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Abstract

A central problem in data mining and social network analy-
sis is determining overlapping communities (clusters) among
individuals or objects in the absence of external identifica-
tion or tagging. We address this problem by introducing a
framework that captures the notion of communities or clus-
ters determined by the relative affinities among their mem-
bers. To this end we define what we call an affinity system,
which is a set of elements, each with a vector characterizing
its preference for all other elements in the set. We define a
natural notion of (potentially overlapping) communities in
an affinity system, in which the members of a given com-
munity collectively prefer each other to anyone else outside
the community. Thus these communities are endogenously
formed in the affinity system and are “self-determined” or
“self-certified” by its members.

We provide a tight polynomial bound on the number of self-
determined communities as a function of the robustness of
the community. We present a polynomial-time algorithm for
enumerating these communities. Moreover, we obtain a local
algorithm with a strong stochastic performance guarantee
that can find a community in time nearly linear in the of
size the community (as opposed to the size of the network).

Social networks and social interactions fit particularly nat-
urally within the affinity system framework – if we can ap-
propriately extract the affinities from the relatively sparse
yet rich information from social networks and social inter-
actions, our analysis then yields a set of efficient algorithms
for enumerating self-determined communities in social net-
works. In the context of social networks we also connect
our analysis with results about (α, β)-clusters introduced by
Mishra, Schreiber, Stanton, and Tarjan [22, 23]. In contrast
with the polynomial bound we prove on the number of com-
munities in the affinity system model, we show that there
exists a family of networks with superpolynomial number of
(α, β)-clusters.
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1 Introduction

Problems of clustering or grouping data (based on
network or pairwise similarity information or ranked
data) have been extensively studied in many differ-
ent fields. The classic goals have been to produce
either a partition or a hierarchal clustering of the
data [12, 8, 5, 10, 7, 18]. In recent years, there has been
significant interest in identifying overlapping clusters,
or communities, not necessarily exhibiting a hierarchi-
cal structure, in networks ranging from friendship net-
works to professional contact networks to citation net-
works to product-purchasing networks to terrorist net-
works. In such settings, elements may (and will) belong
to multiple communities. For instance, in the context of
professional networks, a person may belong to multiple
explicit or implicit communities – e.g., a scientist may
simultaneously belong to the community of Economists
and the community of Computer Scientists, as well as
to the community of faculty at his own institution. In
product purchasing networks, a product may belong to
multiple categories, etc. In such settings, finding the
community structure is often used either as a prepro-
cessing step for further data analysis or decision mak-
ing in the network or for identifying and understanding
important information about the underlying network.

While many heuristics and optimization criteria have
been proposed (particularly in the context of social net-
works [20, 21, 25, 22, 23, 16]), the problem of providing
rigourous mathematical formulations for community de-
tection has remained open. In particular, a lot of the
existing work has not given general guarantees on the
number or computation time needed to find all overlap-
ping communities meeting natural criteria [9, 22, 23, 16]
or has disallowed natural communities (such as those
containing highly popular nodes [28, 29, 20, 21]). (See
the “Related Work” section for further discussion.) In
this work we introduce and study a notion of self-
determined or endogenously formed communities that
is particularly motivated by problems in social sciences
and social networks, and which extends to other con-



texts as well. We argue that our notion leads to natural
communities and we also present efficient algorithms for
identifying all such communities, providing particularly
fast (nearly linear time) algorithms for identifying such
communities in several interesting cases.

We present our results in a general framework of affinity
systems (which we introduce and describe below) that
encompasses a variety of settings. We then instantiate
it for the case of social networks, and describe how
our notion of community in this case compares to the
popular notion of (α, β)-clusters introduced by Mishra,
Schreiber, Stanton, and Tarjan [22, 23], providing new
results for their notion as well.

1.1 Endogenously Formed Communities
in Affinity Systems

An affinity system is a collection of elements with a set
of “preferences” each of these elements has over other
elements within the system. These preferences may be
expressed as a vector of rankings, or, more generally, as
a vector of non-negative weights representing affinities.
Affinity systems could represent a variety of relations,
including ones given by symmetric or asymmetric simi-
larities. For example, when clustering videos for a rec-
ommendation system, affinities may represent the like-
lihood of the videos to be co-watched, with videos that
are co-watched more often “ranking” each other higher.
For grouping documents by a research direction, a docu-
ment can “prefer” documents it cites over documents it
doesn’t. Another natural application of affinity systems
is to the study of social networks. Social interaction is
often determined by affinities among the members. For
example, in daily life, we often stay more in touch with
people we like more. When we go to a conference, we
often hang out more with people with whom we share
more interests. Therefore, these social interactions, and
their manifestations as online social networks fit well
within the affinity system paradigm.

In this paper we formalize a natural notion of self-
determined community in affinity systems and develop
efficient algorithms to identify overlapping communities
of this type as well as general bounds on the number of
such communities. Self-determined communities corre-
spond to subsets that collectively prefer each other more
than they prefer those outside the subset, where prefer-
ence is defined by the rankings or weights of the affinity
system. These communities are endogenously formed in
the affinity system. For example, a solution of the flex-
ible capacity roommate problem would group together
people who prefer living with each other to living with
anyone else in another room. Switching to the context

of social and professional networks, an academic com-
munity can be viewed as a group of scholars who collec-
tively appreciate the work of others in the community
over the work of people outside their community. In the
context of document grouping, given affinities of docu-
ments defined by citations, communities would consist
of groups of documents that share a common subject s.
t. they each receive more citations from the group as
a whole than do those outside the group. In all these
cases, the overlapping communities or clusters are self-
certified or self-determined.

In this paper we study the mathematical structure of
self-determined communities in an affinity system and
design efficient algorithms for discovering them. In our
most basic model, we have n members V = {1, ..., n}
in an affinity system, and we assume each member i
states a strict ranking πi of all members in the order of
her preferences (we generalize this later). To evaluate
whether a subset S of size |S| = k is a good community,
imagine that each member s ∈ S casts a vote for each
of its k most preferred members πs(1 : k). The number
of votes that member i receives, ϕS(i) = |{i ∈ πs(1 :
|S|)|s ∈ S}|, is the collective preference given by S. We
say S is self-determined if everyone in S receives more
votes from S than everyone outside S.

Different self-determined communities may have differ-
ent degree of coherence or robustness depending on
both the fraction of votes received by the community
members as well as the gap between the fraction of
votes received by the community members and the non-
community members. To capture this, we say S is a
(θ, α, β) self-determined community, for 0 ≤ β < α ≤ 1
and θ > 0 if

• each member s ∈ S casts a vote for each of its θ|S|
most preferred members πs(1 : θ|S|).

• for each i ∈ S, the amount of vote i receives,

ϕ
(θ)
S (i) = |{i ∈ πs(1 : θ|S|)|s ∈ S}|, is at least
α|S|.

• for each j ̸∈ S, the amount of vote j receives,

ϕ
(θ)
S (j) = |{j ∈ πs(1 : θ|S|)|s ∈ S}|, is at most
β|S|.

We start by analyzing how many communities can ex-
ist in an affinity system. Interestingly, we show that
for constants α, β, θ we have a polynomial bound of
nO(log(1/α)/α) on the number of (θ, α, β)-self-determined
communities. Our analysis, using probabilistic meth-
ods, also yields a polynomial-time algorithm for enu-
merating these communities. Moreover, we show that



our bound is nearly tight, by exhibiting an affinity sys-
tem with nΩ(1/α) (θ, α, β)-self-determined communities.
Having a polynomial number of communities and being
able to find them all efficiently is desirable especially in
settings where we use community detection as a prepro-
cessing step for further data analysis or decision making
in the network for example, using it to determine how
related two individuals are, how cohesive the overall set
is, to market products or perform viral advertising, etc.

We also present a local community finding algorithm
that is very efficient for an interesting range of pa-
rameters. This algorithm, when given robustness pa-
rameters θ, α, β, and a member v ∈ V , either returns
a (θ, α, β)-self-determined community of size t in time
O(f(α, β, θ)·t log t) or an empty set. The algorithm sat-
isfies the following performance guarantee: if α > 1/2,
if v is chosen uniformly at random from a (θ, α, β)-
self-determined community S, then with probability
Ω(2α − 1), our local algorithm will successfully recover
S (as an element on a constant-length list) and do so
in time dependent only (and nearly) on the |S| and not
on the size of the entire affinity system. As a conse-
quence of this analysis, we can show that in the (nat-
ural) case when α > 1/2 we obtain a near-linear algo-
rithm for finding all self-determined communities, sub-
stantially improving on the polynomial-time guarantee
discussed above. Quasi-linear local algorithms are par-
ticularly important in the context of studying internet-
scale networks, where even quadratic-time algorithms
are not feasible, and where one sometime does not have
access to the entire network but only to a local portion
of it. The quasi-linear algorithm is one of our main tech-
nical contributions, as its techniques can potentially be
used to convert other polynomial cluster-detection al-
gorithms into local quasi-linear algorithms – at least in
the average case.

