holds also

for the time varying damping case in the general non-
expansive operator setting, but a proof has remained
elusive thus far.

B.3 Asynchronous updates Finally, we look at the
case of asynchronous updates, i.e., one message αi\j

is updated in any given step while the others remain
unchanged. Define Ti\j : [0, 1]

|E| → [0, 1]|E| by

(Ti\jα)i′\j′ =

{

maxk∈∂i′\j′ mk→i′ if (i, j) = (i′, j′)
αi′\j′ otherwise

(B.5)

Let m ≡ |E|. There are 2m such operators, two for
each edge. Clearly, each Ti\j is non-expansive in sup-
norm. Now, consider an arbitrary permutation of the
2m directed edges ((i1, j1), (i2, j2), . . .). Consider the
updates induced by Ti1\j1 ,Ti2\j2 , . . . in order, each
with a damping factor of 1/(2m). Consider the resulting
product

(

(1/2m)Ti1\j1 + (1− (1/2m)) I
)

·(B.6)

·
(

(1/2m)Ti2\j2 + (1− (1/2m)) I
)

· . . .

=
(

1− (1−(1/2m))
2m

)

T+ (1−(1/2m))
2m

I

Here (B.6) defines T, and I is the identity operator.
It is easy to deduce that T above is non-expansive
from the following elementary facts – the product of



non-expansive operators in non-expansive, and the con-
vex combination of non-expansive operators is non-
expansive. Also, (1− (1/2m))

2m ∈ [1/4, 1/e] ∀m.
Thus, if we repeat these asynchronous updates periodi-
cally in a series of ‘update cycles’, we are guaranteed to
quickly converge to an ǫ-FP of T ([3]).

Proposition B.1. An ǫ-FP of T is an O(mǫ)-FP of
the natural dynamics.

Proof. Suppose we start an update cycle at α, an ǫ-FP
of T. Then we know that at the end of the update cycle,
no coordinate changes by more than (1−1/4)ǫ ≤ ǫ. Note
that among the 2m steps in a cycle, any particular i\j
‘coordinate’ only changes in one step. Thus, each such
coordinate change is bounded by ǫ. Consider the s-th
step in the update cycle. The state before the s-th step,
call it α(s − 1), is ǫ-close to α. Also, we know that
the (is\js) coordinate changes by at most ǫ in this step.
Hence,

||Tis\jsα(s− 1)− α(s− 1)||∞ ≤ (2m)ǫ

⇒ ||Tis\jsα− α||∞ ≤ (2m+ 2)ǫ

This holds for s = 1, 2, . . . , 2m. Hence the result.

Note that with ǫ = 0, Proposition B.1 tells us that
fixed points of T are fixed points of the natural dy-
namics. Thus, we are immediately guaranteed conver-
gence to fixed points of the natural dynamics. Moreover,
the quantitative estimate in Proposition B.1 guarantees
that in a small number of update cycles we reach ap-
proximate fixed points of the natural dynamics.

Finally, we comment that instead of ordering up-
dates by a permutation of directed edges, we could
have an arbitrary periodic sequence of updates satis-
fying non-starvation and obtain similar results. For ex-
ample, this would include cases where some nodes up-
date more frequently than others. Also, note that the
damping factors of (1/2m) were chosen for simplicity
and to ensure fast convergence. Any non-trivial damp-
ing would suffice to guarantee convergence.

It remains an open question to show convergence
for non-periodic asynchronous updates.

C Proof of Isolation lemma

Our proof of the isolation lemma is adapted from [15].

Proof. [Proof of Lemma 4.1] Fix e ∈ E and fix w̄e′

for all e′ ∈ E\e. Let Me be a maximum weight
matching among matchings that strictly include edge
e, and let M∼e be a maximum weight matching among
matchings that exclude edge e. Clearly, Me and M∼e

are independent of w̄e. Define

fe(w̄e) ≡ w̄(Me) = fe(0) + w̄e

f∼e ≡ w̄(M∼e) = const < ∞

Clearly, fe(0) ≤ f∼e, since we cannot do worse by
forcing exclusion of a zero weight edge. Thus, there
is some unique θ ≥ 0 such that fe(θ) = f∼e. Define
δ = ηξ/2|E|. Let D(e) be the event that |w̄(Me) −
w̄(M∼e)| < δ. It is easy to see that D(e) occurs iff
w̄e ∈ (θ − δ, θ + δ). Thus, Pr[D(e)] ≤ 2δ/η = ξ/|E|.
Now,

{

w̄(M∗)− w̄(M∗∗) < δ

}

=
⋃

e∈E

D(e)(C.7)

and the lemma follows by union bound.

D Proofs of fixed point properties

In this section we state and prove the fixed point
properties that were used for the proof of Theorem 1.1
in Section 3. Before that, however, we remark that
the condition: “LP (1.2) has a unique optimum” in
Theorem 1.1(a) is almost always valid.

Remark D.1. We argue that the condition “LP (1.2)
has a unique optimum” is generic in instances with
integral optimum:
Let GI ⊂ [0,W ]|E| be the set of instances having an
integral optimum. Let GUI ⊂ GI be the set of instances
having a unique integral optimum. It turns out that GI

has dimension |E| (i.e. the class of instances having
an integral optimum is large) and that GUI is both open
and dense in GI.

Notation. In proofs of this section and Section E we
denote surplus wij − αi\j − αj\i of edge (ij) by Surpij .

Lemma D.1. γ satisfies the constraints of the dual
problem (1.3).

Proof. Since offers mi→j are by definition non-negative
therefore for all v ∈ V we have γv ≥ 0. So we only
need to show γi + γj ≥ wij for any edge (ij) ∈ E. It
is easy to see that γi ≥ αi\j and γj ≥ αi\j . Therefore,
if αi\j + αi\j ≥ wij then γi + γj ≥ wij holds and we
are done. Otherwise, for αi\j + αi\j < wij we have

mi→j =
wij−αi\j+αj\i

2 and mj→i =
wij−αj\i+αi\j

2 which
gives γi + γj ≥ mi→j +mj→i = wij .

Recall that for any (ij) ∈ E, we say that i and j are
‘partners’ if γi+γj = wij and P (i) denotes the partners
of node i. In other words P (i) = {j : j ∈ ∂i, γi + γj =
wij}.



Lemma D.2. The following are equivalent:
(a) i and j are partners,
(b) Surpij ≥ 0,
(c) γi = mj→i and γj = mi→j .
Moreover, if γi = mj→i and γj > mi→j then γi = 0.

