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We consider the ferromagnetic q-state Potts model, with each of the q spin values coupled to an
external field. We also introduce a generalized random cluster model, which includes both the Potts
model in arbitrary homogeneous external fields and the non-integer q random cluster model as special
cases. We establish the FKG property, the finite energy condition, uniqueness of the infinite cluster,
and Gibbsianness of limit states for this generalized model. Furthermore, we develop the theory of
Gibbs states for the Edwards-Sokal representation of the Potts model in a field, and relate the phase
structure in this representation to those in the spin and random cluster representations. Finally, we
characterize the possible color(s) of the infinite cluster(s) and show that the correspondence between
Edwards-Sokal Gibbs states and their random cluster marginals is bijective, once the color of the
infinite cluster is fixed.

I. INTRODUCTION

In this paper, we study the ferromagnetic q-state Potts model with each value of the spin coupled to a distinct
external field. The formal Hamiltonian of the model is

H(σ) = −J
∑

〈x,y〉
δσx,σy −

q∑

m=1

∑

x

hmδσx,m. (1.1)

Here σx ∈ {1, · · · , q} are the spin variables, J is a positive coupling constant, δσx,σy is the Kronecker delta, (hm)qm=1
are real numbers representing the external fields, and 〈x , y〉 denotes a nearest-neighbor pair on Zd. The model (1.1)
appears in many different contexts. For example, it arises in image processing, where σx represents the color of the
pixel labeled by x, and the fields hm lead to different a priori probabilities for different colors. Another example is
a lattice gas of q species, with hm corresponding to the fugacity of the species m.

During the past fifteen years, there has been a great deal of work on graphical representations of the Potts model
in the absence of external fields (i.e., with hm ≡ 0). In particular, the Fortuin-Kasteleyn [10] or random cluster (RC)
representation has been used to prove various non-perturbative results about the Potts model using percolation-type
methods (e.g., [2], [5]). In order to use the representation effectively, it was first necessary to establish certain basic
features of the resulting measure, including FKG monotonicity, existence of thermodynamic limits, and properties of
the Gibbs states ( [2], [5], [16], [21], see also [17] and [15] for reviews).

Here we consider graphical representations of the Potts model in the presence of arbitrary external fields. This
turns out to be significantly more complicated than the analysis in the absence of external fields for a number of
reasons. First, when hm ≡ 0, it is easy to verify that the RC representation has the FKG property, which is more
difficult to establish here. Indeed, the FKG property does not even hold for certain boundary conditions. Second, for
hm ≡ 0, symmetry breaking in the spin representation is equivalent to percolation in the RC representation. Here the
relationship between the phase structure of the spin model and percolation in the RC representation is less direct; in
some cases the percolation threshold corresponds to no phase transition at all in the spin model [3]. Third, absence of
symmetry raises the question of the color(s) of the infinite cluster(s), a question which turns out to be quite intricate,
and does not need to be addressed for hm ≡ 0.

Our work was motivated by an attempt to understand the phase diagram of the model (1.1), using both cluster
expansion and percolation techniques; our results on the phase diagram are presented in a separate paper [3]. In this
paper we generalize known results on the properties of Gibbs states of the RC models to systems with external fields.
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In particular, for the RC model in an arbitrary homogeneous magnetic field, we prove FKG properties, existence
of infinite volume measures, and that these measures are Gibbs states. See also [3] and [4] for other graphical
representations of Potts models in an external field.

In addition, we develop the theory of Gibbs states for the so-called Edwards-Sokal (ES) measure, a measure on
both spin and bond variables which was originally introduced in order to explain the Swendsen-Wang algorithm for
sampling from the Potts model [8]. In a finite volume, the marginals of the ES measure are just the spin and the
RC measures. Here we consider infinite volume ES measures as interesting and important probabilistic objects in
their own right. In particular, we introduce the notion of ES Gibbs measures, and analyze whether (or under what
conditions) the marginals of such Gibbs measures are Gibbs measures of the corresponding spin and random cluster
models. We clarify this relationship, and in the process derive properties of the spaces of Gibbs states for all three
representations.

We believe that the rigorous analysis of properties of the Potts model in terms of the ES representation will prove
to be quite fruitful in future work. Indeed, while the ES representation shares many of the more useful properties
of the random cluster representation, it does not share all of its difficulties. In particular, the ES representation is
quasilocal,1 while the RC representation is not. Much of the standard theory of Gibbs states (as well as its physical
interpretation) requires quasilocality ( [14], [20], [22]). Absence of this property has been a major technical impediment
in the analysis of Gibbs states for the RC representation.

Finally, we consider the question of RC models in a field with non-integer values of q. Although the spin repre-
sentation of the Potts model (and therefore also the Edwards-Sokal representation) only admits an integer number
of spin states, it has been realized for some time that the standard RC measure in the absence of a field is perfectly
well-defined for non-integer values of q. Provided that q ≥ 1, the resulting finite volume measures with free and wired
boundary conditions are FKG, which allows one to prove the existence of the corresponding infinite volume measures.
However, the most straightforward version of the RC model in a field reduces to a model with integer q when we take
hm ≡ 0. Explicitly, the RC model in a field defined on bond configurations η = {η〈x,y〉}, η〈x,y〉 ∈ {0, 1}, has weights
of the form

∏

〈x,y〉:η〈x,y〉=1

(eβJ − 1)δσx,σy
∏

C

Θ(C), (1.2)

where the second product is over all connected components of sites, and the weights of the components are given by

Θ(C) =
q∑

m=1

ehm|V(C)|. (1.3)

Here |V(C)| denotes the volume of the cluster C. Notice that when hm ≡ 0, the weights (1.2) reduce to the more
familiar weights2

(eβJ − 1)n(η)qc(η), (1.4)

where n(η) is the number of bonds 〈x, y〉 with η〈x,y〉 = 1 in configuration η, and c(η) is the number of connected
components of sites in η.

Thus we also propose a generalized random cluster (GRC) model with the weight Θ(c) in (1.2) replaced by

Θ̃(C) =
q∑

m=1

qme
hm|V(C)|, (1.5)

where the qm are non-integer parameters. Provided that the qm are positive and satisfy the condition
∑

m:hm=hmax

qm ≥ 1, (1.6)

1Recall that quasilocality is the property of continuity (in the product topology) of finite volume Gibbs states with respect to
boundary conditions.

2Even the weights (1.4) may not be entirely familiar to readers who know the RC weights as (1 − e−βJ)n(η)(e−βJ)v(η)qc(η),
where v(η) is the number of bonds 〈x, y〉 with η〈x,y〉 = 0 in configuration η. The only difference between the latter weights and
(1.4) is an overall normalization factor, which makes no difference in the resulting measure.
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where hmax is the maximum value of the component fields hm, we will be able to prove that resulting finite volume
measures with certain boundary conditions are FKG, and hence that the corresponding infinite volume measures
exist. We expect that many of our other results for the RC model in a field hold also for this generalized model, but
we have not explicitly verified this.

Notice the following two special cases of the generalized model with the weights (1.5). If we take qm = 1, m =
1, · · · , q, then we get (1.3), i.e., the random cluster representation of the Potts model in an external field. On the
other hand, if we take hm = 0 for all m, we get the weights (1.4) with q replaced by

∑
m qm, which is in general

non-integer. Thus the GRC model generalizes both the non-vanishing external field case and the standard non-integer
q model.

It turns out that the set of “colors” m ∈ {1, · · · , q} with hm = hmax will play an important role in the analysis of
both of the above described random cluster models in a field. In the standard model (with hm ≡ 0), it is well-known
that the extremal measures are obtained by applying free and “wired” boundary conditions. The latter are the
marginals of measures in which all spins on the boundary are set to a fixed color m ∈ {1, · · · , q}, and thus identified
as one component in the RC representation. In this work, we will find that the extremal measures are obtained by
applying free and what we call “maxwired” boundary conditions. Measures with maxwired boundary conditions are
the marginals of measures in which all spins on the boundary are set a color m for which hm = hmax. The other
RC wired measures, i.e., those with boundary conditions set to a color m for which hm < hmax, are hard to analyze
because they do not even obey the FKG inequality.
We end this section with a summary of our results:

In Section II, we state our theorems on mappings between the sets of ES Gibbs states and spin and RC Gibbs
states, respectively. In particular, Theorem II.1 implies that the relevant marginals of the infinite volume ES Gibbs
states are spin Gibbs states. The same is not true for the RC states unless we restrict to states with no more than
one infinite cluster, as we do in Theorem II.2. We also formulate results (Theorems II.3 and II.4) on the existence of
infinite volume measures for the RC and ES representations with free and maxwired boundary conditions. Finally,
we state a result (Theorem II.5) relating uniqueness or non-uniqueness of Gibbs states to the absence or presence of
infinite clusters. In two dimensions, we are able to prove more—namely that, away from the transition temperature,
the RC Gibbs state is unique, and similarly for the ES state, provided there is only one color m with hm = hmax
(Theorem II.6).

In Section III, we introduce the generalized random cluster (GRC) model and formulate its FKG monotonicity
properties. In particular, Theorem III.1 states that the free and maxwired GRC states are strong FKG, and hence that
the corresponding infinite volume limits exists. This theorem also asserts that, in the FKG order, every GRC Gibbs
state lies between these two infinite volume states. Finally, this theorem compares GRC states at different couplings
and different sets of external fields (with an appropriately defined partial order). As a corollary, we prove various
properties of the relevant percolation probabilities, which are the order parameters for the transition. Theorem III.2
deals with RC marginals of ES Gibbs states. In particular, it states that the infinite volume RC maxwired measure
dominates all such marginals, while the free RC measure is dominated by the marginals of all ES Gibbs states with
at most one infinite cluster. Our final results establish uniqueness of the infinite cluster for translation invariant GRC
Gibbs and limit states (Theorem III.3), and give a stronger version of the DLR equation for any GRC Gibbs state
with a unique infinite cluster (Theorem III.4).

Our results are proved in Sections IV–X. In Sections IV–VI we prove the theorems stated in Section III (in the
order of their appearance). The theorems of Section II are proven in the remaining Sections VII–X (in the order II.4,
II.5, II.6, II.1 and II.2). Theorem II.3, which is an easy corollary of the results of Section III, is proved at the end of
Section VI.

II. GIBBS STATES IN THE EDWARDS-SOKAL, SPIN AND RANDOM CLUSTER REPRESENTATIONS

In this section we define Gibbs measures for joint probability spaces of spin and bond variables, i.e., the Edwards-
Sokal Gibbs measures. We then relate the set of Edwards-Sokal Gibbs measures to the more standard sets of spin
and random cluster Gibbs measures.

We begin with some notation. For any subset Λ ⊂ Zd, we introduce B0(Λ) as the set of all bonds b = 〈x, y〉 of
nearest neighbors with both endpoints in Λ and B(Λ) as the set of all bonds with at least one endpoint in Λ. For any
B ⊂ B0(Zd), we define V(B) as the set of sites which belong to at least one bond in B.

To motivate our definitions, we first derive the Edward-Sokal representation for a finite box Λ ⊂ Zd with free
boundary conditions. For free boundary conditions, the Gibbs factor of the q-state Potts model in a general field is
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given by

e−βH(σΛ) =
∏

〈x,y〉∈B0(Λ)

eβJδσx,σy
∏

x∈Λ

eβh(σx), (2.1)

where (hm)qm=1 ∈ Rq is a collection of arbitrary fields and h(σx) stands for

h(σx) =
q∑

m=1

hmδσx,m. (2.2)

In order to derive the Edwards-Sokal (ES) and random cluster (RC) representation, we rewrite the Gibbs factor by
expanding each term eβJδσx,σy as 1 + (eβJ − 1)δσx,σy . Introducing bond configurations ηB0(Λ) = {ηb}b∈B0(Λ) with
ηb ∈ {0, 1}, we can write the Gibbs factor (2.1) as the sum

e−βH(σΛ) =
∑

ηB0(Λ)

∏

b=〈x,y〉∈B0(Λ)
η〈x,y〉=1

(eβJ − 1)δσx,σy
∏

x∈Λ

eβh(σx). (2.3)

The key point of this reformulation is that η can now be treated in the same way as σ; one just peels off the first
sum in (2.3) and interprets the remainder as a joint weight of σ and η. In this manner one obtains the finite volume
Gibbs measure of the Potts model as the spin marginal of a measure on both spin and bond configurations—the
Edwards-Sokal measure. The bond configuration marginal is then the random cluster measure.

So far we have considered only free boundary conditions. Instead of modifying the preceding argument for other
boundary conditions, we directly introduce the notion of infinite volume Gibbs measures on the joint space of spin
and bond variables. To define the Gibbs ES states, let us introduce for any pair of (not necessarily related) finite sets
Λ ⊂ Zd, B ⊂ B0(Zd), and any fixed configurations σΛc , ηBc outside of them, the measure µES

Λ,B( · |σΛc ,ηBc) by

µES
Λ,B(σΛ,ηB|σΛc ,ηBc) =

W (σΛ,ηB |σΛc ,ηBc)∑
σ̄Λ,η̄B

W (σ̄Λ, η̄B |σΛc ,ηBc)
, (2.4)

where the convention3 µES
Λ,B(σΛ,ηB|σΛc ,ηBc) = 0 is assumed for the case that the sum in the denominator vanishes,

and where

W (σΛ,ηB |σΛc ,ηBc) =
∏

〈x,y〉∈B∪B(Λ)
η〈x,y〉=1

(eβJ − 1)δσx,σy
∏

x∈Λ

eβh(σx). (2.5)

The dependence on parameters J and {hm} will be explicitly marked only when a reference to them is needed.
Our first theorem concerns the relation between the ES and spin Gibbs measures. Let GES be the set of all infinite

volume Gibbs ES states defined by imposing the DLR equations with specification (2.4). Namely, ν ∈ GES iff

ν(f) =
∫
ν(dσ, dη)µES

Λ,B(f |σΛc ,ηBc) (2.6)

for all pairs of finite sets Λ and B and any cylinder function f depending only on σΛ and ηB. Note that the fact
that the underlying “set of sites” contains both the set Zd and the set B0(Zd) does not prevent the abstract theory of
Gibbs states—in the version that allows for “hard-core interactions” (c.f., [22], [20], [14])—from being applied. The
important property, quasilocality of the specification {µES

Λ,B}, is clearly satisfied, implying, in particular, that the set
of Gibbs states GES is not empty. Note also that quasilocality and consistency of the specifications imply that the
DLR condition (2.6) is equivalent to the (apparently stronger) statement that the conditional expectations of ν are
given by (2.4), i.e.,

ν(f |σΛc ,ηBc) = µES
Λ,B(f |σΛc ,ηBc) ν-a.s. (2.7)

3Here we use the theory of Gibbs states as presented by Ruelle [22], who explicitly considers models with configuration spaces
determined by local restriction rules (hard cores). See Sections 1.1 and 1.5 of [22].
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for all pairs of finite sets Λ and B and any cylinder function f depending only on σΛ and ηB.
Let Gspin denote the set of all spin Gibbs states, defined by means of the DLR condition and the Hamiltonian (1.1),

appropriately modified to incorporate the boundary condition. Let ΠS denote the mapping that assigns the spin
marginal to any infinite volume ES measure. It is not a priori obvious that the spin marginal of any infinite volume
Gibbs ES state is an infinite volume Gibbs spin state. However, it turns out that even a little more is true.

Theorem II.1 The mapping ΠS is a linear isomorphism between the Choquet simplices4 GES and Gspin. When
restricted to translation invariant measures, ΠS is an isomorphism between the simplex of all translation invariant
Gibbs ES states and the simplex of all translation invariant Gibbs spin states. In particular, |GES| = 1 if and only if
|Gspin| = 1.

Remark. The last statement is false for the correspondence between ES Gibbs states and their RC marginals. For
instance, for d = 2 it is known that there are exactly two extremal Ising Gibbs states below the critical temperature
( [11], [1], [18]) and, therefore, two extremal ES Gibbs states, while the corresponding RC marginals are identical.

As alluded to in the introduction, RC Gibbs measures have finite volume specifications that are not quasilocal, which
prevents the straightforward application of the general theory of Gibbs states. It therefore is often more convenient
to consider ES Gibbs measures, whose finite volume specifications are local, and study RC measures only as their
marginals. The relation of these marginals to RC Gibbs measures as introduced in [9], [16], [21], and [5] for Potts
models without magnetic fields is the content of our next theorem.

First, however, we generalize the notion of RC Gibbs states to Potts models with magnetic fields. To this end we
introduce, for any configuration η on B0(Zd), the set of occupied bonds Bocc(η) = {b ∈ B0(Zd) : ηb = 1} and the
corresponding graph (Zd,Bocc(η)) with the vertex set Zd and the edge set Bocc(η). For any connected component
C(η) of this graph (possibly a single site), we use V(C(η)) to denote the corresponding vertex set. We now define,
for any finite set of bonds B and any configuration ηBc , the measure

µRC
B (ηB|ηBc) =

WRC
B (ηB|ηBc)∑

η̄B
WRC
B (η̄B|ηBc)

(2.8)

with

WRC
B (ηB|ηBc) = (eβJ − 1)|Bocc(η)∩B| ∏

C(η):V(C(η))∩V(B)6=∅

q∑

m=1

e−β(hmax−hm)|V(C(η))|, (2.9)

where the product runs over all connected components C(η) such that the vertex set V(C(η)) intersects the set V(B),
and hmax is used to denote

hmax = max
m∈{1,...,q}

hm. (2.10)

Interpreting e−∞ = 0, any infinite cluster C(η) intersecting V(B) contributes just the factor q0 = |Qmax(h)|, the size
of the set

Qmax(h) = {m ∈ {1, . . . , q}|hm = hmax}. (2.11)

For future reference, we also define N∞ = N∞(η) as the random variable denoting the number of infinite clusters of
Bocc(η), and use C∞ = C∞(η) to denote the unique infinite cluster whenever N∞ = 1.

