
1

On the Maximally Recoverable Property for Multi-Protection Group Codes

Minghua Chen, Cheng Huang, and Jin Li
Microsoft Research, One Microsoft Way, Redmond, WA, 98052

{minghua.chen, cheng.huang, jinl}@microsoft.com

Abstract—In this paper, we study the Maximally Recover-
able (MR) property for multi-protection group (MPG) codes.
MPG codes with MR property achieve the best erasure
recoverability given configurations, where a configuration
represents the structural relationship between data and
parity symbols. We present construction and decoding algo-
rithms for MPG codes with MR property. We show that both
recoverability and minimum decoding overhead of any MPG
code with MR property depend only on the configuration,
where decoding overhead is defined as the additional number
of symbols to access, in order to decode the lost data symbols.

I. INTRODUCTION

We define an error correction and/or erasure resilient
code as a multi-protection group (MPG) code, if its data
symbols are separated into a number of protection groups,
and one or more parity symbols are generated to exclu-
sively protect the data symbols within each group.

Many popular error correction codes and/or erasure
resilient codes widely used in communication and storage
systems are MPG codes. For example, Product codes
[3] are two-dimensional codes constructed by encoding a
rectangular array of data symbols with one code along
rows and with another code along columns. It uses one
protection group per row and per column. Turbo codes [4]
are Shannon limit approaching error correction codes in
low signal-to-noise ratio (SNR) environment. It is parallel
concatenations of two or more recursive systematic con-
volutional codes. Each component encoder of the Turbo
codes uses a different protection group, which are usually
reorganized by an interleaver that permutes the ordering
of the data symbols in the protection group.

The low-density parity-check (LDPC) codes [5] can
be considered as simplified MPG codes, in which each
parity symbol leads to a separate small protection group
whose members are the data symbols XORed to form
the parity symbol. Generalized LDPC (GLDPC) relaxes
the constraints, and allows more than one parity symbol
and may use Galois Field operation. However, it still
keeps a small protection group size and uses iterative in-
group decoding strategy [6], [7]. In comparison, general
MPG codes allow arbitrary protection group size, and may
perform cross protection group decoding.

Our recently proposed Pyramid Codes [1] are also
MPG codes. We have shown that MPG codes can help
to reduce the I/O overhead, in terms of extra throughput
that is needed to access data symbols in a distributed
storage system, and at the same time satisfy the same data
reliability and storage overhead requirement [1].

We define the way that protection groups are formed
over MPG codes as a configuration. A rigorous mathe-

matical definition of a configuration will be introduced in
Section II. A configuration defines the structural relation-
ship between data symbols and parity symbols. Research
work in the construction of LDPC codes shows that config-
uration plays a big role in the error/erasure recoverability
of MPG codes [8], [9].

Given a configuration, some interesting questions to
answer are what is the best erasure recoverability an
MPG code can achieve, how to construct such optimal
codes, and how to perform decoding. Because MPG codes
have been shown to be effective in distributed storage
scenarios [1], we are concerned with the best erasure
recoverability, though some results may be extended to
error recoverability.

For example, Fig. 1 shows a configuration used by
Product codes. 2 parity symbols are generated along the
rows, and 2 are generated along the columns. If all 4 data
symbols are lost, it is known that Product codes can not
successfully recover them. One natural question to ask
is that does there exist a code such that the 4 lost data
symbols can be recovered using the four parities.

data symbol

parity symbol

Fig. 1. Can two column parity symbols and two row parity symbols
recover the four lost data symbols?

In this paper, we provide answers to the above questions
by exploring the Maximally Recoverable (MR) property
for MPG codes, which we initially studied in data storage
scenarios [1]. MPG codes with MR property achieve the
best erasure recoverability. For instance, for the 4 lost data
symbols shown in Fig. 1, MPG codes with MR property
can recover them using 2 column parity symbols and 2 row
parity symbols. For simplicity, we refer to MPG codes with
MR property as MR codes in the rest of the paper. The
property is also studied in the scenario of network coding
with links failure [2].

By presenting a construction algorithm, we show that
MR codes exist under arbitrary configurations. We also
present an optimal decoding algorithm achieving minimum
decoding overhead. Such optimal decoding is not explored
in [2].