Proof. We will prove (a) ⇒ (b) ⇒ (c) ⇒ (a).
(a) ⇒ (b): Since γi ≥ αi\j and γj ≥ αj\i always

holds then wij = γi + γj ≥ αi\j + αj\i.
(b) ⇒ (c): If Surpij ≥ 0 then (wij−αi\j+αj\i)/2 ≥

αj\i. But mi→j = (wij − αi\j + αj\i)/2 therefore
γj = mi→j . The argument for γi = mj→i is similar.

(c) ⇒ (a): If Surpij ≥ 0 then mi→j = (wij −
αi\j + αj\i)/2 and mj→i = (wij − αj\i + αi\j)/2 which
gives γi + γj = mi→j + mj→i = wij and we are
done. Otherwise, we have γi + γj = mi→j + mj→i ≤
(wij−αi\j)++(wij−αj\i)+ < max

[

(wij−αi\j)+, (wij−

αj\i)+, 2wij − αi\j − αj\i

]

≤ wij which contradicts

Lemma D.1 that γ satisfies the constraints of the dual
problem (1.3).

Finally, we need to show that γi = mj→i and
γj > mi→j give γi = 0. First note that by equivalence
of (b) and (c) we should have wij < αi\j +αj\i. On the
other hand αi\j ≤ γi = mj→i ≤ (wij − αj\i)+. Now
if wij − αj\i > 0 we get αi\j ≤ wij − αj\i which is a
contradiction. Therefore γi = (wij − αj\i)+ = 0.

Lemma D.3. The following are equivalent:
(a) P (i) = {j} and γi > 0,
(b) P (j) = {i} and γj > 0,
(c) wij − αi\j − αj\i > 0.
(d) i and j receive unique best positive offers from each
other.

Proof. (a) ⇒ (c) ⇒ (b): (a) means that for all k ∈ ∂i\j,
Surpik < 0. This means mk→i = (wik − αk\i)+ <
αi\k = mj→i (using γi > 0). Hence, αi\j < mj→i. From
(a), it also follows that mj→i > 0 or (wij − αj\i)+ =
wij−αj\i. Therefore, mj→i ≤ (wij−αj\i)+ = wij−αj\i

which gives wij − αi\j − αj\i > 0 or (c). From this we
can explicitly write mi→j = (wij −αi\j +αj\i)/2 which
is strictly bigger than αj\i. Hence we obtain (b).

By symmetry (b) ⇒ (c) ⇒ (a). Thus, we have
shown that (a), (b) and (c) are equivalent.

(c) ⇒ (d): (c) implies that mi→j = (wij − αi\j +
αj\i)/2 > αj\i = maxk∈∂j\i mk→j . Thus, j receives its
unique best positive offer from i. Using symmetry, it
follows that (d) holds.

(d) ⇒ (c): (d) implies γi = mj→i and γj = mi→j .
By Lemma D.2, i and j are partners, i.e. γi + γj = wij .
Hence, mi→j + mj→i = wij . But since (d) holds,
αi\j < mj→i and αj\i < mi→j . This leads to (c).

This finishes the proof.

Recall that (ij) is a weak-dotted edge if wij−αi\j−
αj\i = 0, a strong-dotted edge if wij − αi\j − αj\i > 0,
and a non-dotted edge otherwise. Basically, for any
dotted edge (ij) we have j ∈ P (i) and i ∈ P (j).

Corollary D.1. One corollary of Lemmas D.2-D.3 is
that strong-dotted edges are only adjacent to non-dotted
edges. Also each weak-dotted edge is adjacent to at least
one weak-dotted edge at each end (in both cases, assume
that the earning of the two endpoints are non-zero.

Lemma D.4. If i has no adjacent dotted edges, then
γi = 0

Proof. Assume that the largest offer to i comes from
j. Therefore, αi\j ≤ mj→i ≤ (wij − αj\i)+. Now if
wij − αj\i > 0 then αi\j ≤ wij − αj\i or (ij) is dotted
edge which is impossible. Thus, wij − αj\i = 0 and
γi = 0.

Lemma D.5. The following are equivalent:
(a) αi\j = γi,
(b) Surpij ≤ 0,
(c) mi→j = (wij − αi\j)+.

Proof. (a) ⇒ (b): Follows from Lemma D.3, since
αi\j = γi gives |P (i)| > 1.

(b) ⇒ (c): Follows from the definition of mi→j .
(c) ⇒ (a): From mi→j = (wij − αi\j)+ we have

Surpij ≤ 0. Therefore, mj→i = (wij − αj\i)+ ≤
max

[

wij − αj\i, 0
]

≤ αi\j .

Note that (c) is symmetric in i and j, so (a) and (b) can
be transformed by interchanging i and j.

Corollary D.2. αi\j = γi iff αj\i = γj

Lemma D.6. mi→j = (wij − γi)+ holds ∀ (ij) ∈ E

Proof. If wij − αi\j − αj\i ≤ 0 then the result follows
from Lemma D.5. Otherwise, (ij) is strongly dotted
and γi = mj→i = (wij − αj\i + αi\j)/2, γj = mi→j =
(wij − αi\j + αj\i)/2. From here we can explicitly
calculate wij − γi = (wij − αi\j + αj\i)/2 = mi→j .

Lemma D.7. The unmatched balance property, equa-
tion (1.1), holds at every edge (ij) ∈ E, and both sides
of the equation are non-negative.

Proof. In light of lemma D.6, (1.1) can be rewritten at
a fixed point as

γi − αi\j = γj − αj\i(D.8)



which is easy to verify. The case Surpij ≤ 0 leads to
both sides of Eq. (D.8) being 0 by Corollary D.2. The
other case Surpij > 0 leads to

mi→j − αj\i = mj→i − αi\j =
Surpij

2
(D.9)

Clearly, we have γi = mj→i and γj = mi→j . So
Eq. (D.8) holds.

Next lemmas show that dotted edges are in correspon-
dence with the solid edges that were defined in Section
3.

Lemma D.8. A non-solid edge cannot be a dotted edge,
weak or strong.