As usual, one introduces the set of Gibbs states GRC as the set of measures µ on {0, 1}B0(Zd) that satisfy the DLR
equation

µ(f) =
∫
µ(dη)µRC

B (f |ηBc) (2.12)

for any finite B and any cylinder function f with support in B. Note that, in contrast to equations (2.6) and (2.7),
here the DLR condition (2.12) does not imply that the conditional expectations of an RC Gibbs state µ are given

4See, e.g., [22], [14] and [20] for the definition of Choquet simplices.
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by the finite volume expectations (2.8) due to the lack of quasilocality. However, it turns out that uniqueness of the
infinite cluster is enough to ensure that the DLR condition implies a statement of the form (2.7) (see Theorem III.4).

As already observed in [5], the above notion of RC Gibbs states does not accommodate all “naturally arising”
limiting states. When reformulated in terms of the ES measures, not every RC marginal of an ES Gibbs measure is
an RC Gibbs state. An example is the ES Gibbs state corresponding to the standard Dobrushin state with a stable
interface between two ordered states.

However, when restricted to the set of ES measures with at most one infinite cluster, the situation changes. As it
turns out, not only is the marginal of every such ES Gibbs measure an RC Gibbs measure, but also each RC Gibbs
measure with at most one infinite cluster can be obtained as a marginal of a suitable ES Gibbs measure. In addition,
a natural refinement holds: up to a choice of the “color” of the infinite cluster, the surjective correspondence between
ES and RC measures is actually one-to-one.

To state the next theorem, we use GES
≤1 = {ν ∈ GES|ν(N∞ ≤ 1) = 1} to denote the set of ES Gibbs measures

such that with probability one there is at most one infinite cluster of occupied bonds. Similarly, let GRC
≤1 = {µ ∈

GRC|µ(N∞ ≤ 1) = 1}, GES
k = {ν ∈ GES|ν(N∞ = k) = 1} and GRC

k = {µ ∈ GRC|µ(N∞ = k) = 1}, k = 0, 1. Also let
GES

1,m = {ν ∈ GES|ν(A∞1,m) = 1}, where A∞1,m is the event A∞1,m = {N∞ = 1 and σx = m for all x ∈ V(C∞)}. Finally,
let ΠRC be the mapping that assigns RC marginals to ES Gibbs measures.

Theorem II.2 (i) The restriction of the map ΠRC to GES
≤1 is surjective onto GRC

≤1 .
(ii) Every ν ∈ GES

≤1 has a unique decomposition

ν = λ0ν0 +
∑

m∈Qmax

λmνm (2.13)

with ν0 ∈ GES
0 , νm ∈ GES

1,m, λ0, λm ≥ 0, and λ0 +
∑
m∈Qmax

λm = 1.
(iii) The restriction of the map ΠRC to GES

0 is one-to-one from GES
0 to GRC

0 . If m ∈ Qmax(h), then the restriction of
ΠRC to GES

1,m is one-to-one from GES
1,m to GRC

1 .
(iv) If |Qmax(h)| = 1, then the mapping ΠRC is a bijection ΠRC : GES

≤1 → GRC
≤1 .

Remarks. (i) As we will see in the next section, the set GES
≤1 is non-empty. By the above theorem, this implies that

also GRC
≤1 is non-empty.

(ii) Since {N∞ = 0} is a tail event, it follows from the standard theory of Gibbs states and the fact that the
specifications (2.4) of the Edwards-Sokal measure are quasilocal, that the conditional measure ν(·|N∞ = k), k = 0, 1,
is a Gibbs state for any ν ∈ GES

≤1 with 0 < ν(N∞ = 0) < 1. Although the corresponding statement is not known
a priori for a RC Gibbs state µ ∈ GRC

≤1 (due to lack of quasilocality), it is a consequence of statement (i) and the
commutativity of the following diagram,

ν
ΠRC−→ µ

↓ ↓
ν(·|N∞ = k) ΠRC−→ µ(·|N∞ = k)

(2.14)

which, in turn, is a consequence of Theorem II.2(ii).

Next, we state our results on the existence of thermodynamic limits for the extremal ES and RC Gibbs measures
with free and wired boundary conditions. We begin by introducing the relevant finite volume ES measures. Observing
that, for a finite volume Λ, the state µES

Λ,B(Λ)( · |σΛc ,ηB(Λ)c) does not depend on ηB(Λ)c , we define the measure

µES
Λ,m( · ) = µES

Λ,B(Λ)( · |σmΛc ,ηB(Λ)c), (2.15)

where σm is the constant configuration, σmx = m for all x ∈ Zd, with m ∈ {1, . . . , q}. In a similar way, the
measure µES

Λ,B0(Λ)( · |σΛc ,ηB0(Λ)c) does not depend on σΛc , provided that the η-boundary condition is chosen as
ηB0(Λ)c = η0

B0(Λ)c , where η0 denotes the configuration with η0
b = 0 for all b ∈ B(Zd). In this case we introduce the

measure

µES
Λ,free( · ) = µES

Λ,B0(Λ)( · |σΛc ,η0
B0(Λ)c). (2.16)

The η-marginals of the measures µES
Λ,free( · ) and µES

Λ,m are the RC measures µRC
Λ,free( · ) and µRC

Λ,m with free and m-wired
boundary conditions, respectively. A particular role will be played by the RC measures with m-wired boundary
conditions such that m ∈ Qmax(h), i.e., hm = hmax. Note that the measures µRC

Λ,m are identical for all values
m ∈ Qmax(h); we will use µRC

Λ,maxwir to denote any of them.
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Theorem II.3 Let β ≥ 0, J ≥ 0, and hm ∈ R, m = 1, . . . , q.
(i) Let f be a quasilocal function on {0, 1}B0(Zd). Then the limits

µRC
maxwir(f) = lim

Λ↗Zd
µRC

Λ,maxwir(f) (2.17)

and

µRC
free(f) = lim

Λ↗Zd
µRC

Λ,free(f) (2.18)

exist and are translation invariant.
(ii) The measures µRC

maxwir and µRC
free are RC Gibbs states with at most one infinite cluster.

Remarks. (i) The limit Λ↗ Zd above (and hereafter) is taken in the sense of the limit along the net {Λ ⊂ Zd finite}
with the net ordering given by the set inclusion. However, when we talk about a general RC limit state, we will have
a weaker notion in mind. Namely, we say that a measure µ on {0, 1}B0(Zd) is an RC limit state if there is a sequence
of finite sets Bn ⊂ B0(Zd) and a sequence of configurations η(n) such that µ(f) = limn→∞ µRC

Bn (f |η(n)
Bn ).

(ii) We will prove the existence of the limit (2.17) by first establishing that the µRC
Λ,m is strong FKG if hm = hmax,

see Theorem III.1. The requirement hm = hmax is crucial for our proof of Theorem III.1, since the proof relies on the
FKG property of the finite volume measures µRC

Λ,m. In fact, for β large enough, a contour argument indicates that
µRC

Λ,m with hm < hmax is not even FKG.
(iii) The statements of Theorem II.3 are special cases of those of Theorem III.1 (ii), Theorem III.3 and its corollary,

which hold for the GRC models discussed in the introduction.

By using the general theorem on the uniqueness of the infinite cluster [6], the conclusion about the existence of the
limiting RC measures can be strengthened to their ES preimages:

Theorem II.4 Let β ≥ 0 and hm ∈ R, m = 1, . . . , q. If m ∈ Qmax(h), then the weak limits

µES
m = lim

Λ↗Zd
µES

Λ,m (2.19)

and

µES
free = lim

Λ↗Zd
µES

Λ,free (2.20)

exist and are translation invariant ES Gibbs states with at most one infinite cluster.

Remark. In contrast to Theorem II.3, the statement here that the limiting measures are Gibbs states is a trivial
consequence of the general theory of Gibbs states for systems with quasilocal interactions.

Next, we state a theorem relating the uniqueness or non-uniqueness of Gibbs states to the existence of an infinite
cluster. To this end, we define the percolation probability

P∞(β, J, h) = sup
µ∈G̃RC

µ(|C0| =∞) (2.21)

and the auxiliary percolation probability

P̃∞(β, J, h) = inf
µ∈G̃RC

µ(|C0| =∞). (2.22)

where C0 = C0(η) is the cluster that contains the origin 0 ∈ Zd, and where we have restricted ourselves to the set
G̃RC of all translation invariant RC Gibbs measures. As we will see in the next section (corollary to Theorem III.1),
the density P∞(β, J, h) is just the probability of percolation in the measure µRC

maxwir, and is a nondecreasing, right
continuous function of J . Similarly, P̃∞(β, J, h) is the probability of percolation in the measure µRC

free. We also define
the critical coupling,

Jc(β, h) = inf{J ≥ 0: P∞(β, J, h) > 0}. (2.23)

It turns out that if P∞(β, J, h) is replaced by P̃∞(β, J, h) in the definition above, the value of Jc(β, h) is unchanged,
again by the corollary to Theorem III.1.
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Remark. For d ≥ 2 and q sufficiently large, P∞(β, J, 0) jumps from zero below Jc to a strictly positive number at Jc.
This corresponds to the so-called temperature driven first order phase transition in the Potts model, whose existence
was first proved in [19].

Theorem II.5 Let β ≥ 0 and hm ∈ R, m = 1, . . . , q.
(i) For all J ≥ 0, there is at most one ES Gibbs measure with no infinite cluster.
(ii) If P∞(β, J, h) = 0, then

∣∣GES
∣∣ =

∣∣GRC
∣∣ = 1. In particular,

∣∣GES
∣∣ =

∣∣GRC
∣∣ = 1 if J < Jc.

(iii) If P∞(β, J, h) > 0, then the states µES
m , m ∈ Qmax(h), are extremal translation invariant ES Gibbs states with

µES
m (A∞1,m) = 1. In particular, there are at least q0 = |Qmax(h)| different extremal translation invariant ES Gibbs

states.

As mentioned above, the percolation probability P∞(β, J, h) is nondecreasing in J . The last statement of the
theorem therefore implies that there are at least q0 extremal translation invariant ES Gibbs states when J > Jc. This
raises the question of whether for |Qmax(h)| = 1 the ES Gibbs state is unique above Jc. As the next theorem shows,
this is indeed the case, at least if d = 2.

Theorem II.6 Let β ≥ 0, and hm ∈ R, m = 1, . . . , q, and d = 2.
(i) If J 6= Jc, then

∣∣GRC
∣∣ = 1 and P∞(β, J, h) = P̃∞(β, J, h).

(ii) If J 6= Jc and, in addition, |Qmax(h)| = 1, then
∣∣GES

∣∣ = 1.

Remarks. (i) For the Ising model, the condition |Qmax(h)| = 1 means that h 6= 0. Together with FKG, the Lee-Yang
theorem then implies that the claim (ii) is valid for d ≥ 2 and all J ≥ 0, including J = Jc. Even though one might
conjecture that this statement holds for arbitrary q, since only one spin direction is preferred if |Qmax(h)| = 1, this is
in fact not true. Indeed, we show in [3] that the q-state Potts model has two coexisting phases at Jc for sufficiently
small fields preferring one of the q values m ∈ {1, . . . , q} over all others, provided q is sufficiently large. However, we
believe that for J 6= Jc, |Qmax(h)| = 1 does imply uniqueness for all q, even when d > 2.

(ii) Theorem II.6(i) and part of the statement in Theorems II.5(ii) refer to the RC model itself, and not the
relationship between the ES and the RC model. As we will see in the proofs of Theorems II.5 and II.6 in Sections VIII
and IX, these statements remain true in the more general context of the GRC model introduced in Section I.

III. MONOTONICITY AND UNIQUENESS OF THE INFINITE CLUSTER

In this section, we define the generalized random cluster (GRC) model, and formulate several results concerning
the FKG properties and uniqueness of the infinite cluster in this model. The GRC measure µGRC

Λ,free is obtained by
normalizing the weights

WGRC
Λ,free(η) = (eβJ − 1)|η|

∏

C(η)

Θfree
(
C(η)

)
, (3.1)

for any η ∈ {0, 1}B0(Λ). Here |η| is the number of bonds in the set {b ∈ B0(Λ): ηb = 1}, the product runs over all
connected components C(η) of the graph5 (Λ,Bocc(η) ∩ B0(Λ)), and

Θfree(C) =
q∑

m=1

qme
βhm|V(C)|, (3.2)

for any connected component C. The factors qm, m = 1, . . . , q, are assumed to be positive real numbers such that
∑

m∈Qmax

qm ≥ 1. (3.3)

Similarly, the measure µGRC
Λ,m is obtained by normalizing the weights WGRC

Λ,m defined for any η ∈ {0, 1}B(Λ) by the
formula

WGRC
Λ,m (η) = (eβJ − 1)|η|

∏

C(η)

ΘΛ,m
(
C(η)

)
, (3.4)

5We recall that Bocc(η) denotes the set of bonds b with ηb = 1.
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where |η| now stands for the number of bonds in the set {b ∈ B(Λ): ηb = 1}, the product runs over all connected
components C(η) of the graph (Λ̄,Bocc(η) ∩ B(Λ)), Λ̄ = Λ ∪ ∂Λ, and ΘΛ,m(C) is defined as

ΘΛ,m(C) =

{
Θfree(C) V(C) ∩ Λc = ∅
eβhm|V(C)| otherwise.

(3.5)

As already pointed out for RC measures, the measures µGRC
Λ,m are identical for all values m ∈ Qmax(h); we will use

µGRC
Λ,maxwir to denote any of them. Note also that the definitions (3.4) and (3.5) reduce to the standard definition of

wired measures for non-integer q when hm ≡ 0.
Finally, one can directly extend the definition (2.9) to get the weights WGRC

B (ηB|ηBc),

WGRC
B (ηB|ηBc) = (eβJ − 1)|Bocc(ηB)∩B|

∏

C(η):V(C(η))∩V(B)6=∅

q∑

m=1

qme
−β(hmax−hm)|V(C(η))|, (3.6)

yielding the measures µGRC
B (ηB|ηBc) that define GRC Gibbs states with the help of DLR equations of the type (2.12).

GRC limit states are defined analogously to RC limit states, see Remark (i) following Theorem II.3.

Remarks. (i) It is easy to see that if we take qm = 1, m = 1, . . . , q, then the measures µGRC
Λ,free and µGRC

Λ,m are just the
RC marginals µRC

Λ,free and µRC
Λ,m, respectively.

(ii) It is instructive to consider the effects of particular boundary conditions on the measure with weights (3.6). If
we take B = B0(Λ) and ηBc ≡ 0, then we get the free measure µGRC

Λ,free. If, on the other hand, we take B = B(Λ) and
ηBc ≡ 1, then we get the wired measure µGRC

Λ,maxwir, provided Λc is connected. If Λc is not connected, i.e., if Λ contains
“holes,” then the boundaries of these holes will be not be wired to each other. In this case, it will often be convenient
to introduce additional “ghost” bonds linking all of the components of the boundary. If, in addition to the bonds in
B(Λ)c, the ghost bonds are occupied, we get the maxwired state also in this case.

(iii) Recall that in the standard RC model without magnetic fields it is possible to view the wired state as a free
state on a modified graph in which all of the boundary sites in ∂Λ have been identified. However, in the case of general
external fields, the two prescriptions produce different states, i.e., setting all the sites at the boundary to a particular
value produces a different state from the free state on a graph in which all boundary sites have been identified. In
the former case, the collection {Ci} of all components of (Λ ∪ ∂Λ,Bocc(η) ∩ B(Λ)) that touch the boundary acquires
the weight eβhmax

∑
i|V(Ci)|, while in the latter case, it acquires the weight

∑
m e

βhm(1+
∑
i|V(Ci)\Λc|).

Note that it is the former prescription that we use to define the m-wired GRC measure. This measure is natural
for two reasons: it is the marginal of the corresponding ES measure if all qm’s are one, and, for m ∈ Qmax(h), this
measure is maximal in the FKG order, whereas the alternative one is not, at least in a finite volume.

To state our results on FKG properties, we introduce the standard partial order ≺ on {0, 1}B(Zd) by setting η ≺ η′
whenever ηb ≤ η′b for every b ∈ B(Zd). Since we shall also study monotonicity properties in dependence on (hm) we
need to introduce a partial order on the external fields. Given two sets of fields (hm) and (h′m), we define

(hm) 4 (h′m) iff hk − hl ≤ h′k − h′l for all k, l = 1, . . . , q with hk − hl > 0. (3.7)

Note that 4 is indeed a partial order on q-tuples of real numbers, in particular, (hm) 4 (h′m) and (h′m) 4 (h′′m) imply
(hm) 4 (h′′m).