To the best of our knowledge, our proposed generalized
Pyramid Code [1], constructed by an algorithm similar to
the one presented in Section III, and the network codes

2

constructed by Theorem 11 in [2] are the only known non-
MDS (Maximum Distance Separable) codes that have MR
property.

We also show that, both the erasure recoverability and
the minimum decoding overhead of MR codes depend only
on the configuration. As such, configuration is the only
parameter to tune the performance of MR codes.

II. PROBLEM FORMULATION

Consider an (n, k) MPG erasure resilient code. Let
D = {d1, d2, · · · , dk} be the set of data symbols to
protect. We cover the entire set D by a number of subsets
S1, S2, · · · , SL where Sl ⊆ D, l = 1, · · · , L. Each Sl is
defined as a protection group. Protection groups may in-
tersect, overlap, or contain one another to provide different
degree of protection to the data symbols.

Let Ul = {tl1, . . . , tlul
} be the protection group of parity

symbols generated using only the data symbols in Sl. Let
ul = |Ul| be the size of set Ul, satisfying

∑L
l=1 ul = n−k.

Let Ω = {(S1, U1), (S2, U2), . . . , (SL, UL)} be a con-
figuration, representing the structural relations between the
data symbols and the parity symbols. Let Vl = Sl∪Ul, l =
1, . . . , L. We define atom sets for Ω as follows:

Si\ ∪j 6=i Sj , 1 ≤ i ≤ L

(Si1 ∩ Si2)\ ∪j 6=i1,i2 Sj , 1 ≤ i1, i2 ≤ L, i1 6= i2

· · ·
∩1≤m≤MSim\ ∪j 6=im,1≤m≤M Sj , 1 ≤ i1, . . . , iM ≤ L,

im1 6= im2,

1 ≤ m1 6= m2 ≤ M,

M ≤ L

There are altogether 2L−1 atom sets, which are denoted as
A1, . . . , AH ; some of them might be empty sets. Unlike
protection groups, the atom sets are disjoint from each
other and form a partition of the data set D.

An illustrative example is shown in Fig. 2. 11 data
symbols are covered by two protection groups: 8 in S1,
and 9 in S2. The data symbols in S1 are protected by
3 parity symbols in U1, and the data symbols in S2 are
protected by 4 parity symbols in U2. From atom sets’ point
of view, the 6 data symbols in A3 are protected by all 7
parity symbols in U1 ∪ U2; the 2 data symbols in A1 are
protected by the 3 parity symbols in U1; the 3 data symbols
in A2 are only protected by the 4 parity symbols in U2.

S1
S2

A
1

A
2

A
3

Fig. 2. There are three atom sets for two groups S1, S2, with |A1| =
2, |A2| = 3, |A3| = 6, u1 = 3 and u2 = 4.

We use Λ(Ah) = {∪jUj |Ah ⊆ Sj , 1 ≤ j ≤ L} to
denote the set of all parity symbols that can be used to
recover erasures in Ah.

Let G be an n× k generator matrix for any systematic
erasure resilient code over Ω. Each data and parity symbol

maps to one row in G, classified as data row and parity
row, respectively. For the parity row corresponding to the
parity symbol tli, the row vector can only take nonzero
values in entries corresponding to the data symbols in Sl.

Given an erasure pattern e, the rows in G corresponding
to the lost data and parity symbols are crossed out. All k
data symbols can be recovered if and only if the remaining
sub-matrix, denoted by G′(e), has rank k. The remaining
parity rows can be assigned to the position of lost data rows
to reconstruct a rank k matrix. It is clear that one parity
row can only be assigned to one lost data row. Remaining
data rows can be interpreted as assigned to themselves. An
example of such assignment is shown in Fig. 3.

For G′(e) to have rank k, it is necessary that there exists
an assignment from the remaining parity rows to the lost
data rows, such that all the k diagonal entries of G′(e)
are nonzero [10]. We define this as a size k assignment in
G′(e). G′(e) has rank k implies a size k assignment from
the remaining data and parity symbols to the original k
data symbols. For readers familiar with Tanner graph, this
necessary condition is equivalent to the one based on full
size matching in Tanner graph [1]1.

