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Foreword

For as long as researchers on artificial intelligence in medicine (AIM) have been working to
develop high-performance decision-support tools for clinicians, they have been struggling
with the question of how best to handle the uncertainty that is inherent in medical
diagnosis and therapy planning. In the early 1970s, when the AIM field was getting
started, people considered, discussed, and even tried probability theory, but they tended
to abandon it because of four major limitations to applying it formally:

1. Inaccuracies due to the perceived practical need to assume conditional indepen-
dence

2. Practical difficulties with the assessment of large numbers of conditional probabil-
ities

3. Cognitive complexity in modifying or updating large tables of conditional probabil-
ities and their interrelationships, once the numbers had been successfully gathered

4. Computational complexity that resulted if rigorous probabilistic approaches were
attempted

Thus, in the early systems, uncertainty was handled by a variety of ad hoc models, of
which the certainty-factor model of Mycin (Shortliffe and Buchanan, 1975), the evoking-
strength/frequency-weight model of Internist-1 (Miller et al., 1982), and the causal-
weighting model of Casnet (Weiss et al., 1978) are perhaps the best known. The
uncertain-reasoning issues addressed in such experimental programs were in no way spe-
cific to medicine, however. The evolving expert-systems field has consistently found
that uncertainty management is a major problem in diverse domains. For example, the
Prospector system for geological exploration, an early expert system developed in the
1970s, used a subjective Bayesian model to inspire its inference-network approach to
uncertainty management (Duda et al., 1976), but the actual implementation departed
sufficiently from classical probability theory that Prospector also can be viewed as an ad
hoc adaptation.

In recent years, there has been a resurgence of interest in the use of more formal
probabilistic methods to handle uncertainty in large artificial-intelligence (AI) systems.
Investigators have concentrated on knowledge acquisition and on Bayesian inference using
the belief network (also called knowledge map), which is a graphical representation of
uncertain knowledge based on probability theory. What had bothered me about most
of that work was its theoretical orientation; no one had built a nontrivial, efficient,
and effective system using formal probabilistic methods. Until such a system had been
validated, I thought that the concerns of the AI researchers of the 1970s would not have
been addressed.



xvi Foreword

In our laboratory, David Heckerman was the first investigator to question the assump-
tions that had led AI researchers to develop the ad hoc models (Heckerman, 1985). Heck-
erman’s analyses provided insights into major limitations of these models, encouraging
him and other researchers to explore how normative theory could be applied practically
within the expert-systems paradigm. Heckerman wished to advance the theory of belief
networks, and to show that belief networks could be used to build a large, real-world
system that was effective in its decision task. Furthermore, he set out to demonstrate
the validity of the approach by undertaking a formal evaluation. Heckerman has accom-
plished these tasks admirably.

Working with colleagues at the University of Southern California (Bharat Nathwani
and Keung-Chi Ng) and at Stanford (Eric Horvitz and Larry Fagan), Heckerman created
a medical expert system that used a probabilistic model for its management of uncer-
tainty. This system, known as Pathfinder, assisted pathologists with the interpretation
of histologic sections of human tissues—initially, from the lymph nodes. Reasoning had
to account for more than 60 diagnoses and more than 100 descriptive findings; workers
in the 1970s would not have used a probabilistic technique to handle a problem of this
size and complexity. Heckerman demonstrated that, using a probabilistic framework to
elicit and encode the knowledge of domain experts, he could construct a useful system.

The large domain of lymph-node pathology helped to motivate Heckerman to develop
graphical extensions of the belief network representation that would facilitate the as-
sessment of an immense number of probabilities. One representation, called a similarity
network, permits the incremental construction of extremely large belief networks from
cognitively manageable subproblems that involve the comparison of two diseases and
their distinguishing features. Another representation, called a partition, simplifies the
assessment of the conditional probabilities within a belief network. This approach to
knowledge acquisition has now been tested extensively by Heckerman and his colleagues
in the pathology domain, and has been shown both to be acceptable to experts and to
form the basis for high-quality diagnostic advice.

As the book demonstrates, Heckerman is a superb and creative scientist. He brings
an unusual educational background to his work. He holds a B.S. in mathematics and
physics and a M.S. in physics from UCLA. He decided to enter our training program in
medical informatics after he began his training at Stanford Medical School, combining
his M.D. and Ph.D studies.

Heckerman’s dissertation reflects an impressive medley of theoretical development,
practical application, and formal evaluation. I therefore successfully recommended it to
our Department of Computer Science for consideration as one of Stanford’s two nom-
inations for the Association for Computing Machinery’s annual dissertation award. I
was delighted when Heckerman was selected as one of the two winners in the national
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competition for 1990. We in the medical informatics program at Stanford are proud of
Heckerman’s work and this recognition of its excellence by the computer-science commu-
nity.

Although Heckerman’s work was originally conceived to address specific medical prob-
lems, the underlying theory and its formal presentation are clearly domain independent
and have great potential for broad applicability. In fact, partitions recently have been
used to develop normative expert systems for jet-engine repair and for the diagnosis
of efficiency problems in gas turbines that generate electric power. Heckerman’s work
shows that, by exploiting graphical representations of independence, we can make proba-
bility theory a practical tool for managing uncertainty. Heckerman’s work has convinced
me that there are practical methods for using formal probabilistic approaches in expert
systems. He has built an impressive diagnostic tool—Pathfinder—and has rigorously
demonstrated its incremental value over earlier approaches. I believe it is a rare dis-
sertation indeed that handles the three areas of theory, implementation, and formal
evaluation, as well as Heckerman’s does. I therefore commend this volume to you, and
await with enthusiasm further explorations of both the theory and the application that
you will learn about in these pages.

Edward H. Shortliffe
Stanford University

July, 1991





Preface

This work describes a new generation of expert systems—called normative expert systems.
These systems have the potential to provide better decision support than do traditional
expert systems in domains where the accurate management of uncertainty is important.

This potential for improvement arises because people, including experts, make mistakes
when they make decisions under uncertainty. That is, people often deviate from the rules
of decision theory, which provides a set of rational principles or gold standards for how
people should behave when reasoning or making decisions under uncertainty. Decision
theory includes the rules of probability and the principle that a person should always
choose the alternative that maximizes his expected utility.

Traditional expert systems provide decision support by mimicking the recommenda-
tions of experts. They do so by managing uncertainty with heuristic or ad hoc methods.
Such systems are valuable, because they provide important information to a nonexpert
who is confronted with a confusing decision, and because they offer reminders to users
who may be stressed or fatigued. Nonetheless, they tend to duplicate the errors made
by experts.

In contrast, normative expert systems use decision theory to manage uncertainty. The
word “normative” comes from decision analysts and cognitive psychologists who empha-
size the importance of distinguishing between normative behavior, which is what we do
when we follow the gold standards of decision theory, and descriptive behavior, which
is what we do when unaided by these gold standards. By encoding expert knowledge
in a decision-theoretic framework, we can reduce errors in reasoning, and thereby build
expert systems that offer recommendations of higher quality.

Normative expert systems have not become commonplace because they have been
difficult to build and use. Over the past decade, however, researchers have developed the
influence diagram, a graphical representation of a decision maker’s beliefs, alternatives,
and preferences that serves as the knowledge base of a normative expert system. Most
people who have seen the representation find it intuitive and easy to use. Consequently,
the influence diagram has overcome significantly the barriers to constructing normative
expert systems.

Nevertheless, building influence diagrams is not practical for extremely large and com-
plex domains. In this book, I address the difficulties associated with the construction of
the probabilistic portion of an influence diagram, called a knowledge map or belief net-
work. I introduce two representations that facilitate the generation of large knowledge
maps. In particular, I introduce the similarity network, a tool for building the network
structure of a knowledge map, and the partition, a tool for assessing the probabilities
associated with a knowledge map.

The knowledge map, similarity network, and partition represent graphically a person’s
judgments about the independence of events. Each of these representations exploit the
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phenomenon that people can make judgments about the independence of events more
easily than they can quantify with probabilities their beliefs that those events will oc-
cur. The similarity network and partition, however, can represent more judgements of
independence than can a knowledge map. Therefore, experts find it easier to construct
knowledge bases using these representations than they do using knowledge maps alone.

The similarity-network and partition representations aided considerably the construc-
tion of Pathfinder, a large normative expert system for the diagnosis of lymph-node
diseases (the domain contains over 60 diseases and over 100 disease findings). In an early
version of the system, I encoded the knowledge of the expert using an erroneous assump-
tion that all disease findings were independent, given each disease. When the expert and
I attempted to build a knowledge map for the domain to capture the dependencies among
the disease findings, we failed. Using a similarity network, however, we were able to build
the knowledge map for the entire domain in approximately 40 hours. Furthermore, the
partition representation reduced the number of probability assessments required by the
expert from 75,000 to 14,000. Most important, through a comparison procedure based
in decision theory, I found that the improvements in diagnostic accuracy afforded by the
more sophisticated model of the domain were well worth the additional effort that we
had invested in building the revised version of the system.

In this book, I examine in detail the theoretical properties of similarity networks and
partitions, and discuss the application of these representations to the construction of
Pathfinder. This work suggests strongly that, by identifying specific forms of conditional
independence, and by developing representations that exploit these forms of independence
for knowledge acquisition, knowledge engineers can construct normative expert systems
for domains of larger scope and greater complexity than the domains previously thought
to be amenable to the decision-theoretic approach.

David Heckerman
Univeristy of Southern California

July, 1991



A Guide for the Reader

This book has been written for readers from backgrounds in various areas, including
artificial intelligence, decision analysis, and medical informatics. Chapters 1, 2, and 6
contain the fundamental ideas regarding similarity networks and partitions, and should
be read by everyone.

Appendix A contains a discussion of basic concepts from decision theory and a tu-
torial on knowledge maps and influence diagrams. People should read this appendix
before reading the main body of the book if they are unfamiliar with the concept of the
joint probability distribution, the principle of maximum expected utility, or the distinc-
tions between Bayesian and frequentist philosophies, between normative and descriptive
reasoning, or between decision theory and decision analysis.

Chapter 3 contains a detailed axiomatic characterization of the similarity-network
representation. Those readers who are mainly interested in an intuitive understanding of
the representations may skip this chapter. Readers who are technically inclined should
note that all the major results, and the arguments for those results, are contained in
Chapter 3. The more complicated proofs are given in Appendix B.

Chapters 4 and 5 describe the construction and evaluation of Pathfinder. Researchers
in the field of medical informatics and others who are interested in learning about the
practical application of the similarity-network and partition representations to knowledge
acquisition will find these chapters particularly relevant.
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1 Introduction

One is almost tempted to say that quite apart from its intellectual mission,
theory is the most practical thing imaginable....

—Ludwig Boltzmann (Broda, 1983, page 104)

Over the last 2 decades, decision analysts have been using decision theory in conjunction
with a collection of knowledge representations and heuristic techniques to provide clarity
of action to individuals and groups who are confused about important decisions. Decision
theory includes probability theory (sometimes referred to as subjective probability theory
or Bayesian probability theory) and the maximum expected utility principle, which states
that a decision maker should choose the alternative that maximizes his expected utility.
Perhaps the most significant virtue of decision theory is that it is normative. That is,
the theory provides a set of gold standards for how people wish they could behave when
allocating scarce resources under uncertainty. It is well known that people often do
not behave in accordance with these gold standards (Edwards, ed., 1956; Tversky and
Kahneman, 1974; Kahneman et al., 1982). Thus, a decision analysis can save millions of
dollars or even lives and suffering when the stakes are high.

For nearly the same period of time, knowledge engineers have been using a set of rep-
resentations and heuristic techniques developed by researchers in artificial intelligence to
build expert systems: computer programs that bring to bear the knowledge of an expert or
group of experts on a class of decisions or domain (e.g., Mycin and Prospector are expert
systems for the diagnosis and treatment of bacterial infections, and for site selection for
mineral exploration, respectively (Shortliffe, 1976; Duda et al., 1976)). Decision theory
and decision-analytic techniques have rarely been used in the construction of such sys-
tems. Although some artificial-intelligence researchers have avoided a decision-analytic
approach on theoretical grounds (Shafer, 1986; Zadeh, 1986), most workers have turned
to alternative approaches for decision making because they believe that the normative
approach to constructing expert systems for large, real-world domains is impractical
(Shortliffe and Buchanan, 1975; Rich, 1983, pages 184–199).

Over the last 6 to 7 years, several researchers working at the boundary of decision anal-
ysis and artificial intelligence have been attempting to build normative expert systems:
expert systems that use a decision-theoretic model as the framework for knowledge rep-
resentation and inference. From the perspective of decision analysis, such systems could
provide decision assistance across a wide range of possible decisions in a given domain.
By avoiding the expense of analysts and experts for every confusing and high-stakes
decision to be made, a normative expert system could reduce significantly the costs of
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decision making. From the perspective of artificial intelligence, use of a normative theory
as the framework for representing knowledge could improve dramatically the quality of
expert knowledge that is delivered to the user of an expert system.1

A major breakthrough on the path toward the creation of normative expert systems
has been the development of the influence diagram, a representation that graphically
represents the beliefs, alternatives, and preferences of a decision maker (Howard and
Matheson, 1981).2 The influence diagram is a natural representation for the knowledge
base of an expert system. The representation is mathematically precise, yet has a human-
oriented qualitative structure that facilitates communication between the expert and a
decision model. Moreover, influence diagrams can represent any decision problem.

The influence-diagram representation facilitates the three major facets of expert system
development: knowledge acquisition, the process of capturing and encoding the knowl-
edge of an expert or experts; inference, the generation of recommendations or relevant
information based on user input and the expert knowledge; and explanation, the process
of communicating such recommendations or relevant information to the user. Influence
diagrams simplify knowledge acquisition, because we can use them to represent graphi-
cally assertions of conditional dependence and independence before we need to consider
assessments of probabilities or utilities. We can use these assertions of conditional inde-
pendence to decompose the assessment of a joint probability distribution into a collection
of independent assessments of manageable size. Such decomposition helps us to focus
attention during knowledge acquisition, and to decrease the size of the construction task.
In addition, we can use the assertions of conditional independence in an influence dia-
gram to increase the computational efficiency of decision-theoretic inference. Specifically,
researchers have developed exact and approximate inference algorithms that exploit as-
sertions of conditional independence in an influence diagram to avoid direct computations
on the joint probability distribution associated with that diagram (Shachter, 1986; Hen-
rion, 1986; Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Cooper, 1990a). Furthermore,
we can use the graphical representation of conditional independence to generate cogent
explanations to the builders and users of normative expert systems (Pearl, 1988, Chap-
ters 5 and 10). Given these features of the influence-diagram representation, it is not
surprising that several normative expert systems have been constructed using the rep-
resentation (Spiegelhalter and Knill-Jones, 1984; Cooper, 1984; Reggia and Perricone,
1985; Henrion and Cooley, 1987; Olesen et al., 1989; Beinlich et al., 1989).

1See Appendix A for a discussion of this point.
2Readers unfamiliar with the influence-diagram representation should read Appendix A before reading

the body of this book.
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In this book, I address the pragmatic aspects of capturing and representing knowledge
for normative expert systems. I show that by identifying specific forms of conditional in-
dependence, and by developing representations that exploit these forms of independence
for knowledge acquisition, knowledge engineers can construct normative expert systems
for domains of larger scope and greater complexity than the domains previously thought to
be amenable to the decision-theoretic approach. In particular, I introduce two graphical
extensions to the influence-diagram representation called similarity networks and parti-
tions. A similarity network is a tool for constructing an influence diagram, whereas a
partition is a tool for assessing the probabilities associated with an influence diagram.3

Both representations facilitate the development of large and complex models by exploit-
ing forms of conditional independence that are not easily represented in an ordinary
influence diagram. In this book, I scrutinize these representations and the forms of con-
ditional independence that they embody, and show how their use has made practical the
construction of a normative expert system for medicine.

1.1 Pathfinder: A Normative Expert System

A normative expert system called Pathfinder provided the primary motivation for the
development of the similarity-network and partition representations. Pathfinder assists
surgical pathologists with the diagnosis of lymph-node disease (Heckerman et al., 1985;
Heckerman et al., 1989b; Heckerman et al., 1990).

The role of the surgical pathologist in lymph-node diagnosis is shown in Figure 1.1.
If a patient’s physician suspects that a disease process has involved the lymph nodes
of his patient, he may remove one or more those nodes for diagnosis. The surgical
pathologist examines these samples of the patient’s tissue microscopically. Sometimes,
the pathologist also incorporates clinical, radiology, and laboratory information, and
examines the nodes with expensive tests derived from immunology, microbiology, and
cell kinetics research. Based on this examination, the pathologist provides a diagnosis
to the patient’s physician. That is, the pathologist tells the physician, “the patient has
disease x.” Given this diagnosis, the patient’s physician then treats the patient.

The well-being of patients depends strongly on the accuracy of the pathologist’s diag-
nosis. In an extreme case, for example, let us suppose that the patient has Hodgkin’s
disease, a malignant disease, but that the pathologist makes a diagnosis of mononucleo-
sis, a benign disease that can resemble Hodgkin’s disease. In this situation, the patient’s
chance of death is significantly greater than it would have been had the diagnosis been

3Some authors use the term influence diagram to refer to both the network representation and the
probabilities that underlie the network. In this book, however, I use the term to refer to only the network.
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Figure 1.1: The role of the pathologist.
Using a microscope and other, more expensive, tests derived from immunology, microbiology, and cell
kinetics research, a pathologist examines tissue removed from a patient. Based on this examination and
other observations including clinical, radiology, and laboratory information, the pathologist provides
a diagnosis to the patient’s physician, who then treats the patient in accordance with the diagnosis.
The outcome of treatment can be extremely sensitive to the accuracy of the diagnosis rendered by the
pathologist.

correct, because he does not receive immediate treatment for his malignancy. In contrast,
let us suppose that the patient has mononucleosis, and that the pathologist makes a diag-
nosis of Hodgkin’s disease. In this case, the patient will undergo expensive, painful, and
debilitating treatment, to be “cured,” only because he never had the malignant disease
in the first place.

Unfortunately, pathologists who do not specialize in one or a few types of tissue—the
majority of pathologists—often make errors in diagnosis. They are especially likely to
make errors when the tissue being examined is from the lymph node (Byrne, 1977; Jones
et al., 1977; Coltman et al., 1980; Kim et al., 1982). Several cooperative oncology studies
have documented that, although experts in lymph-node pathology show agreement with
one another, the diagnoses rendered by a nonspecialist disagree with those made by
experts as much as 50 percent of the time (Velez-Garcia et al., 1983).

In summary, the stakes associated with lymph-node diagnosis are high, and there is
a significant difference between the accuracy of the nonspecialists and specialists in the
field. A normative expert system for this domain is therefore likely to be of benefit to
pathologists.

The domain of lymph-node pathology is also an excellent testbed in which to inves-
tigate practical issues concerning the construction of normative expert systems. The
domain is large by any standard of comparison for expert systems. Over 60 diseases can
invade the lymph node (25 benign diseases, 9 Hodgkin’s lymphomas, 18 non-Hodgkin’s
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lymphomas, and 10 metastatic diseases). In addition, there are approximately 100 mor-
phologic distinctions or features within lymph nodes that can be recognized easily on
microscopic examination. Each feature is associated with two or more mutually ex-
clusive and exhaustive instances. Also, Pathfinder contains features reflecting clinical,
laboratory, immunological, and molecular biological information that is relevant to the
diagnosis of lymph-node disease.

1.1.1 A Pathfinder Dialog

In rendering a diagnosis, a pathologists (1) identifies and quantifies features; (2) con-
structs a differential diagnosis, a set of diseases consistent with the observations; and (3)
decides what additional features to evaluate and what costly tests to employ to narrow
the differential diagnosis. He repeats these steps until he has observed all useful features.
This procedure, used by diagnosticians in many medical and nonmedical domains, is
called the hypothetico-deductive approach (Bartlett, 1958; Elstein et al., 1971; Elstein,
1976; Elstein et al., 1978).

Pathfinder uses this same method to assist pathologists with their task of diagnosis.
Let us consider a sample dialog between the system and a user of the system illustrated
in Figures 1.2 through 1.8. Figure 1.2 shows the initial Pathfinder screen. The FEATURE

CATEGORY window displays the categories of features that are known to the system, the
OBSERVED FEATURES window displays feature–instance pairs that have been observed by
the pathologist, and the DIFFERENTIAL DIAGNOSIS window displays the list of possible
diseases and their probabilities. The probabilities in Figure 1.2 are the prior probabilities
of disease—the probabilities for disease given only that a patient’s node has been removed
and is being examined.

If the user selects (double-clicks) the feature category SPHERICAL FEATURES, then
Pathfinder displays a list of features for that category, as shown in Figure 1.3. To enter
a particular feature, the user double-clicks on that feature, and then selects one of the
mutually exclusive and exhaustive instances for that feature. For example, Figure 1.4
shows what happens when the user selects the feature F % AREA (percent area of the
lymph-node section that is occupied by follicles). In the figure, a third window appears
that lists the instances for this feature: NA (not applicable), 1–10%, 11–50%, 51–75%, 76–

90%, and >90%. Figure 1.5 shows the result of selecting the last instance for this feature.
In particular, the feature–instance F % AREA: >90% appears in the middle column, and
the differential diagnosis is revised, based on this observation.

The user can continue to enter any number of features of his own selection. Fig-
ure 1.6 shows the Pathfinder screen after the user has reported that follicles are in a
back-to-back arrangement and show prominent polarity. Alternatively, the user can ask
the program to recommend additional features for observation. When such a request
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Figure 1.2: The Pathfinder interface.
The Macintosh windows display the categories of features, the observed features, and the differential
diagnosis. In the differential diagnosis, diseases are ordered by their probabilities. The probability for a
disease shown in this figure is the prior probability for that disease—the probability that the disease is
present in a patient, given only that the patient’s node has been removed and is being examined.

is made, the program first computes the value of clairvoyance for each feature that has
not yet been reported to the system.4 The system then subtracts the cost of observ-
ing a feature—including the monetary expense, time delay, and the tedium associated
with its observation—from that feature’s value of clairvoyance, and displays the most
cost-effective features for evaluation. In this case, as shown in Figure 1.7, Pathfinder
determines that MONOCYT (monocytoid cells) is the most useful feature for evaluation.
Figure 1.8 shows the result of the user reporting that monocytoid cells are prominent.
Specifically, the four features observed by the user have narrowed the differential diag-
nosis to a single disease: the early phase of AIDS.