Recall the following definition:

Definition. Let Ω be a measurable space endowed with the partial order ≺. Then a measure µ on Ω is said to be FKG
if µ(FG) ≥ µ(F )µ(G) for all measurable functions F,G : Ω → R that are increasing with respect to ≺. Moreover, if
Ω is of the form Ω = ×b∈BΩb, then µ is said to be strong FKG if µ( · |A) is FKG for all cylinder events of the form
A = {η : ηb = αb ∀b ∈ B̃}, where B̃ ⊂ B is finite and αb ∈ Ωb for all b ∈ B̃.

Theorem III.1 Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the parameters qm obey the
condition (3.3). Then:
(i) For each finite Λ ⊂ Zd, the measures µGRC

Λ,free and µGRC
Λ,maxwir are strong FKG.

(ii) For each quasilocal function f , the limits

µGRC
maxwir(f) = lim

Λ↗Zd
µGRC

Λ,maxwir(f) (3.8)
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and

µGRC
free (f) = lim

Λ↗Zd
µGRC

Λ,free(f) (3.9)

exist and are translation invariant.
(iii) Let µ be a GRC limit state or a GRC Gibbs state. Then

µGRC
free ≤

FKG
µ ≤

FKG
µGRC

maxwir. (3.10)

(iv) Suppose J1 < J2. Let let µGRC,J1
maxwir denote the wired state at J = J1 and let µGRC,J2

free denote the free state at J = J2.
Then

µGRC,J1
maxwir ( · ) ≤

FKG
µGRC,J2

free ( · ). (3.11)

(v) Let (hm) 4 (h′m) be two sets of external fields. Then

µ
GRC,(hm)
free ( · ) ≤

FKG
µ

GRC,(h′m)
free ( · ) (3.12)

µ
GRC,(hm)
maxwir ( · ) ≤

FKG
µ

GRC,(h′m)
maxwir ( · ). (3.13)

Remark. Note that (3.11) can be extended via (3.10) to any pair of GRC Gibbs measures at J = J1, resp. J = J2.

The following corollary is an immediate consequence of the above theorem. Before stating it, we recall the definitions
(2.21), (2.23) and (2.22) of P∞(β, J, h), Jc, and P̃∞(β, J, h), respectively. For the GRC measures considered here,
the definitions (2.21) and (2.22) are obviously modified by replacing the space G̃RC of translation invariant RC Gibbs
states by the space G̃GRC of translation invariant GRC Gibbs states.

Corollary. Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the parameters qm obey the
condition (3.3). Then:
(i) P∞(β, J, h) = µGRC

maxwir(|C0| =∞).
(ii) P̃∞(β, J, h) = µGRC

free (|C0| =∞).
(iii) J 7→ P∞(β, J, h) is a nondecreasing, right continuous function.
(iv) J 7→ P̃∞(β, J, h) is a nondecreasing function, which is continuous and equal to P∞(β, J, h) whenever J 7→
P∞(β, J, h) is continuous.
(v) P∞(β, J, h) = P̃∞(β, J, h) = 0 if J < Jc, while both P∞(β, J, h) > 0 and P̃∞(β, J, h) > 0 if J > Jc.

The next theorem is the only statement in this section that cannot be generalized to the GRC models.

Theorem III.2 Let β ≥ 0, J ≥ 0, and hm ∈ R, m = 1, . . . , q. Let ν ∈ GES be arbitrary and let µ denote its
η-marginal. Then

µ( · ) ≤
FKG

µRC
maxwir( · ). (3.14)

If, in addition, either |Qmax(h)| = 1 or µ(N∞ ≤ 1) = 1, then

µ( · ) ≥
FKG

µRC
free( · ). (3.15)

The following theorem states our results on the uniqueness of the infinite cluster.

Theorem III.3 Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the parameters qm obey the
condition (3.3). Then all translation invariant GRC Gibbs states and all translation invariant GRC limit states have
at most one infinite cluster with probability one.

Remark. We will prove the above theorem by first establishing the so-called finite energy condition for µ, and then
using the results of [6]. Unfortunately, we were unable to use this strategy to prove uniqueness of the infinite cluster for
random cluster marginals of translation invariant ES Gibbs measures. In fact, it is not hard to see that there are ES
Gibbs states whose random cluster marginals do not satisfy the finite energy condition. While these counterexamples
stem from non-translation invariant ES Gibbs states obtained by so-called Dobrushin boundary conditions, we do not
see how to use the additional assumption of translation invariance to get a proof of the finite energy condition.
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In Section VII we will use the uniqueness of the infinite cluster to prove that the finite volume specifications of
µGRC

free and µGRC
maxwir, and more generally of any translation invariant GRC limit state, are “almost surely quasilocal” in

the terminology of [21] and [16]. As a corollary of this statement, we will prove the following result.

Corollary. Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the parameters qm obey the
condition (3.3). Then all translation invariant GRC limit states are GRC Gibbs states.

The last theorem in this section addresses the question under which conditions the conditional expectations of a
GRC Gibbs state µ are given by the measures µGRC

B (·|ηBc).

Theorem III.4 Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the parameters qm obey the
condition (3.3). Let µ be a GRC Gibbs state with µ(N∞ ≤ 1) = 1, let B be a finite subset of B0(Zd), and let f be a
cylinder functions depending only on the configuration ηB. Then

µ(f |ηBc) = µGRC
B (f |ηBc) µ-a.s. (3.16)

IV. FKG PROPERTIES OF GENERALIZED RANDOM CLUSTER MEASURES

In this section we prove Theorem III.1. In the process we formulate and prove a lemma concerning monotonicity of
GRC states in the volume (Lemma IV.1). We will also formulate and prove a second result (Lemma IV.2) concerning
domination of states with general boundary conditions, which will be used in the proof of Theorem III.2 in the next
section.
Proof of Theorem III.1(i). We consider Λ to be fixed and omit it temporarily from the notation. In order to prove the
strong FKG property of µGRC

Λ,free and µGRC
Λ,m , let us recall a necessary and sufficient condition [10], the so-called lattice

condition

WGRC
free

(
η(1) ∨ η(2))WGRC

free
(
η(1) ∧ η(2)) ≥WGRC

free
(
η(1))WGRC

free
(
η(2)) (4.1)

for any pair of configurations η(1) and η(2), and similarly for WGRC
m . Here η(1) ∨ η(2) denotes the maximum and

η(1) ∧ η(2) the minimum of η(1) and η(2).
It turns out that to verify (4.1), it suffices to consider η(1) and η(2) that differ just at two bonds. Indeed (see e.g.,

[7]), let

R(ζ,η) =
WGRC

free (ζ ∨ η)
WGRC

free (ζ)
(4.2)

and note that (4.1) can be rewritten as R
(
η(1),η(2)

)
≥ R

(
η(1) ∧ η(2),η(2)

)
. Hence, the lattice condition (4.1) is true

once we verify that R(ζ,η) is increasing in ζ, for any fixed η. Let us introduce, for any bond b, the configuration η(b)

by setting η(b)
b = 1 and η

(b)
b′ = 0 for any b′ 6= b. Ordering the set Bocc(η) into a sequence (b1, . . . , b|Bocc(η)|), we have

R(ζ,η) =
|Bocc(η)|∏

k=1

R
(
ζ ∨ η(b1) ∨ · · · ∨ η(bk−1),η(bk)). (4.3)

Hence, it suffices to prove monotonicity of R(ζ,η) for any η that is zero except possibly at one bond. Moreover, it
suffices to prove the growth when flipping ζ at a single bond from 0 to 1, i.e., ζ with ζb = 0 to ζb = ζ ∨ η(b). The
verification of the needed bound, R(ζb,η(b′)) ≥ R(ζ,η(b′)), for any pair of bonds b and b′, now boils down to the
special case of (4.1) with η(1) = ζb and η(2) = ζ ∨ η(b′) that differ only at bonds b and b′. Since η(1) = η(2) if b = b′,
we may further assume without loss of generality that b 6= b′.

Let thus η(1) and η(2) be such that

η
(1)
b = η

(2)
b b 6= b1, b2

η
(1)
b1

= η
(2)
b2

= 0 η
(1)
b2

= η
(2)
b1

= 1.
(4.4)

Since the number of 1-bonds is equal on both sides of (4.1), the nontrivial issue is therefore to check (4.1) for the
product over the connected components. Let us suppose, without loss of generality, that there exist disjoint connected
components A1 and A2 of η(1) ∧ η(2) (possibly isolated sites) that become connected when b1 is flipped from 0 to 1,
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and, similarly, B1, B2 for the components connected by flipping b2. (The only other possibility is that both endpoints
of b1, or alternatively b2, lie in a single component of η(1) ∧η(2), in which case the two sides of (4.1) are equal.) With
this proviso, there are only three generic situations:

(a) V(A1) ∪ V(A2) is disjoint from V(B1) ∪ V(B2),

(b) V(A1) = V(B1) but V(A2) ∩ V(B2) = ∅,

(c) V(A1) = V(B1) and V(A2) = V(B2).

We will prove (4.1) separately for (a), (b), and (c). For notational brevity, we use Θ(C) for both Θfree(C) and Θm(C).
In the case (a) both sides of (4.1) reduce to the same term

Θ(A1 ∪A2)Θ(B1 ∪B2)Θ(A1)Θ(A2)Θ(B1)Θ(B2). (4.5)

Hence, (4.1) is fulfilled with the equality sign.
Next, consider (b). We denote by C the common component (i.e., C = A1 = B1) and use A and B to denote the

other components. Then (4.1) boils down to the inequality

Θ(C)Θ(C ∪A ∪B) ≥ Θ(C ∪A)Θ(C ∪B). (4.6)

Let us first consider the free boundary conditions. Using, for any m ∈ {1, . . . , q}, the notation

am = eβhm|V(A)|,

bm = eβhm|V(B)|,

cm = eβhm|V(C)|,

(4.7)

the condition (4.6) is equivalent to
(

q∑

m=1

qmcm

)(
q∑

m′=1

qm′am′bm′cm′

)
≥
(

q∑

m=1

qmamcm

)(
q∑

m′=1

qm′bm′cm′

)
. (4.8)

Let us assume that the fields are ordered in an increasing order, h1 ≤ h2 ≤ · · · ≤ hq. As a consequence, a1 ≤ a2 ≤
· · · ≤ aq and b1 ≤ b2 ≤ · · · ≤ bq. By writing the expression (4.8) as an inequality for a bilinear form in qmcmqm′cm′ ,
the sufficient requirement that all the independent coefficients of this form be non-negative reduces to

(am − am′)(bm − bm′) ≥ 0 ∀m,m′, (4.9)

which is immediate by our preceding assumptions.
Turning to m̄-wired boundary conditions, m̄ ∈ Qmax(h), we will distinguish several cases. If V(A) ∩ Λc = ∅,

V(B) ∩ Λc = ∅, as well as V(C) ∩ Λc = ∅, we have exactly the same situation as for free boundary conditions. If
V(C) ∩Λc 6= ∅, both sides of (4.6) are equal to cm̄am̄bm̄cm̄. If V(A) ∩Λc = ∅, V(C) ∩Λc = ∅, and V(B) ∩Λc 6= ∅, we
need to show that

(
q∑

m=1

qmcm

)
am̄bm̄cm̄ ≥

(
q∑

m=1

qmamcm

)
bm̄cm̄. (4.10)

This follows once we realize that hm̄ = hmax implies am ≤ am̄ for any m. Similarly with the role of A and B
interchanged. Finally, if V(C) ∩ Λc = ∅, but V(A) ∩ Λc 6= ∅ and V(B) ∩ Λc 6= ∅, we have to verify that

(
q∑

m=1

qmcm

)
am̄bm̄cm̄ ≥ am̄cm̄bm̄cm̄. (4.11)

This is clearly true if we use the assumption that
∑
m∈Qmax(h) qm ≥ 1 and the fact that cm = cm̄ whenever m ∈

Qmax(h).
It remains to establish (4.1) under (c). In this case, there are only two components in the game: A and B.

Inequality (4.1) is then implied by Θ(A∪B) ≤ Θ(A)Θ(B). Let us use the definitions (4.7) of am and bm. We consider

12



three cases. First, in the case of either free boundary conditions, or wired boundary conditions with the additional
conditions V(A) ∩ Λc = ∅ and V(B) ∩ Λc = ∅, the relation we want boils down to the inequality

q∑

m=1

qmambm ≤
(

q∑

m=1

qmam

)(
q∑

m′=1

qm′bm′

)
, (4.12)

which is obviously satisfied since bm ≤
∑
m′∈Qmax(h) qm′bm̄. Second, for wired boundary conditions under the addi-

tional conditions V(A) ∩ Λc = ∅ and V(B) ∩ Λc 6= ∅, we get the manifestly correct inequality

am̄bm̄ ≤
(

q∑

m=1

qmam

)
bm̄. (4.13)

Finally, for wired boundary conditions with the additional conditions V(A) ∩ Λc 6= ∅ and V(B) ∩ Λc 6= ∅, we get the
identity am̄bm̄ = am̄bm̄.

Remark. The necessity of hm = hmax, for the strong FKG property of µGRC
Λ,m to hold, arises from (4.6). Namely,

suppose that B connects to the boundary (i.e., V(B) ∩ Λc 6= ∅), whereas A and C do not. Then (4.6) reduces to
(4.10). It is not difficult to convince oneself that choosing C sufficiently large one can make (4.10) be satisfied for all
A only when am̄ = maxm am. Consequently, hm̄ must be equal to hmax for the lattice condition (4.1) or, equivalently,
the strong FKG condition to hold.

Lemma IV.1 Let β ≥ 0, J ≥ 0, hm ∈ R and qm > 0, m = 1, . . . , q, and suppose that the parameters qm obey the
condition (3.3). Further, let Λ ⊂ ∆ ⊂ Zd be two finite sets. Then

µGRC
Λ,free( · ) ≤

FKG
µGRC

∆,free( · ) (4.14)

and

µGRC
Λ,maxwir( · ) ≥

FKG
µGRC

∆,maxwir( · ). (4.15)

Proof. Using Theorem III.1(i), the inequality (4.14) follows immediately from the fact that

µGRC
Λ,free( · ) = µGRC

∆,free( · | DΛ), (4.16)

where DΛ is the FKG decreasing event

DΛ =
{
η : ηb = 0 ∀b ∈ B0(Λ)c

}
. (4.17)

For maxwired boundary conditions, the proof is more complicated, since conditioning on the FKG increasing event

OΛ =
{
η : ηb = 1 ∀b ∈ B(Λ)c

}
(4.18)

leads to the state µGRC
Λ,maxwir only if Λ is a volume without “holes”, i.e., if Λc has only one (infinite) component. If Λc

has finite components H1, . . . , Hk, we use the following trick: for each “hole” Hi, we introduce an additional bond bi
with one endpoint in Hi and the other in ∆c. Setting

B∗(∆) = B(∆) ∪ {b1, . . . , bk}, (4.19)

we then define µ̄GRC
∆,maxwir as the maxwired GRC measure on the graph (∆̄,B∗(∆)), where as before ∆̄ = ∆∪∂∆. With

this definition we get

µGRC
∆,maxwir( · ) = µ̄GRC

∆,maxwir
( · | ηb = 0 ∀b ∈ B∗(∆) \ B(∆)

)

≤
FKG

µ̄GRC
∆,maxwir

( · | ηb = 1 ∀b ∈ B∗(∆) \ B(∆)
)

≤
FKG

µ̄GRC
∆,maxwir

( · | ηb = 1 ∀b ∈
(
B∗(∆) \ B(∆)

)
∪ B(Λ)c

)

= µGRC
Λ,maxwir( · ),

(4.20)
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proving the desired inequality (4.15). Here the first inequality uses that the strong FKG measures, conditioned on
taking a fixed configuration ηA in a set A, are FKG increasing in ηA, while the second inequality follows by the FKG
property of µ̄GRC

∆,maxwir.

Proof of Theorem III.1(ii). As a consequence of (4.14) and (4.15), the net (µGRC
Λ,free) (resp. (µGRC

Λ,maxwir)) increases (resp.
decreases) as Λ increases (in the order defined by the set inclusion), yielding the existence of the desired limits as well
as their translation invariance for all monotone quasilocal functions. Since the latter generate all quasilocal functions,
the claim is established.
Proof of Theorem III.1(iii). We first prove that for any finite set of bonds B, the measure µGRC

B (ηB|ηBc) is strong FKG.
To this end, we express µGRC

B (ηB|ηBc) as a limit of finite volume measures which can be expressed as conditionals
of the finite volume measures µGRC

∆,free. Using that µGRC
∆,free is strong FKG we then will conclude that µGRC

B (ηB|ηBc) is
strong FKG.

Let ∆ be a finite subset of Zd, let η ∈ {0, 1}B0(Zd) and let

η
(∆)
b =

{
ηb b ∈ B0(∆)
0 otherwise.

(4.21)

Then we have WGRC
B0(∆)

(
η

(∆)
B0(∆)|η

(∆)
B0(∆)c

)
= e−βhmax|∆|WGRC

∆,free

(
η(∆)

)
. Consequently,

µGRC
B0(∆)

( · |η(∆)
B0(∆)c

)
= µGRC

∆,free
( · |η(∆)

B0(∆)c

)
. (4.22)

Since the latter measure is strong FKG and since (µGRC
B ) form a consistent family of specifications, µGRC

B ( · |η(∆)
Bc )

is strong FKG as well for any B ⊂ B(∆) (use that conditioned strong FKG measures are still strong FKG). The
strong FKG property of the measure µGRC

B (ηB|ηBc) now follows from the fact that µGRC
B ( · |η(∆)

Bc )→ µGRC
B ( · |ηBc) as

∆ ↗ Zd, which in turn is a consequence of the observation that for each η there is a finite ∆ such that the number
of components of the graph (∆,Bocc(η(∆))) that reach from V(B) to the boundary of ∆ is equal to the number of
infinite components of (Zd,B0(η)) that touch V(B). (Here we used that there are only finitely many infinite clusters
connected to B.)

