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Abstract. In this paper, we present the application of unsupervised learning 
techniques to automatically recognize behaviors that may be detrimental to 
learning during interaction with an Exploratory Learning Environment (ELE). 
First, we describe how we use the k-means clustering algorithm for off-line 
identification of learner groups with distinguishing interaction patterns who also 
show similar learning improvements with an ELE. We then discuss how a k-
means on-line classifier, trained with the learner groups detected off-line, can 
be used for adaptive support in ELEs. We aim to show the value of a data-based 
approach for recognizing learners as an alternative to knowledge-based ap-
proaches that tend to be complex and time-consuming even for domain experts, 
especially in highly unstructured ELEs. 

1   Introduction  

Exploratory learning environments (ELEs) provide facilities for student-led explora-
tion of a target domain with the premise that active discovery of knowledge promotes 
deeper understandings than more controlled instruction. Through the use of graphs 
and animations, algorithm visualization (AV) systems aim to better demonstrate algo-
rithm dynamics than traditionally static media, and there has been interest in using 
them within ELEs to promote interactive learning of algorithms [1,8]. Despite theo-
ries and intuitions behind AVs and ELEs, reports on their pedagogical effectiveness 
has been mixed [5,8]. Research suggests that their pedagogical effectiveness depends 
upon the way in which these systems are used, which in turn is influenced by distin-
guishing student characteristics such as meta-cognitive abilities [5] and learning styles 
[11,8]. For example, some students often find such unstructured environments diffi-
cult to navigate effectively and so they may not learn well with them. 

Such findings highlight the need for ELEs in general, and specifically for ELEs 
that use interactive AVs, to provide adaptive support for students with diverse abili-
ties or learning styles. This is a challenging goal because of the difficulty in observing 
distinct student behaviors in such highly unstructured environments. The few efforts 
made towards this goal mostly rely on hand-constructing detailed student models that 
can monitor student behaviors, assess individual needs, and inform adaptive help 
facilities. This is a complex and time-consuming task that typically requires the  
collaborative efforts of domain, application and model experts. For example, Bunt  
et al. [5] hand-constructed a Bayesian network to model student exploration and  
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understanding in the Adaptive Coach for Exploration, an ELE for mathematical func-
tions. Model construction required enumerating all possible exploration cases and 
domain concepts in the form of network nodes, specifying all node interdependencies, 
and manually estimating multi-valued conditional probability tables for each node. 
Though the model can be used to provide students with personalized help in explora-
tion, this entire process would have to be repeated for each new application. In the 
absence of experts or in large applications, the difficulties of constructing such mod-
els can be exacerbated. 

To circumvent the difficulties in hand-constructing models, some researchers have 
turned to the field of machine learning [4,2]. Typically, supervised learning algo-
rithms are used to approximate functions that map observable input data to observable 
output data such as the correctness of student answers [4]. These functions can then 
predict student behavior and inform adaptive facilities. However, when output values 
are unobservable, domain experts must resort back to manual labeling to supply them 
[2]. This is again time-consuming and can be error prone.  

We explore an alternative method for informing adaptive support for ELEs by  
employing k-means [6], an unsupervised machine learning technique to recognize 
patterns of student behaviors that may affect learning. Because ELEs provide uncon-
strained environments for exploration, the space of user behaviors can be very large, 
and characteristic behaviors of different learner types may not be obvious or easily 
observable even by application experts. For this reason we use k-means clustering for 
the automatic, off-line recognition of user groups. Once groups are detected, we ana-
lyze similarities within and dissimilarities between them in terms of both learning and 
interface usage, to show that clustering identifies meaningful patterns along these two 
dimensions. Then, we show how these distinct learner groups can be used for on-line 
classification of individual users. The long-term goal is automatic interface adaptation 
to encourage effective behaviors and prevent detrimental ones. 

We begin by discussing related work. Next, we illustrate the ELE and the experi-
mental data we use. Then, we describe and present results on the use of k-means for 
both the off-line identification of learner groups as well as for on-line recognition. We 
conclude with a summary and suggestions for future research. 

