
Loss-resilient On-demand Media Streaming
Using Priority Encoding∗

Cheng Huang Ramaprabhu
Janakiraman

Lihao Xu

Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130-4899, USA

E-mail: {cheng, rama, lihao}@cse.wustl.edu

ABSTRACT
A novel solution to the reliable multicast problem is the “digi-
tal fountain” approach, in which data is encoded with an erasure
protection code before transmission, and receivers can recover the
original data after receiving enough distinct encoded data. This
solution, however, is not desirable for streaming media schemes
in which it is preferable for parts of a movie to be available for
consumption before the entire movie is received. Earlier work has
proposed the use of Unequal Error Protection (UEP) codes, which
permit some parts of the movie to be recovered before others. Un-
fortunately, a straightforward implementation of this solution can
incur prohibitive coding complexity.

We outline an on-demand media streaming scheme involving
a combination of segmentation and rateless encoding. Our solu-
tion reduces the coding complexity to feasible levels, while guar-
anteeing the least bandwidth consumption for a given playout de-
lay and number of segments. We propose an efficient algorithm to
find the optimal segmentation for single-layered and multi-layered
transmissions, and analyze its performance under network packet
loss. Through analysis, numerical examples, and simulations, we
demonstrate the feasibility and performance of the proposed scheme.

Categories and Subject Descriptors: C.2.4 [Distributed Systems]:
Distributed Applications
General Terms: Algorithms, Design, Theory
Keywords: Video-on-demand, Priority Encoding Transmission, Foun-
tain Codes, Multicast, Loss Resilience

1. INTRODUCTION
Content distribution networks are often beset by the “flash mob”

effect, where the latest release of a popular software application
or a movie trailer triggers a flurry of accesses by clients, saturat-
ing the connection bandwidth of the server. Researchers have pro-
∗This work was supported in part by NSF Grants CCR-TC-
0209042 and ANI-0322615

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’04, October 10-16, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-893-8/04/0010 ...$5.00.

posed several ways to ameliorate the problem by load-balancing
the work between multiple servers or using efficient distribution
methods like multicast.

One of the stumbling blocks in large scale multicast distribu-
tion is implementing a reliable transport for one-to-many distri-
bution schemes. A novel solution is to use a “digital fountain”
approach [2] in which the data are protected using erasure codes
and transmitted cyclically over a multicast channel. Any num-
ber of clients can subscribe to the channel at any time and receive
these transmissions without consuming additional server resources.
The use of appropriate erasure codes ensures that clients receiving
enough unique transmitted packets can fully recover the original
data with low computational and communication costs.

The trouble in using a digital fountain for streaming media dis-
tribution on the other hand is that the encoding makes no promises
about partial availability of data while the download is in progress.
This forces clients to wait until the entire file is downloaded before
commencing playout.

For streaming media distribution, several schemes (perhaps too
many, Hu [5] provides a nice survey) have been proposed in which
the data is segmented into pieces, and each piece is transmitted at
a different rate. The rate assignment is such that clients listening
to these transmissions can commence playout after a short delay
while still receiving portions due for playout later. All these sche-
mes involve multicasting the original data unprotected by erasure
codes and hence do not inherit the desirable properties of a digital
fountain.

The earliest work to reconcile the two approaches [10] proposes
a segmentation and loss-resilient encoding scheme for on-demand
streaming. The proposed segmentation scheme is not bandwidth-
optimal. A later work [16] proposes the use of Unequal Error Pro-
tection (UEP) codes for specifying a different degree of erasure
protection on each frame to obtain a stream of UEP encoded pack-
ets, which are multicast cyclically. Clients receiving these packets
can progressively recover the original media data after a small de-
lay even as they continue to receive data due for later playout. This
scheme has theoretically optimal bandwidth utilization, but incurs
a prohibitively high encoding/decoding complexity.

Since the latter scheme [16] has provably optimal performance,
we take that as a starting point to propose an encoding and trans-
mission scheme for efficient and loss-resilient on-demand media
streaming to a large and heterogeneous client population. Our work
extends and generalizes this work in several ways:

Practicality: Our first result is a general method to partition
a movie by grouping individual frames or symbols into a few seg-
ments with minimal bandwidth overhead while preserving the guar-

antee on initial delay, so that it becomes practicable to use existing
erasure codes to protect the segments from network loss. This gen-
eralizes several existing segmentation and transmission schemes.
We obtain analytical results on segmenting the optimal transmis-
sion scheme in [16] and provide a method to optimally segment
any broadcast transmission scheme.

Efficiency: Traditional erasure codes like the well-known Reed-
Solomon codes require high computational overhead for large data
sizes. We suggest a way to use the recently-discovered fountain
codes as a feasible way to implement our broadcast scheme, and
outline the design of a rateless priority encoder.

Supporting Client Heterogeneity: In prior work [8], we pro-
pose a scheme to support heterogeneous clients using layered en-
coding. We extend the optimal broadcast segmentation technique
to a layered transmission scheme, obtaining initial results on reduc-
ing the latencies of a heterogeneous client population.

Loss Resilience: We analyze the performance of our scheme un-
der both random and burst network loss. We also propose an exten-
sion in which the segmentation is tailored according to a targeted
network packet loss rate.

Reducing Latency: To keep the bandwidth utilization small, the
initial delay before playout in most proposed schemes is significant,
perhaps as much as a few minutes. We propose a “fast start” option
for media streaming in which the initial portions of a movie are
encoded at a lower quality than the rest. This is analogous to the
progressive decoding of still images. We provide an algorithm to
maximize the average quality of the movie for a given (bandwidth,
delay) pair, while taking into account smooth variation in quality.