Before proving the lemma let us define alternating
paths. A path P = (i1, i2, . . . , ik) in G is called
alternating path if: (a) There exist a partition of edges
of P into two sets A,B such that either A ⊂ M∗ or B ⊂
M∗. MoreoverA (B) consists of all odd (even) edges; i.e.
A = {(i1, i2), (i3, i4), . . .} (B = {(i2, i3), (i4, i5), . . .}).
(b) The path P might intersect itself or even repeat its
own edges but no edge is repeated immediately. That
is, for any 1 ≤ r ≤ k− 2 : ir 6= ir+1 and ir 6= ir+2. P
is called an alternating cycle if i1 = ik.

Also, consider x∗ and y∗ that are optimum solutions
for the LP and its dual, (1.2) and (1.3). The comple-
mentary slackness conditions (see [27]) for more details)
state that for all v ∈ V , y∗v(

∑

e∈∂v x
∗
e−1) = 0 and for all

e = (ij) ∈ E, x∗
e(y

∗
i + y∗j − wij) = 0. Therefore, for all

solid edges the equality y∗i + y∗j = wij holds. Moreover,
any node v ∈ V is adjacent to a solid edge iff y∗v > 0.

Proof. [Proof of Lemma D.8] First, we refine the notion
of solid edges by calling an edge e, 1-x∗-solid (12 -x

∗-
solid) whenever x∗

e = 1 (x∗
e = 1

2 ).
We need to consider two cases:
Case (I). Assume that LP has an optimum solution

x∗ that is integral as well (having a tight LP).
The idea of the proof is that if there exists a non-

solid edge e which is dotted, we use a similar analysis to
[6] to construct an alternating path consisting of dotted
and x∗-solid edges that leads to creation of at an optimal
solution to LP (1.2) that assigns a positive value to e.
This contradicts the non-solid assumption on e.

Now assume the contrary: take (i1, i2) that is a
non-solid edge but it is dotted. Consider an endpoint of
(i1, i2). For example take i2. Either there is a x∗-solid
edge attached to i2 or not. If there is not, we stop.
Otherwise, assume (i2, i3) is a x∗-solid edge. Using
Lemma D.4, either γi3 = 0 or there is a dotted edge
connected to i3. But if this dotted edge is (i2, i3) then
P (i2) ⊇ {i1, i3}. Therefore, by Lemma D.3 there has to

be another dotted edge (i3, i4) connected to i3. Now,
depending on whether i4 has (has not) an adjacent
x∗-solid edge we continue (stop) the construction. A
similar procedure could be done by starting at i1 instead
of i2. Therefore, we obtain an alternating path P =
(i−k, . . . , i−1, i0, i1, i2, . . . , iℓ) with all odd edges being
dotted and all even edges being x∗-solid. Using the
same argument as in [6] one can show that one of the
following four scenarios occur.
Path: Before P intersects itself, both end-points of
the path stop. Either the last edge is x∗-solid (then
γv = 0 for the last node) or the last edge is a dotted
edge. Now consider a new solution x′ to LP (1.2) by
x′
e = x∗

e if e /∈ P and x′
e = 1 − x∗

e if e ∈ P . It is
easy to see that x′ is a feasible LP solution at all points
v /∈ P and also for internal vertices of P . The only
nontrivial case is when v = i−k (or v = iℓ) and the
edge (i−k, i−k+1) (or (iℓ−1, iℓ) ) is dotted. In both of
these cases, by construction v is not connected to an
x∗-solid edge outside of P . Hence, making any change
inside of P is safe. Now denote the weight of all solid
(dotted) edges of P by w(Psolid) (w(Pdotted)). Here, we
only include edges outside Psolid in Pdotted. Clearly,

∑

e∈E

wex
∗
e −

∑

e∈E

wex
′
e = w(Psolid)− w(Pdotted).(D.10)

But w(Pdotted) =
∑

v∈P γv . Moreover, from Lemma
D.1, γ is dual feasible which gives w(Psolid) ≤

∑

v∈P γv.
We are using the fact that if there is a x∗-solid edge at an
endpoint of P the γ of the endpoint should be 0. Now
Eq. (D.10) reduces to

∑

e∈E wex
∗
e − ∑

e∈E wex
′
e ≤ 0.

This contradicts that e = (i1, i2) is non-solid since
x′
e > 0.

Cycle: P intersects itself and will contain an even cycle
C2s. This case can be handled very similar to the path
by defining x′

e = x∗
e if e /∈ C2s and x′

e = 1−x∗
e if e ∈ C2s.

The proof is even simpler since the extra check for the
boundary condition is not necessary.
Blossom: P intersects itself and will contain an odd
cycle C2s+1 with a path (stem) P ′ attached to the cycle
at point u. In this case let x′

e = x∗
e if e /∈ P ′ ∪ C2s+1,

and x′
e = 1 − x∗

e if e ∈ P ′, and x′
e = 1

2 if e ∈ C2s+1.
From here, we drop the subindex 2s+ 1 to simplify the
notation. Since the cycle has odd length, both neighbors
of u in C have to be dotted. Therefore,

∑

e∈E

wex
∗
e −

∑

e∈E

wex
′
e

=w(P ′
solid) + w(Csolid)− w(P ′

dotted)

− w(Cdotted) + w(Csolid)

2

=w(P ′
solid) +

w(Csolid)

2
− w(P ′

dotted)−
w(Cdotted)

2
.



Plugging w(P ′
solid) ≤

∑

v∈P ′ γv, w(Csolid) ≤
∑

v∈C γv −
γu, w(P ′

dotted) =
∑

v∈P ′ γv − γu and w(Cdotted) =
∑

v∈C γv + γu, we obtain

∑

e∈E

wex
∗
e −

∑

e∈E

wex
′
e ≤ 0 ,

which is again a contradiction.
Bicycle: P intersects itself at least twice and will
contain two odd cycles C2s+1 and C′

2s′+1 with a path
(stem) P ′ that is connecting them. Very similar to
Blossom, let x′

e = x∗
e if e /∈ P ′ ∪ C ∪ C′, x′

e = 1 − x∗
e

if e ∈ P ′, and x′
e = 1

2 if e ∈ C ∪ C′. The proof follows
similar to the case of blossom.

Case (II). Assume that there is an optimum
solution x∗ of LP that is not necessarily integral.