G =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
∗ ∗ 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗

erasure−−−→

1 0 0 0 0 0
− − − − − −
0 0 1 0 0 0
− − − − − −
− − − − − −
0 0 0 0 0 1
∗ ∗ 0 0 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗

assignment−−−−−−→

1 0 0 0 0 0
∗ ∗ 0 0 ∗ ∗
0 0 1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 1

Fig. 3. Assigning three parity rows to three lost data rows in G′(e).

Observing that the parity symbols assigned to the lost
data symbols in Ah must belong to Λ(Ah), we have the
following lemma on the recoverability of erasure patterns.

Lemma 1: Under a configuration Ω, a necessary condi-
tion for an erasure pattern e to be recoverable is that there
exists an atomic assignment from Λ(Ah) to Ah, such that
the number of lost data symbols in Ah is equal to the
number of assigned parity symbols.
We show this condition is also sufficient in the next
Section. Define the set containing all recoverable e under
configuration Ω as E(Ω).

Assume that for e, there are li lost data symbols in Ai

for i ∈ {1, . . . , I}, and pj remaining parity symbols in Uj

for j ∈ {1, . . . , J}, protecting A1, . . . , AI . We represent
an atomic assignment by a matrix in which the columns
correspond to A1, . . . , AI , and the rows correspond to
U1, . . . , UJ , with zero entries in the (i, j) positions where

1Observing the limited space, we will not go over the condition using
the Tanner graph description. Interested readers can find more details of
the topic in [1].

3

Ui does not protect Aj . Our goal is to assign nonnegative
integers to each nonzero (i, j) entry, such that the sum
of the i-th column is equal to li, and the sum of the
j-th row is no more than pj . An example of an atomic
assignment is shown in Fig. 4 for the configuration shown
in Fig. 2 with l1 = l2 = 2, l3 = 3, p1 = 3 and p2 = 4.
Shown in [1], this assignment problem can be translated

A1(l1 = 2) A2(l2 = 2) A3(l3 = 3)
U1(p1 = 3) ?(2) 0 ?(1)
U2(p2 = 4) 0 ?(2) ?(2)

Fig. 4. Assigning nonnegative integers to ? positions such that the sum
of column i is equal to li, and the sum of row j is no more than pj .

to finding maximum size matching in a Tanner graph, and
the Edmonds-Karp algorithm can be applied to find the
assignment with O((

∑
i li)2(

∑
j pj)) complexity.

III. MAXIMALLY RECOVERABLE PROPERTY

Definition 1: A systematic erasure resilient code is said
to have Maximally Recoverable (MR) property under a
configuration Ω, if it can recover any e ∈ E(Ω).

MR codes can be interpreted as a series of Maximum
Distance Separable (MDS) codes protecting atom sets
Ah, 1 ≤ h ≤ H . The number of parity symbols protect-
ing each atom set is dynamically assigned according to
an atomic assignment. Consequently, each atom set can
recover erasures up to the amount of parity assigned to it.

For instance, in the atomic assignment shown in Fig. 4,
A1 is assigned 2 parity symbols and can be considered as
under the protection of a (4, 2) MDS code. As such, the
2 erasures in A1 can be recovered. Similarly, A2 and A3

are assigned with 2 and 3 parity symbols, and can recover
2 and 3 erasures, respectively.

A natural question to ask is whether MR codes always
exist under an arbitrary configuration Ω. The following
theorem explores the answer.

Theorem 1: MR codes for any configuration Ω can be
constructed with O((n−k)k3

(
n−1
k−1

)
) complexity, if the size

of Galois Field is larger than
(
n−1
k−1

)
.

Proof: For MR codes, its generator matrix G satisfies
that for any e ∈ E(Ω), G′(e) has rank k. We inductively
construct one such MR generator matrix G for Ω.

Let gi, i = 1, . . . , n be the i-th row of G. Let Gi

be a matrix containing the first i rows of G, and the
corresponding configuration be Ωi. Since MR codes are
a systematic code, Gk is merely a k × k identity matrix.