The paper is organized as follows: we start by describing the
general broadcast framework used in the remainder of the paper.
Next, we summarize the bandwidth-optimal scheme [16] and de-
scribe our broadcast segmentation technique in Section 3. In Sec-
tion 4, we extend this method to layered broadcasts for support-
ing heterogeneous clients. In Section 5, we describe a pruning
method that greatly reduces the redundant transmissions received
by clients, and study the effect of the broadcast segmentation on
pruning performance. We study the loss resilience of our scheme
in Section 6. In Section 7, we propose a “fast start” option for re-
ducing the latency for low-bandwidth clients. Conclusions and an
outline of ongoing work end the paper. For readability, we state all
theorems without proof, and in some cases restate theorems from
our previous work [8].

2. BROADCAST FRAMEWORK
Before we describe our scheme, we will formalize the terminol-

ogy used in the rest of the paper:
Symbols are fixed-size atomic units of data. All encoding, de-

coding and transmission is done on symbols. A symbol could be a
bit or a block of bits. A broadcast 〈C, M, S, T 〉 consists of:

A channel C with bandwidth |C| symbols per unit time. Clients
can subscribe and unsubscribe to C at any time. A set of X of |X|

symbols transmitted exclusively on C can be recovered in time |X|
|C|

by clients subscribed to C. Multiple such sets can be transmitted
concurrently on C, and set X has rate r on C if X can be recovered
entirely after listening to C for a time |X|

r
. This refers to the ideal

or achievable performance of the channel under no-loss conditions.
A movie M , which is simply a set of symbols {fi : i = 1 to |M |},

each played out in unit time. Thus the playout time of M is simply
|M | time units. A segment s of M is a set of symbols played out
continuously in time |s|.

A segmentation S of M , which is an ordered partition of M
into segments si; segment si is played out entirely before si+1,

and ∪si∈Ssi = M .
A transmission T mapping elements si of S to rates T (si) such

that si has rate T (si) on C and
P

si∈S
T (si) = |C|.

Definition 1
Given w, a broadcast 〈C, M, S, T 〉 is w-feasible if a client sub-
scribed to C can begin watching movie M uninterruptedly after an
initial delay of at most w. A w-feasible broadcast is optimal if no
T ′ exists for which a broadcast 〈C, M, S, T ′〉 is w′-feasible for C,
M , S and w′ < w.

Theorem 1
Optimal Broadcast [8]: For a segmentation S, denote the prefix
℘(si) for si ∈ S as ∪i

j=0sj and its size |℘(si)| as
Pi

j=0 |sj |
∗.

Broadcast 〈C, M, S, T 〉 is w-feasible iff:

T (si) ≥
|si|

w + |℘(si−1)|
(1)

and optimal if the equality holds.

Note that an optimal broadcast given C, M , and S is neither nec-
essarily optimal for any segmentation given C and M , nor is an
optimal schedule according to (1) necessarily feasible when addi-
tional constraints like storage limits are introduced.

2.1 Implementing broadcasts using PET
In this section we touch briefly on how the preceding abstract

formulation of a broadcast B = 〈C, M, S, T 〉 may be realized in
practice.

A naı̈ve way to do it is to just transmit the source symbols of M
over C, with segment si transmitted at rate T (si). This is the ap-
proach taken by traditional on-demand streaming protocols. How-
ever, this performs poorly over a loss-prone channel. To recover a
lost symbol a client has to wait until much later than its scheduled
playout, by which time it is useless.

A better way is to encode symbols using an erasure-resilient
code and transmit the encoded symbols on the channel. Since
some parts of the transmission must be recoverable before oth-
ers, a Priority Encoded Transmission (PET) [1] naturally suggests
itself. Given a file M of |S| segments and a priority function
{ρi, i = 1 to |S|}, a PET system produces n encoded packets such
that segment si can be recovered from any fraction ρi of these n
packets. Note that the packets may be larger than source symbols
in this case.

One way to realize broadcast B using PET is to encode each
segment si using an (ni, |si|) maximum distance seperable (MDS)
code [13]. MDS codes have optimal erasure recovery capability:
any |si| out of ni code symbols encoded using an (ni, |si|) MDS
code suffice to recover the original |si| source symbols of si. Then,
some n packets of a suitable length ` are constructed by choosing
ki out of ni encoded symbols per segment si per packet without
replacement, where:

n ≥
|C|

`
max

|sj |

T (sj)

ff

; ni =
T (si)n`

|C|
; ki =

ni

n
. (2)

These n packets are transmitted repeatedly on C.

Theorem 2
Broadcasts ≡ PET [8]: This scheme represents a priority encoded
transmission with ρi = |si|

ni
and rate T (si) for segment si on C.

∗We assume a dummy zero-sized segment s0 exists

In principle, the above-mentioned scheme implements a loss-
resilient broadcast using PET. However, for large media files, using
traditional MDS erasure codes can result in prohibitive encoding
and decoding complexity.

In practice, we envision the use of codes with more efficient
encoding and decoding. Specifically, we propose the use of the
recently discovered rateless codes like Raptor codes [14]. Rate-
less codes, instead of having a fixed encoding length, use random
encoders to generate code symbols in a stateless manner, and are
ideally suited for large-scale data distribution applications. The en-
coding process is extremely simple: to generate a code symbol, the
encoder randomly picks a degree d from a carefully constructed
degree distribution. It then picks d random source symbols, and
computes the encoded symbol as a sum (usually bit-wise XOR)
of these source symbols. This simple structure leads to extremely
fast encoding and decoding. A small disadvantage is that these
codes are not MDS. To recover the original k source symbols, some
k(1 + ε), (1 >> ε > 0) encoded symbols are needed.