2   Related Work 

Gorniak and Poole [7] identify several issues concerning the development of sophisti-
cated user or application models for intelligent user interfaces, including limited 
transferability across applications and effort required to hand construct the models. 
They address these concerns by learning a stochastic state space model of application 
use from user interactions with an earlier version of the same pedagogical tool that we 
use here, the CIspace Constraint Satisfaction Problem applet (see Section 3). The 
model they propose can predict future user actions, but unlike our work, it does not 
allow for assessing quality or relevance of these actions for the interaction goals.  

Closely related to our work is research in the emerging field of educational data 
mining (e.g. [3]). For example, in [9] the authors cluster student responses to multiple 
choice tests and then analyze the clusters to assess student understanding and miscon-
ceptions. Our work differs in that we aim to cluster on higher dimensional interaction 
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behaviors as opposed to answers to questions, as ELEs avoid this type of structured 
learning tasks by nature. In [12], the authors use clustering on behaviors, specifically 
action frequencies of students using a collaborative learning tool. These clusters pro-
vide behavioral summaries to instructors who can then interpret the results to manage 
student collaborations. In our research, we take into account temporal data as well as 
activity frequency when clustering interactions. We also take this process one step 
further by demonstrating how detected clusters can be used to provide automatic, on-
line adaptive support. 

3   Experimental Data 

The ELE we use as a testbed for our approach is the Constraint Satisfaction Problem 
(CSP) Applet, one of a collection of interactive AV tools for learning common Artifi-
cial Intelligence algorithms called CIspace [1]. Algorithm dynamics are interactively 
demonstrated on graphs by the use of color and highlighting, and graphical state 
changes are reinforced through textual messages (see Figure 1 for an example). 

 

Fig. 1. CSP applet with example CSP 

A CSP consists of a set of variables, variable domains and a set of constraints on 
legal variable-value assignments. The goal is to find an assignment that satisfies all 
constraints. The CSP applet illustrates the Arc Consistency 3 (AC-3) algorithm for 
solving CSPs [10] represented as networks of variable nodes and constraint arcs. AC-
3 iteratively makes individual arcs consistent by removing variable domain values 
inconsistent with a given constraint until all arcs have been considered and the net-
work is consistent. Then, if there remains a variable with more than one domain 
value, a procedure called domain splitting can be applied to that variable to split the 
CSP into disjoint cases so that AC-3 can recursively solve each case or sub-network. 

The CSP applet provides several mechanisms for interactive execution of the AC-3 
algorithm, accessible through the toolbar shown at the top of Figure 1 or through 
direct manipulation of graph elements. These mechanisms include: 
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• Fine Stepping. Cycles through three detailed algorithm steps: selecting an arc, 
testing it for consistency, and removing variable domain values when necessary. 

• Direct Arc Clicking. Allows the user to decide which arc to test, and then per-
forms three Fine Steps on that arc to make it consistent. 

• Auto Arc Consistency (Auto AC). Automatically Fine Steps through the network. 
• Stop. Stops Auto AC. 
• Domain Splitting (DS). Allows the user to select a variable domain to split, and 

specify a sub-network for further application of AC-3. 
• Backtracking. Recovers the alternative sub-network set aside by DS. 
• Resetting. Resets the CSP network to its initial state. 

The data we use for this research was obtained from a previous experiment investi-
gating the effects of studying sample problems with the CSP applet [1]. The experi-
ment typified a study scenario in which students first learn from text based materials, 
and then study relevant sample problems with the applet. We use the following data 
collected from 24 students who participated in the study: time-stamped logs of user 
interactions with the applet, and learning gains computed from pre and post test 
scores. From the logged data we obtained 1931 actions of users over 205.3 minutes. 

4   Behavior Recognition Through K-Means Cluster Analysis 

Clustering is a class of machine learning techniques used for automatically recogniz-
ing patterns in unlabelled data. Clustering operates on data points (feature vectors) in 
a feature space. Features can be any measurable property of the data. Similarities 
correspond to distances between data points in the feature space. We use a popular 
clustering algorithm, k-means [6], on our experimental data.  