We also study multi-facet affinity systems where each
member may have a number of different rankings of
other members. For example, member i may have
two rankings πi,fun and πi,science, where first ranks
members by how much fun i thinks they are and the
second ranks them according to academic affinity. In
this context, we say S is a self-determined community
if there exists a vector of choices of rankings (in this
case, in {fun, science}|S|) such that if members vote
according to their associated choice, the resulting votes
self-certify S. We prove that if each member has
a constant number of rankings, all our results can
be extended, even though there could be exponential
number of combinations of rankings.

Our results can be extended to weighted affinity systems
where the affinities of each member are given by a

numerical weighting rather than just an ordinal ranking.
For example, member i may give her most preferred
member weight 1, next two preferred members weight
0.7, next one weight 0.5, and so on. A weighted affinity
system can be expressed as A = {V, a1, ..., an}, where
ai is a n-dimensional vector ai = (ai,1, ..., ai,n) and
0 ≤ ai,j ≤ 1 specifies the degree of affinity that i has
for j. One can naturally define (θ, α, β)-self-determined
communities for weighted affinity systems. The only
requirement is that members are only allowed to cast
votes up to a total weight of θt when voting for a
community of size t, while respecting the affinity system.
We show that all our bounds and algorithmic results
extend to weighted affinity systems with only a slight
loss in the parameters.

1.2 Endogenously Formed Communities
in Social Networks

Our general formulation can also be applied to the
challenging task of defining and finding overlapping
communities in social networks [25, 23, 22, 20, 21].
Typically, a social network can be viewed as graph
G = (V,E), where the edges could be either undirected
(e.g., the Facebook social network determined by friend
list) or directed (e.g. the Twitter network). An edge
could be unweighted or weighted (e.g., the Skype phone-
call network or the Facebook network based on the
number of times that one person writes on the wall of
others).

Given such a network, we can run our algorithms on
it directly by defining a weighted affinity system with
ai,j = wi,j if (i, j) ∈ E, otherwise ai,j = 0 (we assume
WLOG that wi,j ∈ [0, 1]); we call this direct lifting. Our
algorithms will then find all (θ, α, β)-self-determined
communities in the associated affinity system.

However, our framework also provides an alternative
approach, which can address the challenging issue of
sparsity in observed networks in a principled manner.
Recognizing that observed networks are often only a
projection of an underlying unobserved set of relations,
rather than operating on the network directly, we can
instead lift the network to an affinity system based on
various beliefs about how the observed network came to
be, and then identify communities there. For example,

1. Shortest Path Lifting: If G = (V,E) is an un-
weighted social network, and the shortest path dis-
tance from i to j is di,j , one may define ai,j =
1/di,j . The shortest path lifting can be extended
to weighted cases by appropriated normalization.



2. Personal Page Rank Lifting: Let pi be the personal
PageRank vector [3] of vertex i, we define ai,j =
pi,j/max(pi).

3. Effective Resistance Lifting: Let ri,j be effective
resistance of from i to j by viewing G a network of
resistors, using 1/w(e) as the resistance of e ∈ E
[11], we define ai,j = mink(ri,k/ri,j).

Each style of lifting corresponds to a particular belief
on how this social network may have emerged from a
latent underlying affinity system. For instance, one can
think of Shortest Path Lifting as corresponding to the
belief that the social network serves as an approximate
spanner of the underlying affinity system [24], and
Effective Resistance Lifting corresponds to the belief
that a social network is approximately based on some
spectral sparsification of those underlying affinities [27].

Given a social network, once we derive a corresponding
affinity system A, we may use our notion of self-
determined community and apply our algorithms and
analysis to obtain communities in the original network.
From our analysis for affinity systems, we immediately
obtain that there is a polynomial number of such
communities in a social network, and they can be
enumerated in polynomial time.

We note that while the input social network is poten-
tially very sparse, appropriate lifting procedures can
produce an affinity system better reflecting the true re-
lationships between entities. Moreover, many can be
performed locally, allowing for our local algorithm to
determine meaningful communities especially efficiently.

We also note that our study of multi-facet affinity
systems allows us to model and analyze communities in
more complex social networks – such as such Google+
with circles which enable its users to share different
things with different circles of people. This extension
may also enable us to model interdisciplinary sub-fields
according to scientific works or interactions.

1.3 Self-determined Communities and
(α, β)-clusters

In this paper, we also provide several new results for
communities defined as (α, β)-clusters, an important
community notion introduced by Mishra, Schreiber,
Stanton, and Tarjan [22] for analyzing (unweighted)
social networks. In their definition, S is an (α, β)-
cluster (for α > β) if for every i ∈ S, the number
of neighbors coming from S is at least α|S| and for
every j ̸∈ S, the number of neighbors coming from S
is at most β|S|. We prove that there exists a family

of networks with superpolynomial number of (α, β)-
clusters. For instance, if α = 1 and α−β = 0.01, then in
G(n, 1/2), the Erdös-Renyi random graph with 1/2 edge
probability, the expected number of (α, β)-clusters is
nΩ(log n). We also show that under the assumption that
the planted clique problem is hard, even finding a single
(α, β)-cluster is computationally hard.1 Interestingly,
while our notion of communities in social networks
obtained via direct lifting is quite similar to the notion of
(α, β)-clusters, an essential difference is that we bound
the total amount of vote a member may cast.2 This
aspect turns out to be crucial for obtaining only a
polynomial number of such communities and being able
to enumerate them in polynomial time. We also note
that an immediate implication of our algorithmic results
is that we can find (α, β)-clusters of size t in a graph in
which all degrees are O(t).

1.4 Related Work and Discussion

Over the past decade there has been significant work on
community detection, especially in the context of online
social networks, with many heuristics and optimization
criteria being proposed [20, 21, 25, 22, 23, 16]. However,
much of this work has disallowed natural communities
such as those containing highly popular nodes or does
not give general guarantees on the number or compu-
tation time needed to find all overlapping communities
meeting natural criteria. Conductance-based notions,
for example, tend to disallow communities containing
highly popular nodes [28, 29, 20, 21]; methods such as
the “strong community” notion of [13] and the “weak
community” notion of [26, 14] tend to have the same
problem [23]. In many formulations such as densest-k-
subgraph, even finding a single community of a spec-
ified size is NP-hard (much less, finding all of them),
and while there has been substantial work on approxi-
mation algorithms [19], the best known approximation
ratios are quite high and so the interpretation of the
solutions found is less clear. Other notions including
modularity [25], correlation clustering [6], and various
hierarchical methods [17, 10] partition the graph into
disjoint communities or output communities exhibiting
hierarchical clustering, thus limiting their applicability.

1We note that our work implies that we can find all (α, β)-
clusters with β − α = Ω(1) in time nO(logn) so we cannot hope

to prove NP-hardness in this setting.
2If G is unweighted, (i, j) ∈ E, i ∈ S, and di is the out-

degree of i, then one way to set up the voting procedure is to let

i contribute min(1, θ|S|/di) to the collective vote of j, that is if
di ≥ θ|S| to scale down i’s vote; as another example, one could
simply not allow high out-degree nodes to vote at all.



In the context of social networks, the closest notion to
ours is that of (α, β)-clusters due to Mishra, Schreiber,
Stanton, and Tarjan [22]. They provide a polynomial
time algorithm under an additional assumption that
such clusters have at least one a vertex with much
more affinity inside the cluster than outside it. In this
paper we show that there exists a family of networks
with superpolynomial number of (α, β)-clusters; this
contrasts with the polynomial bound we prove on the
number of communities in the affinity system model for
any constants α, β. We also note that an immediate
implication of our algorithmic results is that we can find
(α, β)-clusters of size t in a graph in which all degrees
are O(t).

In independent and concurrent work, Arora et al. [4]
consider several assumptions (that are between worst
case and average case) concerning community structure
and provide efficient algorithms in these settings. While
their setting is somewhat different from ours, some
of their algorithms are similar in spirit. Abraham et
at. [1] deal with the related but different question of
reconstructing the latent similarity structure based on
observed connections, focusing in particular on settings
where the latent social structure consists of several
metric spaces. Their work is complementary to ours.