Everything is similar to Case (I) but the algebraic
treatments are slightly different. Some edges e in P can
be 1

2 -x
∗-solid (x∗

e = 1
2 ). In particular some of the odd

edges (dotted edges) of P can now be 1
2 -x

∗-solid. But
the subset of 1

2 -x
∗-solid edges of P can be only sub-paths

of odd length in P . On each such sub-path defining
x′ = 1 − x∗ means we are not affecting x∗. Therefore,
all of the algebraic calculations should be considered on
those sub-paths of P that have no 1

2 -x
∗-solid edge which

means both of their boundary edges are dotted.
Path: Define x′ as in Case (I). Using the discus-
sion above, let P (1), . . . , P(r) be disjoint sub-paths of

P that have no 1
2 -x

∗-solid edge. Thus,
∑

e∈E wex
∗
e −

∑

e∈E wex
′
e =

∑r
i=1

[

w(P
(i)
solid) − w(P

(i)
dotted)

]

. Since

in each P (i) the two boundary edges are dotted,

w(P
(i)
solid) ≤ ∑

v∈P (i) γv and
∑

v∈P (i) γv = w(P
(i)
dotted).

The rest can be done as in Case (I).
Cycle, Blossom, Bicycle: These cases can be done
using the same method of breaking the path and cycles
into sub-paths P (i) and following the case of path.

Lemma D.9. Every strong-solid edge is a strong-dotted
edge. Also, every weak-solid edge is a weak-dotted edge.

Proof. We rule out all alternative cases one by one. In
particular we prove:

(i) A strong-solid edge cannot be weak-dotted. If
an edge (i, j) is strong-solid then it cannot be adjacent
to another solid edge (weak or strong). Therefore,
using Lemma D.8 none of adjacent edges to (i, j) are
dotted. However, if (i, j) is weak-dotted by Lemma D.3
it is adjacent to at least one other weak-dotted edge
(since at least one of γi and γj is positive) which is a
contradiction. Thus (i, j) cannot be weak-dotted.

(ii) A strong-solid edge cannot be non-dotted. Simi-
lar to (i), if an edge (i, j) is strong-solid it cannot be ad-
jacent to dotted edges. Now, if (i, j) is non-dotted then

γi = γj = 0 using Lemma D.4. Hence wij < γi + γj = 0
which is contradiction since we assumed all weights are
positive.

(iii) A weak-solid edge cannot be strong-dotted. As-
sume, (i1, i2) is weak-solid and strong-dotted. Then
we can show an optimum to LP (1.2) can be improved
which is a contradiction. The proof is very similar to
proof of Lemma D.8. Since (i1, i2) is weak-solid, there
is a half-integral matching x∗ that is optimum to LP
and puts a mass 1/2 or 0 on (i1, i2). Then either there
is an adjacent x∗-solid edge (i2, i3) or an adjacent x∗-
solid edge (i0, i1) with mass at least 1/2 or we stop. In
the latter case, increasing the value of x∗

i1i2
increases

∑

e∈E wex
∗
e while keeping it LP feasible which is a con-

tradiction. Otherwise, by strong-dotted assumption on
(i1, i2) ((i0, i1)), the new edge (i2, i3) is not dotted. Now
we select a dotted edge (i3, i4) if it exists (otherwise we
stop and in that case γi3 = 0). This process is repeated
as in proof of Lemma D.8 in both directions to obtain
an alternating path P = (i−k, . . . , i−1, i0, i1, i2, . . . , iℓ)
with all odd edges being dotted with x∗ value at most
1/2 and all even edges being x∗-solid with mass at least
1/2. We discuss the case of P being a simple path (not
intersecting itself) here, and other cases: cycle, bicycle
and blossom can be treated similar to path as in proof
of Lemma D.8.

Construct LP solution x′ that is equal to x∗ outside
of P and inside it satisfies x′

e = x∗
e + 1/2 if e is an

odd edge that is e = (i2k−1,i2k ), and x′
e = x∗

e − 1/2
when e is an even edge that is e = (i2k,i2k+1

). It is easy
to see that x′ is a feasible LP solution. And since for
all edges (ij , ij+1) we have γij + γij+1 ≥ wij ij+1 and
on dotted edges we have equality γij + γij+1 = wij ij+1

then
∑

e∈E wex
∗
e −

∑

e∈E wex
′
e = w(Pdotted)−w(Psolid)

2 ≥
γi2+γi3−wi2i3

2 > 0 where the last inequality follows from
the fact that (i2, i3) is not-dotted. Hence we reach a
contradiction.

(iv) A weak-solid edge cannot be non-dotted. As-
sume, (i1, i2) is weak-solid and non-dotted. Similar to
(iii) we can show the best solution to LP (1.2) can be
improved which is a contradiction. Since (i1, i2) is weak-
solid we can choose a half-integral x∗ that puts a mass
at least 1/2 on (i1, i2). Also, this time the alternation in
P is the opposite of (iii). That is we choose (i2, i3) to be
dotted (if it does not exist γi2 = 0 and we stop.) The so-
lution x′ is constructed as before: equal to x∗ outside of
P , x′

e = x∗
e+1/2 if e is odd and x′

e = x∗
e−1/2 if it is even.

Hence,
∑

e∈E wex
∗
e −

∑

e∈E wex
′
e ≥ γi1+γi2−wi1i2

2 > 0,
using the non-dotted assumption on (i1, i2). Hence, we
obtain another contradiction.

Lemma D.10. γ is an optimum for the dual problem
(1.3)



Proof. Lemma D.1 guarantees feasibility. Optimality
follows from lemmas D.4, D.8 and D.9 as follows. Take
any optimum half integral matching x∗ to LP. Now using
Lemma D.9:

∑

v γv =
∑

e∈E wex
∗
e which finishes the

proof.

Theorem D.1. Let BALOPT be the set of optima of
the dual problem (1.3) satisfying the unmatched balance
property, Eq. (1.1), at every edge. If (α,m, γ) is a
fixed point of the natural dynamics then γ ∈ BALOPT .
Conversely, for every γ

BO
∈ BALOPT , there is a

unique fixed point of the natural dynamics with γ =
γ
BO

.

Proof. The direct implication is immediate from Lem-
mas D.7 and D.10. The converse proof here follows
the same steps as for Theorem 1, proved in Section
3. Instead of separately analyzing the cases (ij) ∈ M
and (ij) /∈ M , we study the cases γi + γj = wij and
γi + γj > wij .

E ǫ-fixed point properties: Proof of Theorem
1.4

In this section we prove Theorem 1.4, stated in Section
1.3. In this section we assume that α is an ǫ-fixed point
with corresponding offers m and earnings γ. That is,
for all i, j

ǫ ≥ |αi\j − max
k∈∂i\j

mk→i

∣

∣ ,

mi→j = (wij − αi\j)+ − (wij − αi\j − αj\i)+

2
,

γi = max
k∈∂i

mk→i .