Hence µGRC
B ( · |ηBc) is strong FKG for all η and all finite sets of bonds B. In particular, µGRC

B ( · |ηBc) is increasing
in the boundary condition (the specifications are consistent), and

µGRC
B ( · |η(0)

Bc ) ≤
FKG

µGRC
B ( · |ηBc) ≤

FKG
µGRC
B ( · |η(1)

Bc ), (4.23)

where η(i) is the configuration with η(i) = i for all b ∈ B0(Zd). Choosing B = B(Λ) and continuing by further
conditioning as in the proof of (4.14) and (4.20), we get

µGRC
Λ,free( · ) ≤

FKG
µGRC
B(Λ)( · |ηB(Λ)c) ≤

FKG
µGRC

Λ,maxwir( · ). (4.24)

If µ is a Gibbs measure, the bound (4.24) and the DLR equation (2.12) imply that

µGRC
Λ,free( · ) ≤

FKG
µGRC( · ) ≤

FKG
µGRC

Λ,maxwir( · ). (4.25)

Taking the limit Λ↗ Zd, we get statement (iii) for an arbitrary GRC Gibbs state µ.
In order to prove statement (iii) for a GRC limit state, we use that for any sequence of finite sets Bn with

Bn ↗ B0(Zd), we can find a sequence Λn of finite subsets in Zd such that Λn ↗ Zd and B(Λn) ⊂ Bn. Given such a
sequence and a sequence of boundary condition η(n), we then proceed as above to bound

µGRC
Λn,free( · ) ≤

FKG
µGRC
Bn ( · |η(n)

Bn(Λ)c) ≤
FKG

µGRC
Λn,maxwir( · ). (4.26)

Taking the limit n→∞, this proves statement (iii) for an arbitrary RC limit state.
Proof of Theorem III.1(iv). Let g be a monotone increasing function, depending only on bonds B0(∆) for some finite
∆. For each finite Λ ⊂ Zd define

gΛ =
∑

x : τx(∆)⊂Λ

g ◦ τx, (4.27)
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where τ is the shift operator. Let µGRC,J1,α
Λ,free and µGRC,J1,α

Λ,maxwir be the GRC measures with free and maxwired boundary
condition and coupling J = J1, however, with the weights in (3.1) and (3.4) multiplied by the function eαgΛ . We then
consider the generating function

Z
(α)
Λ,free =

∑

η∈B0(Zd)

eαgΛ(η)(eβJ − 1)|η|
∏

C(η)

Θfree(C(η)), (4.28)

where, as in formula (3.1), the product runs over all connected components C(η) of the graph (Λ,Bocc(η) ∩ B0(Λ)).
Similarly, we introduce the generating function Z

(α)
Λ,maxwir for the moments of gΛ with respect to µGRC

Λ,maxwir. Consider
now a volume Λ that is a disjoint union of two volumes Λ1 and Λ2. Then we have the following submultiplicative
bound

Z
(α)
Λ,free ≥ Z

(α)
Λ1,free Z

(α)
Λ2,free e

O(α|B(Λ1)∩B(Λ2)|), (4.29)

which can be easily obtained by restricting the sum in (4.28) to those η which are zero on the bonds in B(Λ1)∩B(Λ2),
and observing that

gΛ = gΛ1 + gΛ2 +
∑

x : τx(∆)⊂Λ,
τx(∆)∩Λ1 6=∅,
τx(∆)∩Λ2 6=∅

g ◦ τx. (4.30)

By standard subadditivity arguments, it follows from (4.29) that the “free energy”

f(α) = lim
Λ↗Zd

1
|Λ| logZ(α)

Λ,free (4.31)

exists and is convex in α. In (4.31), we assume that the limit is taken over cubes of the form Λn = {−n, . . . , n}d.
The same limit is obtained if Z(α)

Λ,free is replaced by Z(α)
Λ,maxwir. Indeed, observing that Z(α)

Λ,maxwir can be bounded from
below by restricting the sum over configurations to those for which η is 0 on B(Λ) \ B0(Λ), we get

Z
(α)
Λ,maxwir ≥ eO(α|∂Λ|)Z(α)

Λ,free

∏

x∈∂Λ

ΘΛ,m({x}), (4.32)

provided m ∈ Qmax. To get an upper bound on Z
(α)
Λ,maxwir, observe that ΘΛ,m ≤ Θfree by our assumption (3.3). As a

consequence,

Z
(α)
Λ,maxwir ≤ eO(α|∂Λ|)Z(α)

Λ̄,free, (4.33)

where, as before, Λ̄ = Λ ∪ ∂Λ. While Λ̄ is not of the form {−n, . . . , n}d required for the existence of the limit (4.31),
it can easily bounded by a term of this form times a boundary term with the help of (4.29). We therefore have shown
that Z(α)

Λ,maxwir and Z
(α)
Λ,free give rise to the same free energy f(α).

Moreover, by differentiating, we find that

lim sup
Λ↗Zd

µGRC,J1
Λ,maxwir

( gΛ

|Λ|
)
≤ df

dα+ (α1) ≤ df
dα−

(α2) ≤ lim inf
Λ↗Zd

µGRC,J1,α
Λ,free

( gΛ

|Λ|
)
, (4.34)

where 0 < α1 < α2 < α are arbitrary.
Since gΛ is increasing, we have from (4.15) and the translation invariance of µGRC,J1

maxwir that the left hand side of (4.34)
equals µGRC,J1

maxwir (g). Thus we just need to show that if α is small enough then µGRC,J1,α
Λ,free is FKG dominated by µGRC,J2

Λ,free .
To this end recall that the second measure can be directly generated by the weights W J2

Λ,free defined in (3.1), while the
first one can be generated by the weights eαgΛW J1

Λ,free. As a consequence, we have

µGRC,J1,α
Λ,free ( · ) =

µGRC,J2
Λ,free ( ·GΛ)

µGRC,J2
Λ,free (GΛ)

, (4.35)

where

GΛ(η) = eαgΛ(η)W
J1
Λ,free(η)

W J2
Λ,free(η)

. (4.36)
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Hence it suffices to ensure that the function η 7→ GΛ(η) is monotone decreasing in η. Let us define the variance of g
by the formula

var(g) = sup
b̄

sup
η,η′ : ηb=η′b
∀b6=b̄

∣∣ g(η)− g(η′)
∣∣. (4.37)

Note that var(g) is the maximum amount that g can change by flipping a single bond. Since

W J1
Λ,free

W J2
Λ,free

(η) =
[
eβJ1 − 1
eβJ2 − 1

]|η|
, (4.38)

the monotonicity of GΛ is guaranteed for instance by eαvar(g)|B0(∆)|(eβJ1 − 1) ≤ (eβJ2 − 1). For J1 < J2, this in turn
is achieved by taking α small enough. Thus, for α sufficiently small and positive, we have

µGRC,J1
maxwir (g) ≤ lim inf

Λ↗Zd
µGRC,J1,α

Λ,free

( gΛ

|Λ|
)
≤ lim inf

Λ↗Zd
µGRC,J2

Λ,free

( gΛ

|Λ|
)
≤ µGRC,J2

free (g), (4.39)

where the last inequality follows from µGRC,J2
Λ,free

≤
FKG µGRC,J2

free and the translation invariance of µGRC,J2
free . Since g was

arbitrary, (3.11) is established.

Before proving item (v) of Theorem III.1, let us present an elementary argument showing why our definition of
partial order on the external fields is the only correct one, at least provided we stipulate that it be independent of
the volume, β > 0, and the values of (qm) (however, such that the strong FKG condition is still satisfied).

Let Λ = {x, y}, where x and y are nearest neighbors, and consider the event {ηb = 1} that the bond b = 〈x, y〉 is
occupied. Then

µ
GRC,(hm)
{x,y},free (ηb = 1) = f

(‖a‖2
‖a‖1

)
, (4.40)

where f(x) = x2/(1 + x2) and where ‖ · ‖1 and ‖ · ‖2 are the `1 and `2 norms of the vector a = (eβh1 , . . . , eβhq ) in the
metric with weights (qm), i.e.,

‖a‖1 =
q∑

m=1

qme
βhm and ‖a‖22 =

q∑

m=1

qme
2βhm . (4.41)

Since x 7→ f(x) is strictly increasing, µGRC,(hm)
{x,y},free increases with (hm) if and only if ‖a‖2‖a‖1 does. If this is to hold

independently of the qm’s, then also

lim
αqk=ql→∞

qk
‖a‖22
‖a‖21

=
1 + αe−2β(hk−hl)

[1 + αe−β(hk−hl)]2
(4.42)

must be increasing for all α > 0. (In the above limit, we fix all qm’s with m 6= k, l.)
We want to show that the condition

h′k − h′l ≥ hk − hl whenever hk − hl > 0 (4.43)

is necessary for the claim (3.12). To this end, we first show that the condition

h′k − h′l ≥ 0 whenever hk − hl > 0 (4.44)

is necessary for (3.12) to hold. To see this, assume hk > hl and h′k − h′l < 0. Then for large enough β, the r.h.s.
of (4.42) is close to 1 for (hm) and close to α−1 for (h′m). Taking α > 1, we see that the desired monotonicity of
µ

GRC,(hm)
{x,y},free (ηb = 1) is violated. Hence the condition (4.44) is necessary.
Now take α = 1 in (4.42). This leads to the function x 7→ 1

2 cosh(x)[cosh(x/2)]−1, which is even and strictly
increasing for x > 0. Hence (4.42) increases under the replacement (hm)→ (h′m) if and only if |h′k − h′l| ≥ |hk − hl|,
which together with (4.44) gives the necessity of (4.43).

The following argument shows that the condition (4.43) it is also sufficient.
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Proof of Theorem III.1(v). Let (hm) and (h′m) be two sets of fields such that (hm) 4 (h′m). In order to prove (3.12)
and (3.13), we need to establish that the functions

η 7→
W

GRC,(h′m)
Λ,free (η)

W
GRC,(hm)
Λ,free (η)

= Ξfree(η), η 7→
W

GRC,(h′m)
Λ,m (η)

W
GRC,(hm)
Λ,m (η)

= Ξm(η) (4.45)

are monotone increasing with η (the rest follows by (3.8), (3.9) and an inequality of (4.35)-type). It suffices to study
the single-bond flips. Let b = 〈x, y〉 be a nearest-neighbor bond such that ηb = 0 and let ηb be the configuration
obtained by flipping ηb to 1. There are two scenarios: (1) x↔ y in η, (2) x= y in η.

In the case (1), Ξfree(η) = Ξfree(ηb), as follows by the inspection of (3.2), and similarly for the maxwired boundary
condition. In the case (2), there are two components A and B in η, each at one end of the bond b. By flipping ηb to
1, A and B become connected in one component that we denote by C. Note that |V(C)| = |V(A)| + |V(B)|. Since
the remaining components are not affected by this flip, it is easily seen that

Ξfree(ηb)
Ξfree(η)

=
Θ

GRC,(hm)
free (A)ΘGRC,(hm)

free (B)

Θ
GRC,(h′m)
free (A)ΘGRC,(h′m)

free (B)

Θ
GRC,(h′m)
free (C)

Θ
GRC,(hm)
free (C)

, (4.46)

and similarly for the maxwired boundary condition. We are thus reduced to showing that the r.h.s. of (4.46) is no
less than 1, and again similarly for maxwired.

We begin with the free boundary condition. Let am, bm, cm have literally the same meaning as in (4.7) and let
a′m, b

′
m, c

′
m denote the corresponding quantities for (hm) replaced by (h′m). Note that cm = ambm and c′m = a′mb

′
m.

Then the condition that the r.h.s. of (4.46) be no less than 1 reads



q∑

j=1

qja
′
j



(

q∑

k=1

qkb
′
k

)(
q∑

l=1

qlalbl

)
≤




q∑

j=1

qjaj



(

q∑

k=1

qkbk

)(
q∑

l=1

qla
′
lb
′
l

)
. (4.47)

We will prove this in two steps; first we “move” the prime from aj ’s in the first bracket on the l.h.s. to the ones in
the last bracket and then do the same with the prime over bk in the second bracket on the left. Consider the identity

a′jalbl + a′lajbj = 1
2 (a′jal + aja

′
l)(bl + bj) + 1

2 (a′jal − aja′l)(bl − bj). (4.48)

Observing that (hm) 4 (h′m) implies

(a′jal − aja′l)(bl − bj) ≤ 0 ≤ (a′jal − aja′l)(bj − bl), (4.49)

we can bound the r.h.s. of (4.48) by interchanging bl and bj . This allows us to conclude that

l.h.s. of (4.47) ≤




q∑

j=1

qjaj



(

q∑

k=1

qkb
′
k

)(
q∑

l=1

qla
′
lbl

)
. (4.50)

In order to perform the same trick on b′k, which will lead to the desired formula (4.47), we will need that h′k − h′l > 0
implies h′k − h′l ≥ hk − hl. After a moment’s thought, the latter is a trivial consequence of our assumption (3.7).

In the case of maxwired boundary condition, let both measures be defined using the same boundary “value” m
with hm = hmax and h′m = h′max (such a choice always exists, due to (hm) 4 (h′m)). We need to distinguish whether
any of the components A, B connects to the boundary or not. If V(A) ∩ ∂Λ = ∅ and V(B) ∩ ∂Λ = ∅, we are in the
same situation as for the free boundary condition. If V(A) ∩ ∂Λ 6= ∅ but V(B) ∩ ∂Λ = ∅, then we have to check the
inequality

a′mambm

(
q∑

k=1

qkb
′
k

)
≤ a′mamb′m

(
q∑

k=1

qkbk

)
. (4.51)

This is implied by the inequality bmb′k ≤ b′mbk, which in turn follows from the assumption (hm) 4 (h′m) and the fact
that hm = hmax and h′m = h′max. In the case when V(A) ∩ ∂Λ 6= ∅ and V(B) ∩ ∂Λ 6= ∅, (4.47) (modified for the
m-wired boundary condition) is fulfilled with the equality sign.
Proof of Corollary to Theorem III.1. Items (i) and (ii) are direct consequences of (3.10). Since µGRC

Λ,maxwir(0 ↔ Λc) ↓
µGRC

maxwir(0↔∞) by Lemma IV.1, the claim (iii) follows from the fact that a monotone decreasing sequence of monotone
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increasing continuous functions (of parameter J in our case) has a right continuous limit. To prove claims (iv) and
(v), we note that the map J 7→ P̃ (β, J, h) is non-decreasing. By (3.10) and (3.11), one has P̃ (β, J, h) ≤ P (β, J, h)
for all J and P̃ (β, J2, h) ≥ P (β, J1, h) for all J1 < J2, which implies the remaining part of (iv). Combining the
monotonicity of P (β, J, h) and P̃ (β, J, h) with the above two inequalities, we get (v).

We close this section with an FKG domination lemma which will be used to prove Theorem III.2 in the next section.
We need some notation. First, for a finite set Λ and any subset D ⊂ ∂Λ, where, as before, ∂Λ = {x ∈ Zd| dist(x,Λ) =
1}, we define the D-maxwired measure in the volume Λ as the measure

µGRC
Λ,D,maxwir(·) = µGRC

Λ,maxwir
( · | ηb = 0 ∀b ∈ B(Λ) \ B0(Λ ∪D)

)
. (4.52)

Note that µGRC
Λ,D,maxwir(·) is identical to the free measure µGRC

Λ,free(·) if D = ∅ and identical to the maxwired measure
µGRC

Λ,maxwir(·) if D = ∂Λ.
We also generalize the m-wired measure µGRC

Λ,m . To this end we introduce, for any finite volume Λ ⊂ Zd and any
configuration σ : ∂Λ→ {1, 2, . . . , q}, a measure µGRC

Λ,σ that is obtained by normalizing the weight

WGRC
Λ,σ (η) = (eβJ − 1)|η|

∏

i<j

1l{∂iΛ=∂jΛ}(η)
∏

C(η)

ΘΛ,σ
(
C(η)

)
. (4.53)

Here ∂iΛ is the set of all x ∈ ∂Λ such that σx = i, ∂iΛ = ∂jΛ is the event that the sets ∂iΛ and ∂jΛ are not connected
by a path of occupied bonds, and

ΘΛ,σ(C) =

{
Θfree(C) V(C) ∩ Λc = ∅
eβhm|V(C)| V(C) ∩ ∂mΛ 6= ∅. (4.54)

It is not hard to see that for the standard RC model (with qm = 1 for all m = 1, 2, . . . , q) µRC
Λ,σ is in fact the RC marginal

of µES
Λ,B(Λ)( · |σΛc ,ηB(Λ)c), while µRC

Λ,D,maxwir is the RC marginal of µES
Λ,B( · |σΛc ,ηBc), provided B = B0(Λ)∪(B(Λ)∩B(D)),

ηB(Λ)\B = 0 and σx = m for some (x-independent) m ∈ Qmax and all x ∈ D.
The measures µGRC

Λ,σ and µGRC
Λ,D,maxwir satisfy the following FKG bounds:

Lemma IV.2 Let Λ be a finite set. Then for any σ on Λc, we have

µGRC
Λ,σ ( · ) ≤

FKG
µGRC

Λ,maxwir( · ). (4.55)

Moreover, let D ⊂ ∂Λ. Then

µGRC
Λ,free( · ) ≤

FKG
µGRC

Λ,D,maxwir( · ) ≤
FKG

µGRC
Λ,maxwir( · ). (4.56)

Proof. Using the representation (4.53), it is easy to see that the measure µGRC
Λ,σ can be recast as

µGRC
Λ,σ ( · ) =

µGRC
Λ,maxwir( · g)
µGRC

Λ,maxwir( g)
, (4.57)

where

g(η) =
∏

i<j

1l{∂iΛ=∂jΛ}(η)
∏

m

∏

C :
V(C)∩∂mΛ6=∅

e−(hmax−hm)|V(C)| (4.58)

for any η ∈ {0, 1}B(Λ). It turns out that the function g is FKG decreasing. Indeed, each indicator 1l{∂iΛ=∂jΛ}(η) is
clearly decreasing. The same is true for the remaining factor as is seen by noting that

∑

C :
V(C)∩∂mΛ6=∅

|V(C)|, (4.59)

being equal to the number of sites connected to ∂Λm, is an increasing function of η. Since hmax ≥ hm and since the
product of non-negative decreasing functions is decreasing, the monotonicity of g is established. Since µGRC

Λ,maxwir is
FKG, (4.55) is proved.