This approach solves all the problems associated with broadcast
implementation, without the prohibitive complexity of using regu-
lar MDS codes. For example, the encoder for a Raptor code does
O(log 1

ε
) work on average per transmitted symbol regardless of the

number of segments or their rate assignment. Decoding complexity
is equally low, O(|si| log

1
ε
) to recover segment si.

In the rest of this paper, we will continue to work with broad-
casts rather than the underlying PET framework, and will make the
simplifying assumption that an arbitrary w-feasible broadcast can
be implemented efficiently by a suitable PET-based system.

3. BROADCAST SEGMENTATION
In this section, we address the issue of devising a segmentation

S of a movie M over a channel C, and assigning transmission rates
T such that the resulting broadcast B = 〈C, M, S, T 〉 is optimal.

First, we start with an ideal segmentation. It is known [4] that
when there is no limit on the number of segments |S|, the optimal
solution is to split the movie into as small segments as possible; in
the extreme case, each symbol is transmitted in its own segment.

This is the approach proposed in [16], and corresponds to a loss-
resilient version of the well-known harmonic broadcasting [12]
protocol. In other words, the optimal broadcast to guarantee a delay
of w time units for a movie M is B∗ = 〈C∗, M, S∗, T ∗〉, where
the parameters bear the following relation:

|S| = |M |; si = fi; T ∗(si) =
1

w + i − 1
; |C∗| ≈ log

`

1 +
|M |

w

´

Example 1 Consider a 2-hour, 1 mbps constant bitrate, 30 frames-
per-second Mpeg-4 movie transmitted using this scheme. Consider
three classes of clients: DSL (1.5 mbps downlink), Cable Modem
(4 mbps downlink), and Ethernet (10 mbps downlink). For simplic-
ity, we assume clients can download data at their maximum down-
link capacity with negligible protocol overhead. The performance
of the above-mentioned scheme tailored for each class of clients is
shown below:

Class Downlink capacity Initial Delay
DSL 1.5 mbps 34 minutes

Cable Modem 4 mbps 135 seconds
Ethernet 10 mbps 1/3 second

Note that the server bandwidth usage matches the client’s usage
in each case. Thus it is feasible for a server to stream several tens
of movies concurrently, with unlimited number of clients stream-
ing each movie on demand. Also note that in this scheme, a little

bandwidth goes a long way: going from 1.5 to 10 mbps reduced the
initial delay of clients from 34 minutes to one third of a second.

This approach guarantees the least bandwidth utilization |C∗| to
guarantee a given initial delay w. However, there are practical diffi-
culties: to keep the encoding and decoding complexities from being
prohibitively high, a movie must be segmented into a few segments
|S| � |M |; it is not feasible to construct a few hundred thousand
encoders per movie broadcast. Even when efficient rateless codes
are used, the number of symbols in a segment must be sizable to
ensure good performance.

At first glance, it might appear that splitting the movie into |S|
equal-sized segments would suffice to solve this problem. This is
non-optimal. To be precise, this corresponds to a uniform partition
of symbols into segments. On the other hand, we seek an optimal
partition of symbols into segments, as we explain below:

Definition 2
Given n and k, an (n, k)-partition is a partition of the interval [1..n]

into k intervals.† Given arbitrary costs σσσ = {σ1, σ2, · · · , σk}
mapping intervals in [1..n] to real numbers, a mincost (n, k)-partition
K(n, k,σσσ) = {s1, s2, · · · , sk} is one that minimizes the sum of the
interval costs of its members: ||K(n, k,σσσ)|| = min

Pk

i=1 σi(si)

Example 2 {[1..3], [4..5], [6..9], [10]} is a (10, 4)-partition.
If σi(a, b) = b

a
for i = 1 to 4, then a mincost (10, 4)-partition is

K = {[1], [2], [3..4], [5..10]} with cost ||K|| = 16
3

.

The mincost (n, k)-partition problem has an efficient O(k(n −
k)2) dynamic programming solution [8].

With this in place, we can now formulate the broadcast segmen-
tation in terms of a mincost (n, k)-partition as follows: We know
that the optimal scheme puts each symbol in a separate segment.
Restricting the number of segments |S| to fewer than |M |, while
guaranteeing the wait to remain w, requires the transmission rate
of some symbols to exceed their rate under the optimal broadcast.
Given a maximum wait w for movie M and a limited number of
segments |S| < |M |, our goal is to determine a w-feasible seg-
mented broadcast B = 〈C, M, S, T 〉 with minimal channel band-
width |C|.

Theorem 3
Optimal segmentation: Consider a w-feasible segmented broad-
cast B = 〈C, M, S, T 〉 with |S| < |M |. |C| is minimized by the
segmentation S = {si : i = 1 to |S|} if K(|M |, |S|,σσσ) = {si :
i = 1 to |S|} is a mincost (|M |, |S|)-partition for σσσ = {T (si) :
i = 1 to |S|}. The bandwidth usage of the segmented broadcast B
is the value of this mincost partition: |C| = ||K(|M |, |S|,σσσ)||.

3.1 Single-layered case: analytical solution
In the case of the idealized protocol described in the previous

section, we can explicitly obtain an optimal partition as follows:
Given a wait w, consider an optimal segmented broadcast 〈C, M, S, T 〉

with segmentation S = {si : i = 1 to |S|}. From (3), we know
that

T (si) =
|℘(si)| − |℘(si−1)|

w + |℘(si−1)|
=

w + |℘(si)|

w + |℘(si−1)|
− 1

||K(|M |, |S|,σσσ)|| =

|S|
X

i=1

(
w + |℘(si)|

w + |℘(si−1)|
− 1)

(3)

†An interval [a..b] where a ≤ b is the set of integers from a to b,
inclusive.