Suppose Gi is available, we construct one more row
gi+1 to form Gi+1. Without loss of generality, let gi+1

correspond to a parity symbol tlm ∈ Ul ⊂ Vl.
For all e ∈ E(Ωi+1), G′i(e\{tlm}) must have rank k−1

or k. Otherwise, G′i+1(e) can not have rank k and e can not
belong to E(Ωi+1). If G′i(e\{tlm}) has rank k, the value
of tlm doesn’t matter. Let us consider all e ∈ E(Ωi+1) that
G′i(e\{tlm}) has rank k−1. These are the erasure patterns
that tlm help in the recovery. Our goal is to choose gi+1

so that G′i+1(e) has rank k for all such erasure patterns.
G′i+1(e) is given by:

G′i+1(e) =
(

G′i(e\{tlm})
gi+1

)
. (1)

Let the null space of G′i(e\{tlm}) be N(G′i(e\{tlm})).
Because G′i(e\{tlm}) is of rank k − 1, the null space is a
nonzero row vector that is perpendicular to all row vectors
in G′i(e\{tlm}). For G′i+1(e) to have rank k such that e is
recoverable, it is sufficient to select gi+1 that is not orthog-
onal to N(G′i(e\{tlm})), i.e. 〈gi+1, N(G′i(e\{tlm}))〉 6= 0.

For each e ∈ E(Ωi+1) that does not contain tlm
and G′i(e\{tlm}) has rank k − 1, we compute all
N(G′i(e\{tlm})) and form a matrix out of the results by
using each N(G′i(e\{tlm})) as a row vector. Clearly, this
matrix has a finite number of rows, and this number is
bounded by

(
i

k−1

)
. Computing each N(G′i(e\{tlm})) can

be done with O(k3) complexity.
Let f1, · · · , ful

be ul row vectors that correspond to data
symbols in Ul. Let fj , j = ul +1, · · · , J be the projection
of j-th row vector onto the sub space span(f1, · · · , ful

),
i.e., all coefficients other than those of the data symbols
in Ul is set to be zero. Since gi+1 corresponds to a
parity symbol tlm ∈ Ul ⊂ Vl, it is apparent that gi+1 ∈
span(f1, · · · , ful

). gi+1 needs to satisfy 〈gi+1, fj〉 6= 0
for j = 1, . . . , J . Let ε = [ε1, · · · , εul

]T and

gi+1 = ε1f1 + · · ·+ εul
ful

, (2)

then 〈gi+1, fj〉 =
∑ul

m=1 εm〈fm, fj〉 =
∑ul

m=1 εmfj,m,
where fj,m is simply the m-th column coefficient of fj .
Writing the dot products in a J×ul matrix form, we have

f1,1 . . . f1,ul

...
. . .

...
fJ,1 . . . fJ,ul

 ε =

Iul

ful+1

· · ·
fJ

 ε ,

(
Iul

F

)
ε. (3)

ε should be chosen to be nonzero and satisfying Fε is
nonzero in every row. Suppose the code is generated in
GF (q), each row constraint defines a plane to avoid in
space GF (qul), with the plane has qul−1 elements in
GF (qul). Since ε has (q− 1)ul nonzero choice, it is clear
that if q > J−ul+1, then ε can have at least one satisfying
choice. As J is bounded by

(
n−1
k−1

)
and ul ≥ 1, a sufficient

condition is then q >
(
n−1
k−1

)
. For example, if n = 20 and

k = 16, then q needs to be no less than 4845 ≈ 212.4.
If such a ε exists, the following procedure can be applied

to search for such ε. First we randomly select a nonzero
ε. We calculate (3) and are done if there is no zero entry
in all the rows. Otherwise, we tune ε1, · · · , εul

one by
one. We first tune ε1, for all null vectors fj with fj,1

not equal to zero, we calculate a value to prevent ε1

from being as (
∑ul

m=2 εmfj,m)/fj,1. We then choose an
arbitrary values of ε1 that is not in the set of the values.
We are guaranteed to find at least one surviving value in
GF (q) if q >

(
n−1
k−1

)
+ 1. After we adjust ε1, only those

vectors fj with fj,1 = 0 are not considered and there could
still be zero entries in Eqn. (3). If so, we move on to ε2. For
each fj with fj,2 6= 0, we again calculate a value to prevent

4

ε2 from being as (
∑

m=1,3,··· ,ul
εmfj,m)/fj,2, and choose

from the remaining values for ε2. After tuning ε2, only
those vectors fj with fj,1 = fj,2 = 0 could result in zero
entries in Eqn. (3). Thus, the tuning process reduces the
number of rows in (3) with value zero. We repeat the step
till we come to εul

, or all rows in Eqn. (3) are nonzero. The
resulting ε is the desired one. The worst case complexity
to compute ε is O(J k2).