4Appendix A contains a general discussion of value-of-clairvoyance computations. Chapter 5 describes
the specific decision model used for such computations in Pathfinder. In the computation itself, we
assume that the decision maker’s preferences approximately satisfy the delta property.
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Figure 1.3: The selection of a feature category.
The user has selected (double-clicked) the category of features named SPHERICAL STRUCTURES.
This action opens a window that contains the list of features for this category.
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Figure 1.4: The selection of a feature.
The user has selected the feature F % AREA. This selection opens a window that contains an expanded
version of the feature name and the list of the mutually exclusive and exhaustive instances for the feature.
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Figure 1.5: The entry of a feature–instance pair.
The entered feature–instance pair—F % AREA: >90%—appears in the middle window. Based on this
piece of evidence, the program revises the differential diagnosis in the right-most window.
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Figure 1.6: The entry of two additional feature–instance pairs.
The new feature–instances pairs—F DENSITY: BACK-TO-BACK and F POLARITY: PROMINENT—
appear in the middle window. Based on these observations, the program again revises the differential
diagnosis.
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Figure 1.7: A request for features to evaluate.
The user has asked Pathfinder to display features that are useful for narrowing the differential diagnosis.
The program displays the four most cost-effective features for the pathologist to observe next.
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Figure 1.8: A diagnosis.
Pathfinder determines that only a single disease—AIDS EARLY (the early phase of AIDS)—is consistent
with the four observations shown in the middle window.
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Gorry and Barnett introduced the hypothetico-deductive approach to automated sys-
tems in 1968 under the name sequential diagnosis. The iterative strategy appears in
many expert systems that are both normative (Gorry and Barnett, 1968; Gorry et al.,
1973; Spiegelhalter and Knill-Jones, 1984; Henrion and Cooley, 1987; Olesen et al., 1989;
Beinlich et al., 1989) and nonnormative (Ben-Bassat et al., 1980; Miller et al., 1982).

1.1.2 Diagnosis: A Decision

In the patient case that we have considered, Pathfinder can provide the pathologist with a
diagnosis, because there is only one disease that is consistent with the patient’s findings.
The example, however, is atypical in that more than one disease usually remains on
the final differential diagnosis. In these situations, Pathfinder would have to make a
decision—that is, a choice under uncertainty—to render a diagnosis.

In principle, Pathfinder can make such decisions. The system contains a utility model
that represents a typical patient’s preference for outcomes associated with every combi-
nation of disease and diagnosis that can befall a patient. We discuss this model in detail
in Chapter 5. Pathfinder uses the utility model in its value-of-clairvoyance computations,
and it can also use the model for rendering diagnoses under uncertainty.

Nonetheless, preferences vary among patients. Furthermore, I have observed that, al-
though recommendations for evidence gathering are not sensitive to the Pathfinder utility
model, diagnostic recommendations are somewhat sensitive to the model. Consequently,
I do not allow Pathfinder to make diagnoses under uncertainty. I hope that this policy
will encourage a change in the way pathologists and care-providing physicians commu-
nicate. In the short term, I hope that pathologists will begin to express clearly—in
the language of probability—uncertainty associated with their observations. In the long
term, I hope that each physician who is associated with the care of a patient—including
the primary physician, the pathologist, the radiologist, the surgeon, the oncologist, and
the radiotherapist—and the patient himself will communicate in decision-theoretic terms
to determine the best treatment for that patient. Such communication could take place
via a shared decision model embodied in an expanded version of Pathfinder.5

1.1.3 A Problem with Knowledge Acquisition

Let us concentrate on Pathfinder’s knowledge or probabilistic model. The Pathfinder
project began in 1983. Early versions of Pathfinder employed a probabilistic model rep-
resented by the influence diagram in Figure 1.9(a). Specifically, the expert on the project,
Dr. Bharat Nathwani, and I assumed that diseases were mutually exclusive and exhaus-
tive, and that all features were conditionally independent, given disease. The assumption

5For another discussion of this issue, see Shachter and Hendrickson (1990).
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→

(a) DISEASE (b) DISEASE

Figure 1.9: Two schematic influence diagrams for Pathfinder.
In both influence diagrams, the chance node DISEASE represents a set of mutually exclusive and ex-
haustive diseases. The features relevant to the diagnosis of disease are represented by the unlabeled
chance nodes below DISEASE. In (a), all features are conditionally independent, given DISEASE. In
(b), several features are conditionally dependent, given DISEASE. We required a similarity network to
construct this more complex influence diagram.

that diseases were mutually exclusive was appropriate, because co-occurring diseases al-
most always appear in different lymph nodes or in different regions of the same lymph
node. Also, the large scope of Pathfinder made reasonable the assumption that the set of
diseases was exhaustive. The assumption of global conditional independence, however,
was inaccurate. For example, given certain diseases, finding that follicles are abundant
in the tissue section increases greatly the chances that sinuses in the interfollicular areas
will be partially or completely destroyed. Thus, in 1986, the expert and I attempted
to represent explicitly the dependencies among features in the lymph-node domain, by
constructing an influence diagram of the form shown in Figure 1.9(b).

Because of the wide scope of the domain, however, the expert was uncomfortable
assessing conditional dependencies among some features. Through many discussions
with the expert, I identified the source of his difficulties with the construction of the
Pathfinder influence diagram, and developed the similarity-network representation to
overcome these difficulties. Given this representation, the expert was able to construct
the influence diagram for Pathfinder shown in Figure 1.10. In addition, using some of
the insights that motivated the creation of similarity networks, I developed the partition
representation to facilitate the probability assessment for the influence diagram. This
representation decreased the number of probability assessments required to construct
a joint distribution for the lymph-node domain by more than a factor of five. As we
shall see, the similarity-network and partition representations produced a new version of
Pathfinder whose diagnostic accuracy was superior to that of previous versions.

In Chapters 4 we examine the details of the construction of this influence diagram; in
Chapter 5, we discuss the formal evaluation of diagnostic accuracy.
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Figure 1.10: The Pathfinder influence diagram.
The influence diagram represents over 100 features that are relevant to diagnosis (Appendix C contains
a list of the feature abbreviations). The node DISEASE contains over 60 lymph-node diseases.
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1.2 Similarity Networks and Partitions

In general, influence diagrams can represent the alternatives, preferences, and beliefs
of a decision maker. Influence diagrams that represent only the beliefs of a decision
maker—that is, influence diagrams that contain only chance nodes and informational
arcs—are called knowledge maps (Howard, 1989a). Other names for knowledge maps
include belief networks (Pearl, 1986), Bayesian networks (Pearl, 1988), and probabilistic
influence diagrams (Shachter, 1990). The Pathfinder influence diagram in Figure 1.10,
for example, is a knowledge map.

The Pathfinder knowledge map has a special form. In particular, the chance node
DISEASE contains many mutually exclusive and exhaustive diseases. In addition, this
node conditions many other nodes, but is itself not conditioned by any nodes. Knowledge
maps of this form are seen commonly in problems of diagnosis in which a single disease
or fault is present.

A similarity network is a tool for building large and complex knowledge maps that
have this special form. The disease node or—more generally—the distinguished node is
the center of attention for the construction of a similarity network. The components of
a similarity network include a similarity graph and a collection of local knowledge maps.
Each node in a similarity graph represents an instance of the distinguished node, called
a hypothesis. Edges in a similarity graph connect hypotheses that are similar or that are
likely to be confused with one another by a user of the expert system. A local knowledge
map is associated with each edge in the similarity graph. A local knowledge map for the
edge between hypotheses hi and hj is a knowledge map constructed under the assumption
that only hi and hj are possible. That is, a local knowledge map for hypotheses hi and hj

is a knowledge map for discriminating only those two hypotheses. By constructing local
knowledge maps, a person can concentrate on one manageable portion of the modeling
task at a time.

Given a similarity network, we can construct a global knowledge map for the entire do-
main through simple graph manipulations on the local knowledge maps. The construction
is sound in the sense that we can derive the assertions of conditional independence and
dependence in the global knowledge map from the rules of probability and the assertions
of conditional independence and dependence in the local knowledge maps. Also, a simple
algorithm exists for verifying that the assertions in the local knowledge maps are consis-
tent. Thus, the global knowledge map constructed from a similarity network faithfully
represents a person’s assertions. We say that the global knowledge map is valid. In
addition, the construction of the global knowledge map is exhaustive in the sense that
any feature that is relevant to discrimination of the set of hypotheses as a whole will
appear in the global knowledge map.
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Similarity networks represent two forms of conditional independence called subset in-
dependence and hypothesis-specific independence, neither of which is represented conve-
niently in a knowledge map. In Chapter 2, we examine these forms of conditional inde-
pendence, and discuss the problems posed by their representation in knowledge maps.
Similarity networks take advantage of these forms of independence to decompose the
construction of a knowledge map in much the same way that knowledge maps take ad-
vantage of ordinary conditional independence to decompose the construction of a joint
probability distribution. In particular, similarity networks exploit people’s ability to
make judgments of subset independence and hypothesis-specific independence, without
assessing the probabilities that underlie such judgments.

We can also use assertions of subset independence and hypothesis-specific independence
to simplify the assessment of probabilities associated with a knowledge map. These
assertions of conditional independence, as they are represented in a similarity network,
simplify assessment somewhat. In Chapter 2, however, we examine the partition, a
representation that exploits more fully these independencies for assessment. Figure 1.11
summarizes the roles of the partition, similarity network, and knowledge map in the
construction of a joint probability distribution.

Although both similarity networks and partitions were designed to simplify the con-
struction and assessment of knowledge maps of the form shown in Figure 1.9(b), we see
in Chapter 6 that the representations can be generalized to other problems of diagnosis.
For example, we see that the representation can be used in some situations where hy-
potheses are not mutually exclusive, and where the disease node is conditioned by other
nodes.

1.3 Historical Background and Contributions

The developments in this book derive from work within the related fields of medical in-
formatics and artificial intelligence and within the discipline of decision analysis. Because
these areas of research differ in their methods, language, and philosophy, we examine the
historical background and contributions of this work from two perspectives.

1.3.1 Medical Informatics and Artificial Intelligence

One large area of research in the field of medical informatics has been the capture, rep-
resentation, manipulation, and explanation of uncertain knowledge for expert systems.
This research has undergone three distinct phases of development (Horvitz, 1986). In
the first phase, which began over three decades ago, Ledley and Lusted suggested that
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Similarity Network

Local Knowledge Maps

Similarity Graph

Partitions

Global Knowledge Map

Assessments

Joint
Distribution

Figure 1.11: Decomposition of a joint probability distribution.
A joint distribution can be constructed from a global knowledge map and a set of assessments for each
node in the map. The knowledge map itself can be constructed from a similarity network, consisting
of a similarity graph and a collection of local knowledge maps. The assessments for each node in the
knowledge map can be further decomposed using partitions.
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probability theory was an appropriate framework for what is now called an expert sys-
tem (Ledley and Lusted, 1959). Soon after, researchers in the field began experimenting
with probabilistic and decision-theoretic expert systems for medical diagnosis and treat-
ment. For example, in 1961, Warner constructed a probabilistic expert system for the
diagnosis of congestive heart failure (Warner et al., 1961). In 1968, Gorry and Barnett
extended that system to include test and treatment decisions (Gorry and Barnett, 1968).
To avoid the complexity of directly acquiring and manipulating a joint distribution for
their domains, these researchers made the simplifying assumptions represented by the
influence diagram in Figure 1.9(a). In particular, they assumed that diseases were mu-
tually exclusive and exhaustive, that all features were conditionally independent, given
the true disease state of the patient, and that a single test or treatment decision was at
hand. We refer to this collection of assumptions as the simple Bayes model. Using these
assumptions, researchers found it relatively easy to implement decision-theoretic expert
systems. By 1970, a large number of such programs had been developed (Miller et al.,
1977; Wagner et al., 1978).

Evaluations of most of these early systems showed that the programs performed well.
In fact, the diagnoses rendered by several of them were more accurate than were those
made by experienced physicians (de Dombal et al., 1972). Nonetheless, in the early
1970s, researchers began to criticize these systems. They noted that the domains of
these programs were small and did not reflect realistic clinical situations. Furthermore,
researchers argued that the assumptions of the simple Bayes model would be violated
as the domains of these systems were expanded (Gorry, 1973; Shortliffe, 1976). One
group of investigators showed that the diagnostic accuracy of an expert system based
on the simple Bayes model deteriorated significantly as the number of features in the
system increased. These investigators traced the degradation in performance to viola-
tions of the conditional-independence assumptions in the simple Bayes model (Fryback,
1978). Another group of researchers showed that the assumption of global conditional
independence could be unrealistic in small domains as well (Norusis and Jacquez, 1975).

Researchers at the time thought that they had two alternatives for building expert
systems of realistic size within the normative framework: (1) retain the simple Bayes
model, or (2) capture and represent a complete joint probability distribution and (possi-
bly) a complete utility model for a given domain. In the latter alternative, they imagined
assessing probabilities under the assumption that any combination of diseases was possi-
ble, and that any feature could be conditionally dependent on any other set of features.
Investigators found neither alternative attractive. Use of the simple Bayes model was
unacceptable for the reasons we have discussed, and the assessment and manipulation
of a full joint probability distribution was intractable. In addition to the problem of
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intractability, critics of the normative approach argued that decision-theoretic repre-
sentations could not easily express the informal, qualitative nature of human reasoning
(Gorry, 1973; Szolovits, 1982; Davis, 1982). Most researchers thus abandoned the nor-
mative approach in favor of heuristic techniques offered by the emerging discipline of
artificial intelligence.

The development of heuristic approaches for use in expert systems dominated much of
the research of the 1970s. These approaches generally incorporated expressive knowledge
representations often patterned after those that experts seemed to use. The resulting
benefits included improvements to explanation, and more sophisticated techniques for
knowledge acquisition and inference. For example, several representations allowed in-
vestigators to avoid the assumptions of global conditional independence of the simple
Bayes model without assessing a complete joint distribution. Examples include rules in
Mycin (Shortliffe and Buchanan, 1975), causal networks in Casnet (Weiss et al., 1978),
and frames in the Present Illness Program (PIP) (Pauker et al., 1976). Other artificial-
intelligence programs addressed the assumption of a single-disease diagnosis. A notable
example is the Internist-1 program, which is able to diagnose multiple diseases in a single
patient (Miller et al., 1982).

Heuristic representations allowed researchers to construct expert systems for large
and complex real-world domains. Nonetheless, in the 1980s, researchers in the fields of
medical informatics, artificial intelligence, and decision analysis began to identify signif-
icant deficiencies in these representations. For example, heuristic methods were based
on approaches used by experts and therefore were vulnerable to the incorporation of
undesirable biases in human reasoning. In addition, artificial-intelligence investigators
did not axiomatize their methods successfully. Consequently, these investigators were
unclear about the meaning of the quantities that they used to represent uncertainty
and preference. For example, researchers developed schemes that confused the absolute
degree of belief for a hypothesis, given evidence for the hypothesis, with the change in
degree of belief for that hypothesis, given that evidence (Heckerman, 1985; Horvitz and
Heckerman, 1985). Also, because researchers did not provide an unambiguous character-
ization of their representations and inference methods, they found it difficult to modify
their approaches when the approaches performed poorly, to extend their approaches to
new domains, and to build on the work of other people. Moreover, researchers were often
unaware of the implicit assumptions imbedded in their methods. Thus, heuristic-based
expert systems were susceptible to unanticipated errors. For example, in 1985, I devel-
oped an axiomatization of the certainty-factor (CF) model used by Mycin to manage
uncertainty (Shortliffe and Buchanan, 1975). This axiomatization shows that, under cer-
tain circumstances, the CF model makes assumptions that are stronger than are those
of the simple Bayes model. In particular, the CF model includes the assumption that
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features are conditionally independent, given each disease, as well as given the negation
of each disease (Heckerman, 1985). In an empirical study, I showed that the use of these
strong assumptions can degrade significantly the diagnostic accuracy of an expert system
(Heckerman, 1988).

Overall, researchers began to believe that the more powerful artificial-intelligence rep-
resentations and inference procedures were compromised by the nonnormative nature of
the procedures. This observation set the stage for the third phase of expert-system re-
search. In 1981, decision analysts Howard and Matheson developed the influence-diagram
representation (Howard and Matheson, 1981). The representation was easy to use, yet
was capable of expressing precisely any inference or decision problem in the normative
framework. The representation offered investigators a spectrum of alternatives between
using the simple Bayes model and using a complete joint probability distribution. For
example, using an influence diagram, an expert could assert that some features were
conditionally independent, and that other features were conditionally dependent. In ad-
dition, an expert could identify some diseases as being dependent (or mutually exclusive)
and others as being independent. In many domains, these assertions could be used by
knowledge engineers to make knowledge acquisition and inference tractable. Thus, with
the advent of influence diagrams, researchers once again began to construct normative
expert systems.

In this book, I argue that we have not yet approached the limits of the application
of decision theory to the representation of knowledge. Decision theory is nothing more
than a set of constraints that helps us to improve our thinking about important decisions.
Within these constraints, I argue, we can build languages that can express almost any
rational concept in a tractable manner. The influence diagram, and the extensions of
it that I develop in this work, are just the first examples of the normative languages
that we can construct. I argue that, to construct normative expert systems for complex
domains—even more complex than the domain of Pathfinder—we must identify forms
of conditional independence that human experts use to manage the complexity in their
domains. We must then develop new representations that can exploit these assertions to
facilitate the capture and representation of expert knowledge.

Researchers have argued that this approach to constructing expert systems is imprac-
tical for many domains, because a move beyond a simple Bayes model or some other
oversimplified Bayesian model might encounter massive interdependencies among dis-
tinctions. Indeed, this argument was and still is made by most artificial-intelligence
researchers who abandoned the normative approach in the 1970s. I conjecture, however,
that cognitive limitations on human experts will constrain the complexity of normative
computer-based models for decision making. That is, limitations on human memory and
human information-processing capabilities require that an expert impose assertions of
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conditional independence on his own domain knowledge, whether or not these assertions
actually hold (i.e., whether or not large amounts of experimental data would refute these
assertions). More important, I believe that, for many domains, we can formulate these
expert assertions of conditional independence such that they are self-consistent. The
development of the similarity-network and partition representations demonstrates that
such a formulation is possible. Thus, I conjecture that, for many domains, we can capture
and represent the important details of an expert’s knowledge in a coherent, normative
framework. The possibility that an expert imposes erroneous assertions of conditional
independence on his domain does not present a fundamental problem. If we find that
particular assertions of independence are incompatible with available experimental data,
we can use the principles of probability theory to update the expert’s model for his
domain.

Although the identification and exploitation of conditional independence is an impor-
tant approach by which we can build normative expert systems, other approaches also
offer promise. In particular, Wellman has developed a method for representing and rea-
soning with an incomplete decision-theoretic model. He has shown that, in many cases,
unambiguous recommendations for action can be derived from such a model (Wellman,
1986; Wellman, 1988; Wellman, 1990). Also, Horvitz and other investigators are using
decision analysis at the metalevel to trade off the benefits of a normative approach with
the time and effort required to build, reason with, and comprehend a decision-theoretic
model (Horvitz, 1986; Horvitz, 1987; Heckerman and Jimison, 1987; Horvitz, 1988; Heck-
erman et al., 1989a). Using these approaches and the approach developed here, it is likely
that researchers will develop normative experts systems for many real-world domains that
deliver valuable information to users.

1.3.2 Decision Analysis

Decision analyses are extremely expensive. Typically, a decision analysis requires the
participation one or more decision makers, one or more experts, and one or more decision
analysts. A person faced with the decision of whether or not to undergo a coronary artery
bypass surgery, for example, would have to pay approximately $5,000 in 1990 dollars to
buy a decision analysis (Howard, 1990).

In the last 5 years, researchers familiar with principles of both decision analysis and
artificial intelligence have developed two approaches in an effort to reduce the high cost
of decision analyses. One approach is the normative expert system. Another approach,
created by Holtzman, is the intelligent decision system (Holtzman, 1989). Although
we concentrate on normative expert systems in this work, the similarity-network and
partition representations can facilitate the construction of both types of systems. Thus,
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let us briefly examine intelligent decision systems, and compare them with normative
expert systems.

The developers of both expert systems and of intelligent decision systems treat a
set of decision problems whose members have a degree of similarity among them as a
single unit. As we have discussed, we refer to this unit as a decision class or domain
(Holtzman, 1989). Two goals shared by the developers of both types of systems are to
capture expert knowledge about a particular decision class, and to deliver this knowledge
to many decision makers faced with a decision within that class. Consequently, both
types of systems may obviate a decision analysis, or at least reduce the cost of an such
analysis. Those researchers who work to build intelligent decision systems, however, have
the additional goal of capturing the expertise of decision analysts, and of delivering this
expertise to decision makers. In particular, these researchers hope that their systems
will help decision makers to structure decision models through automated sensitivity
analyses, to provide unbiased assessments of probability and utility for their models,
and to explore solved models so that the decision makers may gain insights about their
decisions.

The concept of an intelligent decision system is new, and none of the goals of its
developers have been realized completely. Nonetheless, Holtzman has constructed an
intelligent decision system with results that are promising (Holtzman, 1989). The system,
called Rachel, advises infertile couples seeking medical assistance. The intelligent decision
system helps the couple and their physician derive a recommended course of action from
a model that combines the physician’s medical knowledge with the couple’s knowledge
of their preferences and special circumstances.

The architecture of intelligent decision systems, and of Rachel in particular, is a rule-
based system. There are two important differences, however, between the architecture of
intelligent decision systems and that of rule-based expert systems developed previously.
First, an expert system typically contains situation–action rules that encode expert-
recommended decisions, given a particular context. On the other hand, an intelligent
decision system contains rules that suggest how to construct, modify, or interpret an
influence diagram. Figure 1.12 illustrates one of the rules in Rachel’s knowledge base.
The rule states that, if the patient is in good health, and if a particular surgeon and anes-
thesiologist perform an internal spermatic vein ligation, then the chance node SURGICAL

COMPLICATIONS depends on the decision node SURGERY, as indicated by the probability
distributions shown in Figure 1.12. When a decision maker interacts with an intelligent
decision system, the system evokes many rules of this form, and thereby constructs an
influence diagram for the decision problem. In the process, the decision maker or domain
expert may choose to override several rules, or he may provide distinctions, dependencies,
probabilities, or utilities that the system needs to complete the decision model.
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IF

THEN

SURGERY
SURGICAL

COMPLICATIONS ;

The patient is in good health, the internal spermatic vein
ligation is performed by Dr. PQR, and the attending 
anesthesiologist is Dr. STW,

The variable SURGICAL COMPLICATIONScan be indirectly assessed
by means of the following relation:

with p ( SURGICAL COMPLICATIONS | SURGERY , ξ ) = 0.002
and   p ( SURGICAL COMPLICATIONS | SURGERY , ξ ) = 0.0.

++
+ -

Figure 1.12: A rule in an intelligent decision system.
The rule relates the probability of postsurgical complications to the track record of the surgical team
(Holtzman, 1989, page 142). See the end of this book for a guide to notation.

A second but related difference between intelligent decision systems and rule-based ex-
pert systems is that many expert systems contain a mechanism for attaching uncertainty
or preference to rules. Most such mechanisms resemble the Mycin CF model, and are
necessary because the rules relate situations to action. In intelligent decision systems,
however, there is less need to attach uncertainty or preference to the rules, because the
rules pertain to the construction of an influence diagram. An intelligent decision system
can bring to bear uncertainties and preferences of the decision maker at the time the
influence diagram is solved.