 34

 36

 38

 40

 20 40 60 80 100

In
iti

al
 D

el
ay

 (
M

in
ut

es
)

Number of segments

Uniform
Optimal

Ideal

(a) DSL users (1.5 mbps)

 2

 3

 4

 5

 6

 20 40 60 80 100

In
iti

al
 D

el
ay

 (
M

in
ut

es
)

Number of segments

Uniform
Optimal

Ideal

(b) Cable modem users (4 mbps)

 0.1

 1

 10

 100

 20 40 60 80 100

In
iti

al
 D

el
ay

 (
S

ec
on

ds
)

Number of segments

Uniform
Optimal

Ideal

(c) Ethernet users (10 mbps)
Figure 1: Performance of optimal segmentation

Differentiating ||K(|M |, |S|,σσσ)|| partially w.r.t. |℘(si)| and set-
ting it to zero for minimal cost gives the recurrence:

(w + |℘(si)|)
2 = (w + |℘(si−1)|)(w + |℘(si+1)|), or

|si|
2 = |si−1||si+1|

(4)

Thus, the segmentation that minimizes total bandwidth consump-
tion divides the movie into segments of geometrically increasing
size. Imposing the constraint

P|S|
i=1 |si| = |M | gives the result:

|C| = |S|
`˘

1 +
|M |

w

¯ 1

|S| − 1
´

As |M | → ∞ and |S| → |M |, |C∗| → log(1 +
|M |

w
), and

|C| → lim
|S|→∞

|S|
`

e
1

|S|
log(1+

|M|
w

)
− 1
´

→ log(1 +
|M |

w
) → |C∗|

(5)
Thus we see that for a large number of segments and symbols,

the bandwidth consumption of the segmented broadcast approaches
that of the ideal broadcast scheme. Note that the geometric segmen-
tation above is known in the literature in the context of harmonic
broadcasting [5]; our contribution is a general method to segment
any such periodic broadcast scheme (including VBR media broad-
casts), and its use in implementing a loss-resilient broadcast using
rateless priority encoding.

The baseline case we use for comparison is the straightforward
one of segmenting the movie into |S| equal segments of approx-
imately |M |/|S| each, which, for a delay w, gives the following
bandwidth utilization:

|C| =

|S|
X

i=1

1
w|S|
|M|

+ i − 1
(6)

Example 3 Consider the same movie and the same three classes
of clients. The following table summarizes the initial delay for
each class of clients, achieved by splitting the movie into 10 seg-
ments and 100 segments. Thus we see that with as few as 100

Class Initial Delay
Ideal 10 segs 100 segs

DSL(1.5 mbps) 34 min 40 min 35 min
Cable Modem(4 mbps) 135 sec 258 sec 145 sec
Ethernet(10 mbps) 1/3 sec 7 sec 1/2 sec

segments, the performance is acceptably close to the optimal one,
while making the encoding/decoding process much simpler (only
100 encoders are needed instead of a few hundred thousand.)

Figure 1 shows the performance of the optimal segmentation
scheme compared with the ”ideal” performance and that of the uni-
form (equal segment sizes) segmentation scheme.

4. SUPPORTING HETEROGENEITY
Using a single broadcast 〈C, M, S, T 〉 limits all clients to receive

at the same rate, and thus have identical initial delays regardless of
their bandwidth constraints.

One way to support heterogeneous clients with varying band-
width constraints is to split the bandwidth available for C into mul-
tiple channels of smaller bandwidth. A naı̈ve approach is to parti-
tion C into multiple channels of varying bandwidth, and let clients
choose their preferred one. This is wasteful use of channel band-
width.

A more efficient way is to layer the broadcast cumulatively over
multiple channels. The details of the layered broadcast we propose
are as follows: suppose we want to provide for α classes of clients,
with a set of delays w = {w1, w2, · · · , wα} in decreasing order.
This can be provided by α cumulative layers over α channels. Sub-
scribing to the first channel provides a delay of w1, the first and
second together provide a delay w2, and similarly subscription to
all channels provides a delay wα. In this scheme, clients will sub-
scribe to as many channels as their bandwidth constraints allow to
get the minimal delay possible before beginning playout.

Clearly, we can extend the framework in the previous section
in a straightforward manner by vectorizing all parameters. A lay-
ered broadcast B = 〈C, M, S,T〉 implements a set of |B| virtual
broadcasts Bi = 〈Ci, M, S, Ti〉, i = 1 to |B|, where subscribers
at layer i will get a virtual broadcast Bi by cumulatively subscrib-
ing to the first i channels. Thus the physical broadcasts, i.e., the
broadcasts going out on the individual channels, are just the deltas
between successive virtual broadcasts. Note that the bandwidth of
the channel with least delay, |C|B|| is the total bandwidth used by
this layered scheme.

An optimal broadcast scheme to implement a set of delays w is
implemented by setting Bi to be the optimal broadcast for delay
wi ∈ w (using the mapping from the previous section), and using
the above relationship to determine the per-channel broadcasts.

Example 4 Consider the movie in the previous examples. Suppose
the server aims to provide a layered broadcast to satisfy all three
classes of clients simultaneously. There will be three layers with
bandwidth 1.5 mbps, 4 mbps, 10 mbps transmitted over three chan-
nels of bandwidth 1.5 mbps, 4 − 1.5 = 2.5 mbps, and 10 − 4 = 6
mbps. Note that the server bandwidth requirement with layering is
just 10 mbps, rather than 15.5 mbps if separate channels are used.