K-means clustering takes as input feature vectors and a user-specified k value, and 
returns k clusters of feature vectors. From our logged data, we have 24 feature vectors 
corresponding to the 24 study participants. Typically the k value is determined by 
intuition about the data or through cross-validation. We experimented with k set to 2 
and 3 because our data set was relatively small and so we expected to find only a few 
clear groups with distinct learning outcomes. 

Initially, k-means randomly selects k data points to be the current cluster means. 
The remaining data points are then assigned to the cluster whose mean minimizes 
some specified distance metric. Here we minimize Euclidean distances in a 21 dimen-
sional, normalized feature space where the dimensions are the average frequencies of 
use, and the mean and standard deviations of the pause durations after use of the 
seven mechanisms described in Section 3. The two latter dimensions have been cho-
sen to capture both the speed of use (which could indicate student attention) and its 
selectiveness, since varied speed may indicate planned rather than impulsive or inat-
tentive behavior and may not be as detrimental for learning. After all data points are 
assigned to a cluster, new cluster means are computed from these groupings. The 
process then repeats for a given number of iterations or until there are little or no 
changes in the clusters. 

K-means can often converge at local optima depending on the selection of the ini-
tial cluster means and so several trials are typically executed and the highest quality 
clusters are used. We executed 20 trials of k-means on the data and measured quality 
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by selecting the clusters that resulted in the lowest Euclidean Sum of Squares and 
highest Euclidean distance between the clusters as the solution groups [6]. 

Results (k=2).  A statistically significant1 (p<.006) difference was found in learning 
gains (pre to post test improvements) between students in the two clusters found by k-
means with k=2. In terms of practical significance [13], the magnitude of this differ-
ence in learning gains is large2 (Cohen’s d=1.48). 

In order to characterize the different learner groups found, we examined the differ-
ences between the groups on each of the 21 dimensions. Figures 2 and 3 show the 
frequency and pause duration dimensions that were found to have significant (p<.05) 
or marginally significant (p<.07) statistical differences, and significant practical dif-
ferences (Cohen’s d≥0.8) between the group with high average learning outcomes 
(HL) and the group with low average learning outcomes (LL). 

 

 

Fig. 2 and 3. Dimensions with significant differences between HL and LL (k=2). Fig. 2 (above) 
shows box plots of frequencies3, and Fig. 3 (below) shows plots of pause durations.  

The results on the use of the Fine Step feature are quite intuitive. It is reasonable 
that students who Fine Stepped frequently and consistently too quickly  (given  by  the 
                                                           
1 Unless otherwise stated, all tests for significance are one-tailed Student’s t-tests. 
2 Cohen’s standard suggests d=.2, d=.5 and d=.8 are small, medium, and large effects resp.  
3  Fine Step is plotted in actions per minute, whereas Auto AC and Stop are plotted in actions 

per 10 minute intervals because Auto AC runs AC-3 in its entirety and so fewer Auto ACs are 
typically performed, and Stop is used when running Auto AC.  
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combination of low Fine Step pause average and standard deviation) may be over 
using this feature mechanically, without pausing long enough to consider the effects 
of each Fine Step. Such behavior may negatively affect learning, as is evident with 
the LL group. The higher frequency of Auto AC by the HL group in isolation appears 
unintuitive, but in combination with the higher frequency of Stopping, this behavior 
suggests that students could be using these features to forward through the AC-3 algo-
rithm in larger steps and to analyze it at a coarser scale. The HL group also paused 
longer after Resetting than the LL group. With the hindsight that these students were 
successful learners, we can interpret this behavior as an indication that they were 
reflecting on each problem more than the LL group. However, without prescience of 
learning outcomes, it is likely that an application expert or educator observing the 
students would overlook this less obvious behavior. 

Results (k=3). For k set to 3, significant differences in learning gains were found 
between one group with high learning gains and the two other groups with lower 
learning gains (p<.014 and Cohen’s d>1.4 in both cases). We will call these groups 
‘HL’, ‘LL1’ and ‘LL2’. No significant differences in learning gains were found be-
tween the two groups with low learning outcomes, suggesting that students may 
use/misuse pedagogical software in a variety of distinctive ways. 