If the rules that comprise an intelligent-decision-system knowledge base are consistent,
then the procedure for creating influence diagrams from a set of rules has desirable theo-
retic properties. Breese recently extended the intelligent-decision-systems procedure for
constructing influence diagrams, and examined the formal properties of his procedure
(Breese, 1987; Breese, 1990). His goal in developing this procedure is somewhat dif-
ferent from that of the developers of intelligent decision systems. In particular, Breese
considers domains in which influence diagrams can be constructed automatically from
a set of rules in a knowledge base and from a particular decision context. In these do-
mains, a decision maker does not modify or override the rules in the knowledge base.
Nonetheless, Breese’s method can be applied to the construction of influence diagrams
within intelligent decision systems. Breese has shown that, if a set of rules is consistent,
and if his procedure produces a directed acyclic influence diagram from that set of rules
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and a particular decision context, then the chance and decision nodes that do appear
in the knowledge base but do not appear in the constructed influence diagram must be
irrelevant to the decision problem at hand. Of course, this guarantee fails if the set of
rules is not consistent.

Overall, the intelligent decision system is more likely to provide appropriate decision
assistance in decision classes where there are events or circumstances that cannot be
anticipated, and in decision classes where probabilities or utilities are likely to vary
from one person to the next. Not surprisingly, Rachel’s domain has these properties.
For example, an expert system for infertile couples probably will not anticipate that
a particular couple can afford an expert surgeon from a foreign country for a internal
spermatic vein ligation. An intelligent decision system containing the rule in Figure 1.12,
however, could recognize that an unusual situation has occurred, and request that a
knowledgeable agent of the couple provide the system with new probability distributions
describing the chances of postsurgical complications. Also, the desirability of having a
baby is likely to vary significantly across couples.

Despite these observations, several significant problems are associated with the archi-
tecture of intelligent decision systems. First, how does such a system guarantee that a set
of rules for a complex decision class is consistent? Checking the consistency of a collec-
tion of rules in a logic framework is NP-hard (Garey and Johnson, 1979); the procedure
is even more difficult in a decision-theoretic framework. Also, how does a decision maker
maintain the consistency of a knowledge base when he adds to or modifies the rules in a
knowledge base? He probably will require the assistance of experts knowledgeable about
both decision theory and the given decision class. Furthermore, those experts might have
to inspect the entire knowledge base to guarantee that their input is consistent with the
knowledge currently in the system. This process would be expensive and time consuming.

To address these problems, builders of intelligent decision systems for a given decision
class could create a large influence diagram for the entire class. The structure of this
influence diagram might not be complete, and the influence diagram might lack some
probability distributions and utilities, but the consistency of the rules implicit in the di-
agram would be guaranteed. In addition, if a decision maker wanted to add to or modify
the knowledge base of this intelligent decision system, he could inspect the incomplete
influence diagram before and after making those changes, and thereby could maintain
the consistency of the knowledge base. Furthermore, if developers of an intelligent deci-
sion system constructed the knowledge base of that system with an influence diagram,
areas of the knowledge base that are incomplete would be highlighted. These developers
probably would build a more complete model than they would if they constructed the
knowledge base as separate rules. Thus, the need for a decision maker to intervene during
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the construction of an influence diagram for his particular problem probably would de-
crease. In an extreme case of this methodology, where the influence diagram for a given
decision class is complete, the intelligent decision system would become a normative
expert system.

Almost certainly, there will be decision classes for which we cannot build single co-
herent influence diagrams. In these cases, we might be able to do nothing better than
to construct a knowledge base of possibly inconsistent influence-diagram components.
We should keep in mind the advantages of consistency, however, and strive to create
intelligent decision systems based on single influence diagrams.

Whether we build normative expert systems or intelligent decision systems, the Path-
finder dilemma illustrates that we need extensions to the influence-diagram represen-
tation to facilitate the construction of large and complex influence diagrams. In this
book, I demonstrate that we can create such extensions by identifying forms of con-
ditional independence used by experts (and possibly decision analysts) to manage the
complexity of their domain, and by creating languages that encode explicitly these forms
of independence.

1.4 Overview of the Book

In Chapter 2, the similarity-network and partition representations are illustrated by a
small real-world example from the domain of medicine. In Chapter 3, a formal theory for
similarity networks is developed. I show that the construction of the global knowledge
map from a similarity network consisting of a connected similarity graph and a set of
local knowledge maps is both sound and exhaustive. In addition, a simple algorithm
for testing the consistency of a set of local maps is developed. In Chapter 4, I describe
highlights of the construction and assessment of the knowledge map for Pathfinder using
similarity networks and partitions. In Chapter 5, the diagnostic accuracy of the ver-
sion of Pathfinder developed with the similarity-network and partition representations
is compared to that of the version of Pathfinder in which all features were assumed to
be conditionally independent. Finally, in Chapter 6, I describe extensions to the theory,
and discuss conclusions that we can derive from this work.



2 Similarity Networks and Partitions: A Simple Example

In this chapter, we use the similarity-network and partition representations to construct
and assess a knowledge map for a small medical expert system. The purpose of this ex-
ercise is to illustrate the basic concepts and techniques underlying these representations,
and to demonstrate some of the advantages of their use. Because the example is small,
however, the full power of these representations for simplifying knowledge acquisition can-
not be demonstrated. In Chapter 4, we examine highlights of this knowledge-acquisition
approach as it is applied to Pathfinder. There, the power of these representations is
illustrated more fully.

The medical example that we examine is real, but it has been simplified for purposes
of presentation. Dr. Harold Lehmann served as the expert for the domain. The figures
in the chapter were generated by SimNet, an implementation on the Macintosh computer
of the similarity-network and partition representations.

Throughout the example and the remainder of this book, I will distinguish between
the construction of a knowledge map, similarity network, or partition by a person and
the construction of these representations by an algorithm. In particular, the terms to
compose and to construct will refer to situations where a person and an algorithm generate
a representation, respectively.

2.1 Similarity Networks: The Construction of a Knowledge Map

Suppose a patient between 5 and 18 years of age comes to an emergency room complaining
of severe sore throat. A knowledge map for this situation is illustrated in Figure 2.1. The
chance node DISEASE represents the causes of sore throat: VIRAL PHARYNGITIS, STREP

THROAT, MONONUCLEOSIS, TONSILLAR CELLULITIS, and PERITONSILLAR ABSCESS. We
assume that these diseases are mutually exclusive and exhaustive. The remaining nodes
represent evidence relevant to the diagnosis of the patient’s disease. We now discuss how
to construct this knowledge map using a similarity network.

2.1.1 Composition of a Similarity Network

The focus for the composition of the similarity network is the distinguished node or
distinguished variable. For medical domains, the distinguished variable represents a set
of mutually exclusive and exhaustive diseases. In general, we refer to the mutually
exclusive exhaustive instances of this variable as hypotheses.

A similarity network consists of a similarity graph and a collection of local knowledge
maps. To compose a similarity graph, we first compose the similarity graph. The nodes
in the similarity graph correspond to hypotheses of the distinguished node. Informally,
the edges in the similarity graph connect hypotheses that are similar. We shall discuss
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Figure 2.1: A knowledge map for sore throat.
This knowledge map describes the diagnostic dilemma for a patient between 5 and 18 years of age who
comes to an emergency room with a severe sore throat. The node DISEASE represents the mutually
exclusive and exhaustive causes of sore throat: VIRAL PHARYNGITIS, STREP THROAT, MONONU-
CLEOSIS, TONSILLAR CELLULITIS, and PERITONSILLAR ABSCESS. This node is the focus for
the composition of a similarity graph. The remaining nodes represent evidence relevant to the diagnosis
of the patient’s disease.
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Figure 2.2: A similarity graph for sore throat.
The nodes in the graph represent the possible causes of sore throat. Undirected edges connect diseases
that are similar. Although this graph is a tree (i.e., there is exactly one path between any two nodes in
the graph), in general, similarity graphs can contain cycles.

soon the precise meaning of edges in a similarity graph. The similarity graph for sore
throat is shown in Figure 2.2.

Next, we compose a local knowledge map for each pair of hypotheses that is connected
in the similarity graph. To compose a local knowledge map for the hypothesis pair hi

and hj , we imagine that one of these two hypotheses is true. Given this supposition,
we compose a knowledge map consisting of the distinguished node—whose instances
are restricted to hi and hj—and those nondistinguished nodes that are relevant to the
discrimination of these hypotheses. Formally, we omit a node from the local knowledge
map if and only if the node would be disconnected from the distinguished node (i.e.,
there would be no path between the node and the distinguished node) if we included it
in the map.

Figure 2.3 shows the local knowledge map for the edge between TONSILLAR CELLULI-

TIS and PERITONSILLAR ABSCESS in the similarity graph. The node at the top of the
knowledge map represents the distinguished variable restricted to these two diseases. The
nondistinguished nodes in the local map represent the features or disease findings that
are relevant to the discrimination of the diseases TONSILLAR CELLULITIS and PERITON-

SILLAR ABSCESS. Notice that there are no arcs among these nondistinguished nodes. The
missing arcs represent the assertion that, given that the patient has either TONSILLAR

CELLULITIS or PERITONSILLAR ABSCESS, all findings in the map are independent. Also
note that there are fewer findings in this local map than in the knowledge map for the
entire domain (Figure 2.1). This observation tends to be true, in general, because the
diseases associated with local knowledge maps are similar.
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Figure 2.3: A local knowledge map.
In this knowledge map for the edge between PERITONSILLAR ABSCESS and TONSILLAR CELLULI-
TIS in the similarity graph, the features exhibit mutual conditional independence. Only findings that
are relevant to the discrimination of the two diseases are included in the map. Because the two diseases
are similar, the knowledge map contains fewer nodes than does the knowledge map for the entire domain.

Figure 2.4 shows the local knowledge map for the edge between STREP THROAT and
VIRAL PHARYNGITIS in the similarity graph. Again, the map contains fewer features than
does the knowledge map for the sore-throat domain as a whole. Now, however, some of
the disease findings are conditionally dependent. The arc from TONSILS INVOLVED to
TONSILLAR PUS reflects the expert’s assertion that the probability of seeing pus on a
patient’s tonsils depends on whether the disease involves one tonsil, both tonsils, or
neither tonsil, even when the patient’s disease is known. The arcs from FEVER and
ABDOMINAL PAIN to TOXIC APPEARANCE reflect the observation that a patient is more
likely to present with a toxic appearance if the patient has abdominal pain or a high
fever, even when the patient’s disease is known. Although FEVER is relevant to the
discrimination of STREP THROAT and VIRAL PHARYNGITIS indirectly through its effect
on TOXIC APPEARANCE, the missing arc from the disease node to FEVER represents the
assertion that temperature alone is not relevant to the discrimination of the two diseases.

The feature PALATAL SPOTS, among other features, appears in both of the local knowl-
edge maps that we have examined. In the local knowledge map for TONSILLAR CEL-

LULITIS and PERITONSILLAR ABSCESS, the instances of this feature are ABSENT and
PRESENT. The same instances are associated with this feature in the local knowledge
map for STREP THROAT and VIRAL PHARYNGITIS. In general, the instances associated
with a feature in one local knowledge map must be identical to the instances associated
with that feature is all other local knowledge maps.
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Figure 2.4: A local knowledge map with dependencies.
In this knowledge map for the edge between STREP THROAT and VIRAL PHARYNGITIS in the sim-
ilarity graph, the feature TONSILLAR PUS is conditionally dependent on TONSILS INVOLVED, and
the feature TOXIC APPEARANCE is conditionally dependent on ABDOMINAL PAIN and FEVER.

Figure 2.5 shows the local knowledge maps for the remaining two edges in the similarity
graph. Again, there are fewer features in each of these maps than there are in the
knowledge map for the entire domain.

In SimNet, the local knowledge map for each edge in a similarity graph is accessed via
the oval on the edge (see Figure 2.2). Specifically, by clicking on an edge’s oval, the user
brings up a window in which the local knowledge map associated with that edge can be
created or modified.

The formal criteria for drawing edges in a similarity graph are that (1) we connect
two diseases only if we can compose a local knowledge map for the disease pair, and (2)
the similarity graph must be connected—that is, there must be a path between any two
nodes in the graph. There is no formal requirement that connected diseases be similar.
As we have seen in this example, however, local knowledge maps for pairs of similar
diseases tend to exclude many of the features that distinguish the set of diseases as a
whole. Thus, an expert can simplify greatly his task of composing the local knowledge
maps by connecting only similar diseases in the similarity graph (provided the graph
remains connected). Indeed, in practice, I have found it useful to ask experts to draw a
similarity graph using only considerations of similarity; I introduce the concept of a local
knowledge map after the similarity graph is composed.

To simplify composition further, an expert may choose not to compose certain local
knowledge maps, even if he believes that he can compose them. There is no need to
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Figure 2.5: Local knowledge maps for the other two edges in the similarity graph.
The knowledge map contains fewer nodes than does the knowledge map for the entire domain.



Similarity Networks and Partitions: A Simple Example 33

build more knowledge maps than those that are required to create a connected similarity
graph. Alternatively, an expert may choose to build a multiply connected similarity
graph.1 As we shall see in Chapter 3, cycles in the similarity graph provide additional
opportunities to check the self-consistency of a user’s knowledge.

Given the similarity network that we have composed, we can now construct the knowl-
edge map for the full sore-throat problem, called the global knowledge map. Specifically,
we construct the global knowledge map by forming the graph union of the local knowl-
edge maps in the similarity network. The operation of graph union is straightforward.
The nodes in the graph union of a set of graphs is the simple union of the nodes in the
individual graphs. Similarly, the arcs in the graph union of a set of graphs is the simple
union of the arcs in the individual graphs. That is, a node (or arc) appears in the graph
union, if and only if there is such a node (or arc) in at least one of the individual graphs.
The set of instances associated with a feature in the global knowledge map is the same as
the set of instances associated with that feature in each of the local knowledge maps. The
set of instances associated with the disease or distinguished node in the global knowledge
map is the union of all diseases or hypotheses in the similarity graph.

The global knowledge map for sore throat was shown in Figure 2.1. The node QUALITY

OF VOICE, for example, appears in the global knowledge map because it appears in the
local knowledge map for PERITONSILLAR ABSCESS and TONSILLAR CELLULITIS. The arc
from DISEASE to ABDOMINAL PAIN appears in the global knowledge map because it is
present in the local map for STREP THROAT and VIRAL PHARYNGITIS.

2.1.2 A Valid Knowledge Map

As we see in Chapter 3, under certain conditions, the construction of the global knowledge
map from the similarity network is sound. That is, any joint distribution that satisfies
the assertions of conditional independence implied by the local knowledge maps also
satisfies the assertions of conditional independence implied by the global knowledge map.
In addition, we can verify easily that the set of assertions implied by a collection of
local knowledge maps is consistent. Given these two results, we know that the global
knowledge map constructed from a similarity network accurately and coherently reflects
the assertions of conditional independence of the person who composes that network.
That is, the global knowledge map is valid.

These results apply to minimal knowledge maps as well. A minimal knowledge map is
one in which no arc can be removed without contradicting one or more of the assertions
of conditional independence made by the expert. Thus, a minimal knowledge map can
represent both assertions of conditional independence and conditional dependence. We

1A multiply connected graph contains more than one path between some node pairs.
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can check whether or not a collection of minimal local knowledge maps is consistent.
In addition, the construction of a minimal global knowledge map is sound. To be more
precise, suppose we have a similarity network in which all the local knowledge maps are
minimal. Also, suppose we interpret the global knowledge map constructed from that
similarity network to be a minimal knowledge map. Again, under certain conditions, any
distribution that satisfies the assertions of conditional dependence implied by the local
knowledge maps must also satisfy the assertions of conditional dependence implied by
the global knowledge map. That is, if the local knowledge maps are minimal, then the
global knowledge map is minimal as well.

In Chapter 3, we show that the soundness result holds for any similarity network in
which the following constraints are satisfied:

1. The instances of the disease node (hypotheses) are mutually exclusive and exhaus-
tive.

2. The similarity graph is connected.

3. The global knowledge map that is equal to the graph union of the local knowledge
maps contains no directed cycles.

4. There are no arcs pointing to the distinguished node in any local knowledge map.

5. The joint distribution for the domain is strictly positive (i.e., no combination of
findings rules out any hypothesis).

In Chapter 4, we examine the effects of each of these constraints on the knowledge-
acquisition process within the domain of lymph-node pathology. We see that only con-
straint 5 detracted from the usefulness of the similarity-network representation for knowl-
edge acquisition within that domain. In Chapters 4 and 6, we discuss how these sufficient
conditions for soundness, including condition 5, might be relaxed with additional theo-
retical work.

2.1.3 An Exhaustive Construction

The construction of a global knowledge map from a similarity network is also exhaustive.
That is, any feature that is relevant to the discrimination of the hypothesis set as a
whole must appear in some local knowledge map, and hence in the global knowledge
map. In Chapter 3, we prove this result. Together, the soundness, consistency, and
exhaustiveness results make the similarity-network representation extremely useful for
knowledge acquisition.
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2.1.4 Advantages of Using Similarity

The concept of similarity does not appear in the conditions for soundness, consistency,
or exhaustiveness. Nonetheless, there are important advantages of composing knowledge
maps for diseases that are similar. As we discussed in Section 2.1.1, one such advantage
is that local knowledge maps for pairs of similar diseases tend to be small. If this
fact were the only advantage of similarity networks for constructing a knowledge map,
however, there would be no point in using them. If any feature appeared in more than
one local knowledge map, we would be duplicating our efforts of composition, regardless
of the size of the maps. In this section, we consider another advantage of composing
local knowledge maps for pairs of similar diseases that makes the similarity-network
representation a valuable tool for constructing knowledge maps.

As mentioned in Section 1.1, the Pathfinder expert could not compose directly the
global knowledge map for the lymph-node domain. Specifically, he could not assess
dependencies among certain features in the domain. When asked questions of the form

Given any disease, does observing feature x change your belief that you will
observe feature y?

the expert sometimes would reply

I’ve never thought about these two features at the same time before. Feature
x is relevant to the discrimination of a particular set of diseases. Feature
y, on the other hand, is relevant to the discrimination of a different set of
diseases. These two sets of diseases do not overlap, and I never confuse the
first set of diseases with the second.

The expert had detailed knowledge about diagnosis in multiple small worlds or subsets
of similar disease within the lymph-node domain. If two or more features were relevant
to the same small world, the expert had no trouble assessing dependencies among those
features. If two or more features were not relevant to a common small world, however,
he could not evaluate the dependencies among them.

This observation is not that surprising. When an expert pathologist looks at a tissue
section under the microscope, he immediately focuses on a relatively small set of diseases.
He then expends the majority of his conscious effort looking for features that discrimi-
nate among these diseases.2 Almost by definition, these initial disease sets will consist
of diseases that are similar to one another. In fact, many of the experts who experi-
mented with the similarity-network representation independently adopted the following
operational definition for similarity when composing the similarity graph:

2Recall the hypothetico-deductive approach discussed in Chapter 1.
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Two diseases are similar if and only if they are likely to be confused with
each other in practice.

It is reasonable to expect that knowledge about dependencies among features relevant to
these small worlds are more available to an expert, because he spends most of his time
thinking explicitly about such features and the relationships among them. In extreme
cases, such as the situation described in the previous paragraph, knowledge about the
discrimination of highly dissimilar diseases may be unavailable to the expert.

The similarity-network representation is an ideal tool for combining knowledge about
these small worlds into a coherent whole. Indeed, the representation was developed
in direct response to the assessment predicament of the lymph-node expert described
two paragraphs earlier. Using a similarity network, an expert can assess dependencies
among features that are relevant only to pairs of similar diseases. Given the soundness,
consistency, and exhaustiveness results, we can combine the knowledge about such de-
pendencies, recorded in the local knowledge maps, to create a global knowledge map
that faithfully represents the assertions of an expert for his domain. This knowledge
map, in turn, endows an expert system with the ability to discriminate among any set of
diseases, whether they are similar or dissimilar. Consider again, for example, the assess-
ment predicament of the expert. Expressed in terms of a similarity network, the features
x and y never appear in the same local knowledge map. Thus, given the procedure for
constructing the global knowledge map and the soundness result, we know that x and
y must be conditionally independent, given disease. This observation was apparent to
neither the expert nor me before the similarity-network representation and its theory
were developed.

Even in situations where an expert can compose a global knowledge map, a similarity
network should prove useful for knowledge acquisition. Specifically, by composing local
knowledge maps for pairs of similar diseases, the expert can use a similarity network to
focus his attention on precisely those diagnostic subproblems with which he is familiar.
The expert may thereby increase the quality of the knowledge he provides. In construct-
ing the Pathfinder knowledge map, for example, local knowledge maps helped the expert
avoid errors of omission in describing features relevant to lymph-node diagnosis. We shall
return to this issue in Chapter 4.

2.1.5 Soundness and Consistency: Theoretical Considerations

The proof of soundness is closely related to the development of an algorithm for testing
the consistency of a similarity network, and both aspects of the theory are complex. In
this section, we examine informally the proof of soundness and issues of consistency to
make the rigorous treatments in Chapter 3 more understandable.
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At first glance, the soundness result may seem trivial. Consider, for example, the sim-
ilarity network for three hypotheses h1, h2, and h3, and three nondistinguished variables
x, y, and z, shown in Figure 2.6(a). The network contains two local knowledge maps
for the hypothesis pairs {h1, h2} and {h2, h3}. In the local knowledge map for h1 vs h2,
all nondistinguished variables are connected to the distinguished node, and, therefore,
are included in the map. Similarly, all nondistinguished nodes are included in the local
knowledge map for h2 and h3.

The global knowledge map constructed from the two local maps in the similarity net-
work is shown in Figure 2.6(b). The global knowledge map asserts that z is independent
of x and y, given h. This assertion is logically implied by the assertions of conditional in-
dependence in the local knowledge maps; hence, the construction of the global knowledge
map is sound. To see this fact, let us consider the local knowledge map for h1 and h2.
From the definition of missing arcs in a knowledge map, we know that z is independent
of x and y, given h Formally,

p (z|xi, yj , hk, {h1, h2}, ξ) = p (z|hk, {h1, h2}, ξ) (2.1.1)

where xi and yj range over the instances of variables x and y, and where hk is equal
to h1 or h2. The first term refers to the probability distribution over z, given xi, yj ,
and hk, and given the state of knowledge {h1, h2} and ξ. The second term refers to a
similar distribution. In both expressions, the symbol ξ denotes the state of knowledge
that an expert brings to bear on the global problem. The set {h1, h2}, which conditions
both probabilities, denotes the disjunction of h1 and h2. The disjunction appears in
both expressions because, by definition, it is part of the state of knowledge of the local
knowledge map. Now the hypothesis h1 alone and the hypothesis h2 alone, logically
imply the disjunction of h1 and h2. Consequently, we can omit the disjunction from
both sides of Equation 2.1.1 to obtain

p (z|xi, yj , hk, ξ) = p (z|hk, ξ) (2.1.2)

where xi, yj , and hk range over the same instances as in Equation 2.1.1. Thus, z is
independent of x and y given both h1 and h2 alone. Similarly, from the local knowledge
map for h2 and h3, we can show that z is independent of x and y, given h2 and h3 alone.
Combining the observations for both local knowledge maps, we see that z is independent
of x and y given any hypothesis of h.