We note that an appealing feature of our formulation
we do not necessarily require that the subsets be of pre-
specified sizes. Our algorithms and framework apply
to more general settings than previously considered,
including settings where the natural input is ranked
data, and moreover, our model allows us to deal with
asymmetries in the input in a very natural way. Our
settings and algorithms work even when the ranking
graph is highly asymmetric, that is, when some elements
are ranked highly by a large number of elements, and the
in-degree of the nodes has a skewed distribution. This is
consistent with networks where the degree distribution
is non-uniform, obeying e.g. the power-law distribution.
In this case, our algorithms will likely include the
“popular” nodes in many of the communities, while
“common” nodes will only belong to a relatively small
number of communities.

2 Preliminaries and Notation

In our most basic model, we consider an affinity system
with n members V = {1, ..., n} and assume that each
member i ∈ V states a strict ranking πi of all members
in the order of her preferences. Let Π = {π1, . . . , πn}.
For t > 0, S ⊆ V , i ∈ V we denote by vtS(i) the
number of members in S that place i among the topmost

t elements of their preference list. That is

vtS(i) = |{s ∈ S|i ∈ πs(1 : t)}| .

For θ > 0, we let ϕθS(i) := v
⌈θ|S|⌉
S (i). We define a natural

notion of self-determined community as follows:

Definition 1. Given three positive parameters θ, α, β,
where β < α ≤ 1 and an affinity system (V,Π) we say
that a subset S of V is an (θ, α, β) self-determined
community with respect to (V,Π) if we have both

(1) For all i ∈ S, ϕθS(i) ≥ α |S|.

(2) For all j ̸∈ S, ϕθS(j) ≤ β |S|.

Throughout the paper, we will denote by γ = α − β.
Fixing θ, we say that “i votes for j with respect to a
subset S” if j ∈ πi(1 : ⌈θ |S|⌉). When S is clear from
the context we say that i votes for j.

Note that communities may overlap. As a simple exam-
ple, assume we have two sets A1 and A2 of size n/2 with
n/8 nodes in common (representing, say, researchers in
Algorithms and researchers in Complexity). Assume
each node in Ai \ Aj ranks first the nodes in Ai and
then the nodes in Aj and that each node in Ai ∩ Aj
ranks the nodes in Ai ∪Aj arbitrarily. Then each Ai is
a (1, 3/4, 1/4) self-determined community.

We also consider (more general) weighted affinity sys-
tems, where the preferences of each member i involve
numerical weightings (degrees of affinity) rather than
just an ordinal ranking. A weighted affinity system
is expressed as A = {V, a1, ..., an}, where ai is a n-
dimensional vector ai = (ai,1, ..., ai,n) and 0 ≤ ai,j ≤ 1
specifies the degree of affinity that i has for j. For exam-
ple, i may give her top-ranked node a weight of 1, she
might have a tie between its second and third-ranked
nodes giving both a weight of 0.7, and so on. If mem-
ber i chooses not to vote for a given node, this can be
modeled by giving that node a weight of 0.

We can naturally extend our notion of (θ, α, β)-self-
determined communities to weighted affinity systems.
In the definition of voting, the only requirement is that
members are only allowed to cast votes up to a total
weight of θt when voting for a community of size t.
This can be done in a number of ways based on what
is most natural in the given context. For example, each
node can determine a prefix of the weights, sorted from
highest to lowest, of total value θt and zero out the
rest (breaking ties at the boundary by scaling down the
weights of those nodes just at the boundary to make the
sum exactly equal to θ|S|). Alternatively, each node can
just scale down all its weights until they sum to θt. In



general, we denote the resulting vector (after capping
the amount of vote a member casts when voting for a

community of size t) as a
θ|S|
s . The amount of the weight

that i ∈ V receives from S is

aθS(i) =
∑
s∈S

a
θ|S|
s,i .

Given these, we can define an (θ, α, β) weighted self-
determined community as:

Definition 2. Given θ, α, β ≥ 0, β < α ≤ 1 and an
weighted affinity system (V,A) we say that a subset S of
V is an (θ, α, β) weighted self-determined community
with respect to (V,A) if we have both

(1) For all i ∈ S, aθS(i) ≥ α |S|.

(2) For all j ̸∈ S, aθS(j) ≤ β |S|.

We note that given an (weighted) affinity system and
a set S we can test in time polynomial in n whether a
proposed set S is a (θ, α, β)-self-determined community
or not. Also, fixing a (θ, α, β)-self-determined commu-
nity S, one can easily show that there exists a multiset
U of size k(γ) = 2 log (4n)/γ2 such that the set of el-
ements i voted by at least a (α − γ/2) fraction of U
(or in the weighted case, the set of elements i receiving
(α − γ/2)|U | total vote from U) is identical to S. This
then implies a very simple quasi-polynomial procedure
for finding all self-determined communities, as well as
an nO(log n/γ2) upper bound on the number of (θ, α, β)-
self-determined communities. (See Appendix A.1 for
details).

Algorithm 1 A generic algorithm for identifying an
unknown community S

Input: Preference system (V,Π), information I about
an unknown community S.

(1) Using information I to generate a list L1 of sets S1

such that at least one of the elements in L1 is a
rough approximation to S.

(2) Run a purification procedure to generate a list
L such that at least one of the elements in L is
identical to S.

(3) Remove from the list L all the sets that are not
self-determined communities.

Output: List of self-determined communities L.

In this paper we present a multi-stage approach for find-
ing an unknown community in an affinity system that

provides much better guarantees for interesting settings
of the parameters. At a generic level, this algorithm
takes as input information I about an unknown com-
munity S and outputs a list L of subsets of V s.t. if
information I is correct with respect to S, then with
high probability L contains S. This algorithm has two
main steps: it first generates a list L1 of sets S1 s.t. at
least one of the elements in L1 is a rough approxima-
tion to S in the sense that S1 nearly contains S and it
is not much larger than S. In the second step, it runs a
purification procedure to generate a list L that contains
S. (See Algorithm 1.) Both steps have to be done with
care by exploiting properties of self-determined commu-
nities and we will describe in detail in the following
sections ways to implement both steps of this generic
scheme. We also discuss how to adapt this scheme for
outputting a self-determined community in a local man-
ner, for enumerating all self-determined communities,
as well as extensions to multi-facet affinity systems and
social networks.

3 Finding Self-determined Communi-
ties

In this section we show how to instantiate the generic
Algorithm 1 if the information we are given about the
unknown community S is its size and the parameters θ,
α, and β. We show that this leads to a polynomial time
algorithm in the case where θ, α, and β are constant. We
start with a structural result showing that for any self-
determined community S there exist a small number
of community members s.t. the union of their votes
contains almost all S.

Lemma 3.1. Let S be a (θ, α, β)-self-determined com-
munity. Let γ = α−β, M = log (16/γ)/α. There exists
a set U , |U | ≤M such that the set

S1 = {i ∈ V |∃s ∈ U, i ∈ πs(1 : θ|S|)}

satisfies |S \ S1| ≤ (γ/16)|S|.

Proof. Note that any subset S̃ of S receives a total of
at least α|S̃||S| votes from elements of S, which implies
that for any such S̃ there exists iS̃ ∈ S that votes for at

least α|S̃| members of S̃. Given this, we find the desired
elements i1, . . . , iM ∈ S greedily one by one. Formally,
let S1 = S. Let i1 ∈ S be an element that votes for at
least a α|S1| elements in S1. Let S2 be the set S minus
the set of elements voted by i1. In general, at step l ≥ 2,
there exists il ∈ S that votes by at least a α fraction of
Sl. Let Sl+1 be the set Sl minus the set of elements



voted by il. We clearly have |Si+1| ≤ (1 − α)i|S1|,
so |SM+1| ≤ (γ/16)|S1| for M = log (16/γ)/α. By
construction the set U = {i1, . . . , iM ∈ S} satisfies the
desired condition.

Given Lemma 3.1, we can use the following procedure
for generating a list that contains a rough approxima-
tion to S which covers at least a 1− γ/16 fraction of S
and whose size is at most log (16/γ)|S|.

Algorithm 2 Generate rough approximations

Input: Preference system (V,Π), information I (pa-
rameters θ, α, β, size t).

• Set L = ∅, γ = α− β, k1(θ, α, γ) = log (16/γ)/α.

• Exhaustively search over all subsets U of V of size
k1(θ, α, γ); for each set U add to the list L the set
S1 ⊆ V of points voted by at least an element in U
(i.e., S1 = {i ∈ V |∃s ∈ U, i ∈ πs(1 : θt)}).

Output: List of sets L.

We now describe a lemma that will be useful for analyz-
ing the purification step, suggesting how we convert a
rough approximation to S into a list of candidate much-
closer approximations to S.