Definition E.1. An edge (ij) is called δ-dotted (δ ≥ 0)
if γi + γj ≤ wij + δ.

Lemma E.1. For all edge (ij) ∈ E and all δ, δ1, δ2 ∈ R

the following hold:
(a) If (ij) is δ-dotted then Surpij ≥ −(2ǫ+ δ).
(b) If Surpij ≥ −δ then mi→j ≥ γj − (ǫ + δ) and

mj→i ≥ γi − (ǫ + δ).
(c) If mi→j ≥ γj − δ1 and mj→i ≥ γi − δ2 then (ij)

is (δ1 + δ2)-dotted.
(d) If γi − δ ≤ mj→i and γj > mi→j + 2ǫ + δ then

γi = 0.
(e) If γi > 0 and mj→i ≥ γi−δ then (ij) is (2δ+2ǫ)-

dotted.
(f) For γi, γj > 0, mj→i ≤ αi\j + δ if and only if

mi→j ≤ αj\i + δ.
(h) For all (ij), |mi→j − (wij − γi)+| ≤ ǫ.
(i) For all (ij), γi− (wij −γj)+ ≥ −ǫ and γi+γj ≥

wij − ǫ.
(j) For all i, if γi > 0 then there is at least a 2ǫ-

dotted edge attached to i.

Proof. (a) Since α is ǫ-fixed point, γi ≥ mi→j − ǫ and
γj ≥ mj→i − ǫ. Therefore, Surpij = wij − mi→j −
mj→i ≥ wij − γi − γj − (2ǫ) ≥ −(2ǫ+ δ).

(b) First consider the case Surpij ≤ 0. Then,
mi→j = (wij − αi\j)+ ≥ wij − αi\j ≥ αj\i − δ ≥
maxℓ∈∂j\i(mℓ→j)−δ−ǫ, which yieldsmi→j ≥ γj−(ǫ+δ).
The proof of mj→i ≥ γi − (ǫ + δ) is similar.

For the case Surpij > 0, mi→j =
wij−αi\j+αj\i

2 =
Surpij

2 +αi\j ≥ max(−δ
2 , 0)+maxℓ∈∂j\i(mℓ→j)− ǫ, and

the rest follows as above.
(c) Note that γi + γj ≤ mi→j + mj→i + δ1 + δ2.

If Surpij ≥ 0 then the result follows from mi→j +
mj→i = wij . For Surpij < 0 the result follows from
mi→j+mj→i ≤ max[(wij−αi\j)+, (wij−αj\i)+, 2wij−
αi\j − αj\i] ≤ wij .

(d) We need to show that when γi ≤ mj→i + δ and
γj > mi→j +2ǫ+ δ then γi = 0. From part (b) that was
just shown, the surplus should satisfy Surpij < −(ǫ+δ).
On the other hand αi\j − ǫ ≤ maxk∈∂i\j(mk→i) ≤ γi ≤
mj→i + δ ≤ (wij − αi\j)+ + δ. Now, if γi > 0 then
wij−αi\j > 0 which gives αi\j−ǫ ≤ wij−αi\j+δ. This is
equivalent to Surpij ≥ −(ǫ+δ) which is a contradiction.
Hence γi = 0.

(e) Using part (d) we should havemi→j ≥ γj−(2ǫ+
δ). Now applying part (c) the result follows.

(f) If Surpij ≥ 0 then
wij−αj\i+αi\j

2 = mj→i ≤
αi\j + δ. This inequality is equivalent to mi→j =
wij−αi\j+αj\i

2 ≤ αj\i + δ, which proves the result. If
Surpij < 0 then wij − αj\i ≤ (wij − αj\i)+ ≤ αi\j + δ.
This is equivalent to wij − αi\j ≤ αj\i + δ which yields
the result.

(h) If Surpij ≥ 0 then by part (b), mi→j + ǫ ≥ γj
and mj→i + ǫ ≥ γi. Therefore, using γj ≥ mi→j ,
γi ≥ mj→i and mj→i + mi→j = wij we have, mi→j ≥
wij −mj→i ≥ wij − γi ≥ wij −mj→i − ǫ ≥ mi→j − ǫ,
which gives the result.

If Surpij < 0 then mi→j = (wij−αi\j)+ < αj\i this
gives γj − ǫ < αj\i. On the other hand αj\i ≤ γj + ǫ
holds. Similarly, γi + ǫ ≥ αi\j ≥ γi − ǫ that leads to
|(wij − αi\j)+ − (wij − γi)+| ≤ ǫ. Hence, the result
follows from mi→j = (wij − αi\j)+.

(i) Using part (h), mj→i + ǫ ≥ (wij − γj)+. Now
result follows using γi ≥ mj→i.

(j) There is at least one neighbor j ∈ ∂i that sends
the maximum offermj→i = γi. Using part (d) we should
have mi→j ≥ γj − 2ǫ and now the result follows from
part (c).

Lemma E.2. For any edge (ij) ∈ E the earnings es-
timate γ satisfies 6ǫ-balanced property (i.e., Eq. (1.9)
holds for 6ǫ instead of ǫ).

Proof. Using Lemma E.1(h), αi\j − 2ǫ ≤



maxk∈∂i\j(mk→i) − ǫ ≤ maxk∈∂i\j [(wik − γk)+] ≤
maxk∈∂i\j(mk→i) + ǫ ≤ αi\j + 2ǫ, or

∣

∣

∣

∣

max
k∈∂i\j

[(wik − γk)+]− αi\j

∣

∣

∣

∣

≤ 2ǫ(E.11)

Now, if Surpij ≤ 0 then mj→i = (wij −
αj\i)+ ≤ αi\j which gives |γi − αi\j | ≤ ǫ or,
∣

∣γi −maxk∈∂i\j [(wik − γk)+]
∣

∣ ≤ 3ǫ. Therefore, 6ǫ-
balance property holds.

And if Surpij > 0, by Lemma E.1(b) we have

mj→i + ǫ ≥ γi. Hence,
Surpij

2 + ǫ = mj→i − αi\j + ǫ ≥
γi − αi\j ≥ mj→i − αi\j =

Surpij

2 . Same bound holds
for γj −αj\i by symmetry. Therefore, using Eq. (E.11),
|γi−maxk∈∂i\j [(wik−γk)+]| and |γj−maxℓ∈∂j\i[(wjℓ−
γℓ)+]| are within 3ǫ ≤ 6ǫ of each other.