Following the induction, we can construct the generator
matrix G, with complexity O((n− k)k3

(
n−1
k−1

)
).

Two observations can be made based on Theorem 1.
First, every erasure pattern e ∈ E(Ω) is in fact recoverable,
by MR codes under Ω. Hence, the necessary condition
for erasure patterns to be recovered under Ω, shown in
Lemma 1, is also sufficient. Second, given an erasure
pattern, existence of an atomic assignment is determined
by the configuration. As such, the erasure recoverability
of MR codes depends only on the configuration.

IV. DECODING OF ANY MR CODES

Given an erasure pattern e, of which we assume it
includes data symbols d1, . . . , dl. We are interested in
recovering d1, . . . , dr out of them, r ≤ l. Decoding is
to choose p symbols c1, . . . , cp, which are either parity
symbols generated based on certain data symbols d1 to dm

(r ≤ m ≤ k) or merely these data symbols if available,
and form a p ×m decoding matrix to recover the r lost
data symbols by performing Gaussian elimination.

Define a decoding choice as a set of these p symbols.
Define decoding overhead as p − r, i.e. the difference
between the number of symbols to access to decode r
data symbols, and that of accessing them directly if they
are not lost.

There could be multiple choices to recover the r data
symbols. One of them is straightforward decoding. It is to
choose r parity symbols that can recover these lost data
symbols, then combine with the available data symbols to
perform the decoding. For example, we assume for the
MR code shown in Fig. 2, there are 1 erasures in A3

and no erasure elsewhere. One straightforward decoding
choice is to recover the erasure using the (11, 8) MDS
code protecting S1. Since 8 symbols need to be accessed
to recover one erasure, the decoding overhead is 7. Another
straightforward decoding choice is to recover the erasure
using the (13, 9) MDS code protecting S2. This results in
a decoding overhead of 8. Obviously, the decoding matrix
of straightforward decoding is square, i.e. p = m.

Moreover, A3 can be thought as under the protection of
(13, 6) MDS code. It is thus possible the 7 parity symbols
can be combined to recover the erasure in A3, with
the coefficients corresponding to all other data symbols,
except the interested one, cancel each other. If so, the
decoding overhead is 6, which is less than the best of any
straightforward decoding choice, and the decoding matrix
is not a square one.

Nevertheless, different decoding choice can have dif-
ferent decoding overhead. In a wide range of storage
applications, this decoding overhead could mean extra

traffic over a large scale network or between multiple local
servers, which limits the number of parallel accesses the
system can support, and hence is desired to be minimized.
We define the decoding choice with minimum decoding
overhead as the optimal decoding choice.

A natural question to ask is how to find the optimal
decoding choice, and how the simple straightforward de-
coding perform. We start by describing an interesting yet
important property of MR codes, then present an algorithm
to find the optimal decoding choice.

Theorem 2: The p×m decoding matrix of the optimal
decoding choice is necessarily a full rank square matrix.

Proof: Any optimal decoding matrix must have rank
p, i.e. all p rows are linearly independent; otherwise
decoding can be done using less than p symbols. We prove
p < m is not possible, by contradiction.

Assume an MR code has an optimal decoding matrix
that has p < m. Since d1 to dr are decodable, it is
sufficient and necessary that certain r rows in the decoding
matrix can be reduced to be a rank r sub-matrix by
Gaussian elimination, with zero entries corresponding to
dr+1, . . . , dm. Assume these rows to be the first r rows,
corresponding to c1, . . . , cr.