Lemma 3.2. Fix a (θ, α, β)-self-determined community
S. Let γ = α − β, t = |S|, and S1 ⊆ V , |S1| = Mθt
s.t. |S \ S1| ≤ γt/16. Let U be a set of k points drawn
uniformly at random from S̃ = S ∩ S1. Let S2 be the
subset of points in S1 that are voted by at least an α−γ/2
fraction of nodes in U , i.e.,

S2 = {i ∈ S1|vθtU (i) ≥ (α− γ/2)|U |}.

If k = 8 log(32θM/δγ)/γ2, then with probability ≥ 1−δ,
then the symmetric difference ∆(S2, S) satisfies

|∆(S2, S)| ≤ γt/8.

Proof. We start by showing that the points in S̃ are
voted by at least a γ/2 larger fraction of S̃ than the
points in S1 \ S̃. Let i ∈ S̃. Since S is (θ, α, β)-self-
determined, at least αt points in S vote for i and since
|S \ S̃| ≤ γt/16 we get that at least (α − γ/16)t points
in S̃ vote for i. Since |S̃| ≤ t, we obtain that at least a
α − γ/16 fraction of points in S̃ vote for i. Let j be a
point in S1 \ S. We know that at most βt points in S̃
vote for j and since |S̃| ≥ (1 − γ/16)t, we have that at
most a α− 3γ/4 fraction of points in S̃ vote for j.

Fix i ∈ S1. By Hoeffding’s inequality, since U is a
set of 8 log(32θM/δγ)/γ2 points drawn uniformly at

random from S̃ we have that with probability at least
1− γδ/(16θM) the fraction of points in S̃ that vote for
i is within γ/4 of the fraction of points in U that vote
for i. These together with the above observations imply
that the expected size of |∆(S2, S̃)| is

(γδ/(16θM))θMt = γδt/16.

By Markov’s inequality we obtain that there is at most
a δ chance that |∆(S2, S̃)| ≥ γt/16. Using the fact
|S̃ \S| ≤ γt/16 we finally get that with probability 1−δ
we have |∆(S2, S)| ≤ γt/8.

Algorithm 3 Purification procedure

Input: Preference system (V,Π), information I (pa-
rameters θ, α, β, γ, k2(θ, α, γ), N2(θ, α, γ), size t), list
of rough approximations L1.

• For each element S1 ∈ L1, repeat N2(θ, α, γ) times

• Sample a set U2 of k2(θ, α, γ) points at random
from S1. Let

S2 = {i ∈ S1|vθtU2
(i) ≥ (α− γ/2)|U2|}.

I.e., S2 is the subset of points in S1 that are
voted for by an at least (α − γ/2) fraction of
nodes in U2.

• Let

S3 = {i ∈ V |vθtS2
(i) ≥ (α− γ/2)|S2|}.

I.e., S3 is the subset of points in V that are
voted for by an at least (α − γ/2) fraction of
points in S2. Add S3 to the list L.

Output: List of sets L.

We now show how Lemmas 3.1 and 3.2 can be used to
identify and enumerate communities.

Theorem 3.1. Fix a (θ, α, β)-self-determined com-
munity S. Let γ = α − β, k1(θ, α, γ) =

log (16/γ)/α, k2(θ, α, γ) =
8
γ2 log

(
32θk1
γδ

)
, N2(θ, α, γ) =

O((θk1)
k2 log (1/δ)). Using Algorithm 2 together with

Algorithm 3 for steps (1) and (2) of Algorithm 1, we
have that with probability at least 1 − δ one of the ele-
ments in the list L we output is identical to S.

Proof. Since when running Algorithm 2 we search over
all subsets of U of V of size k1(θ, α, γ), by Lemma 3.1
in one of the rounds we find a set U s.t. the set of
points S1 that are voted by at least an element in U



cover a 1− γ/16 fraction of S. So, L1 contains a rough
approximation to S.

Since |S| = t, U2 is a set of k2 elements drawn at
random from S̃ = S ∩ S1 with probability at least
(t/(2tθk1))

k2 . Therefore for N2 = O((2θk1)
k2 log(1/δ)),

with probability at least 1 − δ/2 in one of the rounds
the set U2 is a set of k2 elements drawn at random from
S̃. In such a round, by Lemma 3.2, with probability
≥ 1 − δ/2 we get a set S2 such that |∆(S2, S)| ≤ γt/8.
A simple calculation shows that S3 = S.

Corollary 3.1. The number of (θ, α, β)-self-
determined communities in an affinity system (V,Π)
satisfies

B(n) = nO(log (1/γ)/α)

(
θ log (1/γ)

α

)O(
1
γ2 log ( θ log (1/γ)

αγ )
)

and with probability at least 1 − 1/n we can find all of
them in time B(n)poly(n).

We note that Theorem 3.1 and Corollary 3.1 apply even
if some nodes do not list all members of V in their
preference lists, and then some nodes in a community
S have fewer than θ|S| votes in total. If θ, α, and β
are constant, then Corollary 3.1 shows that the number
of communities is O

(
nlog (1/γ)/α

)
which is polynomial in

n and they can be found in polynomial time. We can
show that the dependence on n1/α is necessary:

Theorem 3.2. For any constant θ ≥ 1, for any α ≥
2
√
θ/n1/4, there exists an instance such that the number

of (θ, α, β)-self-determined communities with α − β =
γ = α/2 is nΩ(1/α).

Proof. Consider L =
√
n blobs B1, ..., BL each of size√

n. Assume that each point ranks the points inside
its blob first (in an arbitrary order) and it then ranks
the points outside its blob randomly. We claim that
with non-zero probability for l ≤ n1/4/(2

√
θ) any union

of l blobs is a (θ, α, β)-self-determined community with
parameters α = 1/l and γ = α/2.

Let us fix a set S which is a union of l blobs. Note that
for each point i in S, there are at least

√
n = α|S| points

in S voting for i. In contrast, for a point j not in S the
expected number of points in S voting for j is

l
√
n
θl
√
n−

√
n

n−
√
n

≤ l
√
n
θl
√
n

n
,

which is ≤
√
n/4 for l ≤ n1/4/(2

√
θ). By Chernoff

bounds, we have that the probability that j is voted
by more than

√
n/2 = α|S|/2 is at most e−

√
n/12.

By union bound, we get that the probability that there
exists a set S which is a union of l blobs that is not
a (θ, α, β)-self-determined community with α = 1/l,
γ = α/2 is at most n · nl/2 · e−

√
n/12. This is < 1 for

l ≤ n1/4/(2
√
θ), as desired.

3.1 Self-determined Communities in
Weighted Affinity Systems

We provide here a simple efficient reduction from the
weighted case to the non-weighted case.

Theorem 3.3. Given a weighted affinity system (V,A),
θ, α, β, ϵ < α, and a community size t, there is
an efficient procedure that constructs a non-weighted
instance (V ′,Π) along with a mapping f from V ′ to V ,
s.t. for any (θ, α, β) community S in V there exists a
(θ, α− ϵ, β) community S′ in (V ′,Π) with f(S′) = S.

Proof. Given the original weighted instance (V,A), we
construct a non-weighted instance (V ′,Π) as follows.
For each s ∈ V , we create a blob Bs of k nodes in
V ′. For any s, s̃ ∈ V , if p is the weight aθts,s̃ with which
s votes for s̃, we connect Bs to Bs̃ with Gk,k,⌊pk⌋, where
Gk,k,⌊pk⌋ is a bipartite graph with k nodes on the left
and k nodes on the right such that each edge on the
left has out-degree ⌊pk⌋ and each node on the right has
in-degree ⌊pk⌋. Clearly all nodes in V ′ rank at most
k|S|θ other nodes (and do not have an opinion about
the rest). Let k = 1/ϵ. Consider a community S in
(V,A). For any s ∈ S and for each node in i ∈ Bs the
total vote from nodes in Bs̃ for s̃ ∈ S (when evaluating
whether ∪s̃∈SBs̃ is a good community or not) is at least

α|S|k − |S| ≥ k|S|(α− ϵ).

Moreover, for s /∈ S and for each node in Bs we have
the total vote from the nodes in Bs̃ for s̃ ∈ S is at most
β|S|k. Therefore ∪s̃∈SBs̃ is a legal (θ, α − ϵ, β)-self-
determined community of size kt in the non-weighted
instance (V ′,A).

Using this reduction we immediately get the following
result:

Theorem 3.4. For any θ, α, β, γ =
α − β, the number of weighted (θ, α, β)-
self-determined communities is B(n) =

(n/γ)O(log (1/γ)/α)
(

2θ log (1/γ)
α

)O(
1
γ2 log ( θ log (1/γ)

αγ )
)

and we can find them in time B(n)poly(n).