To prove (4.56), it is enough to observe that the right hand side of (4.52) is FKG increasing in D, since µGRC
Λ,D,maxwir

is FKG and the event {η : ηb = 0 ∀b ∈ B(Λ) \ B0(Λ ∪D)} is FKG decreasing.
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V. THE COLOR(S) OF THE INFINITE CLUSTER(S)

In this section we prove Theorem III.2. Since this result uses ES measures in its very formulation, we return to
the standard RC measures (with qm = 1, m = 1, . . . , q, in (3.2)) and prove the results only for them. In addition
to Lemma IV.2, the second part of Theorem III.2 requires some control of the possible values of the spins that can
be assumed on the infinite clusters. To state the theorem precisely, we introduce the notation S(σ,η) for the set of
possible spin values assumed on the infinite clusters in a configuration (σ,η). (Observe that since ν

(
{(σ,η) : σx 6=

σy, η〈x,y〉 = 1}
)

= 0 for each ν ∈ GES, each connected component has a constant spin value almost surely.)

Theorem V.1 Let ν ∈ GES. Then S ⊆ Qmax(h) ν-almost surely.

Remark. We believe, but have not yet been able to prove, that |S| ≤ 1 ν-almost surely for all translation invariant
ν ∈ GES.

Before we prove the above theorem, let us formulate a technical lemma.

Lemma V.2 Let (ak)k≥1 be a sequence of numbers such that 1 ≤ ak ≤ Ckn for some constant C < ∞ and an
integer n ≥ 0. Then for each ε > 0 and any k̄ ≥ C(n+ 1)nε−(n+1)

ak ≤ ε
∑

k′≤k
ak′ (5.1)

holds for at least one k ∈ {k̄, . . . , (n+ 1)k̄}.

Proof. If n = 0, the statement follows from the observation that 1 ≤ ak ≤ C and k̄ ≥ Cε−1 implies ak̄ ≤ C ≤ εk̄ ≤
ε
∑
k′≤k̄ ak′ , which gives (5.1) for k = k̄. If n ≥ 1, suppose that ak > ε

∑
k′≤k ak′ for all k ∈ {k̄, . . . , (n+ 1)k̄}. Since

ak′ ≥ 1, this implies ak > εk̄ for all k ∈ {k̄, . . . , 2k̄} and, using induction, ak > ε`k̄` for all k ∈ {`k̄, . . . , (` + 1)k̄},
with ` ∈ {1, . . . , n}. In particular, a(n+1)k̄ > εn+1k̄n+1. However, this is in contradiction with the assumption
a(n+1)k̄ ≤ C(n+ 1)nk̄n whenever k̄ ≥ C(n+ 1)nε−(n+1).

Proof of Theorem V.1. Let m ∈ {1, . . . , q} with hm < hmax and suppose that there is ν ∈ GES with ν(m ∈ S) > 0.
Since GES as well as the event m ∈ S are invariant w.r.t. spatial shifts, we can suppose without loss of generality that
the event

Ω0
m =

{
(σ,η) : ∃C(η),

∣∣C(η)
∣∣ =∞, V

(
C(η)

)
3 0, σ0 = m

}
(5.2)

has positive probability under ν, i.e., ν(Ω0
m) > 0. Let Λk be the box of side length 2k + 1 centered at the origin and,

for each (σ,η) ∈ Ω0
m and each k ≥ 1, let Vk(η) be the set of sites in Λk that are connected to the origin within

B0(Λk), and let

ak = ak(η) =
∣∣∣Vk(η) ∩ ∂Λk−1

∣∣∣. (5.3)

Note that
∣∣Vk(η)

∣∣ ≥ ∑k′≤k ak′ and that 1 ≤ ak ≤ |∂Λk−1| ≤ 2d(2k + 1)d−1 ≤ 3ddkd−1, where we have used that
k ≥ 1 in the final bound. Hence, by Lemma V.2, we know that for each ε > 0 and each k̄ ≥ (3d/ε)d there is at least
one k, with k̄ ≤ k ≤ dk̄, such that

∣∣Vk(η) ∩ ∂Λk−1
∣∣ ≤ ε

∣∣Vk(η)
∣∣. (5.4)

By (5.4) and the subadditivity of the measure, we have for k̄ ≥ (3d/ε)d that

ν(Ω0
m) ≤ µ(∪k̄≤k≤dk̄Ω0

m,k) ≤
∑

k̄≤k≤dk̄
ν(Ω0

m,k), (5.5)

with Ω0
m,k denoting the event

Ω0
m,k =



(σ,η) :

σ0 = m, 0↔ ∂Λk−1,∣∣{x ∈ ∂Λk−1 : x ←→
B0(Λk)

0}
∣∣ ≤ ε

∣∣{x ∈ Λk : x ←→
B0(Λk)

0}
∣∣



 .
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Here x ←→
B0(Λk)

0 indicates that the connection occurs within B0(Λk). As a result, for each ε > 0 there is a deterministic

set Nε ⊂ N, |Nε| =∞, such that for any k ∈ Nε one has

ν(Ω0
m,k) ≥ 1

dk
ν(Ω0

m), (5.6)

by the pigeon hole principle as applied to (5.5).
On the other hand, since Ω0

m,k is a
(
Λk,B0(Λk)

)
-cylinder event, we can estimate ν(Ω0

m,k) using the DLR equations
(2.6). Recall that µES

Λk,σ is the specification (2.4) with the special choice Λ = Λk and B = B(Λk) and the spin boundary
condition σ (the η boundary condition is irrelevant in this case). Then (2.6) reads

ν(Ω0
m,k) =

∫
ν(dσ, dη)µES

Λk,σ(Ω0
m,k). (5.7)

Fix ε > 0 such that dJε+ hm < hmax and pick m̃ with hm̃ = hmax. Then we claim that for any σ

µES
Λk,σ(Ω0

m,k) ≤ µES
Λk,σ

(
1l Ω0

m,k

∏

〈x,y〉 : x∈Λc
k

y∈Vk

eβJ1l{η〈x,y〉=0}

)

= µES
Λk,σ

(
1l Ω0

m̃,k
e−β(hmax−hm)|Vk|

∏

〈x,y〉 : x∈Λc
k

y∈Vk

eβJ1l{η〈x,y〉=0}

)

≤ µES
Λk,σ

(
1l Ω0

m̃,k
e−β(hmax−hm−dJε)|Vk|

)
≤ e−β(hmax−hm−dJε)k.

(5.8)

Here, in the first step we inserted the factor eβJ in order to convert an arbitrary configuration at the boundary bonds
of the set Vk to the vacant bond state. More explicitly, we used the following estimate

∑

η〈x,y〉=0,1

(
1l{η〈x,y〉=0} + (eβJ − 1)δσx,σy1l{η〈x,y〉=1}

)

= (eβJ − 1)δσx,σy + 1 ≤ eβJ =
∑

η〈x,y〉=0,1

eβJ1l{η〈x,y〉=0}

=
∑

η〈x,y〉=0,1

eβJ1l{η〈x,y〉=0}
(
1l{η〈x,y〉=0} + (eβJ − 1)δσx,σy1l{η〈x,y〉=1}

)
(5.9)

at every boundary bond. Note that there is an unconstrained summation over the bond configuration because Ω0
m̃,k

does not depend on these boundary bonds. The conversion of an arbitrary configuration at the boundary bonds of
the set Vk to the vacant bond state then allows us to flip σx at each x ∈ Vk from m to m̃, resulting in the exponential
factor in the second line of (5.8). The proof of the claim (5.8) is finished by noting that, on Ω0

m̃,k, the number of
flipped bonds does not exceed d|Vk ∩ ∂Λk−1| ≤ dε|Vk| and that |Vk| ≥ k.

By putting (5.6), (5.7) and (5.8) together, we get that

1
dkν(Ω0

m) ≤ ν(Ω0
m,k) ≤ e−β(hmax−hm−dJε)k ∀k ∈ Nε. (5.10)

However, since |Nε| =∞ and k can be arbitrarily large, this leads to a contradiction whenever ν(Ω0
m) > 0. Hence, no

such m with hm < hmax can exist and S ⊆ {m : hm = hmax} ν-almost surely.
Proof of Theorem III.2. Let us consider an ES Gibbs measure ν and use µ to denote its η marginal. Applying the
DLR equations (2.6) for ν, we get

µ(f) = ν(f) =
∫
ν(dσ, dη)µES

Λ,B(Λ)(f |σΛc ,ηB(Λ)c) =
∫
ν(dσ, dη)µRC

Λ,σ(f)

≤
∫
ν(dσ, dη)µRC

Λ,maxwir(f) = µRC
Λ,maxwir(f) (5.11)

for any increasing cylinder function f(η) supported on B̃ ⊂ B(Λ). Here, the inequality follows by (4.55). Applying
now (2.17), we get (3.14).
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In order to prove (3.15), we have to work a bit harder. Let (∆n)n≥1 be an increasing sequence of boxes centered at
the origin and let

Λn(η) = {x ∈ ∆n : x= ∆c
n} ∪ {x ∈ ∆n : x↔∞}, (5.12)

Dn(η) = ∂Λn(η) ∩ {x↔∞}, (5.13)

and

Dext
n (η) = ∂Λn(η) ∩ {x ←→

B(∆n)c
∞}. (5.14)

Observe that Dn(η) ⊂ ∂∆n.
Given Λ̄n ⊂ ∆n, D̄n ⊂ ∂Λ̄n ∩ ∂∆n and D̄ext

n ⊂ D̄n, we will want condition on the event

En = {Λn(η) = Λ̄n} ∩ {Dn(η) = D̄n} ∩ {Dext
n (η) = D̄ext

n }, (5.15)

using the DLR condition (2.7) in (Λ̄n, B̄n), where

B̄n = B0(Λ̄n) ∪
(
B(Λ̄n) ∩ B(D̄n)

)
. (5.16)

To this end, we write the event En as the intersection of four events: the event

E int
n = {x←→

B̄n
D̄ext
n ∀x ∈ D̄n \ D̄ext

n }, (5.17)

which depends only on the configuration in B̄n, and the events

E(1)
n =

{
D̄ext
n = {x ∈ ∂Λ̄n : x ←→

B̄(∆n)c
∞}
}
, (5.18)

E(2)
n = {η〈x,y〉 = 0 ∀〈x, y〉 ∈ B(Λ̄n) \ B̄n}, (5.19)

and

E(3)
n = {x↔ Λ̄c

n ∀x ∈ ∆n \ Λ̄n} ∩ {x= D̄n and x =̄
Bc
n

∞ ∀x ∈ ∆n \ Λ̄n}, (5.20)

which depend only on the bonds in Bc
n. To see that En is actually the intersection of these events, we first observe

that En = {Λn(η) = Λ̄n} ∩ E(1)
n ∩ E int

n . Also, if E(1)
n ∩ E int

n holds, then {Λn(η) = Λ̄n} clearly implies E(2)
n ∩ E(3)

n . So
we have to show that E(2)

n ∩ E(3)
n together with E(1)

n ∩ E int
n implies {Λn(η) ⊇ Λ̄n} and {Λn(η) ⊆ Λ̄n}. The former is

obvious, since the event E(2)
n ensures that all points in Λ̄n that are connected to ∆c

n are actually connected to D̄n,
and hence to infinity. The latter follows by observing that E(3)

n implies that all x ∈ ∆n \ Λ̄n are connected to the
complement of ∆n, but are not connected to infinity.

Let f be a non-negative FKG increasing B0(∆)-cylinder function, where ∆ is a finite set. By the assumption on µ,
either q0 = 1 or there is at most one infinite cluster. In both cases, the spin on the infinite component(s) is uniquely
defined: σx = m with hm = hmax for all x in D̄n. Since the indicator function of the event E int

n depends only on the
configuration ηB̄n , while the indicator function of the event

Eext
n = E(1)

n ∩ E(2)
n ∩ E(3)

n (5.21)

depends only on the configuration ηB̄c
n
, we may now use the fact the conditional expectations of the ES Gibbs measure

ν are given by (2.4) to write

µ(f) = ν(f) ≥ ν
(
f1l{Λn( · )⊇∆}

)

=
∑

Λ̄n⊇∆
D̄n⊆∂Λ̄n∩∂∆n

D̄ext
n ⊆D̄n

∑

m∈Qmax

ν
(
f1l{Λn( · )=Λ̄n}1l{Dn( · )=D̄n}1l{Dext

n ( · )=D̄ext
n }1l{σD̄n≡m}

)

=
∑

Λ̄n⊇∆
D̄n⊆∂Λ̄n∩∂∆n

D̄ext
n ⊆D̄n

∑

m∈Qmax

∫
ν(dσ, dη) 1lEext

n
1l{σD̄n≡m} µ

ES
Λ̄n,B̄n(f1lEint

n
|σΛ̄c

n
,ηB̄c

n
).

(5.22)
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Under the condition that σD̄n ≡ m, the RC marginal of µES
Λ̄n,B̄n(·|σΛ̄c

n
,ηB̄c

n
) in the above equation is just the measure

µRC
Λ̄n,D̄n,maxwir introduced in the last section. Since the event E int

n is an increasing event and since µRC
Λ̄n,D̄n,maxwir is strong

FKG (being given by conditioning from a strong FKG measure), we conclude that

µES
Λ̄n,B̄n(f1lEint

n
|σΛ̄c

n
,ηB̄c

n
) = µRC

Λ̄n,D̄n,maxwir(f1lEint
n

)

≥ µRC
Λ̄n,D̄n,maxwir(f)µRC

Λ̄n,D̄n,maxwir(1lEint
n

)

= µRC
Λ̄n,D̄n,maxwir(f)µES

Λ̄n,B̄n(1lEint
n
|σΛ̄c

n
,ηB̄c

n
), (5.23)

provided σD̄n ≡ m and ηB̄c
n
∈ Eext

n . Observing finally that

µRC
Λ̄n,D̄n,maxwir(f) ≥ µRC

Λ̄n,free(f) ≥ µRC
∆,free(f) (5.24)

by (4.56) and (4.14), we get that

µ(f) ≥ µRC
∆,free(f)

∑

Λ̄n⊇∆
D̄n⊆∂Λ̄n∩∂∆n

D̄ext
n ⊆D̄n

∑

m∈Qmax

∫
ν(dσ, dη) 1lEext

n
1l{σD̄n≡m} µ

ES
Λ̄n,B̄n(1lEint

n
|σΛ̄c

n
,ηB̄c

n
)

= µRC
∆,free(f)

∑

Λ̄n⊇∆
D̄n⊆∂Λ̄n∩∂∆n

D̄ext
n ⊆D̄n

ν(1lEext
n

1lEint
n

) = µRC
∆,free(f) ν

(
{Λn( · ) ⊇ ∆}

)
. (5.25)

Here in the first step we used the bounds (5.22)–(5.24), in the second we used Gibbsianness of ν, and in the third we
used the fact that 1lEext

n
1lEint

n
is the indicator function of the event (5.15) to resum over Λ̄n, D̄n and D̄ext

n .
Since ν

(
{Λn( · ) ⊇ ∆}

)
tends to 1 as n→∞ by the monotone convergence theorem, the proof is finished for f ≥ 0

by taking that limit followed by ∆↗ Zd. Arbitrary cylinder f ’s are handled by noting that f −min f ≥ 0.

VI. UNIQUENESS OF THE INFINITE CLUSTER

In this section we prove that GRC Gibbs measures and weak limits of finite volume GRC measures have at most
one infinite cluster almost surely (Theorem III.3). This is a direct consequence of Theorem 1 from [12], once we show
that the limiting measure satisfies the positive finite energy condition. Using a slightly stronger form of the condition
than that in [12], we say that a GRC measure µ has positive finite energy if for all bonds b ∈ B(Zd), we have

µ(ηb = 1|BB(Zd)\{b}) > 0 µ-almost everywhere. (6.1)

Here BB(Zd)\{b} is the σ-algebra generated by all cylinder functions on {0, 1}B(Zd)\{b}.
We start with a lemma concerning GRC measures that are either Gibbs states or weak limit points of finite volume

GRC measures.