Lemma E.3. If (ij) is δ-dotted for k ∈ ∂i\j and if
γk > max(δ, ǫ) + 6ǫ, then there exists r ∈ ∂k\i such
that (rk) is (max(δ, ǫ) + 6ǫ)-dotted.

Proof. Using, γi + γj ≤ wij + δ and Lemma E.1(i),

−ǫ ≤ γi − max
s∈∂i\k

[(wis − γs)+] ≤ γi − (wij − γj)+ ≤ δ.

Therefore, |γi − maxs∈∂i\k[(wis − γs)+]| ≤ max(δ, ǫ)
which combined with Lemma E.2 gives

|γk − max
r∈∂k\i

[(wrk − γr)+]| ≤ max(δ, ǫ) + 6ǫ.

This fact and γk > max(δ, ǫ)+6ǫ, show that there exists
an edge r ∈ ∂k\i with |γk−(wrk−γr)+| ≤ max(δ, ǫ)+6ǫ
and the result follows.

Lemma E.4. A non-solid edge cannot be a δ-dotted edge
for δ ≤ 4ǫ.

Note that this Lemma holds even for the more general
case of M∗ being non-integral.

The proof is a more complex version of proof of
Lemma D.8. Recall the notion of alternating path from
that proof.

Also, consider x∗ and y∗ that are optimum solutions
for the LP and its dual, (1.2) and (1.3). Also recall that
by complementary slackness conditions , for all solid
edges the equality y∗i + y∗j = wij holds. Moreover, any
node v ∈ V is adjacent to a solid edge iff y∗v > 0.

Proof. [Proof of Lemma E.4] We need to consider two
cases:

Case (I). Assume that the optimum LP solution
x∗ is integral (having a tight LP). Now assume the
contrary: take (i1, i2) that is a non-solid edge but
it is δ-dotted. Consider an endpoint of (i1, i2). For

example take i2. Either there is a solid edge attached
to i2 or not. If there is not, we stop. Otherwise,
assume (i2, i3) is a solid edge. Using Lemma E.3,
either γi3 > 10ǫ or there is a 10ǫ-dotted edge (i3, i4)
connected to i3. Now, depending on whether i4 has
(has not) an adjacent solid edge we continue (stop)
the construction. Similar procedure could be done
by starting at i1 instead of i2. Therefore, we obtain
an alternating path P = (i−k, . . . , i−1, i0, i1, i2, . . . , iℓ)
with each (i2k, i2k+1) being (6k + 4)ǫ-dotted and all
(i2k−1, i2k)) being solid. Using the same argument as in
[6] one can show that one of the following four scenarios
occur.
Path: Before P intersects itself, both end-points of the
path stop. At each end of the path, either the last edge
is solid (then γv < (3n+ 4)ǫ for the last node v) or the
last edge is a (3n + 4)-dotted edge with no solid edge
attached to v. Now consider a new solution x′ to LP
(1.2) by x′

e = x∗
e if e /∈ P and x′

e = 1− x∗
e if e ∈ P . It is

easy to see that x′ is a feasible LP solution at all points
v /∈ P and also for internal vertices of P . The only
nontrivial case is when v = i−k (or v = iℓ) and the edge
(i−k, i−k+1) (or (iℓ−1, iℓ) ) is (3n+4)ǫ-dotted. In both of
these cases, by construction no solid edge is attached to
v outside of P so making any change inside of P is safe.
Now denote the weight of all solid (remaining) edges
of P by w(Psolid) (w(Pdotted)). Hence,

∑

e∈E wex
∗
e −

∑

e∈E wex
′
e = w(Psolid)− w(Pdotted).

But w(Pdotted) + (3n2 + 16n)ǫ/4 ≥ ∑

v∈P γv .
Moreover, from Lemma E.1(i), γi + γj ≥ wij − ǫ for
all (ij) ∈ P which gives w(Psolid) ≤ ∑

v∈P γv + nǫ/2.
Now

∑

e∈E wex
∗
e −

∑

e∈E wex
′
e = w(Psolid)−w(Pdotted)

yields wex
∗
e−

∑

e∈E wex
′
e ≤ (3n2+18n)ǫ/4 ≤ n(n+5)ǫ.

For ǫ < g/(6n2) This contradicts the tightness of LP
relaxation (1.2) since x′

e 6= x∗
e holds at least for e =

(i1, i2).
Cycle: P intersects itself and will contain an even cycle
C2s. This case can be handled very similar to the path
by defining x′

e = x∗
e if e /∈ C2s and x′

e = 1−x∗
e if e ∈ C2s.

The proof is even simpler since the extra check for the
boundary condition is not necessary.
Blossom: P intersects itself and will contain an odd
cycle C2s+1 with a path (stem) P ′ attached to the cycle
at point u. In this case let x′

e = x∗
e if e /∈ P ′ ∪ C2s+1,

and x′
e = 1 − x∗

e if e ∈ P ′, and x′
e = 1

2 if e ∈ C2s+1.
From here, we drop the subindex 2s+ 1 to simplify the
notation. Since the cycle has odd length, both neighbors
of u in C have to be dotted. Therefore,

∑

e∈E

wex
∗
e −

∑

e∈E

wex
′
e = w(P ′

solid) + w(Csolid)

− w(P ′
dotted)−

w(Cdotted) + w(Csolid)

2
,



which is equal to

w(P ′
solid) +

w(Csolid)
2 −w(P ′

dotted)−
w(Cdotted)

2 and is less
than

∑

v∈P ′

γv + ⌈ |P |
2

⌉ǫ+
∑

v∈C γv − γu

2
+ sǫ−

∑

v∈P ′

γv

+γu+(
3|P |2 + 16|P |

4
)ǫ−

∑

v∈C γv + γu

2
+(

3s2 + 16s

4
)ǫ .

But the last term is at most n(n+ 5)ǫ which is again a
contradiction.
Bicycle: P intersects itself at least twice and will
contain two odd cycles C2s+1 and C′

2s′+1 with a path
(stem) P ′ that is connecting them. Very similar to
Blossom, let x′

e = x∗
e if e /∈ P ′ ∪ C ∪ C′, x′

e = 1 − x∗
e

if e ∈ P ′, and x′
e = 1

2 if e ∈ C ∪ C′. The proof follows
similar to the case of blossom.

Case (II). Assume that the optimum LP solution
x∗ is not necessarily integral.