Consider the (p− r)× (m− r) sub-matrix, denoted by
A, formed by removing the first r rows and columns of
the decoding matrix. Clearly A has rank p − r, all p − r
rows in A are linearly independent, and there exists an
assignment from the corresponding p − r parity symbols
to p − r data symbols dr+1, . . . , dp. Any of c1 to cr can
be expressed as a linear combination of cr+1 to cp, and
d1 to dr. We now construct an erasure pattern e ∈ E(Ω),
that the code can not recover. We consider two cases.

If one of c1 to cr has nonzero coefficient correspond-
ing to one of dp+1 to dm, assumed to be c1 and dm

respectively, then there exists an assignment from c1 to
dm. Hence for an erasure pattern e with dr+1, . . . , dq, dm

lost and c1, cr+1, . . . , cp remaining, an atomic assignment
exists, thus e ∈ E(Ω). However, since c1 is linearly de-
pendent on cr+1, . . . , cp and the remaining data symbols,
G′(e) has only rank k− 1. Hence, e can not be recovered
by the code, and the code can not have MR property.

Now we consider the case where all c1 to cr have zero
coefficients corresponding to dp+1 to dm. Without loss of
generality, assume c1, . . . , cr have zero coefficients corre-
sponding to and only to dq, . . . , dm (r + 2 ≤ q ≤ p + 1).
We further consider two sub-cases:
1) One of cr+1 to cq−1 has one nonzero coefficient corre-
sponding to one of dq to dm, assuming to be cr+1 and dm,
respectively. By case setting, one of c1, . . . , cr has nonzero
coefficient corresponding to dr+1, assumed to be c1.
There exists an atomic assignment from c1, cr+1, . . . , cp to
dr+1, . . . , dp, dm, respectively. Following the same proce-
dure as in the previous case, we can construct an e ∈ E(Ω)
but the code fails to recover. Hence the code can not have
MR property.
2) All cr+1 to cq−1 also have zero coefficients correspond-
ing to all dq, . . . , dm. Therefore, cr+1 to cq−1 is sufficient
to reduce c1 to cr to a full rank r× r sub-matrix. If q < p

5

then cq to cp are not used in the reduction of c1 to cr,
and they should not be in the optimal decoding matrix. If
q = p + 1, then the decoding matrix contains zero-value
columns, violating the assumption that it is not reducible.

In all cases, the assumption p < m does not stand.
Therefore, the optimal decoding matrix of MR codes must
be square and have full rank.

There are several observations to make based on The-
orem 2 for the optimal decoding. First, for every optimal
p × p decoding matrix with l total lost data symbols
involved, there must exist a size l assignment from parity
symbols to the lost data symbols. Hence, this optimal p−r
decoding overhead can also be achieved by decoding using
this l parity symbols and p − l remaining data symbols.
This indicates that any minimum decoding overhead can
be achieved by straightforward decoding.

Second, if the optimal decoding matrix contain parity
symbols from Λ(Ah), then all data symbols in Ah must
all involve in the decoding, i.e. they correspond to |Ah|
columns in the matrix. If no parity symbol in Λ(Ah) is
involved, then so do the data symbols in Ah. This implies
that first either all data symbols in Ah can be recovered,
or none of them can be recovered; second, p can only be
the sum of the sizes of atom sets. This is key to design
our algorithm on searching the optimal decoding choice,
which will be presented shortly.

Third, the minimum decoding overhead depends only on
Ω. This is because any decoding matrix of MR codes has
full rank if and only if there exists an atomic assignment,
which is determined by configuration.

Now we derive the algorithm for searching the optimal
decoding choice. Let a partial configuration of Ω be Ω′ ⊆
Ω; let |Ω′| be the number of data symbols in Ω′. Let eΩ′

be the projection of e onto Ω′, containing all erasures in
Sl or Ul, where (Sl, Ul) ∈ Ω′. Let e0 ⊆ e be the set of
data symbols we want to decode.

A sufficient and necessary condition for e0 to be
straightforwardly decoded is e0 ⊆ eΩ′ ∈ E(Ω′) for some
Ω′. This is because any decoding matrix for straightfor-
wardly decoding e0 is a full-rank square matrix with |Ω′|
columns for certain Ω′. eΩ′ must also be decodable, since
all data symbols in Ω′ are recovered. Therefore, searching
the optimal choice for decoding e0 is equivalent to solve
the following problem to find the Ω′ with minimum |Ω′|,
which is denoted by Ω0:

Ω0 = arg minΩ′⊆Ω|Ω′| (4)
s.t. e0 ⊆ eΩ′ ∈ E(Ω′).