Lemma VI.1 Let µ be a translation invariant GRC measure that is either a Gibbs state or it is a weak limit of the
form limn→∞ µGRC

Bn ( · |ηn). Then the measure µ satisfies the positive finite energy condition, provided βJ > 0.

Proof. Consider a finite set of bonds B and the characteristic function 1l{η̄B} of the event {η|ηB = η̄B}. The claim
(6.1) will be proved once we verify that there exists a constant c > 0 such that for every B ⊂ B(Zd) \ {b} and every
η̄B, one has

∫
µ(dη)1l{η̄B}(η)µ

(
ηb = 1|BB(Zd)\{b}

)
(η) ≥ c

∫
µ(dη)1l{η̄B}(η)µ

(
ηb = 0|BB(Zd)\{b}

)
(η). (6.2)

Indeed, (6.2) implies that

µ(ηb = 1|BB(Zd)\{b})(η) ≥ cµ(ηb = 0|BB(Zd)\{b})(η) (6.3)
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almost surely, which in turn yields

µ(ηb = 1|BB(Zd)\{b})(η) ≥ c

1 + c
(6.4)

almost surely and thus (6.1). Now, since 1l{η̄B} is BB(Zd)\{b}-measurable, the inequality (6.2) is equivalent to

µ(1l{η̄B}1l{ηb=1}) ≥ cµ(1l{η̄B}1l{ηb=0}). (6.5)

If µ ∈ G̃GRC, the inequality (6.5) is implied by

µGRC
D (1l{η̄B}1l{ηb=1}|ηDc) ≥ cµGRC

D (1l{η̄B}1l{ηb=0}|ηDc). (6.6)

for at least one D ⊃ B ∪ {b}. Indeed, it suffices to integrate (6.6) by µ using the DLR equation (2.12).
If, on the other hand, µ is obtained as a weak limit of finite volume GRC measures, µ = limn→∞ µGRC

Bn (·|ηn), then
the inequality (6.5) follows from (6.6) as well, provided (6.6) holds for all sufficiently large D = Bn ⊃ B ∪ {b} and
boundary conditions ηBc

n
= ηn. Indeed, for all ε > 0 and all sufficiently large n we have

∣∣µGRC
Bn (1l{η̄B}1l{ηb=1}|ηn)− µ(1l{η̄B}1l{ηb=1})

∣∣ ≤ ε, (6.7)

and
∣∣µGRC
Bn (1l{η̄B}1l{ηb=0}|ηn)− µ(1l{η̄B}1l{ηb=0})

∣∣ ≤ ε. (6.8)

Combined with (6.6), we get

µ(1l{η̄B}1l{ηb=1}) ≥ cµ(1l{η̄B}1l{ηb=0})− ε(1 + c). (6.9)

Since ε can be made arbitrary small by choosing n large enough, we again obtain (6.5).
To get (6.6), we evaluate the infimum of the ratio

µGRC
D (ηb = 1,ηD\{b}|ηDc)
µGRC
D (ηb = 0,ηD\{b}|ηDc)

(6.10)

over all ηD\{b}. Let us consider, for any η with ηb = 0, the components Cx(η) and Cy(η) attached to the endpoints
x and y of the bond b = 〈x, y〉. If Cx(η) = Cy(η), using (3.6) we immediately see that the ratio (6.10) equals eβJ − 1.
On the other hand, if Cx(η) and Cy(η) are different components of the graph (Zd,Bocc(η)), then

µGRC
D (ηb = 1,ηD\{b}|ηDc)
µGRC
D (ηb = 0,ηD\{b}|ηDc)

≥ (eβJ − 1)

∑
m∈Qmax(h) qm

(
∑q
m=1 qm)2 (6.11)

since

∑q
m=1 qme

−β(hm−hmax)(|V(Cx(η))|+|V(Cy(η))|)
(∑q

m=1 qme
−β(hm−hmax)|V(Cx(η))|)(∑q

m=1 qme
−β(hm−hmax)|V(Cy(η))|) ≥

∑
m∈Qmax(h) qm

(
∑q
m=1 qm)2 (6.12)

by the obvious fact that 0 ≤ e−β(hm−hmax) ≤ 1.
Proof of Theorem III.3. Since the positive finite energy condition has been established in both relevant cases, the result
follows immediately from Theorem 1 in [12].

In order to prove the corollary to Theorem III.3, we will prove a lemma that states that the specifications µGRC
B are

“almost surely quasilocal” in the language of [16,21]. For finite sets Λ,∆ with Λ ⊂ ∆ ⊂ Zd, let M∆,Λ be the event

M∆,Λ =
{
η : ∀x, y ∈ Λ x↔ ∆c and y ↔ ∆c implies x ←→

B0(∆)
y
}
, (6.13)

where x ←→
B0(∆)

y is the event that there is a path of occupied bonds in B0(∆) connecting x and y.
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Lemma VI.2 (i) Let B ⊂ B0(Zd) be a finite set, and let f be a cylinder function depending only on the bonds in B.
Then the function

η 7→ 1lM∆,Λ(η)µGRC
B (f |ηBc) (6.14)

is quasilocal for any pair of finite sets ∆, Λ with ∆ ⊃ Λ ⊃ V(B).
(ii) Let µ is a GRC limit state or a GRC Gibbs state with at most one infinite cluster and Λ ⊂ Zd is finite, then

µ(M∆,Λ) ↑ 1 as ∆ ↑ Zd. (6.15)

Proof. Recalling the definition of µGRC
B (·|ηBc) in terms of (3.6), we note that it is enough to prove that the function

η 7→ 1lM∆,Λ(η)WGRC
B (η̄B|ηBc) is quasilocal for all η̄B ∈ {0, 1}B. Let ∆̃ ⊃ ∆, and let η and ηb be two configurations

differing at a single bond b ∈ B(∆̃)c, ηb = 0, ηbb = 1. Suppose that η ∈ M∆,Λ is such that and that there is a cluster
C connecting Λ with B(∆̃)c. By the definition (6.13) of M∆,Λ, the configuration ηb also satisfies these conditions,
and the component C of (Zd,Bocc(η)) connecting Λ with B(∆̃)c is unique. Moreover, the value of WGRC

B (η̄B|ηBc) is
clearly not affected by changing from η to ηb unless V({b}) ∩ V(C) 6= ∅. Suppose that the latter occurs and denote
by Cb the corresponding component under ηb. Then

∣∣WGRC
B (η̄B|ηbBc)−WGRC

B (η̄B|ηBc)
∣∣ ≤ (eβJ − 1)|Bocc(η̄B)∩B|

×
q∑

m=1

qm

∣∣∣eβ(hm−hmax)|V(Cb)| − eβ(hm−hmax)|V(C)|
∣∣∣. (6.16)

It turns out that the r.h.s. of (6.16) is exponentially small in dist(b,Λ). Indeed, for the terms with hm < hmax,
both terms between the absolute value signs go to zero exponentially fast, while for hm = hmax both terms tend
exponentially fast to one as dist(b,Λ) → ∞. Thus, the r.h.s. of (6.16) is summable over the positions of b. By
the standard telescoping trick, this proves quasilocality (i.e., continuity in the product topology) of the function
η 7→ 1lM∆,Λ(η)WGRC

B (η̄B|ηBc), as required by (i).
(ii) Since M∆,Λ ↑ MΛ, where MΛ is the set of configurations featuring at most one infinite component incident

with Λ, we have that µ(M∆,Λ) ↑ µ(MΛ) = 1, by the assumption that µ has at most one infinite cluster.
Proof of Corollary to Theorem III.3. Let µ = limn→∞ µGRC

Bn (· |ηn) be a translation invariant GRC limit state. It is not
hard to verify that µn = µGRC

Bn (· |ηn) satisfies the DLR condition

µn(f) =
∫
µn(dη)µGRC

B (f |ηBc), (6.17)

for any B-cylinder function f and any B ⊂ Bn. Since the specifications µGRC
B (f |·) are not quasilocal, this does not

imply, however, that the limiting measure µ satisfies the DLR equation. To circumvent this problem, we follow the
strategy of [21] and [16] involving the “almost sure quasilocality” of µGRC

B (f |·).
Let B be a finite set of bonds, and let f be a bounded B-cylinder function. Since both f and 1lM∆,V(B)( · )µGRC

B (f | · )
are quasilocal for all ∆ ⊃ V(B), we have

µ
(
1lM∆,V(B)( · )µGRC

B (f | · )) = lim
n→∞

µn
(
1lM∆,V(B)( · )µGRC

B (f | · )) (6.18)

and

µ(f) = lim
n→∞

µn(f) = lim
n→∞

µn
(
µGRC
B (f | · )), (6.19)

where we have used (6.17) in the last step.
Let ε > 0. By Theorem III.3, µ has a unique infinite cluster, which allows us to use (6.15). Combined with the

boundedness of µGRC
B (f | · ), we can therefore choose ∆1, ∆2 and n0 such that

∣∣µ
(
µGRC
B (f | · ))− µ(1lM∆,V(B)( · )µGRC

B (f | · ))
∣∣ ≤ ε

2
(6.20)

and
∣∣µn
(
µGRC
B (f | · ))− µn

(
1lM∆,V(B)( · )µGRC

B (f | · ))
∣∣ ≤ ε

2
(6.21)
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provided ∆1 ⊂ ∆ ⊂ ∆2 and n ≥ n0. Combining (6.18) – (6.21), we get
∣∣µ(f)− µ(µGRC

B (f | · ))
∣∣ ≤ ε. (6.22)

Since ε was arbitrary, we get that µ(f) = µ(µGRC
B (f | · )), i.e., µ ∈ GGRC.

Proof of Theorem III.4. To prove Theorem III.4, we will prove that for all finite sets of bonds B1 and B2 with
B1 ∩ B2 = ∅, and for all bounded cylinder functions f and g depending only on the bonds in B1 and B2, respectively,
we have

µ(gf) = µ(gµGRC
B1

(f | ·)), (6.23)

provided µ has at most one infinite cluster with probability one.
In a first step, we use the DLR equation (2.11) and the consistency of the specifications {µGRC

B } to conclude that
for B ⊃ B1 ∪ B2 we have

µ(gf) =
∫
µ(dη)µGRC

B (gf |ηBc)

=
∫
µ(dη)µGRC

B
(
gµGRC
B1

(f |·)|ηBc

)
. (6.24)

Next let ∆ ⊃ V(B1), and let M∆,V(B1) be the event introduced in (6.13). Since both g and 1lM∆,V(B1)( · )µGRC
B1

(f | · )
are quasilocal, we have

lim
B↗B0(Zd)

∫
µ(dη)µGRC

B
(
g1lM∆,V(B1)µ

GRC
B1

(f |·)|ηBc

)
= µ

(
g1lM∆,V(B1)µ

GRC
B1

(f |·)). (6.25)

Here, we have used the fact that as a quasilocal function, the function g1lM∆,V(B1)µ
GRC
B1

(f |·) can be approximated
arbitrarily well by local functions, and then we have applied the DLR equation (2.11) for local functions. To complete
the proof, we use that µ(M∆,V(B1)) ↑ µ(N∞ ≤ 1) = 1 as ∆ ↑ Zd by Lemma VI.2. Since f and g are bounded, we
conclude that for all ε > 0 we can choose ∆ in such a way that

∣∣∣∣
∫
µ(dη)µGRC

B
(
gµGRC
B1

(f |·)|ηBc

)
−
∫
µ(dη)µGRC

B
(
g1lM∆,V(B1)µ

GRC
B1

(f |·)|ηBc

)∣∣∣∣ ≤
ε

2
(6.26)

and
∣∣∣µ
(
g1lM∆,V(B1)µ

GRC
B1

(f |·))− µ(gµGRC
B1

(f |·))
∣∣∣ ≤ ε

2
, (6.27)

provided B ⊃ B(∆). Combined with (6.24) and (6.25) this proves that
∣∣µ(gf)− µ

(
gµGRC
B1

(f |·))
∣∣ ≤ ε. (6.28)

Since ε was arbitrary, this completes the proof of (6.23) and hence the proof of Theorem III.4.
Proof of Theorem II.3. As pointed out in the remark after Theorem II.3, the statements of the theorem are special
cases of those in Theorem III.1(ii), Theorem III.3 and its corollary.

VII. WEAK LIMITS OF THE ES GIBBS MEASURES

Since by Theorem II.3(i) the limits (2.17) and (2.18) exist for every quasilocal f depending only on the bond
configurations η, to prove Theorem II.4 we just need to extend this to functions of both σ and η. In this regard, it
will turn out to be useful to swap the σ-dependence and η-dependence under the expectation w.r.t. the ES Gibbs
measures. Before we formulate this precisely, let us give some definitions.

For any collection {Fi}qi=1 of pairwise disjoint finite sets Fi ⊂ Zd, let us define

F free
{Fi}(η) =

∏

i<j

1l{Fi=Fj}(η)
q∏

m=1

∏

C :
V(C)∩Fm 6=∅

eβhm|V(C)|

Θfree(C)
. (7.1)
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Here, 1l{Fi=Fj}(η) is the indicator of the event that, under η, no point in Fi is connected to any point in Fj by a
path of occupied bonds, the product over C runs over all components of the set Bocc(η) with V(C) ∩ Fm 6= ∅, and
Θfree(C) is as in (3.2) (with qm = 1).

Similarly, given a finite set Λ with F = ∪qi=1Fi ⊂ Λ, let us define

F m̄Λ,{Fi}(η) =
∏

i<j

1l{Fi=Fj}(η)
q∏

m=1

∏

C :
V(C)∩Fm 6=∅

eβhm|V(C)|

ΘΛ,m(C)
χΛ,m̄(C,m) (7.2)

for each m̄ ∈ {1, . . . , q}, where we recall the definitions (3.5) and use χΛ,m̄(C,m) to denote

χΛ,m̄(C,m) =

{
1 V(C) ∩ Λc = ∅ or m = m̄

0 otherwise.
(7.3)

Remark. In the following, it will be important to remember explicitly from which value of the boundary spin the
measure µRC

Λ,maxwir originated. Therefore we shall temporarily write µRC
Λ,m instead of µRC

Λ,maxwir.

Lemma VII.1 Let A ⊂ Zd be a finite set and let f be a cylinder function in (A,B(A)). Then there are numbers
(a{Fi}) such that

µES
Λ,free(f) =

∑

{Fi}
a{Fi} µ

RC
Λ,free

(
F free
{Fi}

)
(7.4)

µES
Λ,m̄(f) =

∑

{Fi}
a{Fi} µ

RC
Λ,m̄
(
F m̄Λ,{Fi}

)
(7.5)

for each m̄ ∈ {1, . . . , q} and all Λ ⊃ A with B0(Λ) ⊃ B(A). Moreover, a{Fi} = 0 whenever there is an x ∈ F = ∪qi=1Fi
with dist(x,A) > 1. In particular, both sums above are finite.

Proof. Let Λ be such that Λ ⊃ A and B0(Λ) ⊃ B(A). Then by using that µES
Λ,free and µES

Λ,m̄ are Gibbs measures we
have

µES
Λ,free(f) = µES

Λ,free
(
µES
A,B(A)(f |σAc ,ηB(A)c)

)
, (7.6)

and similarly for µES
Λ,m̄(f). The finite volume specification µES

A,B(A)(f |σAc ,ηB(A)c) depends only on spin variables at
the exterior boundary ∂A of A, and not on ηB(A)c . It therefore suffices to prove the claim for functions of the spin
variables that are supported in Ā = A ∪ ∂A.

Each such function f can be uniquely recast as
∑
{Fi} a{Fi}f{Fi}, where a{Fi} are real numbers such that a{Fi} = 0

whenever F 6⊂ Ā, and

f{Fi}(σ) =
q∏

m=1

∏

x∈Fm
δσx,m. (7.7)

It is now a matter of a direct computation to show that, for all m̄ ∈ {1, . . . , q},

µES
Λ,free(f{Fi}|η) = F free

{Fi}(η)

µES
Λ,m̄(f{Fi}|η) = F m̄Λ,{Fi}(η).

(7.8)

Namely, the components C of Bocc(η) such that V(C) ∩ Fm 6= ∅ necessarily satisfy that V(C) ∩ Fi = ∅ for all i 6= m.
This gives rise to the indicators 1l{Fi=Fj}. For η such that

∏
i<j 1l{Fi=Fj}(η) = 1, the spin configuration can be

integrated out, yielding the ratios eβhm|V(C)|/Θfree(C) resp. eβhm|V(C)|/ΘΛ,m̄(C). However, one gets the latter only
when V(C) ∩ Λc = ∅ or m = m̄. The claim is finished by taking the expectation w.r.t. η.

It was shown in Lemma VII.1 that σ-dependent cylinder functions can be interchanged under the expectation for
η-dependent functions F free

{Fi} and FmΛ,{Fi}. Unfortunately, the weak limits (2.17) and (2.18) cannot yet be invoked to
conclude the existence of (2.19) and (2.20), the reason being that the F{Fi}’s are, in general, not quasilocal. (Moreover,
FmΛ,{Fi} even depends explicitly on the expanding volume.) However, both functions F free

{Fi} and FmΛ,{Fi} turn out to be
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“almost surely” quasilocal, in the terminology of [21] and [16], which is still sufficient for the limits (2.17) and (2.18)
to exist.