4.1 Multi-layered broadcast segmentation
In this section, we study the problem of segmenting a layered

broadcast. From the previous section, we know that for any given
delay w, there exists an optimal segmented broadcast with geo-
metric segment sizes that are functions of w. The problem with

 34

 36

 38

 40

 42

 44

 20 40 60 80 100

In
iti

al
 D

el
ay

 (
M

in
ut

es
)

Number of segments

Heuristic
Optimal

Ideal

(a) DSL users (1.5 mbps)

 2

 3

 4

 5

 20 40 60 80 100

In
iti

al
 D

el
ay

 (
M

in
ut

es
)

Number of segments

Heuristic
Optimal

Ideal

(b) Cable modem users (4 mbps)

 0

 2

 4

 6

 8

 20 40 60 80 100

In
iti

al
 D

el
ay

 (
S

ec
on

ds
)

Number of segments

Heuristic
Optimal

Ideal

(c) Ethernet users (10 mbps)
Figure 2: Performance of heuristic multi-layered segmentation

segmenting a layered broadcast is that its component broadcasts
share data transmissions, and hence must follow a common seg-
mentation, but individually they must have different segmentations
to minimize per-layer delays.

The problem, then, is to determine a common segmentation which
will minimize the maximum delay inflation over the entire client
population. If w∗(C) is the delay with optimal segmentation tai-
lored for channel C, and w(C, S) is the minimum delay for C un-
der segmentation S, then our goal is as follows:

min max
w(Ci, S) − w∗(Ci)

w∗(Ci)
, i = 1 to |B| (7)

The problem can be approximately solved using the following
heuristic: The idea is to assume a common geometric segmenta-
tion that is targeted for a virtual delay wv . Such an assignment is
not optimal since the segmentation is not tailored to the individual
channel bandwidth. Hence the problem can be treated as a univari-
ate minimization problem on wv , the objective being to minimize
the maximum delay inflation across the entire user population. This
solution is still not optimal, since it constrains the segmentation to
follow a geometric progression. However, as the following exam-
ple shows, the heuristic performs adequately well for a reasonable
number of segments:

Example 5 Consider the movie and 3 classes of clients from previ-
ous examples. The following table shows the initial delay incurred
by each class of clients when heuristic multi-layered segmentation
is used with 100 segments. For comparison, the delay under opti-
mal per-layer segmentation is shown.

Class Initial Delay with 100 segments
Optimal Heuristic

DSL(1.5 mbps) 35 min 36 min
Cable Modem(4 mbps) 145 sec 152 sec
Ethernet(10 mbps) 1/2 sec 1/2 sec

Figure 2 shows the resultant initial delay of the heuristic multi-
layered segmentation scheme compared to the per-layer optimal
segmentation.

5. REDUCING RECEPTION OVERHEAD
In this section, we study the reception overhead of the proposed

segmented broadcast scheme. One drawback when using priority
encoding in a broadcast setting is that while clients are able to re-
cover portions of the broadcast earlier than others at the cost of
increased bandwidth consumption, they lose the utility from fur-
ther transmissions of the recovered portions. For example, once
the first segment is recovered, the client does not require the broad-
cast to contain symbols for that segment anymore. However, the

server must keep repeating the broadcast containing all segments
to enable later clients to start watching from the beginning.

One way to reduce this cost somewhat, as described in [8], is to
use progressive pruning. First consider the single channel case. In
this case, the channel is split into a small number of sub-channels.
Clients have the ability to “tune in” to and “tune out” of sub-channels.
In the context of Internet multicast, for example, each sub-channel
corresponds to a separate multicast group to which each client can
subscribe and unsubscribe independently. The idea of progressive
pruning is to split the movie into chapters of contiguous segments,
one per sub-channel, and transmit each chapter on its own sub-
channel, the goal being to split the movie so that a client, by unsub-
scribing greedily from each sub-channel, can receive the minimal
wasteful symbols over the course of the movie.

Consider a layered broadcast B = 〈C, M, S,T〉. Assume that a
total of β channels are available, where β > |B|, and that the chan-
nel Ci for each broadcast Bi can be split into pruning sub-channels
dropped progressively by clients during the course of playout, with
the total number of pruning sub-channels over all layers not ex-
ceeding β. Our goal is to jointly devise an assignment of β sub-
channels to B channels and, for each channel, an assignment of |S|
segments to that channel’s sub-channels in a way that minimizes
the reception overhead of clients listening to these channels.

While other objectives like minimizing network bandwidth over-
head, etc., can be considered, we focus on strategies that minimize
the average reception overhead η of B, where the averaging is done
over the entire client population listening to B:
Reception overhead = #symbols received − #symbols in movie

Theorem 4
Optimal progressive pruning [8]: Given a receiver rate distribu-
tion F (.) and a layered broadcast 〈C, M, S,T〉, with β channels
assigned to |B| layers, average reception overhead is minimized by
the partition K(β, |B|,σσσ) where:

σσσ = {σi : i = 1 to |B|}

σi([a..b]) = ||K(|S|, b − a + 1,σiσiσi)||(1 − F (|Ci|)) , where
σiσiσi = {σij : j = 1 to β − |B| + 1}

σij([a..b]) =
b
X

k=a

(Ti(sk) − Ti−1(sk))(|℘(sb−1)| − |℘(sk−1)|)

Using precomputed values of K(|S|, j,σiσiσi) for i = 1 to |B| and
j = 1 to β − |B| + 1, this can be solved to give an allocation
of sub-channels to each broadcast. The total running time for the
entire procedure can be shown to be O(|S|2|B|(β − |B|)2).