Furthermore, suppose the local knowledge maps in Figure 2.6(a) are minimal. From
the local knowledge map for h2 and h3, we know x and y are dependent, given that h2

or h3 is true. (If x and y were independent, given h2 and given h3, we could remove the
arc from x to y, contradicting the minimality of the local knowledge map.) It follows
that x and y must be dependent, given h, and there must be an arc between x and y in
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Figure 2.6: The construction of a valid global knowledge map.
(a) A similarity network for three hypotheses h1, h2, and h3, and three nondistinguished variables x,
y, and z. In the network, there are two local knowledge maps for the hypothesis pairs {h1, h2} and
{h2, h3}. Both local knowledge maps contain all the nondistinguished nodes. (b) The global knowledge
map constructed from the similarity network. The assertions of conditional independence in the global
knowledge map are logically implied by such assertions of conditional independence in the local knowledge
maps. Hence, the construction of the global knowledge map is sound. The construction remains sound
when the local knowledge maps and the global knowledge map are minimal. Furthermore, the similarity
network is consistent, and thus the global knowledge map is valid.

the global knowledge map. We can also show that each arc emanating from h must also
be present in the global knowledge map. Thus, the soundness result also holds when the
knowledge maps as minimal.

Finally, consider any probability distribution where (1) x, y, and z are conditionally
independent, given h1 and h2, (2) only z is conditionally independent of x and y, given
h3, and (3) x, y, and z are dependent on h. This distribution satisfies all the asser-
tions of conditional independence and dependence implied by the two local knowledge
maps. Consequently, the similarity network in in Figure 2.6 is consistent, and the global
knowledge map in the figure is valid.

In general, if each local knowledge map contains the same set of nondistinguished
nodes, the proof of soundness is straightforward. When nodes are omitted from lo-
cal knowledge maps, however, the proof is not so simple. Consider, for example, the
similarity network for three hypotheses and three nondistinguished variables shown in
Figure 2.7(a). The local knowledge map for h1 and h2 is identical to the corresponding
map in Figure 2.6(a), whereas the the local knowledge map for h2 and h3 is different. In
particular, the nodes x and y are disconnected from h in the local knowledge map for h2

and h3. Suppose the local knowledge map for h2 and h3 is minimal. In this case, we know
that x and y are dependent, given h2 or given h3. Thus, x and y are dependent, given
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Figure 2.7: The construction of an invalid global knowledge map.
(a) A similarity network for three hypotheses and three nondistinguished variables. In the local knowl-
edge map for the hypothesis set {h2, h3}, the nodes x and y (shaded) are not connected to h, and are
omitted from the local knowledge map. (b) The global knowledge map constructed from the similarity
network. If the local knowledge maps are minimal, we know that x and y are dependent given h2 or
h3. Because these nodes have been omitted from the local knowledge map, however, this dependency
is not recorded in the global knowledge map. This problem occurs because the similarity network is
inconsistent.

h. However, when we compose this local knowledge map using the procedure described
previously, we omit the nodes x and y from the map (indicated by shading in the figure)
because these nodes are disconnected from h. Consequently, the dependency does not
get recorded in the global knowledge map, shown in Figure 2.7(b).

We could avoid this problem by including all nondistinguished variables in each map.
Then, in this example, the dependency between x and y would be registered in the global
knowledge map. This alternative, however, would destroy the benefits of the similarity-
network representation discussed in Section 2.1.4.

Fortunately, we do not have to abandon the original procedure for composing local
knowledge maps to guarantee soundness. As we shall see in the following paragraph,
the difficulty in this example does not come from lack of soundness, but rather from
the fact that the similarity network in Figure 2.7(a) is inconsistent. That is, there
is no joint distribution over the variables h, x, y, and z that satisfies the conditional
independence and dependence assertions implied by those local knowledge maps. Thus,
the construction is sound, because we can derive any set of dependence and independence
assertions from a contradiction, but the global knowledge map is invalid. When we make
the similarity network in Figure 2.7 consistent, assuming there is a dependence between
x and y in the local knowledge map for h2 and h3, we must add an arc from x to y
in the local knowledge map for h1 and h2. Once this is done, the dependency between
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these nodes is registered appropriately in the global knowledge map. Consequently, the
construction remains sound, and the global knowledge map becomes valid.

To see that the similarity network in Figure 2.7 is inconsistent, let us first examine the
local knowledge map for h2 and h3, including in this map the nodes x and y. From the
definition of missing arcs in a knowledge map, we get

p (y|xk, hl, {h2, h3}, ξ) = p (y|xk, {h2, h3}, ξ) (2.1.3)

where xk ranges over the possible instances of the variable x, and where hl is equal to
h2 or h3. Now h2 and h3 alone logically imply the disjunction of h2 and h3. Therefore,
we can remove this disjunction from the left-hand side of Equation 2.1.3 to obtain

p (y|xk, hl, ξ) = p (y|xk, {h2, h3}, ξ) (2.1.4)

where xk and hl have the same ranges as in Equation 2.1.3. Also, we have assumed
that the local knowledge maps are minimal. Thus, x and y are dependent in the local
knowledge map for h2 and h3, and we know that

p (y|xi, {h2, h3}, ξ) 6= p (y|xj , {h2, h3}, ξ) (2.1.5)

for some instances xi 6= xj . From Equations 2.1.4 and 2.1.5, we get

p (y|xi, hl, ξ) 6= p (y|xj , hl, ξ) (2.1.6)

for hl = h2 and hl = h3. Therefore, the local knowledge map for h2 and h3 dictates
that x and y are dependent, given both h2 and h3 separately. The local knowledge map
for h1 and h2, however, implies that x and y are independent, given h1 and given, h2.
We thus obtain the contradiction that x and y are both conditionally independent and
dependent, given h2.

In Chapter 3, we see that the situation described in the previous paragraphs holds
in general. That is, if a set of minimal local knowledge maps is consistent, and the
other constraints discussed in Section 2.1.2 are satisfied, then arcs between nodes that
are omitted from one local knowledge map must appear in other local knowledge maps.
Thus, the arcs appear in the global knowledge map, and the construction of this map
is sound. We can extend this argument to include nonminimal local knowledge maps as
well. In addition, we see that we easily can identify and correct inconsistencies in a set
of local knowledge maps. Consequently, we can omit nodes from the local knowledge
maps, and thereby retain the benefits of similarity networks for knowledge acquisition
discussed in Section 2.1.4.



Similarity Networks and Partitions: A Simple Example 41

2.1.6 Assertions of Asymmetric Conditional Independence

A similarity network derives its power from its ability to represent assertions of con-
ditional independence that are not conveniently represented in an ordinary knowledge
map. In fact, a similarity network can represent two specific forms of such conditional
independence.

To illustrate the first of these assertion types, let h⊆ denote a proper subset of the
hypotheses of h. If h and x are independent, given that one of the elements of h⊆ is true,
we say that x is not relevant to h⊆. Formally, we have the following definition.

Definition 2.1 A variable x is not relevant to the set h⊆, given a state of knowledge
ξ, if and only if

p (hi|xj , h⊆, ξ) = p (hi|h⊆, ξ) (2.1.7)

for all instances xj of variable x, and for all hypotheses hi in h⊆.

As in the previous section, the set h⊆, which conditions both probabilities, denotes the
disjunction of its elements. We call the form of conditional independence represented by
Equation 2.1.7 subset independence. Using Bayes’ theorem, we can derive an equivalent
criterion for subset independence (see Appendix B.1).

Theorem 2.1 The feature x is not relevant to the set of hypotheses h⊆, given a state of
knowledge ξ, if and only if

p(x|hi, ξ) = p(x|hj , ξ) (2.1.8)

for all pairs hi, hj ∈ h⊆.

We shall return to Equation 2.1.8 when we discuss probability assessment in the following
section.

Now suppose there is no arc from h to x in the local knowledge map for hi and hj . That
is, suppose x and h are independent in the state of information {hi, hj}. By definition,
we know that x is not relevant to {hi, hj}. Alternatively, suppose that x is omitted from
this local knowledge map. From the definition of local knowledge map, we know that
there would be no path from h to x, if x were included in the map. Consequently, x
and h must be independent in the state of information {hi, hj}. Again, it follows that x
is not relevant to {hi, hj}. In either case, using a similarity network, we can represent
assertions of subset independence.

To illustrate the second form of conditional independence that we can encode in local
knowledge maps, let us consider the similarity network in Figure 2.6. Using arguments
similar to those in the previous section, we can show that x and y are dependent given h3,
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but x and y are independent, given h1 and h2. Thus, a similarity network can represent
assertions of conditional independence that are specific to individual hypotheses. We call
this form of conditional independence hypothesis-specific independence.

Subset independence refers to relationships between the distinguished node and nondis-
tinguished nodes. In contrast, hypothesis-specific independence refers to relationships
among nondistinguished nodes. Nonetheless, both forms of independence are closely re-
lated in that they are asymmetric. In general, an assertion of conditional independence
is asymmetric if it holds for only some instances of its variables. Assertions of subset
independence and hypothesis-specific independence, in particular, hold for only proper
subsets of the distinguished node.

As mentioned previously, we cannot easily encode assertions of asymmetric conditional
independence in an ordinary knowledge map. In Section 2.2.4, we discuss this observation
in detail.

2.2 Partitions: The Assessment of a Knowledge Map

Once the global knowledge map has been constructed, there are several alternative tech-
niques for assessing the map. One approach is to assess directly conditional distributions
for each variable in the global knowledge map. This approach is straightforward, but it
does not take advantage of additional assertions of conditional independence represented
in the similarity network.

In this section, we examine how we can use assertions of subset independence to sim-
plify assessment. In Section 3.10, we discuss how we can exploit both subset independence
and hypothesis-specific independence to facilitate assessment. We postpone the latter
discussion because it requires some of the technical machinery that will be developed in
Chapter 3.

2.2.1 Use of Similarity Networks for Assessment

There are two approaches available in SimNet for assessing a knowledge map that exploit
assertions of subset independence. In one approach, only those assertions of subset
independence represented by nodes missing from the local knowledge maps are employed.
In another method, judgments of subset independence embodied by partitions are used.
The first approach is illustrated in Figure 2.8 for the feature QUALITY OF VOICE. The
rounded rectangle labeled with the feature name contains the mutually exclusive and
exhaustive instances of the feature: NORMAL and MUFFLED. The two numbers under
each disease are the probability distribution for the feature given that disease. For
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Figure 2.8: Probability assessment using a similarity network.
The probability distributions for the feature QUALITY OF VOICE given disease are shown. The
rounded rectangle labeled with the feature name contains the mutually exclusive and exhaustive instances
of the feature: NORMAL and MUFFLED. The numbers below each disease node are the probability
distribution for QUALITY OF VOICE given that disease. The white ovals on the edges reflect the fact
that the feature is absent in the corresponding local knowledge map. Conversely, the black oval signifies
that the feature is present in the local knowledge map. Distributions bordering an edge with a white
oval must be equal.

example, the probability that QUALITY OF VOICE is NORMAL, given STREP THROAT, is
0.9.

The black oval on the edge between PERITONSILLAR ABSCESS and TONSILLAR CEL-

LULITIS reflects the fact that the feature QUALITY OF VOICE is present in the local
knowledge map for the disease pair. Conversely, the white ovals on the remaining edges
represent the fact that this feature is absent from the other local knowledge maps. As
shown in the figure, when a feature is omitted from a local knowledge map, the conditional
probability distributions on either side of an edge are equal. This observation follows
from Theorem 2.1 and the fact that any feature omitted from a local knowledge map
cannot be relevant to the two diseases associated with that map. Consequently, for the
feature QUALITY OF VOICE, we need to assess probability distributions given only PERI-

TONSILLAR ABSCESS and TONSILLAR CELLULITIS. SimNet automatically propagates the
probability distribution for TONSILLAR CELLULITIS throughout the remainder of the
similarity graph.
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Figure 2.9: Hidden equivalence in a similarity network.
The assessment of the feature PALATAL SPOTS is shown. Although the distributions for VIRAL
PHARYNGITIS, MONONUCLEOSIS, and PERITONSILLAR ABSCESS are equal, these equalities
are hidden until the actual assessments are made, because there are no edges that directly connect any
pair of these diseases in the similarity graph.

2.2.2 Use of Partitions for Assessment

A problem with this approach to assessment is illustrated in Figure 2.9. Specifically,
the probability distributions for the feature PALATAL SPOTS given VIRAL PHARYNGITIS,
MONONUCLEOSIS, and PERITONSILLAR ABSCESS are equal. Because we did not connect
these diseases in the similarity graph, however, the equality of these distributions remains
hidden until we assess the actual probabilities.

We can remedy this difficulty by composing a local knowledge map for every pair of
diseases. For domains with more than just a few diseases or hypotheses, however, this
alternative is impractical. Alternatively, we can compose a partition of the hypotheses for
each nondistinguished variable to be assessed. In composing a partition, we place each
hypothesis or instance of the distinguished variable into one and only one set. We place
two or more hypotheses in the same set only if the nondistinguished variable associated
with the partition is not relevant to those hypotheses in the set (see Definition 2.1). After
composing the partition for a given nondistinguished variable, we assesses probability
distributions for the variable given each hypothesis. By Theorem 2.1, however, we need
to assess only one distribution for each set in the partition.

A partition for the feature PALATAL SPOTS is shown in Figure 2.10. In this partition,
the possible causes of sore throat are divided into two groups: those diseases in which
palatal spots are likely to be seen (STREP THROAT and TONSILLAR CELLULITIS), and
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Figure 2.10: Assessment of probabilities using a partition.
The partition contains two sets of diseases labeled SPOTS UNLIKELY and SPOTS LIKELY. The par-
tition reflects the assertion that PALATAL SPOTS is relevant to neither the diseases STREP THROAT
and TONSILLAR CELLULITIS, nor the diseases MONONUCLEOSIS, PERITONSILLAR ABSCESS,
and VIRAL PHARYNGITIS. Consequently, only two probability distributions are assessed.

those diseases for which palatal spots are not likely to be seen (MONONUCLEOSIS, PERI-

TONSILLAR ABSCESS, and VIRAL PHARYNGITIS). The partition reflects the assertions
that (1) the feature PALATAL SPOTS is not relevant to the disease pair STREP THROAT

and TONSILLAR CELLULITIS, and (2) the feature is not relevant to the disease triplet
MONONUCLEOSIS, PERITONSILLAR ABSCESS, and VIRAL PHARYNGITIS. Consequently,
we need to assess only two probability distributions. These distributions, shown below
the hypothesis sets in Figure 2.10, are the same as those shown in Figure 2.9. By us-
ing this partition, however, we uncover equalities among the distributions for PALATAL

SPOTS before we assess probabilities; we thereby avoid the assessment of three additional
distributions.

When a feature is dependent on other features, we can compose a partition for each
instance of the set of conditioning features.3 Figure 2.11 illustrates this approach for the
feature TOXIC APPEARANCE, which is conditioned by the features FEVER and ABDOMI-

NAL PAIN. In the figure, partitions and assessments for three of the six instances of the
feature’s conditioning variables are shown. The three partitions in the figure correspond
to the cases where a patient has no abdominal pain and a mild fever, no abdominal pain
and a high fever, and abdominal pain and a high fever. In the first and third partition,
the feature TOXIC APPEARANCE is relevant to neither PERITONSILLAR ABSCESS and
TONSILLAR CELLULITIS, which are two localized diseases (diseases that tend to affect
only a small area of the throat—usually one or more tonsils), nor MONONUCLEOSIS and
STREP THROAT, which are two diseases that tend to affect a large area of the throat as
well as other organs in the body. In the second partition, the feature is not relevant to
the two localized diseases, but is relevant to the remaining diseases.

3In general, an instance of a set of variables is an assignment of an instance to each variable in that
set. Thus, if variable x has instances x1 and x2, and variable y has instances y1 and y2, then the pairs
(x1, y1), (x1, y2), (x2, y1), (x2, y2) comprise all instances of the set {x, y}.
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In general, partitions are better able to express assertions of subset independence for
assessment than are similarity networks. To understand this point, consider all possible
similarity networks that an expert might construct for a given domain. The similarity
network that can represent the most assertions of subset independence is the one that has
a completely connected similarity graph (i.e., a similarity graph in which all hypothesis
pairs are connected directly). From the assertions of subset independence encoded in
this similarity network, we can derive a single partition for each feature. Specifically, we
place hypotheses hi and hj in the same set for variable x if and only if the variable x
is not present in the local knowledge map for hi and hj . We cannot, however, derive
different partitions for different instances of the features that condition x.

2.2.3 Partitions and Classification Hierarchies

As we see in Chapter 4, the use of partitions can decrease the time to assess a knowledge
map by more than a factor of five. At first, this observation may seem surprising, given
that a partition must be composed for each conditioning instance of every feature. In
the medical domains that I have investigated, however, two factors have contributed
to the efficiency of the approach. First, the task of composing a single partition is
straightforward. Apparently, as is the case with assertions of symmetric conditional
independence, people find it easy to make judgments of subset independence without
assessing the probabilities underlying such judgments.

Second, partitions often are identical or related from one feature to another, and more
often are identical or related among the conditioning instances of the same features. For
example, two of the partitions for TOXIC APPEARANCE in Figure 2.11 are identical, and
these two partitions are closely related to the third. The partition for FEVER, shown in
Figure 2.12, is almost identical to the partitions for TOXIC APPEARANCE.

The partitions for FEVER and those for TOXIC APPEARANCE are related in that each
represents a slice through the same classification hierarchy of diseases. This classification
hierarchy is shown in Figure 2.13. In the figure, diseases that cause sore throat are
divided into two major categories: diseases that tend to affect a large area of the throat
(DIFFUSE DISEASE) and diseases that tend to affect a small area of the throat (LOCALIZED

DISEASE). The diseases in the former category are subdivided into those diseases that tend
to affect multiple organs (MULTIORGAN DISEASE) and the disease VIRAL PHARYNGITIS,
which does not affect multiple organs. The partition for FEVER represents a slice through
this hierarchy at the level of abstraction DIFFUSE versus LOCALIZED DISEASE. The first
and third partitions for TOXIC APPEARANCE in Figure 2.11 represent the slice through
the hierarchy that is one level more specific for diffuse diseases. The second partition for
TOXIC APPEARANCE reflects the slice that is the most specific for diffuse diseases.
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Figure 2.11: Assessing dependent features using partitions.
The figure contains partitions and associated assessments for three of the six conditioning instances of
the feature TOXIC APPEARANCE. The three partitions correspond to cases where a patient has no
abdominal pain and a mild fever, no abdominal pain and a high fever, and abdominal pain and a high
fever, respectively. Only assessments for each set in a partition are required. Note that the first and
third partitions are identical, and the second is closely related.
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Figure 2.12: The partition for FEVER.
The partition is closely related to the partitions for TOXIC APPEARANCE. Note the hierarchical
structure of the set DIFFUSE DISEASE. The set contains the disease VIRAL PHARYNGITIS and the
set MULTIORGAN DISEASE, which, in turn, contains the diseases MONONUCLEOSIS and STREP
THROAT. Hierarchical sets such as this one facilitate the composition of partitions.

VIRAL
PHARYNGITIS

PERITONSILLAR
ABSCESS

TONSILLAR
CELLULITIS

DIFFUSE
DISEASE

LOCALIZED
DISEASE

MULTIORGAN
DISEASE

STREP
THROAT

MONO-
NUCLEOSIS

DISEASE CAUSING
SORE THROAT

Figure 2.13: A classification hierarchy of the diseases causing sore throat.
In the hierarchy, diseases either are or are not localized to one portion of the throat. Two of the diseases
that are not localized to one portion of the throat, MONONUCLEOSIS and STREP THROAT, affect
multiple organs in the body. The partitions for TOXIC APPEARANCE and FEVER are slices of this
hierarchy at different levels of abstraction.
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In many domains, experts often fabricate one or more classification hierarchies to de-
scribe shared features among groups of hypotheses. In Pathfinder, for example, there are
13 distinct classification hierarchies across the approximately 100 features. In domains
where such hierarchies have been explicated, it is likely that partitions will be identical
or closely related. When the partitions for two or more features are related, we do not
need to create each partition from scratch. Using SimNet, we can copy the structure of
a partition for a conditioning instance of a feature, and assign this structure either to
the partition of another conditioning instance of the same feature, or to the partition
for an entirely different feature. Once the structure of the partition has been copied,
we can modify the partition using simple Macintosh-style manipulations to reflect the
judgments of subset independence for that feature and conditioning instance. Note that
SimNet supports hierarchical set membership within partitions. For example, in Fig-
ure 2.12, MONONUCLEOSIS is a member of the set MULTIORGAN DISEASE; this set, in
turn, is a member of the set DIFFUSE DISEASE. This feature of the program makes it easy
for a user to transform a partition that reflects a slice of a classification hierarchy at one
level of abstraction to a partition that represents other levels of abstraction within the
hierarchy.

2.2.4 Representation of Subset Independence in Ordinary Knowledge Maps

Asymmetrical assertions of conditional independence can be represented in an ordinary
knowledge map with deterministic nodes. In this section, we examine the representation
of subset independence in a knowledge map, and we discuss the merits of this represen-
tation relative to partitions.

Figure 2.14 contains the knowledge map that reflects the judgments of subset indepen-
dence associated with the partitions for ABDOMINAL PAIN, FEVER, and TOXIC APPEAR-

ANCE in the sore-throat example. First, let us consider the feature ABDOMINAL PAIN. In
the global knowledge map for the sore-throat problem (Figure 2.1), DISEASE is the only
node that conditions ABDOMINAL PAIN. Consequently, there is only one partition for
this feature. The sets within the partition for ABDOMINAL PAIN are represented by the
instances of the deterministic node PARTITION FOR ABDOMINAL PAIN in the knowledge
map. This node is deterministic because the sets in the partition are certain, given the
set of possible diseases. The lack of an arc from DISEASE to ABDOMINAL PAIN represents
the assertions of subset independence encoded by the partition for that feature. That is,
given any set of diseases in the partition, knowing which disease in that set is the cause
of the patient’s sore throat does not change the probability that the patient will have
abdominal pain. These same considerations apply to the feature FEVER.

Now consider the feature TOXIC APPEARANCE. In the global knowledge map, TOXIC

APPEARANCE is dependent on both ABDOMINAL PAIN and FEVER. Therefore, the feature
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ABDOMINAL 
PAIN

PARTITION
FOR

ABDOMINAL PAIN

PARTITION
FOR

FEVER

DISEASE

TOXIC APPEARANCE

PARTITIONS
FOR

TOXIC APPEARANCE

FEVER

Figure 2.14: The representation of partitions in a knowledge map.
This knowledge map encodes the asymmetrical assertions of subset independence that are represented by
partitions for the three features ABDOMINAL PAIN, FEVER, and TOXIC APPEARANCE. Because
ABDOMINAL PAIN has no conditional predecessors except DISEASE, there is only one partition for
the feature. The sets in the partition for ABDOMINAL PAIN are a deterministic function of DISEASE.
Furthermore, the probability distribution for ABDOMINAL PAIN is independent of DISEASE, given
the elements of the partition for the feature. Similar remarks apply to the feature FEVER. TOXIC
APPEARANCE is conditioned both by ABDOMINAL PAIN and by FEVER. Consequently, TOXIC
APPEARANCE has a partition for each combination of the instances of these two features. These
partitions are a deterministic function of DISEASE, ABDOMINAL PAIN, and FEVER. The probability
distributions for TOXIC APPEARANCE are independent of DISEASE, given ABDOMINAL PAIN,
FEVER, and the elements of the partition for TOXIC APPEARANCE.
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has a partition for each instance of these two features. The partitions and the sets
within each of these partitions are represented by the deterministic node PARTITIONS

FOR TOXIC APPEARANCE. Again, the node is deterministic because the partitions are
known with certainty, given instances of DISEASE, ABDOMINAL PAIN, and FEVER. The
lack of an arc from DISEASE to TOXIC APPEARANCE represents the assertions of subset
independence associated with the partitions for the feature. In particular, given an
instance of ABDOMINAL PAIN and FEVER, and a set in the appropriate partition, the
probability that the patient’s appearance will be toxic is independent of disease.