For finite sets F ,∆ with F ⊂ ∆, let M∆,F be the event define in (6.13). Let further

Mm
∆,{Fi} =

{
η ∈M∆,F : x ∈ F with x↔ ∆c implies x ∈ Fm

}
, (7.9)

and recall q0 = #{m : hm = hmax}. For each ∆, m ∈ {1, . . . , q}, and {Fi} define also a random variable Qm∆,{Fi} by
putting

Qm∆,{Fi} =

{
q0 Fm ↔ ∆c

1 otherwise.
(7.10)

The remainder of the proof is based on an approximation of F{Fi}’s by quasilocal functions and showing that the
error incurred thereby upon the expectations of F{Fi}’s is negligible. These claims are formulated in Lemma VII.2
and Lemma VII.3 below.

Lemma VII.2 For all finite ∆ ⊂ Zd and any {Fi} with F = ∪iFi
(i) F free

{Fi} 1lMm
∆,{Fi}

is quasilocal for all m ∈ {1, . . . , q}.
(ii) F free

{Fi} 1lM∆,F is quasilocal.

Proof. (i) Let m be fixed and let Λ ⊃ ∆. Observe that 1lMm
∆,{Fi}

∏
i<j 1l{Fi=Fj} is a cylinder function in B(Λ). Hence,

only the contributions from the product over the connected components in (7.1) can be altered by flipping a bond
b 6∈ B(Λ). Let us estimate precisely the incurred change.

Let η and ηb be two configurations differing at a single bond b ∈ B(Λ)c, ηb = 0, ηbb = 1. Suppose that η ∈Mm
∆,{Fi} is

such that
∏
i<j 1l{Fi=Fj}(η) = 1 and that there is a C connecting Fm with B(Λ)c. By the definition (7.9) ofMm

∆,{Fi},
the configuration ηb also satisfies these three conditions, and by the definition (6.13) of M∆,{F}, the component C
of (Zd,Bocc(η)) connecting Fm and B(Λ)c is unique. Moreover, the value of F free

{Fi} is not affected by changing from η

to ηb unless V({b}∩V(C) 6= ∅. Suppose that the latter occurs and denote by Cb the corresponding component under
ηb. Then

∣∣F free
{Fi}(η

b)− F free
{Fi}(η)

∣∣ ≤
∣∣∣∣
eβhm|V(Cb)|

Θfree(Cb)
− eβhm|V(C)|

Θfree(C)

∣∣∣∣, (7.11)

where we have estimated all ratios by 1, except for the one affected by flipping b. As in the proof of Lemma VI.2, the
r.h.s. of (7.11) is exponentially small in dist(b,F). This proves (i).

To prove (ii), it clearly suffices to note that

F free
{Fi}

[
1lM∆,F −

q∑

m=1

1lMm
∆,{Fi}

]
(7.12)

is a cylinder event in B(∆). Namely, the function in the brackets is zero unless there is no component incident with F
that reaches up to ∆c. In that case, F free

{Fi} depends only on bonds from B(∆), i.e, it is effectively a local function.
The next lemma has two parts, both of which will be needed in the proof of Theorem II.4. It turns out that the

first part can be proved for the more general GRC model.

Lemma VII.3 Let {Fi}, F and m be such that F = ∪qi=1Fi and hm = hmax.
(i) Then

lim
∆↗Zd

lim
Λ↗Zd

µGRC
Λ,free(M∆,F ) = 1 (7.13)

lim
∆↗Zd

lim
Λ↗Zd

µGRC
Λ,m (M∆,F ) = 1. (7.14)

(ii) In addition, let G{Fi}Λ,∆,m = FmΛ,{Fi}1lM∆,F −Qm∆,{Fi}1lMm
∆,{Fi}

F free
{Fi}. Then

lim
∆↗Zd

lim
Λ↗Zd

µRC
Λ,m
(
G
{Fi}
Λ,∆,m

)
= 0. (7.15)
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Proof. (i) The inner limits on the l.h.s. exist because M∆,F is a cylinder event, and the GRC measures have a weak
limit by Theorem III.1(ii). The outer limit is then a consequence of the fact that M∆,F ↑ MF , where MF is the set
of configurations featuring at most one infinite component incident with F . The limits are thus equal to µGRC

free (MF )
and µGRC

m (MF ), respectively. Now, since µGRC
free and µGRC

m are translation invariant (as already proved Theorem III.1)
and are obtained as weak limits of finite volume GRC measures, we can apply Theorem III.3 to assert that both these
measures have almost surely at most one infinite cluster. This means µGRC

free (MF ) = 1 = µGRC
m (MF ). By putting these

observations together, (7.13) and (7.14) are proven.
To prove (ii), take {Fi} and ∆ ⊂ Λ with ∆ ⊃ F . Then the following three possibilities can occur for configurations

η ∈ {0, 1}B(Λ):

(A) F = ∆c

(B) F ↔ ∆c but F = Λc

(C) F ↔ Λc.

Clearly, under (A), the absence of components connecting F with the outside of ∆ implies

1lMm
∆,{Fi}

= 1lM∆,F , Qm∆,{Fi} = 1, and FmΛ,{Fi} = F free
{Fi}, (7.16)

by the inspection of (7.1) and (7.2). Consequently, all terms in the definition of G{Fi}Λ,∆,m cancel and G
{Fi}
Λ,∆,m = 0.

If (C) occurs then both terms contributing to G{Fi}Λ,∆,m are zero unless there is a unique component connecting F to
∂Λ, and this component connects Fm to ∂Λ. If we have such a component Cm,Λ, we get

1lMm
∆,{Fi}

= 1lM∆,F , Qm∆,{Fi} = q0, and FmΛ,{Fi} = F free
{Fi}

Θfree(Cm,Λ)
eβhm|V(Cm,Λ)| . (7.17)

Since Θfree(Cm,Λ)/eβhm|V(Cm,Λ)| is equal to q0 plus an error term that is exponentially small in the distance between
Fm and ∂Λ, this implies that G{Fi}Λ,∆,m tends to zero as Λ↗ Zd.

The proof of (7.15) therefore boils down to the analysis of (B). Let PFΛ,∆ denote the event (B), i.e., PFΛ,∆ = {η : F ↔
∆c but F = Λc}. Then, by the preceding reasoning, |G{Fi}Λ,∆,m| ≤ q01lPFΛ,∆ plus an error exponentially small error term
that tends to zero as Λ↗ Zd. Thus, it suffices to prove that

lim
∆↗Zd

lim
Λ↗Zd

µRC
Λ,m(PFΛ,∆) = 0. (7.18)

We will establish this by proving that the events (A) or (C) get the full mass under these limits. First we recall the
well known characterization

µRC
m (F ↔∞) = lim

Λ↗Zd
µRC

Λ,m(F ↔ Λc). (7.19)

This follows from the fact that for Λ ⊂ Λ̃ we have the inequalities µRC
Λ̃,m

(F ↔ Λ̃c) ≤ µRC
Λ̃,m

(F ↔ Λc) ≤ µRC
Λ,m(F ↔ Λc),

where the first one is due to monotonicity of {F ↔ Λc} in Λ and the second one is due to (4.15).
Since {F = ∆c} ↑ {F =∞} as ∆↗ Zd, we easily get that

lim
∆↗Zd

lim
Λ↗Zd

µRC
Λ,m
(
{F = ∆c} ∪ {F ↔ Λc}

)
= 1, (7.20)

proving the desired claim.
With Lemma VII.2 and VII.3 in the hand, the proof of Theorem II.4 can be concluded.

Proof of Theorem II.4. By Lemma VII.1, the existence of the limits (2.19) and (2.20) has been reduced the existence
of the limits limΛ↗Zd µ

RC
Λ,free(F free

{Fi}) and limΛ↗Zd µ
RC
Λ,m(FmΛ,{Fi}). To prove the existence of the latter, let ε > 0. Then

there are finite sets Λ̄, ∆̄1, ∆̄2 ⊂ Zd such that

µRC
Λ,free(M∆,F ) ≥ 1− ε/2 (7.21)

µRC
Λ,m(M∆,F ) ≥ 1− ε/4 (7.22)

−ε/4 ≤ µRC
Λ,m
(
FmΛ,{Fi}1lM∆,F −Qm∆,{Fi}1lMm

∆,{Fi}
F free
{Fi}

)
≤ ε/4 (7.23)
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for any Λ ⊃ Λ̄ and ∆̄1 ⊃ ∆ ⊃ ∆̄2, and any m such that hm = hmax. Since both Fm{Fi},Λ and F free
{Fi} are bounded by

one, this yields
∣∣∣µRC

Λ,free(F free
{Fi})− µ

RC
Λ,free

(
F free
{Fi}1lM∆,F

)∣∣∣ ≤ ε/2 (7.24)
∣∣∣µRC

Λ,m(FmΛ,{Fi})− µ
RC
Λ,m
(
Qm∆,{Fi}1lMm

∆,{Fi}
F free
{Fi}

)∣∣∣ ≤ ε/2. (7.25)

Now the functions F free
{Fi}1lM∆,F and Qm∆,{Fi}1lMm

∆,{Fi}
F free
{Fi} are quasilocal by Lemma VII.2 and because Qm∆,{Fi} is of

finite support. Hence, by Theorem II.3, the limit Λ ↗ Zd can be performed on the expectations of these functions.
Consequently

∣∣ lim sup
Λ↗Zd

µRC
Λ,free(F free

{Fi})− lim inf
Λ↗Zd

µRC
Λ,free(F free

{Fi})
∣∣ ≤ ε (7.26)

∣∣ lim sup
Λ↗Zd

µRC
Λ,m(FmΛ,{Fi})− lim inf

Λ↗Zd
µRC

Λ,m(FmΛ,{Fi})
∣∣ ≤ ε. (7.27)

The arbitrariness of ε finishes the claim.

VIII. GIBBS UNIQUENESS AND ABSENCE OF PERCOLATION

Before proving Theorem II.5, we shall first establish three useful claims.

Lemma VIII.1 Let ν ∈ GES be a measure with ν(|S| ≤ 1) = 1, and let µ be its RC marginal. Then µ ∈ GRC.

Proof. It suffices to show that for all finite sets of bonds B and all B-cylinder function f , we have µ(f |ηBc) =
µRC
B (f |ηBc). Since µ is the η-marginal of ν, it is enough to show that ν(f |ηBc) = µRC

B (f |ηBc). By the definition of
conditional probabilities, we have that ν-almost surely

ν(f |ηBc) =
∫
ν(dσ, dηB|ηBc)ν(f |σ∆c ,ηBc), (8.1)

for all finite ∆ with V(B) ⊂ ∆ ⊂ Zd. Given ηBc , we now take ∆ large enough such that there is no finite cluster
C(ηBc) connecting V(B) to ∆c. With this choice, however, one easily computes that ν(f |σ∆c ,ηBc) = µRC

B (f |ηBc) for
any B-cylinder function f , because by the assumption of the lemma, all infinite clusters have almost surely the same
color. Since B is arbitrary, this implies µ ∈ GRC and, in fact, it implies the stronger statement (3.16).

Lemma VIII.2 The measures µGRC
maxwir and µGRC

free are strongly mixing and, in particular, ergodic w.r.t. translations
in any of the lattice principal directions.

Proof. Let τ denote the translation in one of the lattice principal directions. We shall first show that µGRC
maxwir(f g◦τn)→

µGRC
maxwir(f)µGRC

maxwir(g) for all L2-functions f and g. As is well known, it actually suffices to verify this for cylinder
functions (which are dense in L2) and, since we have a space with a natural ordering, we can even restrict ourselves
to f , g monotone.

Let ∆ ⊂ Zd be a finite set with connected complement ∆c, and let f, g be non-negative monotone increasing cylinder
functions supported in B(∆). Let further gn = g ◦ τn and ∆n = τn(∆). Then fgn is also monotone increasing and
hence for any integer n such that B(∆) ∩ B(∆n) = ∅ and any Λ ⊃ ∆ ∪∆n, we have

µGRC
Λ,maxwir(fgn) ≤ µGRC

Λ,maxwir
(
fgn|{ηB(Λ)\(B(∆)∪B(∆n)) = 1}

)
=

= µGRC
∆,maxwir(f)µGRC

∆n,maxwir(gn) = µGRC
∆,maxwir(f)µGRC

∆,maxwir(g). (8.2)

Taking the limit Λ↗ Zd followed by n→∞ and ∆↗ Zd, we get

lim sup
n→∞

µGRC
maxwir(f g ◦ τn) ≤ µGRC

maxwir(f)µGRC
maxwir(g). (8.3)

Since the complementary inequality follows from FKG, the strong mixing property of µGRC
maxwir is established.

The case of the free measure is completely analogous; one just needs to take f and g positive decreasing.
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To formulate the next lemma, we need some notation. For a finite connected cluster C of configuration η we define
a measure πC on spin configurations on V(C) by

πC(σV(C)) =
∑

m

1
Θfree(C)

e−βhm|V(C)| ∏

x∈V(C)

δσx,m. (8.4)

For each m ∈ Qmax(h) we also define an infinite volume coloring measure

νm(σ|η) =
∏

C(η) : |V(C(η))|<∞
πC(η)(σV(C(η)))

∏

x↔∞
δσx,m. (8.5)

Lemma VIII.3 Let m ∈ Qmax(h), and let ν ∈ GES with ν(S ⊆ {m}) = 1. Let µ be the RC marginal of ν. Then for
each cylinder function f of σ and η

ν(f) =
∫
µ(dη)νm(f |η). (8.6)

In particular, if ν1, ν2 ∈ GES
1,m are two measures with the same RC marginal, then ν1 = ν2.

Proof. Let f by a (Λ,B(Λ)) cylinder function. Invoking the argument after (8.1) with B = ∅, for ν-almost all η (those
whose infinite cluster(s) have color m), we can find ∆ ⊃ Λ large enough but finite such that ν(f |σ∆c ,η) does not
depend on σ∆c , in which case one easily verifies that

ν(f |σ∆c ,η) = νm(f |η). (8.7)

The latter expectation depends only on η, hence (8.1) implies the desired representation of ν(f) in terms of νm(f |η)
and the RC marginal of ν.
Proof of Theorem II.5(i). We shall prove that any ν ∈ GES not exhibiting percolation is equal to the limiting measure
µES

free whose existence was established previously. The proof of this claim goes along the lines of the argument in
(5.12)–(5.25), however, it is much simpler in this case due to the absence of infinite clusters.

Let the sequences (∆n) and (Λn(η)) be defined as in (5.12). Since there are no infinite components ν-a.s, we have
Λn(η) = {x ∈ ∆n : x = ∆c

n} and Bn(η) = ∅ for all n ≥ 1 and ν-almost all η. Assume f is a cylinder function and
given ε > 0, take ∆ large enough so that f is supported in (∆,B0(∆)) and

∣∣µES
V,free(f)− µES

free(f)
∣∣ ≤ ε (8.8)

for all V ⊃ ∆. Since the indicator function of the event {Λn( · ) = Λ̄n} does not depend on the configuration in
(∆,B0(∆)), we have that

ν(f) = ν(f1l{Λn( · )6⊃∆}) +
∑

Λ̄n⊃∆

ν
(
µES

Λ̄n,free(f)1l{Λn( · )=Λ̄n}
)

(8.9)

by (2.7). Combined with (8.8), this gives the estimate

ν(f1l{Λn( · )6⊃∆}) +
[
µES

free(f)− ε
]
ν(1l{Λn( · )⊃∆}) ≤ ν(f)

≤ ν(f1l{Λn( · )6⊃∆}) +
[
µES

free(f) + ε
]
ν(1l{Λn( · )⊃∆}).

(8.10)

Since f is bounded and Λn ↗ Zd ν-a.s., the bounded convergence theorem yields
∣∣ν(f)− µES

free(f)| ≤ ε. (8.11)

The arbitrariness of ε finishes the claim.
Proof of Theorem II.5(ii). If P∞(β, J, h) = 0, then µES

maxwir(N∞ > 0) = µRC
maxwir(N∞ > 0) = 0 and (3.14) implies the

same is true for any ν ∈ GES. Thus GES = GES
0 = {µES

free}. On the other hand, µRC
maxwir(N∞ > 0) = 0 implies that the

same is true for all µ ∈ GRC by (3.10). Repeating the argument in the proof of Theorem II.5(i) for the RC measure
µ (and using Theorem III.4 to guarantee the analogue of (2.7)), we get that µ = µRC

free for all RC Gibbs measures µ,
implying GRC = {µRC

free}.

30



Remark. Given Theorem III.4, which is stated for the more general GRC model, the second part of the above proof
remains valid for the GRC model. As a consequence, all GRC Gibbs states are equal to the measure µGRC

free if
P∞(β, J, h) = 0, implying that GGRC = {µGRC

free } whenever P∞(β, J, h) = 0.