The minimum decoding overhead is merely |Ω0|.
Given an erasure pattern e, assume we want to recover

l1, . . . , lr lost data symbols in A1, . . . , Ar respectively. We
describe one procedure to search for the optimal decoding
choice in the following paragraph. The basic idea behind
the algorithm is to start with Ω′ with minimum possible
|Ω′|, and search over all possible Ω′ by adding more and
more protection groups into consideration. We prune out
those Ω′ whose size is larger than the minimum one we
have observed during the search.

• For each assignment from Λ(∪i=1,...,rAi) to
A1, . . . , Ar, we construct Γ1 = {A1, . . . , Ar}. We
search all possible partial configurations that contain
the assigned parity symbols and can decode e0,
through the following operations:

1) Let Γ2 = {Ah| Ah is protected by assigned par-
ity symbols}. If Γ1 is equal to Γ2, then decoding
can be performed under current configuration,
and one candidate of Ω0 is founded. We update
ω, the minimum decoding overhead seen so far,
with

∑
Ai∈Γ1

|Ai| −
∑r

i=1 li.
2) If Γ1 ⊂ Γ2 and ω >

∑
Ai∈Γ2

|Ai| −
∑r

i=1 li,
then we set Γ1 = Γ2, find all atomic assign-
ments for atom sets in Γ1, and go through steps
1) and 2) with the augmented Γ1 recursively.

• After all possible atomic assignments are attempted,
either we have found the minimum decoding overhead
ω and the corresponding decoding choice, or the data
symbols we want to recover is not decodable.

The above decoding algorithm works for any MR codes,
as it explores only the configuration information.

V. CONCLUSIONS

In this paper, we establish the concept of MPG codes
and study the MR property for MPG codes. MPG codes
with MR property achieve the best erasure recoverability
under the configuration. We show that configuration is
the only parameter to tune both the recoverability and
the minimum decoding overhead of MR codes. We also
present construction and decoding algorithms for MPG
codes with MR property.

ACKNOWLEDGEMENT

We would like to thank Dr. Yunnan Wu for helpful
discussions related to Theorem 2.

REFERENCES

[1] C. Huang, M. Chen and J. Li, “Pyramid Codes: Flexible Schemes
to Trade Space for Access Efficiency in Reliable Data Storage
Systems”, (to appear) IEEE NCA 2007, Cambridge, MA, Jul. 2007.

[2] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L.
M. G. M. Tolhiuzen, “Polynomial time algorithms for multicast
network code construction”, IEEE Transactions on Information
Theory, 51 (6). June 2005, pp. 1973-1982

[3] S. Lin, and D. J. Costello, “Error Control Coding, Fundamentals
and Applications”, Prentice Hall Press, 2004.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
limit error-correcting coding and decoding: turbo codes”, ICC 1993,
Geneva, Switzerland, May. 1993.

[5] R. G. Gallager, “Low-Density Parity-Check Codes”. Cambridge,
MA: M.I.T. Press, 1963.

[6] L. Lentmaier and K. Ziganggirov, “Iterative decoding of generalized
low-density parity-check codes”, ISIT 1999, Cambridge, MA, Aug.
1999.

[7] G. Yue, P. Li, and X. Wang, “Low-Rate Generalized Low-
Density Parity-Check Codes with Hadamard Constraints”, ISIT
2005, pp.1337-1381, Australia, 4-9 Sept. 2005.

[8] G. Richter, S. Stiglmayr, and M. Bossert, “Optimized Asymptotic
Puncturing Distributions for Different LDPC Code Constructions”,
ISIT 2006, Seattle, WA, July, 2006

[9] S. Freundlich, D. Burshtein and S. Litsyn, “ Approximately Lower
Triangular Ensembles of LPDC Codes with Linear Encoding Com-
plexity”, ISIT 2006, Seattle, WA, July, 2006

[10] R.A. Horn, C.R. Johnson, “Matrix Analysis”, Cambridge University
Press.