Although this knowledge map accurately encodes the assertions of subset independence
for the three features, the representation is cumbersome. The partitions are hidden
under the nodes in the knowledge map, and cannot be created or modified with simple
graphic manipulations as they are in SimNet. Consequently, the representation of subset
independence in ordinary knowledge maps does not facilitate assessment significantly.
Similar remarks apply to the representation of hypothesis-specific independence in an
ordinary knowledge map.

2.2.5 Research Related to Partitions

There is an interesting connection between partitions and the Dempster–Shafer theory
of belief. Several leaders in artificial-intelligence research have argued that probability
theory is inadequate for reasoning under uncertainty. In providing motivation for the
Dempster–Shafer theory, Gordon and Shortliffe argue that probability theory and other
theories of uncertainty are inadequate, because they do not allow for the possibility that
features or evidence bear on sets of diseases or hypotheses (Gordon and Shortliffe, 1985,
page 324):

An advantage of the Dempster–Shafer theory over previous approaches is its
ability to model the narrowing of the hypothesis set with accumulation of
evidence, a process which characterizes diagnostic reasoning in medicine and
expert reasoning in general. An expert uses evidence which may apply not
only to single hypotheses but also to sets of hypotheses that together comprise
a concept of interest.

Partitions, however, provide an alternative within probability theory for representing
evidence that is relevant to sets of hypotheses. In particular, we can interpret the state-
ment that “a piece of evidence applies to only a set of hypotheses” to mean that the
evidence is not relevant to that set of hypotheses, by Definition 2.1. Furthermore, the
probabilistic alternative to Dempster–Shafer theory can be more efficient computation-
ally. Once the probabilities are assessed using partitions, the partitions can be ignored,
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and the effect of evidence on each hypothesis can be computed separately. Alterna-
tively, the effect of evidence can be accumulated on set intersections of partitions, just
as evidence is accumulated within the Dempster–Shafer theory. Here, however, we can
accumulate evidence using Bayes’ theorem, rather than Dempster’s rule of combination.
This alternative, when computationally feasible, might be useful for generating cogent
explanations for the results of probabilistic inference.

Motivated by the same argument against the adequacy of probability theory, Pearl has
developed a representation similar to partitions. In his book, Pearl discusses probability
assessments in a domain in which a set of mutually exclusive and exhaustive hypotheses
can be organized into what I have been calling a classification hierarchy (Pearl, 1988,
pages 333–344). In this context, he examines the statement (my notation):

Evidence x bears directly on h⊆, but says nothing about the individual ele-
ments of h⊆.

Pearl interprets this statement to mean

p (x|h⊆, ξ) = p (x|hi, ξ) , hi ∈ h⊆ (2.2.9)

p
°
x|h̄⊆, ξ

¢
= p (x|hi, ξ) , hi ∈ h̄⊆ (2.2.10)

where h̄⊆ is the set of hypotheses in h that are not in h⊆. Equations 2.2.9 and 2.2.10 imply
that x is not relevant to the hypothesis set h⊆ nor to the hypothesis set h̄⊆, respectively.
Thus, Pearl’s method is a special case of the partition approach to assessment in which
we compose two-set partitions within a single classification hierarchy.
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In this chapter, a theory for similarity networks is developed. The major results of this
work are (1) that the construction of a global knowledge map from a similarity network
is sound for strictly positive distributions, (2) that a low-order polynomial algorithm
exists for testing the consistency of a similarity network, and (3) that the construction
of a global knowledge map from a similarity network is exhaustive. The first two results
show that we can construct valid global knowledge maps. Given the third result, we know
that any global knowledge map we construct for a given hypothesis set must contain all
features that are relevant to the discrimination of that set as a whole.

3.1 Background

In this section, we examine the properties of graphs and knowledge maps that we require
for the theory of similarity networks. Before introducing additional concepts, however,
let us consider some notational conventions. Throughout the chapter, we use a lowercase
letter (e.g., x, y, and z) to represent an uncertain variable or a node in a graph that
corresponds to that variable. We use an uppercase letter (e.g., X, Y , Z) to represent
a set of uncertain variables or a set of nodes in a graph that correspond to that set of
variables. In this work, we consider only variables with a finite number of instances; we
denote a specific instance of a variable or set of variables by subscripting that variable.
For example, xi refers to the ith instance of variable x, and Xi refers to the ith instance
of set X. The symbol \denotes set difference. That is, X\Y is the set of variables in X
that are not in Y . We use X\x as a shorthand for X\{x}. The expression p (xi|Xj , ξ)
denotes the probability of xi given Xj assessed by a person with background knowledge
ξ. When a probabilistic equality holds true for all instances of some variable or set of
variables, we omit the universal quantification over that variable or set of variables. For
example, the statement

p (x|y, ξ) = p (x|ξ)

is a shorthand for the statement

∀ xi, yj p (xi|yj , ξ) = p (xi|ξ)

In contrast, we omit existential quantifiers associated with probabilistic inequalities. For
example, the statement

p (x|y, ξ) 6= p (x|ξ)

is a shorthand for the statement

∃ xi, yj p (xi|yj , ξ) 6= p (xi|ξ)
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To avoid confusion, we sometimes express the universal or existential quantifications
explicitly. A summary of notation appears at the end of this book.

Next, let us consider some properties of directed and undirected graphs. A directed
graph consists of a finite collection of nodes and directed arcs. A node is a primitive
object and a directed arc is a line with an arrow on one end connecting two nodes. A
directed path from a node x to a node y is a sequence of nodes that we can visit in order
by moving along the arcs in the direction of the arrows. An undirected path is similar
to a directed path, except that the direction of arcs is ignored. A directed (undirected)
cycle is a nontrivial directed (undirected) path that starts and ends with the same node.
Two nodes x and y are connected if there is some undirected path from x to y. A
directed graph is connected if every pair of nodes is connected. A directed graph is singly
connected if it contains no undirected cycles, and is multiply connected otherwise.

If there is an arc from node y to node x, then y is called a direct or conditional
predecessor of node x and x is called a direct successor of y. In this situation, we also
say that y conditions x. If there is a nontrivial directed path from x to y, then x is
called a predecessor of y, and y is called a successor of x. If there is no nontrivial path
from x to y, then x is called a nonsuccessor of y. The terms C(x), S(x), and S̄(x) refer
to the conditional predecessors of x, the successors of x, and the nonsuccessors of x,
respectively.

An undirected graph is similar to a directed graph except that arcs are replaced by
undirected edges. The definitions for the terms undirected cycle, undirected path, con-
nected node pair, connected graph, singly connected graph, and multiply connected graph
in undirected graphs correspond to the definitions for these terms in directed graphs. In
addition, we sometimes use (x, y) to represent the undirected edge between nodes x and
y.

Two or more directed (or undirected) graphs can be combined, provided their nodes
are labeled. The graph union of graphs G1 and G2, denoted G1 ∪ G2, is the graph formed
by the union of nodes in G1 and G2 and the union of arcs (or edges) in G1 and G2. That
is, a node labeled x is in G1 ∪ G2 if and only if a node labeled x is in G1 or G2. Also, an
arc (or edge) (x, y) is in G1 ∪ G2 if and only if the arc (or edge) (x, y) is in either G1 or
G2.

In addition, we can induce subgraphs on a graph G. Let N be a subset of the nodes
in G, and let E be a subset of edges in G. The node-induced subgraph of G given N is
the graph containing nodes N and all edges in G that are bordered by nodes in N . The
edge-induced subgraph of G given E is the graph containing edges E and all nodes in G
that border edges in E.
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Let us now examine the knowledge map and some of its fundamental properties.

Definition 3.1 A knowledge map is a directed acyclic graph that captures part of a
person’s knowledge about some domain. Each node in the knowledge map represents a
distinction, variable, or event that may be uncertain. The structure of the graph (i.e., the
arcs and missing arcs between nodes) represents the conditional independence assertions

p (x|C(x), ξ) = p
°
x|S̄(x), ξ

¢
(3.1.1)

for all nodes x in the knowledge map. An assessed knowledge map is a knowledge
map in which the distributions p (x|C(x), ξ), for each node x, have been assessed.

A theorem concerning knowledge maps and conditional independence follows immedi-
ately from the definition.

Theorem 3.1 For all nodes x in a knowledge map,

p (x|C(x), ξ) = p
≥
x|S̄

0
(x), ξ

¥
(3.1.2)

where S̄
0
(x) is any subset of S̄(x) that includes C(x).

Proof: Let S
00
(x) = S̄

0
(x)\C(x) and S

000
(x) = S̄(x)\S̄0

(x). The sets C(x), S
00
(x), and

S
000

(x) are disjoint and their union is S̄(x). Thus, we can write

p
≥
x|S̄

0
(x), ξ

¥
=

X

S
000
i (x)
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p (x|C(x), ξ) p
≥
S

000

i (x)|C(x), S
00
(x), ξ

¥

= p (x|C(x), ξ)

where
P

S
000
i (x) denotes the sum over all instances of S

000
(x). The first line is the expansion

rule for probabilities (see Appendix A.1.3). The second line follows from the first by the
definition of conditional independence in a knowledge map, Equation 3.1.1. The last line
follows from the second because p (x|C(x), ξ) does not depend on S

000
(x). ✷

A knowledge map represents assertions of conditional independence in addition to those
assertions delineated in Theorem 3.1. In particular, let X, Y , and Z be three disjoint
subsets of nodes in a knowledge map. We say that Z d-separates X from Y , if there is no
path between a node in X and a node in Y along which (1) every node with converging
arcs is in Z or has a successor in Z, and (2) every other node is outside Z (see Pearl, 1988,
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for examples). Pearl (1986) states without proof that, if Z d-separates X from Y , then X
and Y are conditionally independent, given Z. Verma and Pearl (1988) prove this result.
In addition, Geiger and Pearl (1988) prove that the d-separation criterion delineates
all assertions of conditional independence that we can represent in a knowledge map.1

Readers who want to gain a thorough understanding of the independence assertions
represented by a knowledge map should see Pearl (1988, Chapter 3). For the development
here, Theorem 3.1 is adequate.

Let us now consider the relationship between a knowledge map and the joint probability
distribution over the variables in that knowledge map. Given a set of n uncertain variables
and background knowledge ξ, an expansion of the joint distribution for the variables is
one of the n! factorizations of the joint distribution that we can write using the product
rule. For example,

p (x, y, z|ξ) = p (x|ξ) p (y|x, ξ) p (z|x, y, ξ) (3.1.3)

p (x, y, z|ξ) = p (y|ξ) p (z|y, ξ) p (x|y, z, ξ) (3.1.4)

are two expansions for the set of variables {x, y, z}. Any expansion of a set of variables
induces a total ordering on the variables, which we call an expansion order and denote
≤E . We write x ≤E y if and only if variable x occurs in the conditioning events of
variable y. The set containing all nodes less than x in the expansion order is denoted
≤E(x). A knowledge map for a set of variables also defines an ordering, called ≤C , over
those variables. In particular, we say that x ≤C y if and only if there is a (possibly
empty) directed path from x to y in the graph. Since the graph contains no directed
cycles, ≤C is a partial ordering. We say that an expansion order ≤E is consistent with
≤C if x ≤C y implies x ≤E y. Given these definitions, we can now use Theorem 3.1 to
derive a fundamental property of knowledge maps, which was first stated by Howard and
Matheson (1981).

Theorem 3.2 An assessed knowledge map determines a unique joint distribution over
its variables.

Proof: Let ≤E be any expansion order that is consistent with the partial ordering ≤C

associated with a given knowledge map. From the definition of expansion order, we have

p (X|ξ) =
Y

x∈X

p (x| ≤E(x), ξ) (3.1.5)

1This result applies only to knowledge maps that do not contain deterministic nodes. Geiger et al.
(1990) discuss a modified criterion, called D-separation, for knowledge maps with deterministic nodes.
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where X is the set of all variables in the knowledge map and p (X|ξ) denotes the joint
distribution over the variables. By definition of ≤C , it follows that ≤E(x) is a subset of
S̄(x) that includes C(x). Therefore, using Theorem 3.1, we can rewrite Equation 3.1.5
as

p (X|ξ) =
Y

x∈X

p (x|C(x), ξ) (3.1.6)

The terms in Equation 3.1.6 are exactly the distributions associated with the assessed
knowledge map. ✷

In light of this proof, we see that a knowledge map implicitly restricts the possible
expansions that can be used to construct the joint distribution over the variables in
the knowledge map directly from the distributions associated with the variables. In
particular, only those expansion orders that are consistent with ≤C can be used. For
the sake of brevity, when an expansion order is consistent with the partial order ≤C

of a given knowledge map, we shall say the the expansion order is consistent with the
knowledge map itself.

It is often cumbersome to verify Equation 3.1.1 for every node in a knowledge map.
The following theorem shows that such comprehensive testing usually is not necessary.

Theorem 3.3 Let ≤E be some expansion order that is consistent with a knowledge map.
Then

p (x|C(x), ξ) = p
°
x|S̄(x), ξ

¢
, for all x (3.1.7)

if and only if

p (x|C(x), ξ) = p (x| ≤E(x), ξ) , for all x (3.1.8)

Proof: Equation 3.1.8 follows from Equation 3.1.7 by Theorem 3.1. For a proof of the
converse, see Verma and Pearl (1988) or Shachter (1990). ✷

The theorem says that, to verify the assertions of conditional independence implied
by a knowledge map, a person needs only to check that, for some expansion order, the
conditional predecessors of each node x render x independent of all other nodes that
precede x in the expansion order. The theorem also simplifies many of the derivations
in this chapter.

In the definition of knowledge maps, the absence of arcs play a critical role. For exam-
ple, given any knowledge map, we can always add arcs to the graph and not introduce
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erroneous assertions of conditional independence. However, it is often useful to know
that the arcs in a knowledge map reflect actual dependencies. To address this issue, let
us consider the concepts of superfluous arc and minimal knowledge map.

Definition 3.2 Given the knowledge map of an individual, an arc in that map is super-
fluous if and only if its removal from the map does not introduce conditional indepen-
dencies that contradict the assertions of the individual. A knowledge map is minimal if
and only if it contains no superfluous arcs.

Each arc in a minimal knowledge map thus represents assertions of conditional depen-
dence. The following theorem provides a simple procedure for identifying superfluous
arcs, and hence a simple procedure for composing a minimal knowledge map.

Theorem 3.4 An arc from x to y is superfluous if and only if

p (y|C(y), ξ) = p (y|C(y)\x, ξ) (3.1.9)

for all instances of C(y).

Proof (only if): In the graph without the arc from x to y, x must be a nonsuccessor of
y. Thus, Equation 3.1.9 follows from Theorem 3.1.

Proof (if): Let ≤E be any expansion order that is consistent with the original knowledge
map. We know that

p (y|C(y), ξ) = p (y| ≤E(y), ξ) (3.1.10)

Combining Equations 3.1.9 and 3.1.10, we obtain

p (y|C(y)\x, ξ) = p (y| ≤E(y), ξ) (3.1.11)

Because the assertions of conditional independence

p (z|C(z), ξ) = p (z| ≤E(z), ξ)

for z 6= y are unaffected by the removal of the arc from x to y, it follows from Equa-
tion 3.1.11 and Theorem 3.3 that the arc from x to y can be removed. ✷

Because minimal maps contain more information than do nonminimal maps, and be-
cause they can be constructed easily from nonminimal maps using the criterion in The-
orem 3.4, minimal maps are almost always composed in practice. We shall see that
minimal knowledge knowledge maps play an important role in the theory of similarity
networks.

Theorem 3.4 says that, if an arc from x to y is nonsuperfluous, then there must be
some instance of C(y) such that
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p (y|C(y), ξ) 6= p (y|C(y)\x, ξ) (3.1.12)

The following theorem shows that, provided all probabilities in the joint distribution
are nonzero, Equation 3.1.12 is also true when the distributions in the equation are
conditioned on any additional set of nonsuccessors of y.

Definition 3.3 A probability distribution is strictly positive if and only if it contains
no probabilities equal to zero.

Theorem 3.5 If an arc from x to y is nonsuperfluous in an assessed knowledge map
that has a strictly positive joint distribution, then, for all subsets S̄

0
(y) ⊆ S̄(y) that do

not contain C(y),

p
≥
y|C(y), S̄

0
(y), ξ

¥
6= p

≥
y|C(y)\x, S̄

0
(y), ξ

¥
(3.1.13)

for some instance of C(y) ∪ S̄
0
(y).

Proof: Suppose the theorem is false. Then

p
≥
y|C(y), S̄

0
(y), ξ

¥
= p

≥
y|C(y)\x, S̄

0
(y), ξ

¥
(3.1.14)

for all subsets S̄
0
(y) ⊆ S̄(y) that do not contain C(y). Because the knowledge map has

a strictly positive distribution, Equation 3.1.14 holds for all instances of C(y) ∪ S̄
0
(y).

Expanding p (y|C(y)\x, ξ) over all instances of S̄
0
(y), we obtain

p (y|C(y)\x, ξ) =
X

S̄
0
i(y)

p
≥
y|C(y)\x, S̄

0

i(y), ξ
¥

p
≥
S̄

0

i(y)|C(y)\x, ξ
¥

=
X

S̄
0
i(y)

p
≥
y|C(y), S̄

0

i(y), ξ
¥

p
≥
S̄

0

i(y)|C(y)\x, ξ
¥

=
X

S̄
0
i(y)

p (y|C(y), ξ) p
≥
S̄

0

i(y)|C(y)\x, ξ
¥

= p (y|C(y), ξ)

The first line is just the expansion rule for probabilities, and the second line is ob-
tained from the first line using Equation 3.1.14. Because S̄

0
(y) contains only nonsuc-

cessors of y, the third line follows from the second line and Theorem 3.1. Finally, since
p (y|C(y), ξ) does not depend on S̄

0
(y), we obtain the last line from the third. The fact

that p (y|C(y)\x, ξ) = p (y|C(y), ξ) contradicts the assumption that the arc from x to y
is nonsuperfluous. ✷
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y
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Figure 3.1: A counterexample to Theorem 3.5 in the deterministic case.
(a) The variables x and z are logically equivalent, and the arc from x to y is nonsuperfluous. (b) The
arc from x to y in (a) can replaced with an arc from z to y.

The theorem is false for some distributions that are not strictly positive. Consider,
for example, the knowledge map shown in Figure 3.1(a). Suppose that the knowledge
map is minimal. In addition, suppose that x and z are logically equivalent, making z a
deterministic function of x, as shown in the figure. In this case, we can replace the arc
from x to y with an arc from z to y, as shown in Figure 3.1(b), without destroying the
assertions of conditional independence and dependence in the original knowledge map.
In particular, we obtain

p (y|x, z, ξ) = p (y|z, ξ)

for all instances of the set {x, z} that are logically consistent, a contradiction to Theo-
rem 3.5. In general, the proof of the above theorem fails for nonpositive distributions,
because we may not be able to replace p

≥
y|C(y)\x, S̄

0
(y), ξ

¥
with p

≥
y|C(y), S̄

0
(y), ξ

¥
,

for all instances of C(y)∪S̄
0
(y); one or more instances of x may not be logically consistent

with some instances of C(y) ∪ S̄
0
(y).

A property of knowledge maps that is important to the development of the theory of
similarity networks follows from Theorem 3.5.

Theorem 3.6 A strictly positive joint distribution over a set of variables and an expan-
sion order on the variables determines a unique minimal knowledge map.

Proof: Suppose C0(y) 6= C00(y) are two minimal predecessor sets of some variable y.
Choose a variable x such that x ∈ C0(y) and x6∈C00(y), and let C(y) = C0(y) ∪ C00(y).
Because every node in C(y) is a nonsuccessor of y, it follows from Theorem 3.5 that

p (y|C(y)\x, ξ) 6= p (y|C(y), ξ)

for some instance of C(y). However, since C00(y) ⊆ C(y) \ x, it follows from Theorem 3.1
that

p (y|C(y)\x, ξ) = p (y|C(y), ξ)
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for all instances of C(y), a contradiction. ✷

Pearl (1988, page 119) first proved Theorem 3.6. The theorem is a weak converse of
the fundamental theorem for knowledge maps, Theorem 3.2, which says that an assessed
knowledge map determines a unique joint distribution over the variables in the map.
The knowledge maps in Figures 3.1(a) and (b) are a counterexample to the theorem for
nonpositive distributions.

3.2 Overview

We are now ready to examine a formal theory for similarity networks. For this develop-
ment, we shall find it convenient to consider two new varieties of similarity networks, as
well as several additional constructions among the various representations. The collection
of representations and constructions that we discuss is shown in Figure 3.2.

A hypothesis-specific similarity network consists of three component representations, a
similarity graph, a hypothesis-specific knowledge map for every hypothesis in the similar-
ity graph, and a relevance set for every edge in the similarity graph. The similarity graph
is the same graph that is associated with the similarity networks of Chapter 2. Each node
in the graph represents one of a set of mutually exclusive and exhaustive instances or
hypotheses of a distinguished variable, denoted h. Informally, the edges between nodes
in the graph represent judgments of similarity. Formally, the presence of the edge (hi, hj)
represents an assertion by the network’s author that he is willing to construct an ordi-
nary local knowledge map for the pair of hypotheses hi and hj . The hypothesis-specific
knowledge map or hs map for the hypothesis hi is a knowledge map of nondistinguished
variables under the assumption that hi is true. Unlike the local maps discussed in Chap-
ter 2, all hs maps must contain the same collection of nondistinguished variables. The
relevance set for the edge (hi, hj) contains assertions of subset independence and subset
dependence. We soon consider this set in detail.