Proof. We perform the reduction in Theorem 3.3 with
ϵ = γ/2 and use the algorithm in Theorem 3.1 and
the bound in Corollary 3.1. The proof follows from the
fact that the number of vertices in the new instance has
increased by only a factor of 2/γ. We also note that
each set output on the reduced instance can then be
examined on the original weighted affinity system, and
kept if and only if it satisfies the community definition
with original parameters.

3.2 Self-determined Communities in
Multi-faceted Affinity Systems

A multi-faceted affinity system is a system where each
node may have more than one rankings of other nodes.
This may reflect, for example, that a person may have
two rankings of other people, one corresponding to
personal friends (in descending order of affinity), and
one of co-workers. Suppose that each element i is
allowed to have at most f different rankings π1

i , . . . , π
f
i .

We say that the pair (S, ψ) is a multi-faceted community
where ψ : S → {1, . . . , f}, if S is a community where
ψ(i) specifies which ranking facet should be used by
element i. In other words, as before, let

ϕθS,ψ(i) := |{s ∈ S|i ∈ πψ(s)s (1 : ⌈θ|S|⌉)}|.

Then (S, ψ) is a (θ, α, β)-multifaceted community if
for all i ∈ S, ϕθS,ψ(i) ≥ α|S|, and for all j /∈ S,

ϕθS,ψ(j) < β|S|. We show that for a bounded f , even
though there may be exponentially many functions ψ,
it is not harder to find multifaceted communities than
to find regular communities.

Theorem 3.5. Let S be an f-faceted (θ, α, β)-self-
determined community. Then there is an algorithm that
runs in O(n2) time and outputs S, as well as a facet
structure ψ′ on S such that (S, ψ′) is an (α − γ/4, β +
γ/4, θ)-multifaceted community with probability p ≥

(f · n)−O(log (1/γ)/α)·(
f · θ log (1/γ)

α

)−O
(

1
γ2 log ( θ log (1/γ)

αγ )
)
f−O(log n/γ2).

Thus an algorithm running in time O
(
n2 log δ

p

)
will

output a list containing S with probability > 1− δ.

We proceed with the proof of Theorem 3.5. For
a bounded f , it is not harder to find multifaceted
communities than to find regular communities. Note
that in all our sampling algorithms can be adapted

as follows. Once a representative sample {i1, . . . , ik}
of the community S is obtained, we can guess the
facets ψ(i1), . . . , ψ(ik) while adding a multiplicative fk

factor to the running time. We can thus get the set
S2 approximating S in the same way as it is found in
Algorithms 2 and 3 while adding a multiplicative factor
of fk1+k2 to the running time. We thus obtain a list L
that for each multi-faceted community (S, ψ) contains
set S2 such that ∆(S2, S) < γt/8:

Claim 1. We can output a list L of

(f · n)O(log (1/γ)/α)

(
f · θ log (1/γ)

α

)O(
1
γ2 log ( θ log (1/γ)

αγ )
)

sets, such that for each multi-faceted community S there
is an S2 ∈ L such that ∆(S2, S) < γt/8.

It remains to show that:

Lemma 3.3. Suppose that (S, ψ) is a valid (θ, α, β)-
multifaceted community of size t. Given t and a set S2

such that ∆(S2, S) < γt/8, there is an algorithm that

outputs S with probability > f−8 log n/γ2

/2.

Moreover, a facet structure ψ′ can be recovered on S
so that (S, ψ′) is an (α − γ/4, β + γ/4, θ)-multifaceted
community.

Proof. The algorithm is very simple. Guess a set U2

of m = 8 log n/γ2 points in S2; guess a function ψ2 on
U2; output S = the set of points that receive at least
(α− γ/2)t votes according to (U2, ψ2).

Note that in the non-faceted case, by Hoeffding’s in-
equality, with probability > 1/2 selecting a set U2 as
above and then selecting those points that receive at
least (α − γ/2)t votes from U2 would have yielded S.
This is because each element of S receives at least
(α − γ/8)t votes from elements of S2, while each ele-
ment of the complement Sc receives at most (β + γ/8)t
votes from elements of S2. This reasoning extends to the
multifaceted setting, provided, the function ψ2 coincides
with the function ψ on the elements of U2 ∩S. This in-
deed happens with probability ≥ f−|U2| = f−8 log n/γ2

,
completing the proof of the first part of the lemma.

For the second part of the lemma we assume that the
set S is known and we need to recover the facets ψ′ that
make S a community. Note that this step is necessary
in order to verify that S is indeed a multifaceted
community. There are two cases to consider.

Case 1: t ≤ 8 log n/γ2. In this case we can find
ψ by exhaustively checking all possibilities in time



O(q8 log n/γ2

), which is the same as the probability of
success of the first step.

Case 2: t > 8 log n/γ2. In this case we use linear
programming to find a fractional version ψf of the
function ψ first. In other words, we find a function
ψf : S × {1, . . . , q} → [0, 1] such that (S, ψf ) is a
“community” on average:

1. for all s ∈ S,
∑f
i=1 ψf (s, i) = 1;

2. for all x ∈ S,
∑
s∈S

∑f
i=1 ψf (s, i) ·χx∈πi

s(1:θt)
≥ αt;

3. for all y /∈ S,
∑
s∈S

∑f
i=1 ψf (s, i) · χy∈πi

s(1:θt)
< βt;

This linear program is feasible, since the original ψ is an
integral solution to it. As a result, we obtain a fractional
solution ψf satisfying the three conditions. To obtain
ψ′ we round ψf by sampling. In other words, we set
ψ′(s) = i with probability ψf (s, i). By Hoeffding’s
inequality, since t > 8 log n/γ2, the sampling will
preserve conditions 2 and 3 that were imposed on ψf up
to an additive error of γ/4. Thus, by definition, (S, ψ′)
will be an (α−γ/4, β+γ/4, θ)-multifaceted community.

Together with Claim 1, Lemma 3.3 shows that multi-
faceted communities can indeed be recovered in polyno-
mial time, and Theorem 3.5 follows.

4 A Local Algorithm for Finding Self-
determined Communities

In this section we describe a local algorithm for finding
a community. Given a single element v and the target
community size t, the goal of the algorithm is to output
a community S of size t containing v. Let us fix a target
community S that we are trying to uncover this way.

We note that we need α > 1/2 for a local algorithm that
uses only one seed to succeed. If α ≤ 1/2 then one may
have a valid (θ, α, β)-self-determined community that is
comprised of two disjoint cliques of vertices. In this case,
no local algorithm that starts with just one vertex as a
seed may uncover both cliques, however we can extend
the construction below if we start with O(1/α) seeds.
Below, we focus on providing a local algorithm for
α > 1/2. Our local algorithm will follow the structure of
the generic Algorithm 1. The main technical challenge
is to provide a local procedure for producing rough
approximations. In general, it is not possible to do so
starting from any seed vertex v ∈ S. For example, if v
is a super-popular vertex that is voted first by everyone
in V , then v will belong to all communities including
S, but v would contain no “special information” that

would allow one to identify S. However, we will show
that a constant fraction of the nodes in S are sufficiently
“representative” of S to enable one to recover S as one
of the sets on a constant-length list.

Let us fix t and θ. For an element v, we let R(v)
be a uniformly random element which receives v’s
vote with these parameters. In other words, R(v) :=
uniform element of πv(1 : θ · t). We start with the
main technical claim that enables a local procedure for
producing rough approximations.

Lemma 4.1. Let S be any (θ, α, β)-self-determined
community of size t. Let η := 2α−1 > 0. Then there is
a subset T ⊆ S such that |T | ≥ ηt and for each pair v ∈
T and u ∈ S, we have Pr[R(R(v)) = u] ≥ (α−1/2)/θ2

t .

Proof. Intuitively, a typical element of the community
will vote for over half the community. At the same
time, all elements receive votes from over half of the
community as well. Thus a typical element reaches all
elements in “two hops” with a constant probability.

Formally, for each element v ∈ S denote by

OS(v) := πv(1 : θ · t) ∩ S

the elements of S that v votes for, and by

IS(v) := {u ∈ S : v ∈ πu(1 : θ · t)}

the elements of S that vote for v. By the community
property we know that |IS(v)| ≥ αt for all v ∈ S.
Observe that∑

v∈S
|OS(v)| =

∑
v∈S

|IS(v)| ≥ αt2.

Hence at least an η-fraction of v’s in S must satisfy
|OS(v)| ≥ t/2, where η = 2α− 1. Let

T := {v : |OS(v)| ≥ t/2} ⊆ S.

For any v ∈ T and any u ∈ S, we have

|OS(v) ∩ IS(u)| ≥ |OS(v)|+ |IS(u)| − t

≥ (α− 1/2) · t.

To finish the proof note that

Pr[R(R(v)) = u] ≥ Pr[R(v) ∈ OS(v) ∩ IS(u)] ·
1

θ · t

≥ (α− 1/2) · t
θ · t

· 1

θ · t

=
(α− 1/2)/θ2

t
.