Everything is similar to Case (I) but the algebraic
treatments are slightly different. Some edges e in P can
be 1

2 -solid (x∗
e = 1

2 ). In particular some of the odd edges
(dotted edges) of P can now be 1

2 -solid. But the subset
of 1

2 -solid edges of P can be only sub-paths of odd length
in P . On each such sub-path defining x′ = 1−x∗ means
we are not affecting x∗. Therefore, all of the algebraic
calculations should be considered on those sub-paths of
P that have no 1

2 -solid edge which means both of their
boundary edges are dotted.
Path: Define x′ as in Case (I). Using the discussion
above, let P (1), . . . , P(r) be disjoint sub-paths of P that

have no 1
2 -solid edge. Thus,

∑

e∈E wex
∗
e−

∑

e∈E wex
′
e =

∑r
i=1

[

w(P
(i)
solid)−w(P

(i)
dotted)

]

. Since in each P (i) the two

boundary edges are dotted, w(P
(i)
solid) ≤ ∑

v∈P (i) γv +

|P (i)|ǫ/2 and
∑

v∈P (i) γv ≤ w(P
(i)
dotted) + (3|P (i)|2 +

16|P (i)|)ǫ/4. The rest can be done as in Case (I).
Cycle, Blossom, Bicycle: These cases can be done
using the same method of breaking the path and cycles
into sub-paths P (i) and following the case of path.

The direct part of Theorem 1.4 follows from the
next lemma.

Lemma E.5. α induces the matching M∗.

Proof. From Lemma E.4 it follows that the set of 2ǫ-
dotted edges is a subset of the solid edges. In particular,
when the optimum matching M∗ is integral, no node
can be adjacent to more than one 2ǫ-dotted edges. If
we define a x′ to be zero on all edges and x′

e = 1
for all 2ǫ-dotted edges (ij) with γi + γj > 0. Then
clearly x′ is feasible to (1.2). On the other hand, using
the definition of 2ǫ-dotted for all e′ with xe′ = 1, and

Lemma E.1(j) that each node with γi > 0 is adjacent to
at least one 2ǫ-dotted edge we can write

∑

e∈E wex
′
e ≥

∑

v∈V γv − nǫ. Separately, from Lemma E.1(i) we have
∑

v∈V γv ≥ ∑

e∈E wex
∗
e− nǫ

2 , which shows that x′ is also
an optimum solution to (1.2) (when ǫ < g/(6n2)). From
the uniqueness assumption on x∗ we obtain that M∗ is
equal to the set of all 2ǫ-dotted edges with at least one
endpoint having a positive earning estimate. We would
like to show that for any such edge (ij), both earning
estimates γi and γj are positive.

Assume the contrary, i.e., without loss of generality
γi = 0. Then, Surpij ≤ 0 and 0 = mj→i = (wij−αj\i)+
that gives αj\i ≥ wij or

mℓ→j ≥ αj\i − ǫ ≥ wij − ǫ ≥ (wij −αi\j)+ − ǫ = γj − ǫ.

for some ℓ ∈ ∂j\i. Now using Lemma E.1(e) the edge
(jℓ) is 4ǫ-dotted which contradicts Lemma E.4.

Finally, the endpoints of the matched edges provide
each other their unique best offers. This latter follows
from the fact that each node with γi > 0 receives an offer
equal to γi and the edge corresponding to that offer has
to be 2ǫ-dotted using Lemma E.1(d). The nodes with
no positive offer γi = 0 are unmatched in M∗ as well.

Proof of Theorem 1.4.

Proof. For any ǫ < g/(6n2), an ǫ-fixed point induces
the matching M∗ using Lemma E.5. Additionally, the
earning vector γ is (6ǫ)-balanced using Lemma E.2.
Next we show that (γ,M∗) is a stable trade outcome.

Lemma E.6. The earnings estimates γ is an optimum
solution to the dual (1.3). In particular the pair (γ,M∗)
is a stable trade outcome.

Proof. Using Lemma E.4, we can show that for any non-
solid edge (ij), stability holds, i.e. γi + γj ≥ wij .

Now let (i, j) be a solid edge. Then i and j are
sending each other their best offers. If Surpij ≥ 0 we are

done using γi + γj = mj→i +mi→j =
wij−αi\j+αj\i

2 +
wij−αj\i+αi\j

2 = wij . And if Surpij < 0 then γi =
mj→i = (wij−αj\i)+ ≤ αi\j . Similarly, γj ≤ αj\i. This
means there exist k ∈ ∂i\j withmk→i ≥ αi\j−ǫ ≥ γi−ǫ.
But, from Lemma E.1(e) the edge (ik) would become
4ǫ-dotted which is a contradiction.

The converse of Theorem 1.4 is trivial since any
ǫ-NB solution (M ′, γ

NB
) is stable and produces a trade

outcome by definition, hence it is a dual optimal solution
which means M ′ = M∗.

F Relationship to Belief Propagation

F.1 Max product BP It is known that max-
product belief propagation (BP), for maximum weight



matching correctly finds the MWM iff the LP relaxation
(1.2) admits a unique integral optimum (see, e.g. [5], [6],
[26]).1 The analysis leading to this result involves the
‘computation tree’ of the BP updates, and shows that
convergence to the correct MWM occurs in O(n/g) it-
erations.

It turns out that the natural dynamics proposed in
this work is closely related to BP. Consider (1.4). If we
drop the second ‘surplus division’ term we obtain

mt
i→j

BP
== (wij − αt

i\j)+ .(F.12)

If we use this new definition in the update rule (1.6), we
obtain damped belief propagation updates for maximum
weight matching.2 Thus, the natural dynamics only
differs the standard BP in that it includes an extra term
that reduces ‘offers’ by half the zero-thresholded edge
surplus! Moreover, note that T defined by (F.12) and
(2.12) is non-expansive. It is worth noting that the BP
updates also have a bargaining interpretation [2].

Now consider the following generalization of (1.4),
parameterized by β.

mt
i→j

BP-β
=== (wij − αt

i\j)+ − β(wij − αt
i\j − αt

j\i)+ .

(F.13)

We retain the update rule (1.6). With β = 0 we obtain
BP, and with β = 1/2 we obtain the natural dynamics.
Again, T defined by (F.13) and (2.12) is non-expansive,
so we are guaranteed fast convergence. We show, in fact,
that for β ∈ [0, 1), BP-β successfully finds the maximum

weight matching in O(n4/ ((1− β)g)2) iterations if the
LP (1.2) has a unique optimum that is integral.