A comprehensive similarity network contains two component representations, similar
to the components of the similarity networks examined in Chapter 2: a similarity graph,
and a comprehensive local knowledge map for every edge in the similarity graph. The
similarity graph is the same graph associated with hypothesis-specific networks and the
similarity networks of the previous chapter. Like the local knowledge map already in-
troduced, the comprehensive local knowledge map or c-local map for the edge (hi, hj) is
a knowledge map under the assumption that either hi or hj is true. Unlike its coun-
terpart, however, each comprehensive local knowledge map is required to contain all
nondistinguished variables.
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c-global graph

o-global graph

• similarity graph
• hs maps
• relevance sets

Hypothesis-specific
similarity network

• similarity graph
• c-local maps

Comprehensive
similarity network

• similarity graph
• o-local maps
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similarity network

=

Figure 3.2: Hypothesis-specific, comprehensive, and ordinary similarity networks.
Hypothesis-specific networks consist of a similarity graph, a relevance set associated with each edge in
the similarity graph, and a hypothesis-specific knowledge map (hs map) associated with each node in
the similarity graph. This network can be used to construct a comprehensive similarity network that
consists of the same similarity graph and a comprehensive local knowledge map (c-local map) for each
edge in the similarity graph. The comprehensive similarity network, in turn, can be used to construct a
comprehensive global knowledge map (c-global map), which is a knowledge map for the entire domain.
The comprehensive similarity network, by definition, also determines an ordinary similarity network.
The comprehensive and ordinary networks are identical, except that the knowledge maps associated
with the edges in the similarity graph, called ordinary knowledge maps (o-local maps), do not contain
nodes that are disconnected from h. Finally, the ordinary similarity network can be used to construct an
ordinary global knowledge map (o-global map) that, like its comprehensive counterpart, is a knowledge
map for the entire domain. Under certain conditions, a c-global map and o-global map constructed in
this manner are identical.
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The similarity network introduced in Chapter 2 is called an ordinary similarity network
in this chapter, to distinguish it from the hypothesis-specific and comprehensive varieties.
By the same token, the local knowledge maps are called ordinary local knowledge maps
or o-local maps. Formally, ordinary local knowledge maps are defined in terms of their
comprehensive counterparts. In particular, the o-local map for the edge (hi, hj) in the
similarity graph is the node-induced subgraph of the corresponding c-local map that
contains only those nodes in the c-local map that are connected to the distinguished
variable h.

The ordinary global knowledge map or o-global map is the global knowledge map de-
scribed in Chapter 2. As is the case for the similarity network, the map is labeled ordinary
to distinguish its counterpart, the comprehensive global knowledge map or c-global map.

The symbol →̀ in Figure 3.2 denotes the construction of one representation from an-
other. The construction of an ordinary global knowledge map from an ordinary similarity
network is the main focus of this chapter. As discussed in Chapter 2, we construct the
ordinary global knowledge map by forming the graph union of the o-local maps in the
ordinary similarity network. The construction of a comprehensive global knowledge map
from a comprehensive similarity network is defined analogously. The construction of a
comprehensive similarity network from a hypothesis-specific network is somewhat more
complicated and will be discused in the following section. Also, we can view the definition
of o-local maps in terms of c-local maps as a construction.

In Section 3.3, we formally define these representations and constructions, and illus-
trate them with examples. In Section 3.4, we define the notion of soundness for construc-
tions, and show that the construction of a comprehensive network from a hypothesis-
specific network and of a comprehensive knowledge map from a comprehensive similarity
network is sound, under the conditions discussed in Section 2.1.2. In Section 3.5, we
define what it means for a similarity network to be consistent, and demonstrate that
minimal hypothesis-specific and comprehensive similarity networks—networks that con-
tain only minimal knowledge maps—can be inconsistent. We then show that a minimal
comprehensive similarity network is consistent if and only if it can be constructed from a
consistent, minimal hypothesis-specific similarity network. We use this fact to derive an
algorithm for testing the consistency of a comprehensive network. In Section 3.6, we use
these consistency results to show that the c-global map and o-global map constructed
from a consistent, minimal comprehensive similarity network must be identical. Using
this observation, we prove that the construction of the o-global map is sound. In Sec-
tion 3.7, we extend the algorithm developed in Section 3.5 for testing the consistency of
comprehensive networks to ordinary networks. In Section 3.8, we discuss a definition of
ordinary local knowledge maps that is more useful to users than is the current defini-
tion. In Section 3.9, we show that the construction of an o-global map from an ordinary
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similarity network is exhaustive. Finally, in Section 3.10, we examine the assessment of
probabilities in an ordinary similarity network.

3.3 Definitions and Examples

In the following definitions, h is a distinguished uncertain variable with mutually exclusive
and exhaustive hypotheses h1, h2, . . . hn, and Y is a set of nondistinguished uncertain
variables.

Definition 3.4 A hypothesis-specific similarity network for variable h and Y given
background knowledge ξ consists of a similarity graph, a hypothesis-specific knowledge
map for each hypothesis of h, and a relevance set for each edge in the similarity graph.
The similarity graph is an undirected graph in which the nodes represent the hypotheses
of h. The presence of the edge (hi, hj) means that the author of the network is willing
to compose an ordinary local knowledge map for the hypothesis pair. The hypothesis-
specific knowledge map (hs map) for hypothesis hi, denoted bhi, is a knowledge map
for all variables in Y given background knowledge hi ∧ ξ. The structures of the hs maps
are restricted such that the graph union of the bhi cannot contain directed cycles. The
conditional predecessors and nonsuccessors of a node y in the hs map bhi are denoted Ci(y)
and S̄i(y), respectively. The relevance set for the edge (hi, hj) in the similarity graph,
denoted Rij, contains either a statement of subset independence or subset dependence for
each variable y ∈ Y such that such that the conditional predecessors of y in bhi are the
same as those in bhj. That is, Rij contains either the assertion

p
≥
y|Ci/j(y), hi, ξ

¥
= p

≥
y|Ci/j(y), hj , ξ

¥
(3.3.15)

or

p
≥
y|Ci/j(y), hi, ξ

¥
6= p

≥
y|Ci/j(y), hj , ξ

¥
(3.3.16)

for every y ∈ Y such that Ci(y) = Cj(y) ≡ Ci/j(y).

The restriction on the structures of the hs maps guarantees that some expansion order
over the variables in the hypothesis-specific network is consistent with every hypothesis-
specific knowledge map in the network. This property of hs maps will be used throughout
the derivations to follow. By Theorem 2.1, Equation 3.3.15 is the assertion that the vari-
able y is not relevant to the hypothesis pair {hi, hj}, given any instance of the conditional
predecessors of y in the hs maps bhi and bhj . Conversely, Equation 3.3.16 is the statement
that variable y is relevant to {hi, hj} for some instance of the conditional predecessors.
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As we shall see, these assertions determine, in part, whether or not there are arcs from
h to the nondistinguished nodes in both comprehensive and ordinary local knowledge
maps constructed from the hypothesis-specific similarity network. Note that we do not
include in Rij those assertions of subset independence or dependence for variables y,
where Ci(y) 6= Cj(y). In Appendix B.2, we see that if these conditional-predecessor sets
are not equal, then y must be relevant to {hi, hj} for some instance of Ci(y) ∪ Cj(y),
and hence we do not need to include explicitly these assertions in the relevance set.

Definition 3.5 A comprehensive similarity network for h and Y given background
knowledge ξ consists of a similarity graph and a comprehensive local knowledge map for
each edge in the similarity graph. The similarity graph is defined exactly as it is for
hypothesis-specific similarity networks. The comprehensive local knowledge map
(c-local map) for the edge between hi and hj in the similarity graph, denoted hi–hj, is
a knowledge map for variable h and all the variables in Y given background knowledge
{hi, hj}∧ ξ. The structures of the c-local maps are restricted such that (1) node h is not
the successor of any node, and (2) the graph union of the maps does not contain directed
cycles. The conditional predecessors and nonsuccessors of a node y in the c-local map
hi–hj are denoted Cij(y) and S̄ij(y), respectively.

Restriction 2 corresponds to the constraint imposed on hs maps in Definition 3.4
and provides an analogous guarantee that will be used throughout this development.
Specifically, there must be some expansion order over the variables in the comprehensive
similarity network that is consistent with every c-local map. We shall examine the
importance of restriction 1 after deriving preliminary results concerning soundness.

Definition 3.6 An ordinary similarity network for h and Y given background knowl-
edge ξ consists of a similarity graph and an ordinary local knowledge map for each edge
in the similarity graph. The similarity graph is defined exactly as it is for hypothesis-
specific and comprehensive similarity networks. The ordinary local knowledge map
(o-local map) for the edge between hi and hj, denoted hi–hj, is a knowledge map with
background knowledge {hi, hj} ∧ ξ. The map is the node-induced subgraph of the c-local
map that includes only nodes connected to h and the node h itself.

Note that we use the term hi–hj to denote both a c-local and o-local map. The context
in which the term appears will make its meaning unambiguous.

It will sometimes be convenient to use the symbols HS, and C, and O to denote
hypothesis-specific, comprehensive, and ordinary similarity networks, respectively. The
following two definitions, analogous to those given for knowledge maps, also will be useful.
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Definition 3.7 A similarity network (hypothesis-specific, comprehensive, or ordinary)
is assessed if and only if every knowledge map in the network is assessed.

Definition 3.8 A similarity network (hypothesis-specific, comprehensive, or ordinary)
is minimal if and only if every knowledge map in the network is minimal.

We can use an assessed hypothesis-specific similarity network, in conjunction with a
marginal distribution for h, to construct a joint distribution for the variables h and Y.
This fact follows from the definition of hypothesis-specific networks, which requires that
we compose an hs map for each hypothesis in such a network. Also, because similarity
graphs must be connected, an assessed comprehensive similarity network can be used to
construct such a joint distribution. In Section 3.10, we shall see that an assessed ordinary
similarity network also determines a unique joint distribution over h and Y , even though
these networks may contain o-local maps that do not include every nondistinguished
variable.

There is a subtle difference between the definitions of the hypothesis-specific and com-
prehensive networks and the definition of the ordinary similarity network. The first
two networks, as defined, can be composed or directly constructed by an individual. In
contrast, the ordinary similarity network is constructed from a comprehensive similarity
network. (In practice, of course, the comprehensive similarity network is not composed,
and the construction is implicit.) We say that a comprehensive network C constructs an
ordinary similarity network O, or that C is a constructor of O. Sometimes, the notational
shorthand C →̀O shall represent the construction.

Each of the representations that we have examined can be composed directly. In several
cases, however, we also can construct one representation from another.

Construction 3.1 A comprehensive similarity network C for h and Y given background
knowledge ξ is constructed from a hypothesis-specific similarity network HS for h, Y ,
and ξ as follows:

• Copy the similarity network of HS to C.
• For each edge (hi, hj) in the similarity graph, construct the c-local map hi–hj by

(1) forming the graph union of bhi and bhj, (2) adding the node h to this graph,
and (3) adding an arc from h to node y if and only if Ci(y) 6= Cj(y), or Ci(y) =
Cj(y) ≡ Ci/j(y) and the assertion

p
≥
y|Ci/j(y), hi, ξ

¥
6= p

≥
y|Ci/j(y), hj , ξ

¥

is in the relevance set Rij.
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We write HS constructs C, or HS →̀C.

Construction 3.2 A comprehensive global knowledge map (c-global map) Gc is a knowl-
edge map for h and Y given background knowledge ξ that is constructed from a compre-
hensive similarity network C for h, Y , and ξ. Specifically, Gc is the graph union of all
c-local maps in C. We write C constructs Gc, or C →̀Gc. The conditional predeces-
sors and nonsuccessors of a node y in the c-global map are denoted CGc(y) and S̄Gc(y),
respectively.

Construction 3.3 An ordinary global knowledge map (o-global map) Go is a knowledge
map for h and Y given background knowledge ξ that is constructed from an ordinary
similarity network O for h, Y , and ξ. Specifically, Go is the graph union of all o-local
maps in O. We write O constructs Go, or O→̀Go. The conditional predecessors and
nonsuccessors of a node y in the o-global map are denoted CGo(y) and S̄Go(y), respectively.

Because each of the representations involved in these constructions can be composed
directly, it is possible that these constructions are not sound, in the sense that the asser-
tions of conditional independence and dependence implied by a constructed representa-
tion may not logically follow the assertions associated with the original representation.
As discussed previously, however, one of the major results we examine is that Construc-
tion 3.3 is sound, under the conditions discussed in Section 2.1.2. To prove this result,
we also prove that Constructions 3.1 and 3.2 are sound under these same conditions.

In the definition of comprehensive similarity networks (Definition 3.5), recall that the
graph union of the o-local maps can contain no cycles. However, the graph union of
these maps is equivalent to the c-global map. Thus, the restriction in the definition
of comprehensive networks guarantees that the c-global map is a legitimate knowledge
map, and that any expansion order consistent with the c-global map must be consistent
with every o-local map. Also note that we can construct a c-global map indirectly from
a hypothesis-specific network, by first constructing a comprehensive network from the
hypothesis-specific network, and then constructing a c-global map from the comprehen-
sive network. Again, because the graph union of hs maps cannot contain cycles, the
c-global map constructed in this manner is legitimate, and every expansion order con-
sistent with the c-global map must be consistent with every hs map. Although these
properties of hypothesis-specific and comprehensive networks are not enough to certify
the soundness of the constructions, they will be instrumental in the proofs of soundness.

Figure 3.3 illustrates the various representations and the constructions among them,
and depicts the graphical shorthand that we use for these representations in this chapter.
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Figure 3.3(a) contains a hypothesis-specific similarity network for three hypotheses h1,
h2, and h3, and for three nondistinguished variables x, y, and z. The hypothesis-specific
knowledge map for each hypothesis is shown directly under the node representing the
hypothesis in the similarity graph. A dashed line around each map serves to define
the nodes included in the map. The elements of the relevance sets R12 and R23 are
shown above the edges in the similarity graph. Observe that because C1(y) 6= C2(y) and
C2(y) 6= C3(y), there is no assertion involving y in the relevance sets R12 or R23.

The left-hand side of Figure 3.3(b) contains the comprehensive similarity network
constructed from the hypothesis-specific network above it. In the figure, the small ovals
attached to the edges between hypotheses represent the distinguished node h in each
c-local map. Again, a dashed line around each map identifies the nodes belonging to
the map. Because there is an arc from x to y in ch1, there is a corresponding arc in the
c-local map h1–h2. Also, because there is no arc from z to y in either ch1 or ch2, there
is no such arc in h1–h2. There is no arc from h to z in h1–h2 because the assertion
“p (z|h1, ξ) = p (z|h2, ξ)” is in the relevance set R12. Conversely, there is an arc from
h to x, because the assertion “p (x|h1, ξ) 6= p (x|h2, ξ)” is in the relevance set R12.
There is an arc from h to y, because the conditional predecessors of y in ch1 and ch2 are
different. The right-hand side of Figure 3.3(b) shows the c-global map constructed from
the comprehensive network. The c-global map is the graph union of the c-local maps
h1–h2 and h2–h3.

The left-hand side of Figure 3.3(c) contains the ordinary similarity network con-
structed, by definition, from the comprehensive network in Figure 3.3(b). Because node
z is disconnected from h in the c-local map h1–h2, the node is omitted from the corre-
sponding o-local map. Similarly, node x is omitted from the o-local map h2–h3. Because
all nodes in an o-local map are connected to h, dashed lines surrounding the maps are
not needed. The c-global map constructed from the ordinary network is shown on the
right-hand side of the figure. Observe that the o-global map is identical to the c-global
map.

Notice that the two asymmetric forms of conditional independence represented in a
similarity network, subset independence and hypothesis-specific independence, are rep-
resented disjointly in only the hypothesis-specific similarity network. In particular, the
relevance sets contain assertions of subset independence, and differences among the graph
structures of the hs maps reflect hypothesis-specific independence. We exploit this ob-
servation in Section 3.10 when we discuss probability assessment in ordinary similarity
networks.

Also notice that the two global maps have several constructors. For example, if we add
an arc from z to y in the c-local map h1–h2 and an arc from x to y in the c-local map
h2–h3, the resulting comprehensive network would construct the same c-global map.
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Figure 3.3: A hypothesis-specific similarity network and its constructs.
Figure (a) is a hypothesis-specific network for three hypotheses and three nondistinguished nodes. The
probabilistic relations above each edge in the similarity graph make up the relevance set for that edge.
The left-hand sides of Figures (b) and (c) are the comprehensive and ordinary networks constructed
from the network in Figure (a). The right-hand side of Figure (b) is the c-global map constructed from
the comprehensive network. The right-hand side of Figure (c) is the o-global map constructed from the
ordinary network.
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In general, any comprehensive or ordinary similarity network and any comprehensive
or ordinary knowledge map can have more than one constructor. In this regard, the
following definition will be useful.

Definition 3.9 A maximal constructor of a representation (comprehensive similarity
network, ordinary similarity network, comprehensive knowledge map, or ordinary knowl-
edge map) is a constructor of the network that fails to be a constructor when one or more
arcs are added to any of its component knowledge maps.

Also, some comprehensive and ordinary similarity networks have no constructors. We
shall examine such situations in detail when we consider the consistency of similarity
networks in Sections 3.5 and 3.7.

We have now defined all the representations and constructions among these representa-
tions that are necessary to derive the soundness, consistency, and exhaustiveness results
that we seek. However, before we proceed with additional technical discussions, it is
useful to consider the following informal argument that the construction of the o-global
map is sound. Although many subtleties are omitted from the argument, it will serve as
a useful guide to the formal development to follow.

First, observe that the knowledge maps in a hypothesis-specific similarity network
contain more detailed assertions of conditional independence and dependence than are
contained in the knowledge maps in a comprehensive similarity network. Specifically,
hs maps contain assertions of independence and dependence, given a state of knowledge
where a particular instance of h is known, whereas c-local maps contain such assertions,
given a state of knowledge where h is restricted to the disjunction of two instances. Sim-
ilarly, c-local maps contain more detailed assertions than those embodied by a c-global
map. Consequently, constructions HS →̀C (Construction 3.1) and C →̀Gc (Construc-
tion 3.2) are sound.

Next, suppose we are given a consistent, minimal comprehensive network. That is,
suppose we have a comprehensive network in which the assertions of conditional inde-
pendence and dependence are satisfied by some joint distribution. It turns out that
we can construct this network from some hypothesis-specific network. This observation
follows because we can take the expansion order consistent with all c-local maps in the
network and use it to compose a collection of hs maps. By the soundness of Construction
3.1 and the fact that an expansion order in conjunction with a strictly positive joint dis-
tribution determines a unique knowledge map, the comprehensive network constructed
from these hs maps must be equal to the comprehensive network with which we started.

Given this observation, the c-global and o-global map constructed from any consistent,
minimal comprehensive similarity network must be identical. To prove this fact, suppose
that we are given a consistent, minimal comprehensive network and that there is an
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arc from nodes x to y in some c-local map hi–hj in which x and y are disconnected
from h. We must show that the arc appears in the o-global map constructed from the
ordinary counterpart of the comprehensive network, despite the fact that the arc does
not appear in the o-local map hi–hj . Now because there is an arc from x to y in the
c-local map, there must be such an arc in every pair of hs maps bhi and bhj that can be
used to construct the c-local map. (By Construction 3.1, if there is an arc in only one
of bhi and bhj , there must be an arc from h to y in hi–hj . This situation is impossible,
because y is disconnected from h.) Thus, there must be an arc from x to y in all c-local
maps that are bordered by either hi or hj in the similarity graph. Because the similarity
graph is connected, when we repeat this argument along every path in the similarity
graph emanating from hi and hj , we find that either y is disconnected from all c-local
maps, or there is some c-local map in which y is connected to h and there is an arc from
x to y. In the former case, y is irrelevant to the diagnosis of h and can be removed from
consideration. In the latter case, the arc from x to y will be recorded in the o-global
map.

Finally, suppose that we are given a minimal ordinary similarity network. Consider
any joint distribution that satisfies the assertions of this network. From this distribu-
tion, we can construct a comprehensive similarity network that is both consistent and
minimal. It follows from the soundness of Construction 3.2 that the distribution sat-
isfies the assertions of the c-global map constructed from this comprehensive network.
However, by the argument in the previous paragraph, this c-global map and the o-global
map constructed from the given ordinary network are identical. Thus, the distribution
satisfies the assertions of the o-global map and the construction is sound. If we are given
a nonminimal ordinary network, we simply remove arcs until the network is minimal,
and then apply the preceding argument.

3.4 Soundness: Preliminary Results

The three varieties of similarity networks and the two types of knowledge maps each
represent assertions of conditional independence and dependence over the variables in
the network. In the previous section, we examined four constructions that transform one
representation into another. These constructions were defined in terms of the syntax, or
form, of the representations. In this section, we derive the conditions under which these
constructions can preserve the underlying semantics of the representations as well.

In the theory of logic, the concepts of semantic and syntactic truth are formally defined.
A set of sentences S1 in some formal language logically implies another set of sentences S2

in the same language (written S1 |= S2) if and only if any interpretation of the language
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that satisfies all sentences in S1 also satisfies all sentences in S2.2 An interpretation of
a language is a translation of the symbols in the language to mathematical or physical
objects in the real world. Thus, the concept of logical implication refers to underlying
semantics of logical sentences. In contrast, a set of sentences S2 in some formal language
is proved or deduced from another set of sentences S1 in the same language (written
S1 ` S2) if and only if there is some series of restricted syntactic manipulations (a proof
or deduction) that transforms S1 into S2.

The theory of logic also embodies concepts that relate the notions of syntactic and
semantic truth. In particular, if S1 logically implies S2 whenever S2 is proved from S1

for some proof calculus, the calculus is said to be sound. Conversely, if S2 can be proved
from S1 whenever S1 logically implies S2, then the calculus is said to be complete.

These concepts can be mapped to the theory of similarity networks in a natural man-
ner. The formal language of similarity networks is the language of probabilities. The
sentences of interest are the assertions of conditional independence and dependence ex-
plicitly stated in the irrelevance sets of hypothesis-specific networks and the assertions
implicitly determined by the structures of knowledge maps. Such sentences will be called
probability constraints. The notion of logical implication directly carries over to the
theory of similarity networks, provided we restrict interpretations to joint probability
distributions.

Definition 3.10 Given two sets of probability constraints K1 and K2, K1 logically
implies K2, written K1 |=P K2, if and only if any joint distribution that satisfies the
constraints K1 also satisfies the constraints K2.

Finally, we can replace the syntactic proof or deduction in the theory of logic with con-
structions. As a result, we obtain the following definitions of soundness and completeness
for each construction.

Definition 3.11 A construction →̀is sound if and only if

K1 →̀K2 implies K1 |=P K2

for any two sets of probability constraints K1 and K2. The construction is complete if
and only if

K1 |=P K2 implies K1 →̀K2

for any two sets of probability constraints K1 and K2.

2Details of this definition and the definitions to follow have been omitted. For a precise treatment,
see Enderton (1972).
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Deduction calculi used by mathematicians—for example, unification—are both sound
and complete. Thus, K1 |=P K2 if and only if the constraints K2 can be deduced from the
constraints K1 and the rules of probability using such a calculus. This equivalence will be
used throughout the proofs in this chapter. To prove that a construction is sound without
this equivalence, we would have to examine every possible network representation that
can participate in the construction and examine every joint distribution that can satisfy
each representation. Indeed, from a practical standpoint, the definition of soundness
(completeness) is that K2 can be proved from K1 and the rules of probability if (only
if) K2 is constructed from K1. Definition 3.11 is stated in terms of interpretations to
emphasize that the notions of soundness and completeness relate semantics to syntax.

As mentioned previously, strictly positive distributions play an important role in the
theory of similarity networks. Consequently, the following definitions will be useful.