Example 6 Consider the movie in the previous examples, along
with the three classes of users with the arbitrary distribution of 30%

47 − 75 76 − 100Segments 1 − 46

Segments 1 − 82 83 − 93
94 −

100

Segments 1 − 65 66 − 80 81 − 91
92 −

100

(a) Splitting 3 layers with 10 channels (Each row rep-
resents a channel and each block within it a pruning
sub-channel)

 0.01

 0.1

 1

 10

 3 6 9 12 15 18 21 24 27 30

R
ec

ep
tio

n
ov

er
he

ad

Total number of channels

100 segments
25 segments
10 segments

(b) #channels vs. Reception overhead

Figure 3: Progressive pruning and performance for 3-layered broadcast

1.5 mbps DSL users, 40% 4 mbps cable modem users, and 30% 10
mbps ethernet users.

Assume that a 3-layered broadcast is used, and the heuristic multi-
layered segmentation of the previous section is used with 100 seg-
ments. Now suppose that 10 channels are available, and can be used
as pruning channels over the three physical channels implementing
the 3-layered broadcast. The allocation that minimizes average re-
ception overhead is shown in Figure 3(a). It results in an average
reception overhead of about 40% of the movie size. Assuming the
same classes of users and their distribution, Figure 3(b) shows the
average reception overhead as a function of number of channels.

Note that the reception overhead is actually higher when more
segments are used since in this case more segments are recoverable
earlier and must be tolerated until they can be collectively dropped.

6. LOSS RESILIENCE
In a loss-free environment, both the ideal scheme and the seg-

mented scheme proposed in this paper guarantee that segment si is
available to the client when segments s1 through si−1 have been
fully consumed. Thus, ideally these schemes will not suffer from
the so-called “re-buffering” effect, once playout begins after a pre-
defined initial delay w. However, when operating under lossy net-
works, clients have to tolerate an extra delay to ensure smooth play-
out under packet loss.

Effectiveness in combating packet loss is the most powerful fea-
ture of an encoding-based scheme compared to traditional on-demand
streaming schemes. In this section, we quantify the effect of both
random and burst network losses on the performance of our seg-
mented broadcast scheme. The former is easier to analyze, and
provides useful insight for the more realistic latter case.

6.1 Resilience to Random Loss
We first address the following problem: given a random symbol

loss rate p, how many symbols n do we expect to receive until we
get exactly k symbols? Let Pr(n, k) be the probability of receiving
k symbols with n − k (n ≥ k) symbols lost. Then,

Pr(n, k) =

n − 1

k − 1

!

pn−k(1 − p)k (8)

The
`

n−1
k−1

´

term comes because the kth symbol has to be received
and other received symbols occupy (k − 1) out of the remaining
(n− 1) positions. From this, the expected value can be determined

using probability generating functions as:

n̄ =
k

1 − p
(9)

In a random loss environment, instead of receiving all |si| en-
coded symbols of segment si by the time segment si−1 is con-
sumed, it is now desirable to receive |si|/(1−p) encoded symbols.
This can be achieved by simply increasing the transmission rate of
each segment by a factor of 1/(1 − p): as

T (si) =
1

1 − p

|si|

w + |℘(si−1)|
(10)

Clearly, the optimal segmentation S from the no-loss case still
yields minimum broadcast bandwidth and thus remains optimal.

Example 7 Consider the movie broadcast and 3 classes of users in
previous examples. The increased initial delay for these users as
a result of random losses in the network is tabulated below. As-
sume that the broadcast is tailored to each individual loss rate as
described above and that 100 segments are used.

Class Initial Delay with random loss
No loss 5% loss 10% loss

DSL(1.5 mbps) 35 min 38.5 min 42.5 min
Cable Modem(4 mbps) 145 sec 177 sec 216 sec
Ethernet(10 mbps) 1/2 sec 0.8 sec 1.3 sec

Figures 4(b) through 4(d) show the performance of segmented
broadcast tailored to different random loss rates.

6.2 Resilience to Burst Loss
Wide-area packet loss on the Internet is typically bursty [15].

Burstiness can be modeled reasonably well with a two-state Gilbert
model [6] defined by two parameters: average burst length b and
average loss rate p. The model suggests that loss is not uniform
and burstiness is more prominent at shorter time scales. In our
segmentation scheme, earlier segments in the movie are geomet-
rically smaller than later ones. Therefore they are more subject
to burst loss than later ones and warrant greater protection from
packet loss. With apriori knowledge of model parameters, we now
describe how our segmentation scheme can be modified to tolerate
burst loss such that each segment is equally well protected, while
achieving minimum broadcast bandwidth.

We first introduce the concept of loss rate bound pb and deter-
mine its connection with segment length. As in the previous sec-
tion, let Pr(n, k) denote the probability of n − k losses out of n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4

C
D

F

Loss rate

90%

Length 100
Length 200

Length 1000

(a) Burst Loss Distribution

 35

 37

 39

 41

 43

 45

0% 2% 4% 6% 8% 10%

In
iti

al
 D

el
ay

 (
M

in
ut

es
)

Loss rate

Burst Loss
Random Loss

(b) DSL (1.5 Mbps)

 2

 3

 4

0% 2% 4% 6% 8% 10%

In
iti

al
 D

el
ay

 (
M

in
ut

es
)

Loss rate

Burst Loss
Random Loss

(c) Cable Modem (4 Mbps)

 0

 1

 2

 3

0% 2% 4% 6% 8% 10%In
iti

al
 D

el
ay

 (
S

ec
on

ds
)

Loss rate

Burst Loss
Random Loss

(d) Ethernet (10 Mbps)
Figure 4: Loss resilience of segmented broadcast (100 segments)

transmitted symbols to recover a segment of length k. With given
Gilbert model parameters, Pr(n, k) can be computed using a re-
cursive equation as described in [3]. Considering all possible loss
rates (n−k)/n, we can obtain a cumulative density function (CDF)
for a particular k. The loss rate bound pb(`) is defined as the max-
imum loss rate under which most (say 90%) losses happen for a
segment of length `. The concept of loss rate bound is now illus-
trated with a numerical example.