 

 

Fig. 4 and 5. Dimensions with significant differences between HL, LL1 and/or LL2 (k=3). Fig. 4 
(above) shows box plots of frequencies, and Fig.5 (below) shows pause durations. 
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The same distinguishing behaviors identified by k=2 were replicated4 between the 
HL group and both LL groups. For instance, both the LL1 and LL2 group had a sig-
nificantly higher frequency of Fine Stepping, and a significantly and consistently 
shorter average pause duration after Fine Stepping than the HL group. This clustering 
also revealed several additional patterns, not only between the HL and LL groups, but 
also between the two LL groups, indicating that k=3 was better at discriminating be-
tween different behaviors. Figures 4 and 5 show the additional frequency and pause 
duration dimensions for which we found significant/marginally significant statistical 
and practical differences between the groups. 

Interestingly, no differences were found on the frequency of use of the Arc Click 
feature between group HL and LL1, but differences were found along this dimension 
between HL and LL2 as well as LL1 and LL2. The HL and LL2 difference is reason-
able because this feature involves more active engagement on the part of the learner 
and so using it more often could entail increased learning. However, the LL1 group 
used this feature comparably as frequently as the HL group but had significantly 
lower learning outcomes, suggesting that the LL1 students may be using it, but only 
passively. This is consistent with the passive operation of the Fine Step feature exhib-
ited by the LL1 group, not shown in Figure 4 but analogous to the results presented in 
the previous section. Similarly, the HL group used the Domain Splitting feature as 
frequently as the LL1 group, but paused longer after each split on average. This fea-
ture is intended to require thought about efficiency in solving a CSP given different 
possible splits, and so longer pauses may be needed to thoroughly consider the 
choices. The LL2 group, however, paused longer and more selectively after Domain 
Splitting than the LL1 group, yet still had low learning gains. The LL2 group is also 
characterized by significantly longer pauses after Backtracking than LL1, and so in 
this case, the very long pauses may indicate that these students were confused about 
these applet features or the concepts of domain splitting and backtracking. Once 
again, these behaviors may be difficult to identify through mere observation. 

Discussion.  Though our sample size is small, and as a result the power to achieve 
statistical significance is reduced, k-means is still able to detect groups of users that 
achieved statistically and, arguably more importantly [13], practically different learn-
ing outcomes. And several of the behavioral differences found reasonably explained 
both effective and poor learning outcomes. However, as expected, some findings were 
less intuitive, requiring consideration of combinations of dimensions (as k-means does 
to determine its clusters). This makes interpreting meaningful characteristics a com-
plex task, even for application experts, and highlights the benefits of using clustering 
to automatically identify learner groups.  

5   On-Line Classification Through K-Means Classifier 

Understanding the effectiveness of a student’s behavior for learning is mostly useful 
if an ELE can provide adaptive support to improve behavior while the student is inter-
acting with the system. Here we discuss the use of a version  of k-means for on-line 
learner classification that can help provide this real time adaptive support.  
                                                           
4 For space considerations these are not shown in Figs. 4 and 5. Refer to Figs. 2 and 3. 
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Once k-means clustering has found learner groups off-line, an on-line k-means 
classifier can incrementally update a student’s classification within these groups as 
the student interacts with the applet. As interface actions are observed, the student’s 
21D feature vector is updated to reflect the new observation and classification is com-
puted by simply recalculating the distances between the updated vector and the  clus-
ter means. The vector is then assigned to the cluster with the nearest mean.  

We use leave one out cross validation (LOOCV) to see how the classifier general-
izes to unseen data. We performed a 24 fold LOOCV for both the k-means classifiers 
with k=2 and k=3. For each trial the training data consists of the k-means clusters 
found off-line (Section 4) with one student removed, and the test data is the logged 
interface actions of the removed student. 

Results (k=2 and k=3).  Figure 6 shows the percentage of correct classifications as a 
function of the percentage of actions seen by the k-means classifiers over time. Note 
that we should not expect to achieve 100% accuracy after seeing all the actions be-
cause we are not re-clustering the data on-line, instead we are classifying incoming 
data given the clusters found off-line by k-means over the data points given by 
LOOCV. Thus, some error is expected reflecting the possibility of different clusters 
being found with one data point removed. The trend for k=2 suggests that this classi-
fier’s accuracy improves as more evidence is accumulated. More notably, the accu-
racy of the classifier is already around 80% after seeing only 10% of the actions. 