Definition 3.12 Given two sets of probability constraints K1 and K2, K1 logically
implies K2 for strictly positive distributions, written K1 |=P+ K2, if and only if
any strictly positive joint distribution that satisfies the constraints K1 also satisfies the
constraints K2.

Definition 3.13 A construction →̀is sound for strictly positive distributions if
and only if

K1 →̀K2 implies K1 |=P+ K2

for any two sets of probability constraints K1 and K2. The construction is complete
for strictly positive distributions if and only if

K1 |=P+ K2 implies K1 →̀K2

for any two sets of probability constraints K1 and K2.

Informally, a construction is complete if, whenever one representation contains fewer
or less specific probability constraints than another representation, the first can be con-
structed from the second. Not one of the constructions that we have examined is com-
plete. This observation follows from the fact that assertions of conditional independence
in a knowledge map are often insensitive to the direction of arcs, and yet the constructions
are constrained to preserve the direction of arcs. We should not confuse completeness
with exhaustiveness, a weaker property. In Section 3.9, we see that the construction of
an o-global map from and ordinary similarity network is exhaustive.

A construction is sound if the constructed representation contains fewer or less specific
constraints than its constructor. Under certain conditions, all the constructions have this
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property, and hence all are sound. For example, the hypothesis-specific network contains
assertions of conditional independence and dependence that are specific to individual
hypotheses in the similarity graph, whereas the comprehensive network, constructed
from a hypothesis-specific network, contains assertions specific to only hypothesis pairs.
Furthermore, the c-global map, constructed from the comprehensive similarity network,
contains assertions of conditional independence and dependence that are specific to no
set of hypotheses. In general, we have the following theorem.

Theorem 3.7 (Soundness) The following constructions are sound for strictly positive
distributions:

a. HS →̀ C
b. C →̀ Gc

c. C →̀ O
d. O →̀ Go

Moreover, each construction is sound when both the constructor and constructed map are
minimal.

The formal proofs of parts a and b are similar and are given in Appendices B.2 and B.3,
respectively. The construction of an ordinary similarity network from a comprehensive
similarity network is sound (part c) because, by definition, the constraints in an o-local
map are a subset of the constraints in its corresponding c-local map. We prove part d
after examining the consistency of comprehensive similarity networks in the following
section.

Figure 3.4 illustrates three conditions under which the construction C →̀Gc is not sound.
In Figure 3.4(a), the similarity graph of the network is not connected. Specifically, the
node representing h3 is connected to neither h1 nor h2. Consequently, if the variable y is
relevant to the hypothesis pair {h1, h3} or to the hypothesis pair {h2, h3}, the c-global
map constructed from this network does not record this fact (there is no arc from h to y
in the c-global), and the construction is not sound. In Figure 3.4(b), the distinguished
node h has nonsuccessors. The conditional independence assertion implied by this c-
global map is

p (x|y, ξ) = p (x|ξ)

However, this assertion cannot be derived from the conditional independence assertions
in the c-local maps

p (x|y, {h1, h2}, ξ) = p (x|{h1, h2}, ξ)
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p (x|y, {h2, h3}, ξ) = p (x|{h2, h3}, ξ)

and hence the construction is not sound. In Figure 3.4(c), the underlying joint dis-
tribution contains zero probabilities (x is logically determined by h). To see that the
construction of the c-global map is not sound in this case, suppose x has two instances
x1 and x2. In addition, suppose x and y are conditionally independent given h, and that

p (x1|h1, ξ) = 1, p (x2|h2, ξ) = 1, p (x1|h3, ξ) = 1

p (y|h1, ξ) 6= p (y|h2, ξ) 6= p (y|h3, ξ) 6= p (y|h1, ξ)

In context {h1, h2} or {h2, h3}, the variables h and x are logically equivalent. Thus,
the c-local maps in the figure accurately reflect the underlying distributions. In the
global context, however, knowing x does not render h and y independent. Hence, the
construction is not sound. Note that the construction becomes sound if we compose
the c-local map h1–h3. In fact, Theorem 3.7(b) holds for nonminimal networks given
any distribution, provided every pair of hypotheses in the similarity graph is connected
directly. In Section 4.4.1, we discuss the significance of these restrictions on soundness
to the construction of the global knowledge map for Pathfinder.

Note that some of the constructions are sound under weaker conditions than those
stated in the theorem. For example, the construction HS →̀C is sound for any joint
distribution when the knowledge maps are not required to be minimal. Also, the con-
struction C →̀O is sound for all distributions for both minimal and nonminimal maps,
by definition. However, we are interested primarily in the soundness of the construction
O→̀Go, and the soundness of this construction hinges on the soundness of the construc-
tion C →̀Gc. Consequently, we do not pursue these exceptional cases here.

3.5 Consistency: Preliminary Results

Let us extend the mapping, introduced in the previous section, from the theory of logic to
the theory of similarity networks. In the theory of logic, a set of sentences S is consistent
if and only if there is some interpretation that satisfies all the sentences in S.3 Restricting
interpretations to joint probability distributions over the set of variables in a similarity
network, we have the following definition of consistency.

3To be more precise, the set of sentences S is said to be satisfiable under these conditions. In contrast,
consistency is defined in syntactic terms. Specifically, a set of sentences is consistent if and only if it
is impossible to prove a sentence and its negation from that set. Nonetheless, the soundness theorem
from logic and Gödel’s completeness theorem show that the concepts of satisfaction and consistency are
equivalent (Enderton, 1972). In this work, we do not distinguish these two concepts.
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Figure 3.4: Exceptions to the soundness of c-global map construction.
The comprehensive similarity network in (a) is not connected. In (b), the comprehensive network
contains nodes that condition the distinguished node h. The network in (c) contains deterministic
relationships. In all three cases, the constraints of the constructor do not logically imply the constraints
of the constructed representation. Consequently, each construction is not sound.
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Definition 3.14 A similarity network (hypothesis-specific, comprehensive, or ordinary)
is consistent if and only if there exists a joint distribution over the variables in the
network that satisfies the constraints of each knowledge map in the network.

A knowledge map is always consistent by design. However, there is no such guarantee
for similarity networks. For example, consider the hypothesis-specific similarity network
shown in Figure 3.5(a). The relevance sets R12 and R23 contain the assertions

p (x|h1, ξ) = p (x|h2, ξ)

p (x|h2, ξ) = p (x|h3, ξ)

These assertions are contradicted by the assertion

p (x|h1, ξ) 6= p (x|h3, ξ)

in the relevance set R13. Consequently, no joint distribution over h and x can satisfy
this network, and the hypothesis-specific network is inconsistent. Also, consider the com-
prehensive similarity network shown in Figure 3.5(b). If we suppose that the similarity
network is minimal, then the c-local map h1–h2 reflects the assertion that x and y are
dependent given hypothesis h2 (and h1). However, the c-local map h2–h3 represents the
assertion that x and y are independent given hypothesis h2 (and h3). Again, no joint
distribution over the distinguished variable and nondistinguished variables can satisfy
this network, and the comprehensive network is inconsistent. In Section 3.7, we examine
an inconsistent ordinary similarity network.

From a technical standpoint, a similarity network (hypothesis-specific, comprehensive,
or ordinary) does not have to be consistent in order for a construction from that network
to be sound. In fact, the constructions that we have examined are sound whenever the
constructor network is inconsistent, because we can derive any set of propositions from an
inconsistent set of constraints. From the standpoint of knowledge acquisition, however,
it is not enough to know that a construction from a directly composed set of constraints
(e.g., an ordinary similarity network) to another set of constraints (e.g., an o-global map)
is sound. To avoid the creation of a model that recommends nonoptimal decisions, we
also must guarantee that the original set of constraints is consistent. Consequently, the
following definition will be useful.

Definition 3.15 A set of probability constraints is valid for an individual if and only if
that set is logically implied by a consistent set of probability constraints asserted directly
by the individual.
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Figure 3.5: Inconsistent similarity networks.
The hypothesis-specific similarity network in (a) is inconsistent because it simultaneously asserts
p (x|h1, ξ) = p (x|h2, ξ), p (x|h2, ξ) = p (x|h3, ξ), and p (x|h1, ξ) 6= p (x|h3, ξ), which is impossible. The
comprehensive similarity network in (b) is inconsistent because the c-local map h1–h2 implies that x
and y are dependent, given h2, whereas the c-local map h2–h3 implies that x and y are independent,
given h2.
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When the author of a set of constraints is implicit, as it usually will be in our discussions,
we say simply that the set is valid. Definition 3.15 parallels the definition of validity in
logic. In particular, a logic sentence is valid if and only if it can be derived from ∅, the
empty set of sentences. We obtain a correspondence between Definition 3.15 and this
definition, if we identify ∅ with ξ, the background knowledge of a person with coherent
beliefs.

In the remainder of this section, we develop an algorithm for testing the consistency
of a comprehensive similarity network. Given the soundness of the construction C →̀Gc,
we thereby show that we can construct valid c-global maps.

Identifying inconsistent hypothesis-specific networks is straightforward. The hs maps
in a hypothesis-specific network cannot contradict one another, because the assertions
in the hs map bhi are conditioned on the belief that hi is true, and the hypotheses are
mutually exclusive. In addition, the assertions in the relevance sets cannot conflict with
one another unless there is a cycle in the similarity graph, as illustrated in Figure 3.5(a).
Thus, we have the following theorem.

Theorem 3.8 A hypothesis-specific similarity network is consistent if and only if there is
no cycle in the similarity graph such that, for any nondistinguished node y, the assertion

p
≥
y|Ci/j(y), hi, ξ

¥
= p

≥
y|Ci/j(y), hj , ξ

¥
(3.5.17)

is in all but one relevance set Rij in the cycle.

Proof: See Appendix B.4.

Identifying inconsistent comprehensive similarity networks is only slightly more com-
plicated. First note that all nonminimal comprehensive networks are consistent. This
observation follows because nonminimal networks only represent assertions of conditional
independence. Hence, any joint distribution in which every variable is independent of
all others will satisfy the assertions in the network. As mentioned previously, however,
nonminimal knowledge maps and hence nonminimal similarity networks are rarely com-
posed in practice. To understand the situation for minimal comprehensive networks, let
us consider the inconsistent comprehensive network in Figure 3.6. (This network is the
same network that we saw in Figure 3.5b.) Suppose we were to construct this network
from a hypothesis-specific network using the transformation defined in Section 3.3. Be-
cause the c-local map h1–h2 contains an arc from x to y and no arc from h to y, we must
place an arc from x to y in both hs maps ch1 and ch2. If we did not place such an arc in
either hs map, there would be no arc from x to y in the c-local map h1–h2. If we placed
such an arc in only one of ch1 and ch2, the conditional predecessors of y would be different
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Figure 3.6: An inconsistent comprehensive similarity network.

The comprehensive similarity network in the upper half of the figure is inconsistent. Given the rules for
constructing comprehensive networks, it cannot be constructed from any hypothesis-specific similarity
network.

in the two hs maps, resulting in an arc from h to y in h1–h2. However, because there is
no arc between x and y in the c-local map h2–h3, we cannot place such an arc from x to
y in the hs map ch2. Thus, it is impossible to construct the inconsistent comprehensive
network from any hypothesis-specific network.

Also, consider the comprehensive network of Figure 3.7(a). The network is inconsistent
because the the c-local maps h1–h2, h2–h3, and h1–h3 represent the assertions

p (x|h1, ξ) = p (x|h2, ξ)

p (x|h2, ξ) = p (x|h3, ξ)

p (x|h1, ξ) 6= p (x|h3, ξ)

respectively. The network can be only constructed from the hypothesis-specific similarity
network shown in Figure 3.7(b). This hypothesis-specific network is the same inconsistent
network that we saw in Figure 3.5(a).

In general, as described in the following theorem, a comprehensive similarity network
is consistent only if it can be constructed from consistent hypothesis-specific similarity
network.

Theorem 3.9 If the constraints of a minimal comprehensive similarity network are sat-
isfied by some strictly positive joint distribution over the variables in the network (making
the network consistent), then the distribution satisfies the constraints of some minimal
hypothesis-specific similarity network that is a constructor of that network.
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Figure 3.7: An inconsistent comprehensive similarity network with cycles.
The comprehensive similarity network depicted in (a) can be only constructed from the inconsistent
hypothesis-specific similarity network in (b).
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Proof: Let C be the given network and let ≤E be an expansion order such that (1) the
order is consistent with the c-global map constructed from C, and (2) the distinguished
variable h occurs first in the order. By definition of comprehensive similarity networks,
≤E is consistent with every c-local map in C. We use this expansion order (excluding
h) in conjunction with the given distribution to construct a minimal hypothesis-specific
similarity network HS, and let C0 be the comprehensive network constructed from HS.
By Theorem 3.7(a), the given distribution satisfies the constraints implied by the c-local
maps of C0, where C0 is minimal. Also, because all arcs emanate from h in the c-local maps
of C0, the expansion order ≤E must be consistent with C0. It follows from Theorem 3.6
that the maps of each pair must be identical. ✷

Given Theorem 3.9, we can delineate conditions that are necessary for a minimal
comprehensive similarity network to be consistent. The terms x −→ y and x −→/ y
are used to abbreviate the statements “arc from x to y” and “no arc from x to y,”
respectively.

Corollary 3.1 Given a minimal comprehensive similarity network C that is consistent
for some strictly positive distribution, there is a hypothesis-specific similarity network in
which the following conditions hold:

For each arc from nondistinguished node x to nondistinguished node y in the c-global
map constructed from C, and for each c-local map hi–hj in C,

a. If x −→/ y in hi–hj, then x −→/ y in bhi and x −→/ y in bhj

b. If x −→ y in hi–hj, then
i. If h −→ y, then x −→ y in bhi or x −→ y in bhj

ii. If h −→/ y, then x −→ y in bhi and x −→ y in bhj

Proof: Conditions a and b.i follow from Theorem 3.9 and from the procedure for
constructing a comprehensive similarity network from a hypothesis-specific network. To
prove that condition b.ii must hold, suppose there is no arc from h to y in hi–hj . In this
case, Ci(y) = Cj(y). Otherwise, the construction dictates that there is an arc from h
to y. Thus, there is an arc from x to y in bhi if and only if there is such an arc in bhj .
Because there is an arc from x to y in hi–hj , there must be a corresponding arc in both
hs maps. ✷

Corollary 3.2 A minimal comprehensive similarity network C is consistent for some
strictly positive distribution only if, for every nondistinguished node in the network, there
is no cycle in the similarity graph of C such that h −→ y is in exactly one c-local map of
the cycle.
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Proof: The theorem follows directly from Theorem 3.9 and the procedure for construct-
ing a comprehensive similarity network from a hypothesis-specific network. ✷

The converse of Corollaries 3.1 and 3.2 also holds. That is, if the constraints in the
corollaries are satisfied for a given comprehensive network, the network must be consis-
tent. Thus, the constraints are both necessary and sufficient conditions for a comprehen-
sive network to be consistent. The result is proved by way of the following algorithm,
which tests whether or not a comprehensive network satisfies the constraints in Corol-
laries 3.1 and 3.2 and constructs a hypothesis-specific network if the constraints are
satisfied.

Algorithm 3.1 (Consistency, comprehensive networks)

1 For every pair of nondistinguished nodes x and y such that x −→ y
in the c-global map constructed from the given network do

2 For every c-local map hi–hj such that x −→/ y do
3 Post the constraint “x −→/ y” on hi and on hj

4 For every c-local map hi–hj such that x −→ y do
5 If h −→ y and “x −→/ y” is posted on hi and on hj then
6 Return “inconsistent”
7 Else if h −→/ y and “x −→/ y” is posted on hi or on hj then
8 Return “inconsistent”
9 For every hypothesis hi do

10 If the constraint “x −→/ y” is not posted on hi then
11 Add x −→ y to bhi

12 For every nondistinguished node y in the c-global map do
13 For every c-local map hi–hj where h −→ y do
14 From the similarity graph, construct the edge-induced subgraph, G,

containing edge (hi, hj), and edges (hk, hl) such that h −→/ y in hk–hl

15 If the edge (hi, hj) is in a cycle in G
16 Return “inconsistent”
17 For every nondistinguished node y in the c-global map do
18 For every c-local map hi–hj such that Ci(y) = Cj(y) ≡ Ci/j(y) do
19 If h −→/ y then
20 Add “p

°
y|Ci/j(y), hi, ξ

¢
= p

°
y|Ci/j(y), hj , ξ

¢
” to Rij

21 Else if h −→ y then
22 Add “p

°
y|Ci/j(y), hi, ξ

¢
6= p

°
y|Ci/j(y), hj , ξ

¢
” to Rij

23 Return “consistent”
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Theorem 3.10 (Consistency, comprehensive networks) Algorithm 3.1 applied to
a comprehensive similarity network returns “consistent” if and only if there is a strictly
positive joint distribution that makes the network consistent and minimal. Moreover, if
Algorithm 3.1 returns “consistent,” it generates the hypothesis-specific network that is
the maximal constructor of the given network.

Proof: See Appendix B.5.

Figure 3.8(b) illustrates the hypothesis-specific network created by the algorithm ap-
plied to the consistent comprehensive network in Figure 3.8(a). Because the arc from
x to y is the only arc among nondistinguished nodes in the c-global map constructed
from the given comprehensive network, the for-loop beginning at line 1 inspects only
this arc on the c-local maps h1–h2 and h2–h3. Also, because there is an arc from x to
y on both c-local maps, no constraints of the form “x −→/ y” are posted. Consequently,
the for-loop of line 1 does not return “inconsistent,” and an arc is added to each bhi, as
shown in Figure 3.8. The for-loop beginning at line 12 does not return “inconsistent,”
because there are no cycles in the similarity graph. The for-loop beginning at line 17
adds the assertions of relevance and irrelevance necessary to complete the construction
of the hypothesis-specific similarity network. Notice that the network created by the
algorithm is a maximal constructor of the comprehensive network.

Figure 3.9 shows the results of the algorithm applied to the inconsistent similarity
network that we saw in Figures 3.5(b) and 3.6. As in the previous example, the for-loop
beginning at line 1 looks for only the arc from x to y on each of the two c-local maps
of the comprehensive similarity network. Because there is no such arc on h2–h3, the
constraints “x −→/ y” are posted on both h2 and h3, as shown in the Figure 3.9. Because
there is an arc from x to y in h1–h2 and the constraint “x −→/ y” is posted on h2, the
condition at line 7 is satisfied and the algorithm returns “inconsistent.”

In concluding this section, let us consider the time complexity of Algorithm 3.1. As-
sume knowledge maps (hypothesis-specific, local, and global) are represented so that the
direct predecessors of a given node and the nodes bordering a given arc can be accessed
in O(1). Assume that the set of nodes and the set of arcs in each map are stored in hash
tables, so that the test to see whether a node or arc is a member of a given map is O(1);
further assume that these sets are also stored in linear lists, so that the iteration over
nodes and arcs is efficient. In addition, assume that the number of direct predecessors
of any node is bounded by some constant, so that the test for equality of two direct
predecessor sets is O(1).

Under these assumptions, the time complexity of lines 1 through 11 is O(al), where a
is the number of arcs in the c-global map and l is the number of c-local maps (i.e., the
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Figure 3.8: Algorithm 3.1 applied to a consistent comprehensive network.
Algorithm 3.1 applied to the consistent comprehensive network in (a) produces the hypothesis-specific
similarity network in (b). Note that the hypothesis-specific network is a maximal constructor of the
comprehensive network.
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Figure 3.9: Algorithm 3.1 applied to an inconsistent comprehensive network.
The figure illustrates the results of applying Algorithm 3.1 to the inconsistent comprehensive network
shown in Figures 3.5(b) and 3.6. Since there is no arc from x to y in the c-local map h2–h3, the constraint
“x −→/ y” is posted on h2 and h3. The algorithm returns “inconsistent” when it encounters the arc from
x to y in the c-local map h1–h2, because there is no arc from h to y.
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number of edges in the similarity graph). The time complexity of lines 12 through 16
is O(nl(l + hd)), where n is the number of nodes in the c-global map, h is the number
of hypotheses in the similarity graph, and d is the largest degree of any node in the
similarity graph.4 The term hd corresponds to line 15, where we determine whether or
not the edge (hi, hj) is in a cycle in the subgraph G. To accomplish this task, we remove
the edge (hi, hj) from G, mark node hi, and mark all neighbors of hi. Next, we repeatedly
mark all neighbors of each newly marked node, until no new nodes are marked. There is
a path from hi to hj in this modified graph, and hence a cycle in G that includes (hi, hj),
if and only if node hj is marked. Finally, the time complexity of lines 17 through 22
is O(nl). Overall, because n ≤ a − 1, h ≤ l − 1, and d ≤ l, the time complexity of
Algorithm 3.1 is O(al3).

3.6 Soundness: Ordinary Similarity Networks

Armed with criteria for evaluating the consistency of a comprehensive similarity network,
we can now prove that the construction of the o-global map from an ordinary similarity
network is sound for strictly positive distributions. Suppose we are given a minimal
comprehensive similarity network that has been certified consistent by Algorithm 3.1.
As shown in the following theorem, the comprehensive and ordinary global knowledge
maps constructed from this network must be identical.

Lemma 3.1 Given a minimal comprehensive similarity network that is consistent for
strictly positive distributions, if there is an arc from x to y and no arc from h to y in
the c-local map hi–hj, then there will be an arc from x to y in all c-local maps that are
bordered by hi or hj in the similarity graph.

Proof: Since the network is minimal and consistent for strictly positive distributions, we
know from Theorem 3.9 that it can be constructed by some hypothesis-specific similarity
network. By Corollary 3.1(b.ii), there must be an arc from x to y in both hs maps bhi and
bhj of this network. Hence, by construction, there must be such an arc on each c-local
map that is bordered by hi or hj . ✷

Theorem 3.11 Given a minimal comprehensive similarity network that is consistent
for strictly positive distributions, the c-global map and o-global map constructed from the
network are identical.

4The degree of a node in an undirected graph is the number of edges that touch that node.
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Proof: Suppose the theorem is false. In this case, there must be an arc between two
nodes—say, from x to y—that is present on some c-local map only when both x and y
are disconnected from h. Starting from this c-local map, traverse the similarity graph
until a c-local map where y is connected to h is encountered. Call this c-local map hi–hj .
(Because the similarity graph is connected, if no such a map is found, the node y is
disconnected from the c-global, and we can ignore the node.) On each c-local map along
the path of this traversal, we can apply Lemma 3.1, because y is disconnected from h
in the map. It follows that there must be an arc from x to y in hi–hj . However, this
result contradicts our original assumption, because y and therefore x are connected to h
on hi–hj . ✷

To make the argument in Theorem 3.11 more concrete, let us apply it to the compre-
hensive similarity network in Figure 3.10. In the c-local map h1–h2, there is an arc from
node x to node y, and these nodes are disconnected from h. Consequently, we do not
copy this arc to the o-global map. However, there is no arc from h to y in h1–h2, so we
can apply Lemma 3.1 to conclude that there must be an arc from x to y in the adjoining
c-local map h2–h3. In this c-local map, both x and y are connected to h, and the arc
from x to y is registered in the o-global map.