Example 8 Prior work [7] suggests the average burst length is of
the order of 100 ms, so we choose b = 500 ms as a worst-case
example. Assume the average loss rate p = 0.1. Figure 4(a) shows
the CDFs corresponding to different segment lengths. It is clear that
for large segment length, the loss probability is clustered around
the mean (0.1 in this example), but the distribution is more widely
spread for smaller segment lengths. We choose loss rate bound
for each ` such that 90% cases have loss rate below the bound.
From Figure 4(a), we can see that pb = 0.31 for segment length
100 symbols and pb = 0.166 for segment length 1000. Clearly,
pb(`) → p as ` → ∞. Enumerating all possible values of `, we
can determine the mapping from segment length to loss rate bound.

The analysis for random loss extends easily to burst loss. As-
sume that we require smooth playout after an initial delay w. Sim-
ilar to the random loss case, it is now desirable to receive |si|/(1−
pb(t)) symbols from segment si by time t at which segment si−1 is
fully consumed. With an initial delay w, segment si−1 is consumed
in time t = w + |℘(si−1)|, and the loss bound for this interval is
just pb(w + |℘(si−1)|). Hence we set:

T (si) =
1

1 − pb(w + |℘(si−1)|)
×

|si|

w + |℘(si−1)|
(11)

Example 9 The same calculation as in the previous example was
done for burst loss, with average burst length b = 500 ms. The
increased initial delay for these users as a result of factoring for
burst losses in the network is tabulated below.

Class Initial Delay with burst loss
No loss 5% loss 10% loss

DSL(1.5 mbps) 35 min 39 min 43.2 min
Cable Modem(4 mbps) 145 sec 188 sec 233 sec
Ethernet(10 mbps) 1/2 sec 1.4 sec 2.5 sec

Figures 4(b) through 4(d) show the performance of segmented
broadcast tailored for different burst loss rates.

7. REDUCING LATENCY
The primary trade-off in on-demand streaming is between broad-

cast bandwidth and initial delay. This dictates that receivers with

moderate bandwidth constraints have to tolerate relative long de-
lays. For the 2-hour movie partitioned into 100 segments, the peak
broadcast bandwidth is 5.6 mbps to ensure a delay of 30 seconds
and 4.9 mbps for 60 seconds. Compared to the few seconds of de-
lay typically experienced in unicast-based streaming applications,
these delays are still relatively long.

Moreover, on-demanding streaming schemes broadcast earlier
symbols more frequently than later ones to guarantee playback con-
tinuity. Thus, earlier symbols occupy a significant portion of the
broadcast bandwidth. These symbols, on the other hand, often
contain data of not much interest to receivers (such as previews,
ads or cast information). Therefore, it is possible to effectively re-
duce bandwidth by broadcasting these initial symbols at a reduced
quality (reduced bitrate). From another perspective, such a “fast
start” option enables the use of the same broadcast bandwidth with
a smaller startup latency, improving the user experience.

The optimal fast start problem studied in this section is to find
a segmentation and corresponding per-segment bitrate such that
maximum possible quality (on the average) is achieved with the
new (smaller) startup delay while maintaining the same broadcast
bandwidth.

7.1 Problem Formulation
In this section, we formalize the problem and derive an optimal

solution. With no quality reduction and delay w, we know that the
peak bandwidth requirement of an optimal segmented broadcast
B = 〈C, M, S, T 〉 is

|C| = |S|
`˘

1 +
|M |

w

¯ 1

|S| − 1
´

(12)

Now suppose we wish to reduce the initial delay by reducing
the quality in the initial portion of the movie. We can effectively
split the movie into two parts, a prefix M1 with partially reduced
quality and a suffix M2 at full quality, and define two broadcasts
B1 = 〈C1, M1, S1, T1〉 and B2 = 〈C2, M2, S2, T2〉. Based on
our earlier results, the suffix is full quality and can be broadcast
optimally with bandwidth

|C2| = |S2|
`˘

1 +
|M2|

w + |M1|

¯ 1

|S2| − 1
´

The bandwidth difference |C|−|C2| is used to transmit the prefix
M1 at a reduced quality. Now let ri denote the normalized bitrate
of segment si ∈ S1. Also define wf as the delay with fast startup.
Then the broadcast bandwidth of all |S1| segments must satisfy:

|S1|
X

i=1

ri|si|

wf + |℘(si−1)|
≤ |C1| = |C| − |C2| (13)

Now the problem is to find an optimal segmentation S1 on M1

and also a bitrate assignment {ri : i = 1 to |S1|} such that maxi-
mum possible quality is achieved within constraint (13). To quan-
titatively measure quality, we adopt a suitable rate-distortion (R-D)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240 300

N
or

m
al

iz
ed

 v
id

eo
 b

it
ra

te

Position in movie (Seconds)

120 sec delay
60 sec delay
30 sec delay

(a) 100 discrete rate levels (R = 100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240 300

N
or

m
al

iz
ed

 v
id

eo
 b

it
ra

te

Position in movie (Seconds)

120 sec delay
60 sec delay
30 sec delay

(b) 5 discrete rate levels (R = 5)
Figure 5: Fast Startup with Reduced Quality (While (a) can be achieved using scalable codecs, (b) can be easily implemented using
separately coded streams of different bitrates for different segments.)

function as described in [9, 11]. Maximizing quality is equivalent
to minimizing distortion. As an idealized example, we use a sim-
plified R-D function D(r) = 2−r , where r and D are rate and
distortion, respectively. Thus, we summarize the problem as fol-
lows:

min

|S1|
X

i=1

{|si|D(ri) + σ(ri − ri−1)
2}, subject to (13) (14)

Note that the second term in the objective function is added to en-
sure smooth bitrate transition between segments, σ being a tunable
value. If the bitrate is discretized to take on integer values in [1 : R]
and bandwidth in [1 : B], then this problem has a simple dynamic
programming solution with complexity O(BR|M1|

2|S1|). Since
|M1| has a quadratic effect on the complexity, we can speed up
things a little by defining symbols to be groups of frames (say, a
second’s worth), with negligible effect on optimality.