It should be noted that there is an unbalance in classification accuracy between the 
individual clusters. With k=2, the accuracy is higher (93.5%) for the group with low 
learning gains (see Table 1, first row). This means that while this method currently 
would be very effective in detecting behaviors that eventually result in suboptimal 
learning, it would more often interfere with learners that show these behaviors sporadi-
cally but may eventually be successful. However, the lower accuracy (62.4%) for clas-
sification of the high learning gains groups’ actions is likely the consequence of our 
small sample size. Only four students were clustered in this group, and so removing 
even one student for LOOCV purposes may produce different clusters than those found 
using all the data. Thus with small data sets, larger clusters may be more stable [6], 
suggesting that the accuracy of the classifier would increase with more training data. 
Further investigation is necessary to evaluate this hypothesis, but the fact remains that 
even with the current limited amount of data, k-means with k=2 reaches very high 
accuracy in detecting behaviors that eventually result in suboptimal learning.  

Table 1. Classification accuracy for individual clusters. Clusters names appear with the number 
of members within that group. 

 Learner Groups/number of available data points  
Classifier HL/4 LL/20 LL1/8 LL2/12 Overall/24 

k=2 62.4% 93.5%   88.3% 
k=3 63.3%  62.1% 85.7% 74.1% 

As Figure 6 shows, the trend for k=3 initially improves but then dips slightly as 
student actions are observed. Overall, this k-means classifier was able to detect  
the correct group labels 74.1% of the time (see Table 1, second row). For the high 
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average learning gains group, classification accuracy was 63.3%. For the two low 
average learning gains groups, the classification accuracies were 62.1% and 85.7% 
respectively. Group sizes decrease as the number of clusters increase and so the clas-
sifier with k=3 faces the same problem as the high learning gains group does for k=2 
discussed above. The group with the highest classification accuracy was the group 
with 12 members, further supporting the hypothesis that lower accuracy for the other 
groups is an artifact of fewer data points. 
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Fig. 6. K-means Classifier Performance Over Time 

Discussion. From the results of the on-line k-means classifiers we can assert that this 
technique for classifying student actions appears to be a promising avenue worth 
further investigations. Despite the limited amount of available data, the classifiers 
were able to achieve reasonable accuracy, especially in detecting behaviors detrimen-
tal for learning, even after seeing only 10% of a student’s overall actions. An adaptive 
ELE could use these classifications for interface adaptations to promote more effec-
tive behavior. For example, the ELE could employ a multi-layered interface design, 
where each layer’s features are tailored to facilitate learning for a given learner group. 
Based on a learner’s classification, the ELE could select the most appropriate inter-
face layer. For instance, the ELE may select a layer with Fine Step disabled or with a 
subsequent delay to encourage careful thought for the students in either of our “low 
learning” groups, or could choose a layer with additional textual explanations of  
Domain Splitting and Backtracking for students classified in our LL2 group. 

6   Conclusion and Future Work  

In this work we have explored a data-based approach to automatic behavioral recogni-
tion in an ELE that uses interactive AVs to help students learn constraint satisfaction 
algorithms. We have described the use of k-means clustering to detect groups of 
learners with distinct interaction patterns and with significantly different learning 
outcomes. The clusters identified were then used for on-line behavioral classification. 
We found that this approach achieved good accuracy even after seeing only a small 
fraction of student actions, despite the low amount of data available for training.  

The next step of this research is to collect more data and verify that this will sub-
stantially improve k-means performance. In addition, we plan on experimenting with 
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other unsupervised techniques including a probabilistic version of k-means called 
Expectation Maximization. We also intend to examine how well our approach trans-
fers to other educational applications with different input dimensions including eye 
tracking and physiological data. Finally, we wish to design an adaptive support facil-
ity that takes as input on-line classification information, and empirically evaluate the 
classifier’s effectiveness in a real world setting. 
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