Algorithm 4 Generate rough approximations

Input: Preference system (V,Π), information I (pa-
rameters θ, α, β, γ, vertex v, size t).

• Set S1 =
{
u : Pr[u = R(R(v))] ≥ (α−1/2)/θ2

t

}
.

Output: List of sets L = {S1}.

We call any vertex v in the set T in Lemma 4.1
a “good seed vertex” for S. Lemma 4.1 suggests a
natural procedure (Algorithm 4) for generating a rough
approximation in a local way given a good seed vertex.

From Lemma 3.2 and Lemma 4.1 we obtain:

Theorem 4.1. Assume α > 1/2. Let

k2(θ, α, γ) = O

(
log(θ/δγ(α− 1/2))

γ2

)
,

N2(θ, α, γ) =

(
θ2

α− 1/2

)k2(θ,α,γ)
log(1/δ).

Assuming v is a good seed element for a community S,
then by using Algorithm 4 together with Algorithm 3
for steps (1) and (2) of Algorithm 1, we have that with
probability ≥ 1 − δ we will output S as one of the
N2(θ, α, γ) sets it outputs.

Proof. It is enough to show that each iteration of the
purification algorithm (Algorithm 3) has a probability

≥
(
α−1/2
θ2

)k2
to output S. Since v is a good seed

element of S, the set S1 produced by Algorithm 4 must
contain S. It is easy to see that |S1| ≤ tθ2/(α − 1/2).
Thus, applying Lemma 3.2 with M = θ/(α − 1/2) we
see that if the points of U2 are drawn uniformly from
S, then with high probability S2 is γ/8-close to S, and
S3 = S. Since conditioned on U2 ⊆ S, U2 is uniform in
S, our probability of success is given by the probability
that U2 ⊆ S. This is equal to(

|S|
|S1|

)k2
≥
(
α− 1/2

θ2

)k2
,

which completes the proof.

Note that when α > 1/2, β, and θ are constants, the
purification procedure will run in a constant number
of iterations. Our main result of this section is the
following:

Theorem 4.2. Suppose α > 1/2. Assume α, β, θ, and
δ are constants. If v is chosen uniformly at random

from S, then with probability at least (2α− 1)(1− δ) we
can output a list of

N2 =

(
2θ2

α− 1/2

)O(
log(θ/δγ(α−1/2))

γ2

)
log(2/δ)

in time O(t log t), such that S is one of the elements of
the list.

Proof. First, by Lemma 4.1, with probability at least
2α− 1, element v is such that for all u ∈ S, we have

Pr[R(R(v)) = u] ≥ α− 1/2

θ2t
.

We now implement Algorithm 4 by performing(
8θ2t
α−1/2

)
log(2t/δ) random draws from R(R(v)) and let-

ting S1 be the set of points u hit at least 4 log(2t/δ)
times. By Chernoff bounds, for each u ∈ S, we
have included u in S1 with probability at least 1 −
e−8 log(2t/δ)/8 = 1 − δ/(2t), so with probability at least
1 − δ/2 we have S1 ⊇ S. Furthermore, since we only
include points hit at least 4 log(2t/δ) times, we have

|S1| ≤
(

2θ2t
α−1/2

)
. Thus, the analysis in Theorem 3

implies that the purification step (Algorithm 3) will
succeed with probability at least 1 − δ/2 for a choice

of N2 =
(

2θ2

α−1/2

)k2(θ,α,γ)
log(2/δ). Putting these to-

gether yields the desired success probability. Further-
more, since α, β, θ, δ are constants, the overall time is
O(t log t).

It is not hard to see that the algorithm in Theorem 4.1
will work even if t is given to it only up to some small
multiplicative error. As a corollary of Theorem 4.1, we
see that the number of communities is actually linear
and we can find all of them in quasilinear time.

Theorem 4.3. Suppose that α > 1/2. The total num-
ber of (θ, α, β)-self-determined communities is bounded

by O

(
n · 1

min(γ,1/2−α) ·
(

θ2

α−1/2

)O(
log(θ/δγ(α−1/2))

γ2

))
,

which is O(n) if α, β, and θ are constants.

Proof. It is easy to see that executing the Algorithm
in Theorem 4.2 where we only do one iteration of the
purification step (i.e., of Algorithm 3) with inputs t′ ∈
((1−ε)t, (1+ε)t), α′ = α−4ε, β′ = β+4ε, θ′ = θ(1+ε),
and an appropriate seed vertex v ∈ S will lead to a
discovery of an (θ, α, β)-self-determined community of

size |S| = t with probability ≥ p :=
(
α−1/2
θ2

)k2(θ,α,γ)
, as



long as ε is sufficiently small. Here it is enough to take
ε = min(γ, α− 1/2)/100. Thus a pair (v, t′), where v is
a vertex and t′ is the target size corresponds to at most
1/p distinct communities. Moreover, each community
S of size t corresponds to more than t(2α − 1)/2 such
pairs. Since t′ needs only to be within a multiplicative
(1 + ε) from t, we can always select t′ from the set of
values {(1 + ε)i : i = 0, 1, . . . , ⌈log1+ε n⌉}. For each
value t′, the number of communities of size between t′

and t′(1+ ε) is thus bounded by the number of possible
pairs (t′, v) (= n), times 1/p and divided by t′(2α−1)/2:

#{communities of size between t′ and t′(1 + ε)}

≤ n

t′
· 1/p

(2α− 1)/2
.

Summing over the possible values of t′ we obtain the
upper bound:

n · 2

ε(2α− 1)
·
(

θ2

α− 1/2

)k2(θ,α,γ)
,

which leads to the bound in the statement of the
theorem.

Note: This analysis can be extended to an alternative
non-local algorithm, which yields an improved polyno-
mial bound of nO(log(1/α)/α) on the number of (θ, α, β)-
self-determined communities when θ, α, and γ are con-
stants and γ are and there is a large gap between α and
γ. See Appendix A.3 for details.

4.1 Extensions to weighted affinity sys-
tems and to the local model

We note that that Algorithm 4 can be combined with
our reduction from weighted to unweighted communities
to obtain a local algorithm for finding communities in
the weighted case.

Extending the local approach to the multi-faceted set-
ting is more involved, since the definition of R(v) would
need to be adapted to this setting. Indeed, the multi-
faceted version Rf (v) of R(v) can be taken to be a ran-
dom element voted by a random facet i of v. Then
Algorithm 4 can be adapted by taking the threshold to

be (α−1/2)/(θ2f2)
t , where f is the number of facets. Note

that while an approximation to any community S can
be found locally in near-linear time, finding the exact
community S as well as the facet structure on S as in
Lemma 3.3 will still take fO(log n/γ2) time.

5 Self-determined Communities in So-
cial Networks

As discussed in Section 1, given a social network we
can extract an affinity system based on various beliefs
about how the observed network was generated, and
then identify communities there. From our analysis for
affinity systems, we immediately obtain that there is
a polynomial number of such communities in a social
network, and they can be enumerated in polynomial
time. A simple way to extract an affinity system
from a social network is to directly define a weighted
affinity system via direct lifting (ai,j = wi,j if (i, j) ∈
E, otherwise ai,j = 0). Interestingly, our notion
of communities in social networks obtained via direct
lifting is quite similar to the notion of (α, β)-clusters of
Mishra, Schreiber, Stanton, and Tarjan [22], with the
only difference that we bound the total amount of vote
a member may cast. In contrast with the polynomial
bound we prove on the number of communities in our
model, in this section we prove that there exists a family
of networks with superpolynomial number of (α, β)-
clusters. Moreover, we show that under the assumption
that the planted clique problem is hard, even finding a
single (α, β)-cluster is computationally hard.

Formally, in this section we assume that the input is
a directed graph G = (V,E) and for a vertex i we
denote by di its out-degree. Given a social network
we can consider the affinity system induced by direct
lifting and then consider self-determined communities in
that affinity system. This leads to the following natural
notion:

Definition 3. Let G = (V,E) be a directed graph and
let θ, α, β ≥ 0 with β < α ≤ 1. Consider the affinity
system (V, a1, . . . , an) where ai,j = wi,j if (i, j) ∈ E and
ai,j = 0 otherwise. A subset S ⊆ V is a (θ, α, β) self-
determined community in G if it is a (θ, α, β) weighted
self-determined community in (V, a1, . . . , an).

Note that when evaluating a community of size t each
node i is allowed a total vote of at most θt. One
natural way to achieve this is to only fractionally count
edges from high-degree nodes i, giving them weight
min(θt/di, 1) when evaluating a community of size t in
the induced weighted affinity system.