Example 10 We use the usual 2-hour movie in our simulation to
demonstrate the performance of the proposed fast start scheme. For
this example, we take the case of the cable modem user with 4 mbps
access speed. With 100 segments, the minimal initial delay is about
145 seconds without quality reduction. We then allow a reduced
quality in the first five minutes (|M1| = 900), with S1 = 25.
Figure 5 shows the results of rate (quality) evolution with different
fast startup delays. Without changing broadcast bandwidth, we can
see that the startup delay can be reduced to as low as 30 seconds if
we sacrifice quality moderately.

8. CONCLUSIONS
The “digital fountain” approach provides a powerful abstraction

for loss-resilient bulk data distribution in which packet transmis-
sions act like drops of water: any sufficient combination of unique
erasure-coded packets suffices to recover the original data in its en-
tirety. However, for on-demand media streaming, a “digital straw”
abstraction is preferable in which the original data can be con-
sumed progressively even as further transmissions arrive for later
consumption.

Building on the theoretically optimal but practically infeasible
solution in [16], we advance a scheme to implement a “digital
straw”. Our solution is based on a combination of optimal segmen-
tation into a few segments and efficient priority encoding based
on the recently discovered rateless codes. The proposed scheme
allows the continuous trade-off of encoding/decoding complexity
against bandwidth optimality.

We then study the applicability of our solution to 1) multi-layered
broadcast, to simultaneously support a heterogeneous client popu-
lation 2) progressive pruning, to reduce the reception overhead in-

herent to asynchronous broadcast schemes, 3) loss-adaptive broad-
casting, where the segmentation and transmission is tailored for
some maximum loss rate, and 4) quality adaptation for reducing
startup latency for clients.

Our on-going work focuses on 1) incorporating flexible quality
adaptation, so that clients can continuously trade-off quality against
startup latency, 2) dynamic quality and rate control for reacting
to network congestion, and 3) a prototype implementation capa-
ble of streaming several movies on a LAN-based media streaming
testbed.

9. ACKNOWLEDGMENTS
We are grateful to Dr. Marcel Waldvogel for stimulating discus-

sions, and to the referees for their in-depth reviews.

10. REFERENCES
[1] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan. Priority Encoded

Transmission. In Proceedings of IEEE FOCS 1994, pages 604–612, 1994.
[2] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Digital Fountain Approach

to Reliable Distribution of Bulk Data. In Proceedings of ACM SIGCOMM 1999,
pages 56–67, Sept. 1999.

[3] C. Huang and L. Xu. Efficient FEC Codes for Data Loss Recovery. Techni-
cal report, Washington University in St. Louis, June 2004. Available at http://
www.nisl.wustl.edu.

[4] L. Engebretsen and M. Sudan. Harmonic broadcasting is optimal. In Proceedings
of SODA 2002, pages 431–432, 2002.

[5] A. Hu. Video-on-Demand Broadcasting Protocols: a Comprehensive Study. In
Proceedings of IEEE INFOCOM 2001, pages 508–517, 2001.

[6] J.-C. Bolot, S. Fosse-Parisis, and D. Towdley. Adaptive FEC-Based Error Con-
trol for Internet Telephony. In Proceedings of IEEE INFOCOM 1999, 1999.

[7] J. G. Apostolopoulos. Reliable Video Communication Over Lossy Packet Net-
works Using Multiple State Encoding and Path Diversity. In Proceedings of
MMCN 2002, 2002.

[8] R. Janakiraman and L. Xu. Layered Priority-encoded Transmission for Video
Streaming to Heterogeneous Clients. In Proceedings of IEEE ISIT 2004, July
2004.

[9] M. Dai, and D. Loguinov. Analysis of Rate-Distortion Functions and Congestion
Control in Scalable Internet Video Streaming. In Proceedings of ACM NOSSDAV
2003, June 2003.

[10] A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-Stukel. Scalable on-
demand media streaming with packet loss recovery. In Proceedings of ACM SIG-
COMM 2001, pages 97–108, 2001.

[11] N. Jayant, and P. Noll. Digital Coding of Waveforms. Prentice Hall, Englewood
Cliffs, NJ, 1984.

[12] J.-F. Pâris, S. W. Carter, and D. D. E. Long. A Low Bandwidth Broadcasting
Protocol for Video on Demand. In Proceedings of IC3N 1998, pages 690–697,
Oct. 1998.

[13] V. Pless. Introduction to the Theory of Error-Correcting Codes. Wiley-
Interscience, 1998.

[14] M. A. Shokrollahi. Raptor codes. In Proceedings of IEEE ISIT 2004, July 2004.
[15] V. Paxson. End-to-End Internet Packet Dynamics. IEEE/ACM Transactions on

Networking, 7(3):277 – 292, 1999.
[16] L. Xu. Resource-Efficient Delivery of On-Demand Streaming Data Using UEP

Codes. IEEE Transactions on Communications, 51(1):63–71, Jan. 2003.