Thus, we unify our understanding of why both
BP and natural dynamics find the maximum weight
matching.

Theorem F.1. Suppose the LP (1.2) has a unique
optimum and this is integral, corresponding to matching
M∗. Let α be a fixed point of BP-β, for β ∈ [0, 1). Then
α induces matching M∗.

Here the meaning of ‘induces a matching’ is as in
Definition 1.1.

Proof. [Sketch of proof] The key step is appropriately
defining γ. Sort the offers received by node i in
descending order. Denote by µi(ℓ) the ℓ-th offer in the
list (µt

i(ℓ) = 0 if ℓ > |∂i|). Thus, µi(1) is the best offer
received and µi(2) is the next best offer. Then we define

γi
BP-β
===

1

2(1− β)
µi(1) +

(

1− 1

2(1− β)

)

µi(2)(F.14)

1This algorithm forms the first phase of the local algorithm for
finding balanced outcomes proposed in [2].

2Typically, the version of BP studied is the one without
damping.

Now, the proof mirrors the proof of the direct part
of Theorem 1.1. Define solid and dotted (weak and
strong) edges as before. Check that at a fixed point
for (ij) ∈ E, γi + γj = wij if (ij) is dotted and that
γi + γj ≥ wij otherwise. This enables us to show that
Property 6 holds: An edge is 1-solid(1/2-solid) iff it is
strongly(weakly) dotted (Proofs of Lemmas D.4, D.8
and D.9 go through verbatim). The theorem follows.

Further, we can extend our characterization to
approximate fixed points of BP-(β) for β ∈ [0, 1),
mirroring the steps followed for the natural dynamics
(see Appendix E). We can show that for ǫ ≤ ǫ∗ =
O
(

(1− β)g/n2
)

, if α is an ǫ-FP under BP-β, then
it induces the matching M . We already know that
Theorem 1.3 holds for BP-β. As such, BP-β finds M in

O
(

n4/
(

(1 − β)g
)2
)

iterations.

F.2 Tree reweighted message passing We note
that Eq. (1.4) differs from standard belief propagation
in a key way: mt

i→j depends on the message αt
j\i coming

in the opposite direction, as well as on αt
i\j . In standard

belief propagation, mt
i→j only depends on αt

i\j and not

on αt
j\i.
Looking more closely, we find that updates based

on Eq. (1.4) bear a strong resemblance to the tree
reweighted message passing updates constructed by
Wainwright et al [31] to solve the problem of finding
exact MAP estimates on loopy graphs. More precisely,
we can show that the natural dynamics corresponds
to the tree reweighted message passing updates ([31,
Algorithm 1]) for maximum weight matching where the
‘edge appearance probability’ ρij is replaced by the
message dependent function

ρtij =

{

1 if αt
i\j + αt

j\i ≥ wij ,
1
2 otherwise .

(F.15)

G The Kleinberg-Tardos construction and the
KT gap

Let G be an instance which admits at least one stable
outcome, M∗ be the corresponding matching (recall
that this is a maximum weight matching), and consider
the Kleinberg-Tardos (KT) procedure for finding a NB
solution [19]. Any NB solution γ∗ can be constructed
by this procedure with appropriate choices at successive
stages. At each stage, a linear program is solved with
variables γi attached to node i. The linear program
maximizes the minimum ‘slack’ of all unmatched edges
and nodes, whose values have not yet been set (the slack
of edge (i, j) 6∈ M is γi + γj − wij).

At the first stage, the set of nodes that remain
unmatched (i.e. are not part of M∗) is found, if such



Figure 1: Examples of basic structures: path, blossom, bicycle, and cycle (matched edges in bold).

nodes exist. Call the set of unmatched nodes C0.
After this, at successive stages of the KT procedure,

a sequence of structures C1, C2, . . . , Ck characterizing the
LP optimum are found. We call this the KT sequence.
Each such structure is a pair Cq = (V (Cq), E(Cq)) with
V (Cq) ⊆ V , E(Cq) ⊆ E. According to [19] Cq belongs
to one of four topologies: alternating path, blossom,
bicycle, alternating cycle (Figure 1). The q-th linear
program determines the value of γ∗

i for i ∈ V (Cq).
Further, one has the partition E(Cq) = E1(Cq)∪E2(Cq)
with E1(Cq) consisting of all matching edges along which
nodes in V (Cq) trade, and E2(Cq) consists of edges
(i, j) such that some i ∈ V (Cq) receives its second-best,
positive offer from j.

The γ values for nodes on the limiting structure are
uniquely determined if the structure is an alternating
path, blossom or bicycle3. In case of an alternating
cycle there is one degree of freedom – setting a value γ∗

i

for one node i ∈ Cq fully determines the values at the
other nodes.

We emphasize that, within the present definition,
Cq is not necessarily a subgraph of G, in that it might
contain an edge (i, j) but not both its endpoints. On
the other hand, V (Cq) is always subset of the endpoints
of E(Cq). We denote by Vext(Cq) ⊇ V (Cq) the set of
nodes formed by all the endpoints of edges in E(Cq).

3In [19] it is claimed that the γ values ‘may not be fully
determined’ also in the case of bicycles. However it is not hard to
prove that γ values are, in fact, uniquely determined in bicycles.

For all nodes i ∈ V (Cq) the second best offer is equal
to γ∗

i − σq, where σq is the slack of the q-th structure.
Therefore

γ∗
i + γ∗

j − wij =

{

0 if (i, j) ∈ E1(Cq),
σq if (i, j) ∈ E2(Cq).

The slacks form an increasing sequence (σ1 ≤ σ2 ≤
. . . ≤ σk).

Definition G.1. We say that a unique Nash bargain-
ing solution α∗ has a KT gap σ if

σ ≤ min
{

σ1; σ2 − σ1; . . . ; σk − σk−1

}

,

and if for each edge (i, j) such that i, j ∈ Vext(Cq) and
(i, j) 6∈ E(Cq),

γ∗
i + γ∗

j − wij ≥ σq + σ .

It is possible to prove that the positive gap con-
dition is generic in the following sense. The set of all
instances such that the NB solution is unique can be
regarded as a subset G ⊆ [0,W ]|E| (W being the max-
imum edge weight). It turns out that G has dimension
|E| (i.e. the class of instances having unique NB solu-
tion is large) and that the subset of instances with gap
σ > 0 is both open and dense in G.
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