The community notion introduced in [22, 23] is as
follows:

Definition 4. Let α, β with β < α ≤ 1 be two positive
parameters. Given an undirected graph, G = (V,E),
where every vertex has a self-loop, a subset S ⊆ V is an
(α, β)-cluster if S is:



(1) Internally Dense: ∀i ∈ S, |E(i, S)| ≥ α|S|.

(2) Externally Sparse: ∀i /∈ S, |E(i, S)| ≤ β|S|.

For this notion, [22, 23] provided an efficient algo-
rithm for outputing (α, β)-clusters that additionally
have the property that they have ρ champion: a ver-
tex that has more affinity into the cluster than outside
it (|Γ(v) ∩ (V \ S)| ≤ ρ|S|), for ρ < 2α− (1 + β).

Interestingly, the (α, β)-cluster notion resembles our
community notion in Definition 3. In particular, in
the case where the graph is undirected, Definition 3 is
similar to Definition 4, except that in the case of our
Definition 3 each node i is allowed a total vote of at
most θt. As discussed above one way to achieve this is
to only fractionally count edges from high-degree nodes
i, giving them weight min(θ|S|/di, 1). This distinction
is crucial for getting polynomial time algorithms.3 From
our results in the previous sections we have that every
graph has only a polynomial number of communities
satisfying Definition 3 and moreover, we can find all of
them in polynomial time. In contrast, as we show, there
exist graphs with a superpolynomial number of (α, β)-
clusters.

Theorem 5.1. For any constant ϵ, α = 1, α − β =
1/2 − ϵ, there exist instances with nΩ(log n) (α, β)-
clusters.

Proof. Consider the graphGn,p with p = 1/2l. Consider

all
(
n
k

)
sets of size k = 2 log n

l (1−δ), where δ is a constant
(determined later). For each such set S, the probability
it is a clique is

p(
k
2) ≥ (1/2)ℓk

2/2 = (1/2)2 log2 n(1−δ)2/ℓ = n−k(1−δ).

We now want to show that conditioned on S being a
clique, it is also an (α, β)-cluster with probability at
least 1/2. This will imply that the expected number of
(α, β)-clusters is at least

0.5

(
n

k

)
n−k(1−δ) = nΩ(logn).

Fix such set of size k = 2 log n
l (1 − δ). The probability

that a node outside is connected to more than a (1/2+

3Being able to identify all communities is important for a range

of network analysis and decision-making tasks; for example, it can
aid in marketing, or interventions such as controlling the spread
of disease, it could allow to better understand how nodes in a

network relatefor example (e.g., how many communities two nodes
share in common, or the shortest path in terms of communities
crossed between two nodes).

ϵ)-fraction of the set is upper bounded by

2k
(

1

2l

) k
2 (1+ϵ)

≤ n
2
l 2−

lk
2 (1+ϵ) = n

2
l n−(1+ϵ)(1−δ).

By imposing 2
l − (1 + ϵ)(1− δ) < −1 + logn(2), we get

that this probability is upper bounded by 1/(2n). So
by union bound over all nodes we then get the desired
result. Note that (1+ ϵ)(1− δ)− 2

l > 1+ logn(2) is true
for δ ≤ ϵ/4 and l > 12/ϵ and n large enough.

In addition to the existence of quasi-polynomially many
(α, β)-clusters, we give evidence that finding even one
(α, β)-cluster may be computationally hard through
a connection the the Hidden Clique Problem. In
particular, we show that even in graphs with only one
(α, β)-cluster, we show that finding this cluster is at
least as hard solving the planted clique problem for
planted cliques of size O(log n), which is believed to be
hard (see, e.g., Hazan and Krauthgamer [15]).

The Hidden Clique Problem In this problem, the
input is a graph on n vertices drawn at random from
the following distribution Gn,1/2,k: pick a random graph
from Gn,1/2 and plant in it a clique of size k = k(n).
The goal is to recover the planted clique (in polynomial
time), with probability at least (say) 1/2 over the input
distribution. The clique is hidden in the sense that its
location is adversarial and not known to the algorithm.
The hidden clique problem becomes only easier as k
gets larger, and the best polynomial-time algorithm
to date [2], solves the problem whenever k = Ω(

√
n).

Finding a hidden clique for k = c log n for any c
is believed to be hard. The decision version of this
problem is also believed to be hard.

We begin with a simpler result that finding the
approximately-largest (α, β)-cluster is at least as hard
as the hidden clique problem.

Theorem 5.2. Suppose that for α = 1 and β − α =
1/4, there was an algorithm that for some constant c
could find an (α, β)-cluster of size at least MAX/c,
where MAX is size of the largest community with
those parameters. Then, that algorithm could be used
to distinguish (1) a random graph Gn,1/2 from (2) a
random graph Gn,1/2 in which a clique of size 2c log2(n)
has been planted.

Proof. We can show that with probability at least
1−1/n the largest clique in Gn,1/2 largest clique has size
2 log(n), which implies the largest (α, β) cluster (with
α = 1 and β − α = 1/4) has size at most 2 log(n). On



the other hand we can also show that with probability
at least 1 − 1/n, for c ≥ 8 ln 2 the planted clique of
size 2c log2(n) is a cluster with these parameters. Thus,
under the assumption that distinguishing these two
cases is hard, the problem of finding the approximately-
largest (α, β)-cluster is hard.

We now show that in fact, even finding a single (α, β)-
cluster is as hard as the hidden clique problem. Here,
instead of Gn,1/2 we will use Gn,p for constant p > 1/2.
Note that the hidden clique problem remains hard in
this setting as well.4

Theorem 5.3. For sufficiently small (constant) γ and
ϵ, with probability at least 1 − 3/n, we have that: (1)
the graph Gn,1−γ−ϵ has no (1, 1 − γ) clusters; and (2)
a hidden clique of size 1

ϵ2 logn is an (1, 1 − γ) cluster.
Therefore, finding even one such cluster is as hard as
the hidden clique problem.

Proof. Consider Gn,p for p = 1 − γ − ϵ. We start by
showing that with probability at least 1 − 1/n the size
of the largest clique is at most −2 lnn

ln(1−γ−ϵ) . For any k, the

probability that there exists a clique of size k is at most(
n

k

)
p(

k
2) ≤ nk

k!
pk

2/2p−k/2.

For k = −2 lnn
ln(1−γ−ϵ) = −2 logp n, this is

p−k/2

k!
n−2 logp np2(logp n)

2

=
p−k/2

k!
=
n

k!
= o

(
1

n

)
.

This immediately implies that with probability at least
1 − 1/n, Gn,p does not contains any (1, 1 − γ) clusters
of size greater than −2 lnn

ln(1−γ−ϵ) .

We now show that with probability at least 1 − 1/n,
Gn,p does not contain any (1, 1 − γ) clusters of size
≤ −2 lnn

ln(1−γ−ϵ) . For this, we will show that for any set S of

size≤ −2 lnn
ln(1−γ−ϵ) and any node v not in S, the probability

that v connects to at least (1−γ)|S| nodes inside S is at
least 1/

√
n. Because these events are independent over

the different nodes v, this implies that the probability
that no node v outside S connects to at least (1− γ)|S|
nodes inside S is at most(

1− 1√
n

)n−k
≤ e−

√
n/2.

4In particular, if it were easy, then one could solve the decision
version of the hidden clique problem for Gn,1/2 by first adding

additional random edges and then solving the problem for Gn,p.
We assume here that the planted clique has size greater than the
largest clique that would be found in G(n, p).

By union bound over all sets S of size at most −2 lnn
ln(1−γ−ϵ) ,

this will imply that the probability there exits a (1, 1−γ)
cluster of size at most −2 lnn

ln(1−γ−ϵ) is at most 1/n.

Consider a set S of size k and a node v outside S. The
probability that v connects to more than (1−γ)k nodes
inside S is at least(

k

γk

)
(1− γ − ϵ)(1−γ)k(γ + ϵ)γk

≥ 1

k

(
(1− γ)ke

γk

)γk
(1− γ − ϵ)(1−γ)k(γ + ϵ)γk.

This follows from the fact that(
k

γk

)
=

k(k − 1) . . . (k − γk + 1)

(γk)!

≥ ((1− γ)k)γk

k(γk/e)γk

=
1

k

(
(1− γ)ke

γk

)γk
,

where we use the fact that

(γk)! < 2
√
2πγk(γk/e)γk < k(γk/e)γk.

So, the probability that v connects to more than (1−γ)k
nodes inside S is at least

1

k
(1− γ − ϵ)k

[
1− γ

γ
· γ + ϵ

1− γ − ϵ
e

]γk
≥ [(1− γ − ϵ)eγ ]k

1

k
.