Proof of Theorem II.5(iii). We first show that

µES
m (σx = m̃|x↔∞) = δm,m̃ (8.12)

provided P∞(β, J, h) > 0 and m ∈ Qmax. Since µES
m (N∞ = 1) = 1 if P∞(β, J, h) > 0, equation (8.12) implies that

µES
m (A∞1,m) = 1.
To prove (8.12), we recall the well known fact that

µRC
maxwir(0↔∞) = lim

Λ↗Zd
µRC

Λ,maxwir(0↔ Λc), (8.13)

see equation (7.19) above. As a consequence, we get that for all m ∈ Qmax,

µES
m (x↔∞) = lim

Λ↗Zd
µES

Λ,m(0↔ Λc). (8.14)

Combined with the fact that µES
Λ,m(0 ↔ Λc, σx = m̃) = µES

Λ,m(0 ↔ Λc)δm,m̃, this implies (8.12). It remains to show
that the state µES

m is extremal whenever m ∈ Qmax. To this end, let us assume that

µES
m = λν1 + (1− λ)ν2 (8.15)

with νi(A∞1,m) = 1 and 0 < λ < 1. By Lemma VIII.1, the RC marginals µi of νi are RC Gibbs states, which implies
that (8.15) induces a similar decomposition for µRC

maxwir. However, µRC
maxwir is extremal by Lemma VIII.2, which implies

that µ1 = µ2 = µRC
maxwir. Using Lemma VIII.3, this implies ν1 = ν2, and hence extremality of µES

m .

IX. RANDOM CLUSTER GIBBS MEASURES FOR d = 2

Proof of Theorem II.6(i). The proof of Theorem II.6(i) remains again valid for the more general GRC model. For
J < Jc, the statement has already been proven in the last section. Let us therefore suppose that J > Jc and d = 2.
Then the first condition (and item (iii) of Corollary of Theorem III.1) implies that there is percolation under µGRC,J

maxwir.
Moreover, since µGRC,J

maxwir satisfies the following claims

(1) µGRC,J
maxwir is separately ergodic in all lattice directions

(2) µGRC,J
maxwir is invariant under lattice reflections and rotations

(3) µGRC,J
maxwir is FKG,

as has been proved previously, the powerful result of [13] asserts that the infinite cluster is unique under µGRC,J
maxwir.

Moreover, by a corollary to this result, the cluster contains an infinite series of nested circuits that (eventually)
encircle any point of the lattice.

Now, according to Theorem III.1(iii), any µ ∈ GGRC at the coupling constant J is FKG dominating the measure
µGRC,J

free . Let J > J1 > Jc. Then

µ( · ) ≥
FKG

µGRC,J
free ( · ) ≥

FKG
µGRC,J1

maxwir ( · ), (9.1)

where the second inequality is Theorem III.1(iv). Thus, all GRC Gibbs measures at J exhibit an infinite cluster as
well as the above circuits about the origin, because the latter is an FKG increasing event.

The proof is concluded in a manner similar to the argument (8.8)–(8.11). Let thus f be a cylinder function with
support in B(∆), where ∆ is supposed to be sufficiently large so that

∣∣µGRC
V,maxwir(f)− µGRC

maxwir(f)
∣∣ ≤ ε (9.2)

for any V ⊃ ∆. Let {∆n} be an increasing sequence of boxes centered at the origin, and let Ωn be the set of all
configurations η for which there exists a closed circuit Γ of occupied bonds surrounding ∆ and connected to the infinite
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cluster, such that it is entirely contained in B0(∆n). Let us use Γn(η) to denote the outermost such circuit contained
in B0(∆n) and VΓn(η) the set of its interior sites. Let 1lΩn be the characteristic function of Ωn and, for a given circuit
Γ, let 1l{Γn=Γ} denote the characteristic function of the set of all configurations such that the corresponding outermost
circuit Γn equals Γ.

Using the fact that the function 1l{Γn=Γ} does not depend on the values of the GRC configuration on B(VΓ), we
now apply Theorem III.4 with B = B(VΓ) to get

µ(f1lΩn) =
∑

Γ

µ(f1l{Γn=Γ}) =
∑

Γ

µ
(
µB(VΓ)(f |ηB(VΓ)c)1l{Γn=Γ}

)
=
∑

Γ

µ
(
µVΓ,maxwir(f)1l{Γn=Γ}

)
, (9.3)

where the sum is over all closed circuits Γ of occupied bonds surrounding ∆ and contained wholly in B0(∆n). Since
f is bounded and µ(Ωn) → 1 as n → ∞, we have that |µ(f1lΩn) − µ(f)| ≤ ε for n sufficiently large. Using (9.2) for
V = VΓ, we conclude that

∣∣µ(f)− µGRC
maxwir(f)

∣∣ ≤ 3ε. (9.4)

Since ε is arbitrary, we get the desired statement that each GRC Gibbs state necessarily equals the measure µGRC
maxwir.

Proof of Theorem II.6(ii). We again only need to prove the statement of J > Jc. Using Theorem III.2, equation (3.15)
instead of Theorem III.1(iii), we obtain the bound (9.1) for the RC marginal µ of any ν ∈ GES with |Qmax| = 1. Let
ν be such a measure. Applying the steps leading to (9.3) to the measure ν and a cylinder function f with support in
(∆,B(∆)), we will have to calculate the conditional expectation ν(f |σV c

Γ
,ηB(VΓ)c) = µES

VΓ,B(VΓ)(f |σV c
Γ
,ηB(VΓ)c). By

Theorem V.1 the value of σx on the sites x ∈ ∂VΓ is constrained to be one of the colors in Qmax. Since we assumed
that |Qmax| = 1, we obtain that ν(f |σV c

Γ
,ηB(VΓ)c) = µES

VΓ,m
(f), where m is the unique spin for which hm = hmax.

Continuing as in the proof of (i), we obtain that ν = µES
m .

X. MAPS BETWEEN ES, SPIN AND RC GIBBS MEASURES

Proof of Theorem II.1. Let µspin
Λ ( · |σΛc) denote the Gibbs measure on spins in Λ with boundary condition σΛc . The

proof is based on the crucial observations that, for the special choice B = B(Λ),

(A) µES
Λ,B(Λ)( · |σΛc ,ηB(Λ)c) does not depend on ηB(Λ)c .

(B) The spin marginal of µES
Λ,B(Λ)( · |σΛc ,ηB(Λ)c) is precisely µspin

Λ ( · |σΛc).

Let now ν ∈ GES, Λ ⊂ Zd be finite, and let f be a function depending only on the spin configuration in Λ. Then, by
(2.6), (A), (B), and the definition of marginals, we have

(ΠSν)(f) = ν(f) =
∫
ν(dσ, dη)µES

Λ,B(Λ)(f |σΛc ,ηB(Λ)c) =

=
∫
ν(dσ, dη)µspin

Λ (f |σΛc) =
∫

(ΠSν)(dσ)µspin
Λ (f |σΛc), (10.1)

proving that ΠSν ∈ Gspin. Hence, indeed, ΠS is a map from GES to Gspin.
To prove that ΠS is an isomorphism, let us first establish its surjectivity. We begin by noting that the set {(Λ,B(Λ))}

is cofinal in the set of all pairs {(Λ,B)}, ordered by inclusion. (Namely, for any (Λ,B) there exist Λ̄ such that Λ ⊂ Λ̄
and B ⊂ B(Λ̄).) Then it is easy to see that the validity of (2.6) for the pairs (Λ,B(Λ)) implies its validity for general
(Λ,B) (see Remark 1.24 of [14]). Let now µ ∈ Gspin and consider the following ES measure

νΛ( · ) =
∫
µ(dσ)µES

Λ,B(Λ)( · |σΛc ,ηB(Λ)c) (10.2)

on the set of on configurations in
(
Λ,B(Λ)

)
. Here the configuration ηB(Λ)c is added only for the formal completeness

since by (A) its value does not matter for νΛ. By taking into account the consistency of the finite volume ES measures
{µES

Λ,B}, the measures νΛ( · ) satisfy the restricted DLR equations

νΛ(f) =
∫
νΛ(dσ, dη)µES

Λ̃,B̃(f |σΛ̃c ,η B̃c) (10.3)
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for any Λ̃ ⊂ Λ, B̃ ⊂ B(Λ), and any Λ̃, B̃-cylinder function f . Moreover, let Λ1 ⊃ Λ2 ⊃ Λ̃ be two sets. Then for any
such function f (as before) we have

νΛ1(f) =
∫
µ(dσ)µES

Λ1,B(Λ1)(f |σΛc
1
,ηB(Λ1)c)

=
∫
µ(dσ)µES

Λ1,B(Λ1)

(
µES

Λ2,B(Λ2)(f | · )
∣∣σΛc

1
,ηB(Λ1)c

)

=
∫
µ(dσ)µspin

Λ1

(
µES

Λ2,B(Λ2)(f | · )
∣∣σΛc

1

)

=
∫
µ(dσ)µES

Λ2,B(Λ2)(f |σΛc
2
,ηB(Λ2)c) = νΛ2(f).

(10.4)

Here the first equality is due to (10.2), the second one follows from the fact that µES
Λ1,B(Λ1) is a finite volume Gibbs

measure, the third one is established by applying (A) to the measure µES
Λ2,B(Λ2)(f | · ) and subsequently (B) to the

expectation w.r.t. µES
Λ1,B(Λ1), and, finally, the fourth equality follows from the fact that µ ∈ Gspin. Consequently, as

Λ ↗ Zd, νΛ(f) is eventually a constant for any cylinder function f . In particular, the weak limit ν = limΛ↗Zd νΛ

exists and, by (10.3), it satisfies (2.6), i.e., ν ∈ GES. Finally, ΠSν = µ, since for any Λ-cylinder function f of spins

(ΠSν)(f) = ν(f) =
∫
µ(dσ)µES

Λ,B(Λ)(f |σΛc ,ηB(Λ)c) =
∫
µ(dσ)µspin

Λ (f |σΛc) = µ(f), (10.5)

proving that ΠS is surjective.
In order to see that ΠS is also injective, we notice that if ν̃ ∈ GES is such that ΠS ν̃ = µ, then

ν̃(f) = ν̃
(
µES

Λ,B(Λ)(f | · )
)

= (ΠS ν̃)
(
µES

Λ,B(Λ)(f | · )
)

= µ
(
µES

Λ,B(Λ)(f | · )
)

(10.6)

for any (Λ,B(Λ))-cylinder function f . Here the first equation is the DLR equation for ν̃, the second equation follows
from (A), and the third equation is the assumption ΠS ν̃ = µ. Now, the right hand sides of (10.6) and (10.2) coincide,
so ν̃ = ν, with ν defined by taking the limit Λ↗ Zd of νΛ in (10.2). In particular, all measures ν̃ satisfying ΠS ν̃ = µ
are equal, yielding thus injectivity of ΠS .

The part of the claim concerning translation invariant measures is proved in the same way, because both construc-
tions (10.1) and (10.2) preserve translation invariance.
Proof of Theorem II.2(i). We first note that the marginal of any ES Gibbs state with at most one infinite cluster is an
RC Gibbs state by Lemma VIII.1. This proves that ΠRC maps GES

≤1 into GRC.
Next we show that the map is surjective on GRC

≤1 . Let µ ∈ GRC
≤1 . Recall the definition of F free

{Fi} in (7.1). It turns out
that F free

{Fi} satisfies the following identity:

q∑

m=1

F free
{F1,...,Fm−1,Fm∪{x},Fm+1,...,Fq}(η) = F free

{Fi}(η) (10.7)

for each {Fi}, any x 6∈ F = ∪iFi and any η. Namely, let Fi = Fj for i 6= j in η and suppose x ↔ Fm for some m.
Then the sum on the l.h.s. of (10.7) degenerates to the m-th entry, which is easily identified with the r.h.s. On the
other hand, if x = Fm for all m, then the sum in (10.7) can be propagated through the products in (7.1) up to the
last term, where the desired identity then follows by taking also (3.2) into account.

The relation (10.7) enables us to define a joint measure on σ and η. Let µ ∈ GRC and let A{Fi} denote the event

A{Fi} =
{
σ : σx = m ∀x ∈ Fm

}
. (10.8)

Note thatA{Fi} is a cylinder event in F . Consider the set function ν, for the sets on the product space of configurations
(σ,η), defined as

ν
(
A{Fi} × B

)
= µ

(
F free
{Fi}1lB

)
, (10.9)

where B stands for any cylinder event on configurations η. Due to the fact that µ is a measure on η and due to
(10.7), the set function defined in (10.9) satisfies the consistency condition for all finite volume projections and, by
the Kolmogorov theorem, it thus gives rise to a measure on (σ,η).
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Using (10.7), the η-marginal of ν is µ, so it remains to show that ν ∈ GES. Due to the consistency of the ES
specifications (2.4), it is enough to show that ν-almost surely

ν(σ∆,ηB(∆)|σ∆c ,ηB(∆)c) = µES
∆,B(∆)(σ∆,ηB(∆)|σ∂∆,ηB(∆)c) (10.10)

for all finite ∆ ⊂ Zd. For that, it actually suffices to establish that

lim
Λ↗Zd

ν(σ∆,ηB(∆)|σΛr∆,ηB(∆)c) = µES
∆,B(∆)(σ∆,ηB(∆)|σ∂∆,ηB(∆)c). (10.11)

To calculate the l.h.s., we shall evaluate ν(σΛ,ηB(∆)|ηB(∆)c). In order to keep the expressions short, we assume
without loss of generality that hmax = 0. Using (10.9) and the strong form of the DLR equation (3.16), we write

ν(σΛ,ηB(∆)|ηB(∆)c) = µ
(
F{Λi}1l{ηB(∆)}|ηB(∆)c

)
= F{Λi}(η)µRC

B(∆)(ηB(∆)|ηB(∆)c), (10.12)

where (Λi) is the partition of Λ defined by Λi = {x ∈ Λ|σx = i}.
In order to evaluate the r.h.s., we use (7.1) and (3.6) to get

F free
{Λi}(η)µRC

B(∆)(ηB(∆)|ηB(∆)c) =
∏

i<j

1l{Λi=Λj}(η)
q∏

m=1

∏

V(C(η))∩Λm 6=∅

eβhm|V(C(η))|

Θfree
(
C(η)

)

× (eβJ − 1)|Bocc(η)∩B(∆)|

ZB(∆)(ηB(∆)c)

∏

V(C(η))∩V(B(∆))6=∅
Θfree

(
C(η)

)
, (10.13)

where ZB(∆)(ηB(∆)c) is the normalization factor for µRC
B(∆)( · |ηB(∆)c). Rewriting

q∏

m=1

∏

V(C(η))∩Λm 6=∅

eβhm|V(C(η))|

Θfree
(
C(η)

) ×
∏

V(C(η))∩V(B(∆))6=∅
Θfree

(
C(η)

)

=
q∏

m=1

∏

V(C(η))∩Λm 6=∅
V(C(η))∩∆̄=∅

eβhm|V(C(η))|

Θfree
(
C(η)

) ×
q∏

m=1

∏

V(C(η))∩V(B(∆)) 6=∅
V(C(η))∩∆̄m 6=∅

eβhm|V(C(η))|, (10.14)

where we introduced ∆̄ = ∆ ∪ ∂∆ and ∆̄m = Λm ∩ ∆̄, and inserting the identity

eβhm|V(C(η))| = eβhm|V(C(η))∩∆|eβhm|V(C(η))∩∆c|, (10.15)

we can now extract all terms that depend on σ∆ and ηB(∆) from the r.h.s. of (10.13) to obtain the Gibbs factor
W (σ∆,ηB(∆)|σ∂∆,ηB(∆)c) times a term depending only on σΛr∆ and ηB(∆)c . This yields the representation

ν(σΛ,ηB(∆)|ηB(∆)c) = N(σΛr∆,ηB(∆)c)µES
∆,B(∆)(σ∆,ηB(∆)|σ∂∆,ηB(∆)c), (10.16)

which in turn leads to the identity

ν(σ∆,ηB(∆)|σΛr∆,ηB(∆)c) = µES
∆,B(∆)(σ∆,ηB(∆)|σ∂∆,ηB(∆)c), (10.17)

provided that σΛr∆ is consistent with ηB(∆)c . Equation (10.17) immediately gives the desired claim (10.11) and
hence (10.10).
Proof of Theorem II.2(ii–iv). Let ν ∈ GES

≤1. Since {N∞ = 0} is a tail event, there is a unique decomposition of ν into
λ0ν0 + λ>0ν>0, where ν0 ∈ GES

0 and ν>0 ∈ GES
1 . The decomposition (2.13) then follows by further conditioning upon

the color of the spin on the infinite cluster of ν>0. This proves (ii). To prove (iii), we just invoke Theorem II.5(i),
Lemma VIII.3 and Theorem II.2(i). To prove (iv), we need to realize that if |Qmax(h)| = 1, then the decomposition
is completed already by conditioning on the presence/absence of the infinite cluster, which works the same on both
GES
≤1 and GRC

≤1 .
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[19] R. Kotecký, S.B. Shlosman, First-order transitions in large entropy lattice models, Commun. Math. Phys. 83 493–515
(1982)

[20] C. Preston, Random Fields (Springer, Berlin, 1976)
[21] C.E. Pfister, K. Vande Velde, Almost sure quasilocality in the random cluster model , J. Stat. Phys. 79, 765-774 (1995)
[22] D. Ruelle, Thermodynamic Formalism (Addison-Wesley, London, Amsterdam, Don Mills, Sydney, Tokyo, 1978)

35