This is decreasing with k and thus it suffices to consider
k = −2 lnn

ln(1−γ−ϵ) . For this k, we get that the probability

that v connects to more than (1− γ)k nodes inside S is
at least

1

k
e−2 lnne−

2γ lnn
ln(1−γ−ϵ) =

1

k
n−2− 2γ

ln(1−γ−ϵ) .

We want this to be greater than 1/
√
n, and thus it

suffices to have −2 − 2γ
ln(1−γ) > −0.4. This holds for

γ = 0.1, ϵ = 0.01.

Finally, it is easy to show that with probability at
least 1 − 1/n, a hidden clique of size k = 1

ϵ2 lnn is a
(1, 1 − γ) cluster. This follows by noticing that every
vertex outside the clique has in expectation k(1−γ− ϵ)
connections insides the clique, so by Hoeffding bounds,
the probability it has more than

k(1− γ − ϵ) + ϵk = k(1− γ)

neighbors inside the clique is at most 1/n2. By union
bound, we get that with probability at least 1 − 1/n
every vertex outside the clique has at most k(1 − γ)
neighbors inside the clique so the planted clique is a
community as desired.
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A Appendix

A.1 Finding Self-determined Communi-
ties in Quasi-Polynomial Time

We present here a simple quasi-polynomial algorithm
for enumerating all the self-determined communities.

Theorem A.1. For any θ, α, β, γ = α − β, there
are nO(log n/γ2) sets which are (θ, α, β) (weighted) self-
determined communities. All such communities can be
found by using Algorithm 5 with parameters θ, α, β,
γ = α− β and k(γ) = 2 log (4n)/γ2.

Proof. Fix a (θ, α, β) (weighted) self-determined com-
munity S. We show that there exists a multiset U of size
k(γ) = 2 log (4n)/γ2 such that the set SU of points in V
that receive at least (α − γ/2)|U | amount of vote from
points in U is identical to S. The proof follows simply by
the probabilistic method. Let us fix a point i ∈ V . By
Hoeffding, if we draw a set U of 2 log (4n)/γ2 uniformly
at random from S, then with probability 1 − 1/(2n),
the average amount of vote that i receives from points
in U is within γ/2 of the average amount of vote that i
receives from points in S. By union bound, we get that
with probability at least 1/2, for all points in V the av-
erage amount of vote that they receive from points in U
is within γ/2 of the average amount of vote that they
receive from points in S. Using this together with the
definition of a self-determined community, we get that
with probability 1/2 we obtain SU = S for U of size
2 log (4n)/γ2 drawn uniformly at random from S. This
then implies that there must exist a multiset U of size
k(γ) such that SU = S.

Since in Algorithm 5 we exhaustively search over all
multisets U (of point from V ) of size k(γ), we clearly
get the list L we output contains all the (θ, α, β)
(weighted) self-determined communities. Moreover,

clearly, nO(log n/γ2) is an upper bound on the number
of (θ, α, β) (weighted) self-determined communities.

A.2 Proof of Corollary 3.1

Corollary 3.1 The number of (θ, α, β)-self-determined
communities in an affinity system (V,Π) satisfies

B(n) = nO(log (1/γ)/α)
(
θ log (1/γ)

α

)O(
1
γ2 log ( θ log (1/γ)

αγ )
)

and with probability ≥ 1 − 1/n we can find all of them
in time B(n)poly(n).

Algorithm 5 Algorithm for enumerating self-
determined communities
Input: Affinity system (V,Π), parameters θ, α, β, γ;
k(γ);

• Set L = ∅.

• Exhaustively search over all multisets U with ele-
ments from V of size k(γ).

• For t = 1 to n (determining the meaning of
“vote for”) do:

• Let SU be the subset of points in V that
receive ≥ (α − γ/2)|U | amount of vote
from points in U . Add SU to the list L.

• Remove from the list L all the sets that are not
(θ, α, β) weighted self-determined communities.

Output: List of self-determined communities L.

Proof. Consider a community size t. For any (θ, α, β)-
self-determined community S let pS be the probability
that S is in the list output by Algorithm in Theorem 3.1
with parameters θ, α, β, t. By Theorem 3.1 we have
that pS ≥ 1 − δ. By linearity of expectation we
have that

∑
S pS is the expected number of (θ, α, β)-

self-determined communities in the list output by our
algorithm. Combining these, we obtain that

B(n)(1− δ) ≤
∑
S

pS ≤ N1(δ)N2(δ)

where k1 = log (16/γ)/α, k2(δ) = 8
γ2 log

(
32θk1
γδ

)
,

N1(δ) = nk1 and N2(δ) = O((2θk1)
k2(δ) log(1/δ)). By

setting δ = 1/2, we get the desired bound,

B(n) = nO(log (1/γ)/α)

(
θ log (1/γ)

α

)O(
1
γ2 log ( θ log (1/γ)

αγ )
)
.

Let N = N1(1/2)N2(1/2)n. By running the algorithm
in Theorem 3.1 2 log[N ] times we have that for each
(θ, α, β)-self-determined community S, the probability
that S is not output in any of the runs is at most
(1/2)2 log(N) ≤ 1/N2. By union bound, with probability
at least 1− 1/n, we output all of them.

A.3 An Alternative Non-local Algo-
rithm

The analysis in this section suggests an alternative
way for generating rough approximations in the non-
local model which leads to an algorithm that provides



asymptotically better bounds than Theorem 3.1 in
interesting cases, in particular when θ, α, and γ are
constants and there is a large gap between α and γ. This
leads to an improved polynomial bound of nO(log(1/α)/α)

on the number of (θ, α, β)-self-determined communities
when θ, α, and γ are constants using Algorithm 6:

Algorithm 6 Generate rough approximations

Input: Preference system (V,Π), information I (pa-
rameters θ, α, β, size t).

• Set L = ∅; γ = β − α.

• Exhaustively search over all subsets U0 of V of size
⌈(log 1/α)/α⌉ + 1; for each U0 to the L the set

S1 :=
{
x :
∑
y∈U0

Pr[x = R(R(y))] ≥ α
2θ2t

}
.

Output: List of sets L.

Theorem A.2. Fix a (θ, α, β)-self-determined com-
munity S. Let γ = α − β, k1(θ, α, γ) =

O (log (1/α)/α), k2(θ, α, γ) = O
(

1
γ2 log

(
θk1
γδ

))
,

N2(θ, α, γ) = O((θ2/α3)
k2 log (1/δ)). Using Algo-

rithm 6 together with Algorithm 3 for steps (1) and (2)
of Algorithm 1, then with probability ≥ 1− δ one of the
elements in the list L we output is identical to S.

Proof Sketch: By using a reasoning similar to the one
in Lemma 3.2 we can show that there exist a set U0

of ⌈(log 1/α)/α⌉ + 1 points such that the subset U1

of points voted by at least a member in U0 contains
≥ 1− α/2 fraction of S. We show in the following that
the corresponding set S1 indeed covers S. Fix a vertex
x ∈ S. We need to show that∑

y∈U0

Pr[x = R(R(y))] ≥ α

2θ2t
.

Let Q ⊆ S be the set of elements that vote for x. We
know that |Q| ≥ αt, since x ∈ S. Thus

|U1 ∩Q| ≥ |U1|+ |Q| − |S| > αt/2.

Each z ∈ U1 ∩Q contributes at least 1/θ2t2 to the sum∑
y∈U0

Pr[x = R(R(y))]. Thus this sum is at least

(αt/2) · (1/θ2t2) = α/(2θ2t).

Hence x ∈ S1, as required. Moreover, by observing that∑
x

∑
y∈U0

Pr[x = R(R(y))]

=
∑
y∈U0

∑
x

Pr[x = R(R(y))]

< 1/α2,

we obtain |S1| < 2θ2t
α3 .

Since when running Algorithm 6 we exhaustively search
over all subsets of U1 of V of size k1(θ, α, γ), in one of

the rounds we find a set U1 s.t. |S1| < 2θ2t
α3 , S ⊆ S1.

So, L1 contains a rough approximation to S. Finally,
using a reasoning similar to the one in Theorem 3.1 we
get the desired conclusion.

Theorem A.2 gives asymptotically better bounds than
Theorem 3.1 when N1 = nk1(θ,α,γ) is the dominant
term in the bound (e.g., when θ, α, and γ are con-
stants) and especially when there is a large gap be-
tween α and γ – since k1 is reduced from log(16/γ)/α
to ⌈log(1/α)/α⌉+ 1. On the other hand, Theorem A.2
has worse dependence on θ and α in N2, so for certain
parameter settings, Theorem 3.1 can be preferable es-
pecially if one optimizes the constants in Lemmas 3.1
and 3.2 based on the given parameters.