Given this equality, the soundness of o-global map construction now follows.

Theorem 3.7(d) (Soundness, o-global map construction) The construction of an
o-global map from an ordinary similarity network is sound for strictly positive distribu-
tions. The construction remains sound if both representations are minimal.

Proof: First, consider the case where an ordinary similarity network O is minimal.
Suppose some strictly positive joint distribution satisfies the constraints of the network,
making O consistent. (If there is no such distribution, then the constraints of O im-
ply trivially the constraints of the o-global map constructed from O.) By definition of
ordinary similarity networks, the distribution satisfies the constraints of some minimal
comprehensive similarity network—say, C. Furthermore, by Theorem 3.7(b), it follows
that the joint distribution also satisfies the constraints implied by the c-global map Gc

constructed from C. By Theorem 3.11, however, Gc and the o-global map constructed
from O are identical. Hence, the joint distribution satisfies the constraints of the o-global
map.

If the ordinary network is not minimal, use the joint distribution to remove arcs from
the o-local maps until the maps are minimal. Call the new network O0. Applying the
argument in the previous paragraph to O0, it follows that the given distribution satisfies
the constraints of the o-global map constructed from O0. However, by construction, all



88 Chapter 3

→ |
→|

→|

y

zxz

y

x

h3h2h1 h

y

zxz

y

x z

y

x

h3h2h1 h

(b)

(a)

Figure 3.10: An example of the equivalence of c-global and o-global maps.
(a) The c-global map on the right is constructed from the comprehensive similarity network on the
left. (b) The o-global map on the right is constructed from the ordinary similarity network on the left.
Although nodes x and y are missing from the o-local map h1–h2 and node z is not in the o-local map
h2–h3, the c-global and o-global maps are identical.
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arcs in the o-global map of O0 appear in the o-global map of O. Consequently, the
assertions of conditional independence implied by the o-global of the original network
are satisfied by the joint distribution. ✷

Theorem 3.7(d) is the first of the three major results of this chapter. It says that we
do not have to go through the time-consuming process of assessing c-local maps. By
constructing o-local maps, ignoring the dependencies among variables disconnected from
those maps, we recover a global knowledge map that contains only assertions that can
be derived from the c-local maps.

3.7 Consistency: Ordinary Similarity Networks

As we have discussed, the soundness result does not carry much force unless we can
identify and correct inconsistent ordinary similarity networks. Consequently, we need to
extend Algorithm 3.1 to include ordinary networks.

Suppose we are given such a network. For every pair of nondistinguished nodes x and y
such that there is an arc from x to y in the o-global map (or, equivalently, in the c-global
map) constructed from this network, one of the following three cases must hold in each
o-local map hi–hj : (1) both x and y are in the map, (2) only one of x and y are in the
map, or (3) neither x nor y are in the map. If case 1 holds, we can directly apply the
machinery of Algorithm 3.1 to the nodes x and y and the arc between them. If case 2
holds, we know that there is no arc from x to y in any c-local map from which the o-local
map hi–hj can be constructed. Consequently, we can post the constraint “x −→/ y” on
both hi and hj . If case 3 holds, we cannot tell directly whether there is an arc from x to
y in any c-local map from which the o-local map hi–hj can be constructed. However, if
we know that the constraint “x −→/ y” is posted on either hi or hj , then we know that
there cannot be such an arc, and we can post the constraint “x −→/ y” on both hi and
hj . Thus, with the minor modifications to Algorithm 3.1 suggested by these comments,
we obtain the following algorithm for testing the consistency of an ordinary similarity
network.

Algorithm 3.2 (Consistency, ordinary networks)

1 For every pair of nondistinguished nodes x and y such that x −→ y in
the o-global map constructed from the given network do

2 For every o-local map hi–hj such that x −→/ y do
3 Post the constraint “x −→/ y” on hi and on hj
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4 For every o-local map hi–hj such that only one of x and y is on the map do
5 Post the constraint “x −→/ y” on hi and on hj

6 Mark all o-local maps as unvisited
7 While there is an unvisited o-local map containing neither x nor y

such that the constraint “x −→/ y” is posted on hi or on hj do
8 Post the constraint “x −→/ y” on hi and on hj

9 Mark the o-local map as visited

10 For every o-local map hi–hj such that x −→ y do
11 If h −→ y and “x −→/ y” is posted on hi and on hj then
12 Return “inconsistent”
13 If h −→/ y and “x −→/ y” is posted on hi or on hj then
14 Return “inconsistent”

15 For every hypothesis hi do
16 If the constraint “x −→/ y” is not posted on hi then
17 Add x −→ y to bhi

18 For every nondistinguished node y in the c-global map do
19 For every c-local map hi–hj where h −→ y do
20 From the similarity graph, construct the edge-induced subgraph, G,

containing edge (hi, hj), and edges (hk, hl) such that h −→/ y in hk–hl

21 If the edge (hi, hj) is in a cycle in G
22 Return “inconsistent”

23 For every nondistinguished node y in the c-global map do
24 For every c-local map hi–hj such that Ci(y) = Cj(y) ≡ Ci/j(y) do
25 If h −→/ y then
26 Add “p

°
y|Ci/j(y), hi, ξ

¢
= p

°
y|Ci/j(y), hj , ξ

¢
” to Rij

27 Else if h −→ y then
28 Add “p

°
y|Ci/j(y), hi, ξ

¢
6= p

°
y|Ci/j(y), hj , ξ

¢
” to Rij

29 Return “consistent”

Theorem 3.12 (Consistency, ordinary similarity networks) Algorithm 3.2 applied
to an ordinary similarity network returns “consistent” if and only if there is a strictly
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positive distribution that makes the network consistent and minimal. Moreover, if Al-
gorithm 3.2 returns “consistent,” it generates the hypothesis-specific network that is the
maximal constructor of the given network.

Proof: See Appendix B.6.

Under the assumptions given in Section 3.5, the time complexities of lines 1 through
17, 18 through 22, and 23 through 28 are O(al2), O(nl(l + hd)), and O(nl), respectively.
The additional factor of l in the first term is a consequence of the while-loop at line 7 of
the algorithm. The loop may iterate O(l) times, and the search for an unvisited o-local
map is also O(l). Overall, the time complexity of Algorithm 3.2 is O(al3)—the same
time complexity as that of Algorithm 3.1.

Figure 3.11 illustrates the results of Algorithm 3.2 applied to a consistent ordinary
similarity network. Because the arc from x to y is the only arc between nondistinguished
nodes in the o-global map constructed from the given network, the for-loop beginning
at line 1 only looks for this arc on the two o-local maps. Because y is not in h1–h2, the
condition in line 4 of the algorithm is met, and the constraint “x −→/ y” is posted on
h1 and h2. When the algorithm encounters the arc from x to y on h2–h3, neither the
condition at line 11 nor that at line 13 is satisfied, because there is an arc from h to
y. Consequently, the algorithm returns “consistent.” The for-loop at line 23 adds an
arc from x to y in the hs map ch3, generating the maximal constructor of the ordinary
network.

Figure 3.12 illustrates the results of Algorithm 3.2 applied to an inconsistent ordinary
similarity network. As in the previous example, the for-loop at line 1 looks for only an
arc from x to y on each o-local map. Because y is missing from h1–h2, the condition
at line 4 of the algorithm fires and the constraint “x −→/ y” is posted on h1 and h2.
Similarly, because x is missing from h3–h4, the constraint “x −→/ y” is posted on h3 and
h4. When the algorithm finds the arc from x to y in h2–h3, the condition at line 11 is
satisfied, and the algorithm returns “inconsistent.”

Algorithm 3.2 and Theorem 3.12 constitute the second major result of this chapter.
Given a minimal ordinary network, we can determine in a tractable manner whether or
not the network is consistent for strictly positive distributions. The algorithm can easily
be extended to assist in the correction of an inconsistent ordinary similarity network. In
particular, a modified version of Algorithm 3.2 could return a list of arcs for each o-local
map that would cause Algorithm 3.2, as it currently exists, to return “inconsistent.”
With such a list, it would be a simple matter for the author of the network to resolve any
inconsistencies. Once these inconsistencies are corrected, we know, from the soundness
result (Theorem 3.7d), that the o-global map constructed from the network is valid.
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Figure 3.11: Algorithm 3.2 applied to a consistent ordinary network.
Algorithm 3.2 is applied to the consistent ordinary similarity network in (a). The constraints posted
by the algorithm are shown in (b). Because x and not y is in the o-local map h1–h2, the constraint
“x −→/ y” is posted on h1 and h2. Although there is an arc from x to y on the o-local map h2–h3,
the algorithm returns “consistent” because there is an arc from h to y in map. The hypothesis-specific

network created by the algorithm is shown in (c). Only bh3 contains an arc from x to y because h3 is the
only hypothesis on which the constraint “x −→/ y” is not posted. The hypothesis-specific network is a
maximal constructor of the ordinary network.
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Figure 3.12: Algorithm 3.2 applied to an inconsistent ordinary network.

Because only one of x and y are in the o-local maps h1–h2 and h3–h4, the constraint “x −→/ y” is posted
on all the hs maps. The algorithm returns “inconsistent” when it encounters the arc from x to y on the
o-local map h2–h3.

Note that Algorithm 3.2 may incorrectly identify a similarity network as inconsistent if
the distributions underlying the network are not strictly positive. For example, consider
the similarity network shown in Figure 3.13, in which the two nodes x and y are logically
equivalent. In this network, an arc from x to z is equivalent to an arc from y to z, and
thus the similarity network is consistent. However, Algorithm 3.2 applied to this network
returns “inconsistent” because, for example, “y −→/ z” is posted on ch2 from h1–h2 and
there is an arc from y to z in h2–h3.

3.8 Another Definition of Ordinary Similarity Networks

In this section, we examine another definition of ordinary similarity networks that offers
several advantages over the definition that we have used so far. Before we can discuss
this definition, however, we must consider what it means for two variables a and b to
interact.

Definition 3.16 Let U denote a set of variables, and let ξ denote the background knowl-
edge of some expert. The variables a, b ∈ U interact in the universe U , given ξ, if and
only if there exists some (possibly empty) subset U 0 ⊆ U \{x, y}, such that a and b are
conditionally dependent, given some instance of U 0 and background knowledge ξ.

Thus, whenever two variables a and b do not interact in the universe U , we know that a
and b are conditionally independent, given all instances of all subsets of U \{a, b}.
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Figure 3.13: Algorithm 3.2 applied to a partially deterministic network.

If x and y are logically equivalent in this comprehensive similarity network, an arc from x to z is
equivalent to an arc from y to z. Thus, the network is consistent. However, Algorithm 3.2 applied to
this network returns “inconsistent.”

In the current definition of ordinary similarity networks, we exclude a node from an
o-local knowledge map, if and only if that node is disconnected from the corresponding
c-local knowledge map. Alternatively, we can exclude a node from an o-local knowledge
map, if and only if that node does not interact with the distinguished node.

Definition 3.17 Given a c-local map hi–hj with nondistinguished nodes Y , the o-local
map hi–hj is the node-induced subgraph of the c-local map containing the nodes y ∈ Y
such that y does not interact with h in the universe Y ∪ {h}, given the background
knowledge corresponding to the o-local map.

Recall that x is not relevant to the set {hi, hj}, if and only if x and h are conditionally
independent, given the background knowledge corresponding to the o-local map hi–
hj (Definition 2.1). Therefore, in Definition 3.17, we exclude a node from an o-local
knowledge map hi–hj if and only if that node is not relevant to the disease pair {hi, hj},
given any instance of any subset of the remaining nondistinguished nodes.

Using Definition 3.17, we can compose the o-local knowledge map hi–hj in two phases.
In phase 1, we identify those features that are relevant to the hypothesis pair {hi, hj}
in some context. In phase 2, we assess the independence and dependence relationships
among those variables. Thus, we can separate the task of composing an o-local knowledge
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map into that of identifying relevant features and that of assessing dependencies among
those features. The lymph-node expert found this separation to be extremely useful,
and hence we employed Definition 3.17 in the composition of the Pathfinder similarity
network (see Chapter 4).

The Definition 3.17 is not equivalent to the original definition of ordinary similarity
networks. It is not difficult to prove that, if two variables are disconnected in a knowledge
map, then they do not interact. The converse, however, is not always true. That is, two
noninteracting variables may be connected in a knowledge map, even if the knowledge
map is minimal. For example, consider the two unrelated events “John has a cold and
does not have the flu” and “We see a picture of John driving a red car.” We can compose
a knowledge map in which nodes representing these two events must be connected by
the introduction of an intermediate variable that contains elements of both events. Such
a knowledge map is shown in Figure 3.14. In the map, DISEASE represents the event
that John either has a cold or has the flu, and PICTURE represents the event that we see
or do not see a picture of John driving a red car. The node CAR/FEVER represents the
three mutually exclusive and exhaustive possibilities that (1) John owns a white car, (2)
John owns a red car and has a fever, and (3) John owns a red car and does not have
a fever. There is an arc from DISEASE to CAR/FEVER in the knowledge map because
the probability that John has a fever depends on John’s disease. There is an arc from
CAR/FEVER to PICTURE because the probability that we see the picture depends on the
color of John’s car. Thus, PICTURE and DISEASE are connected in the map. However,
seeing a picture of John driving a red car tells us nothing about John’s disease, whether
or not we know CAR/FEVER, and so PICTURE and DISEASE do not interact.

The difference between the two definitions propagates through the soundness results
proved in this chapter. In particular, it is possible to find examples where the construction
of an o-global map from a ordinary similarity network composed using Definition 3.17 is
not sound for strictly positive distributions. Fortunately, however, the two definitions of
ordinary similarity networks are equivalent for many networks. Dan Geiger and I iden-
tified a broad class of knowledge maps for which variables a and b must be disconnected
in a minimal knowledge map whenever a and b do not interact. In particular, we proved
the following theorem.

Theorem 3.13 In a minimal knowledge map containing variables U , any two variables
a and b are connected in the knowledge map if and only if they interact in the universe
U , provided the underlying joint probability distribution of the map satisfies a property
called propositional transitivity.

The property of propositional transitivity is cumbersome to state (it involves 9 sets of
variables), and we shall not examine the property here. For a detailed discussion of
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p ( PICTURE  | RED CAR & FEVER, ξ ) = 0.8
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Figure 3.14: Connected variables that do not interact.
In the knowledge map, DISEASE represents the event that John either has a cold or has the flu, and
PICTURE represents the event that we saw or did not see a picture of John driving a red car. The
node CAR/FEVER represents the three mutually exclusive and exhaustive possibilities that (1) John
owns a white car, (2) John owns a red car and has a fever, and (3) John owns a red car and does not
have a fever. The probability distributions associated with each variable is shown beside the variable.
Although PICTURE and DISEASE are connected in the map, PICTURE is not relevant to DISEASE
regardless of whether CAR/FEVER is known.
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this property and the proof of Theorem 3.13, see Geiger and Heckerman (1990). Note,
however, that the property is satisfied by at least two types of knowledge maps: those
maps in which all variables are binary and the underlying joint distribution is strictly
positive, and those maps in which all distributions are normally distributed (Geiger and
Heckerman, 1990). Therefore, the two definitions of ordinary similarity networks are
equivalent for networks containing knowledge maps of these types.

This preliminary work suggests that we can identify other classes of knowledge maps
for which the two definitions of ordinary similarity networks are equivalent. Also, it
appears that we can develop an algorithm that tests whether or not a joint distribution
satisfies propositional transitivity. Given such theoretical results, we shall be able to use
Definition 3.17 to construct ordinary similarity networks in most situations, and have a
guarantee that the construction of the o-global map is sound.

3.9 Proof of Exhaustiveness

In this section, we prove that the construction of an o-global map from an ordinary
similarity network is exhaustive. In particular, we show that every variable x that is
relevant to the discrimination of h appears in the global knowledge map via some o-local
map in the similarity network. This proof constitutes the third major result of this
chapter. It demonstrates that an expert does not have to look for additional distinctions
for diagnosis in the global context, provided he has described all distinctions that are
relevant to the local diagnostic subproblems for his domain.

First, let us formalize the concept of exhaustiveness.

Definition 3.18 Let Y denote the set of nondistinguished variables associated with the
ordinary similarity network O. Let x be any variable that is not equal to h and that
interacts with h in the universe Y ∪ {h, x}. The construction of an o-global map Go from
O is exhaustive if and only if all such nodes x appear in some o-local map of O (by
either of the two definitions of o-local map), and hence appear in Go.

In this definition, we assume that the builder of the similarity network is aware of the
variable x during construction. More formally, we assume that, if the builder were to
construct a comprehensive similarity network, then he would include x in the construc-
tion.

We can now prove the desired result.

Theorem 3.14 The construction of an o-global map from an ordinary similarity network
is exhaustive.
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Proof: We prove the contrapositive of the theorem. Let O be any ordinary similarity
network, Go be the o-global map constructed fromO, and Y be the set of nondistinguished
variables in O. Let us suppose that x appears in no o-local map of O. By either definition
of o-local maps, we obtain

p (h|x,Z, {hi, hj}, ξ) = p (h|Z, {hi, hj}, ξ) (3.9.18)

for all Z ⊆ Y , and for all hi and hj such that hi and hj are connected in the similarity
graph of O. Following the proof of Theorem 2.1 (see Appendix B.1), Equation 3.9.18
becomes

p (x|hi, Z, ξ) = p (x|hj , Z, ξ) (3.9.19)

where Z, hi, and hj are defined as they were for Equation 3.9.18. Because the similarity
graph is connected, we know that Equation 3.9.19 holds for all combinations of hi and
hj . Thus, x and h do not interact in the universe of Y ∪ {h, x}, by Definition 3.16. ✷

3.10 Use of Similarity Networks for Assessment

As we have discussed previously, a similarity network represents two asymmetric forms of
conditional independence that cannot be represented conveniently in a global knowledge
map: subset independence and hypothesis-specific independence. In Chapter 2, we saw
how subset independence can be used to facilitate the assessment of a knowledge map. In
this section, we examine how subset independence and hypothesis-specific independence
can be used together to simplify assessment. I should note that, in my experience with
similarity networks, the benefits of exploiting hypothesis-specific independence have been
minimal. I have found only a handful of cases in which the dependencies among nondis-
tinguished nodes differ across hypotheses. This observation is not surprising, as features
for diagnosis in medical domains tend to be defined independently of disease. Thus,
features tend to depend on one another in a manner that is not a function of disease.
There may be domains, however, in which asymmetrical independence among nondis-
tinguished nodes is important; therefore, a brief examination of this form of conditional
independence is provided here.

First, we consider how assertions of subset independence in similarity networks can
be used in concert with assertions of hypothesis-specific independence to simplify as-
sessment. We then examine how assertions of subset independence in partitions can be
combined with hypothesis-specific independence for assessment.

The first approach is straightforward. Given an ordinary similarity network that has
been certified “consistent” by Algorithm 3.2, we assess the hypothesis-specific similarity
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network generated by the algorithm. These assessments, in conjunction with the marginal
distribution for h, are sufficient to construct the joint distribution over the variables in
the network. We discussed previously that the hypothesis-specific similarity network is
the only form of similarity network in which the assertions of subset independence and
hypothesis-specific independence are disjoint. In the following procedure for assessment,
we take full advantage of this observation.

For all nondistinguished y in the network
For all hi

If y is not assessed for hi then
Assess p

°
y|Ci(y), hi, ξ

¢

For all hj

If the constraint p
°
y|Ck/l(y), hk, ξ

¢
= p

°
y|Ck/l(y), hl, ξ

¢
is in every

Rkl along the path from hi to hj

Copy p
°
y|Ci(y), hi, ξ

¢
to p

°
y|Cj(y), hj , ξ

¢

If the constraint p
°
y|Ck/l(y), hk, ξ

¢
= p

°
y|Ck/l(y), hl, ξ

¢
is in every relevance set Rkl

along the path from hi to hj , then, by definition of hypothesis-specific similarity networks,
Ck(y) = Cl(y), for every pair of hypotheses hl and hk that border the edges along the
path. Consequently, Ci(y) = Cj(y), and the last step of the procedure is legitimate.
Since the procedure iterates over every variable in the network and every hypothesis
hi ∈ h, it follows that all probabilities required to construct the joint distribution are
assessed.

For example, let us apply the procedure to the ordinary similarity network in Fig-
ure 3.11. Suppose x is a binary variable with instances x+ and x−. Similarly, suppose y
is a binary variable with instances y+ and y−. Figure 3.15 shows the results of a series of
hypothetical assessments using the approach. First, we assess the distribution p (x|h1, ξ).
Because there is an arc from h to x in h1–h2, this distribution is not copied. Similarly, we
assess both p (x|h2, ξ) and p (x|h3, ξ). Next, we assess the distribution p (y|h1, ξ). Now,
however, there is no arc from h to y in the o-local map h1–h2 (y is not in the map),
and hence we copy p (y|h1, ξ) to p (y|h2, ξ). Finally, we assess p (y|x, h3, ξ) for the two
instances of x.

Let us compare this procedure with a direct assessment of the global knowledge map
constructed from the ordinary similarity network of Figure 3.11. If we construct the
joint distribution by assessing the global knowledge map directly, all nine distributions
in Figure 3.15 need to be assessed. In contrast, the procedure described in the previous
paragraph takes advantage of the fact that x and y are independent in ch1 and ch2. In
effect, we need to assess only the distributions p (y|x−, h1, ξ) and p (y|x−, h2, ξ), and
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√

∗

∗√

Figure 3.15: Using a similarity network for assessment.
The figure shows how the ordinary similarity network in Figure 3.11 is used to assess the joint distribution
for the variables in the network. The check marks and asterisks indicate the assessments that are avoided
through the use of hypothesis-specific independence and subset independence, respectively.
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then to copy them to p (y|x+, h1, ξ) and p (y|x+, h2, ξ), respectively. The checks marks
in Figure 3.15 reflect the two assessments that we avoid by exploiting the hypothesis-
specific independence in the network. In addition, the procedure described in the previous
paragraph takes advantage of the fact that y is not relevant to h1 and h2. The asterisks
in Figure 3.15 mark the two assessments that are avoided using this information. Since
there is one assessment that is avoided on both accounts, only six of the original nine
assessments are required using this approach.

Now let us extend this process to include partitions. Figure 3.16 illustrates how par-
titions can be used to simplify further the construction of the joint distribution in the
previous example. Because p (x|h1, ξ) = p (x|h3, ξ), we can place hypotheses h1 and
h3 in a common set within the partition for x. Consequently, we need to assess only
two distributions for x. Because the distribution p (y|x−, hi, ξ) is the same for all hi,
we need to provide only one distribution in this case. Finally, the two distributions
p (y|x+, {h1, h2}, ξ) and p (y|x+, h3, ξ) are required. Because x and y are independent
in ch1 and ch2, the assessment of p (y|x+, {h1, h2}, ξ) is avoided (see the check mark in
Figure 3.16).

In general, the partitions composed by an expert may be inconsistent with the asser-
tions of hypothesis-specific independence embodied in a similarity network. For example,
if the the partition for y, given x+, contained the set “h2 or h3,” then an inconsistency
would exist, because x and y must be independent given h2, and dependent given h3.
Thus, if domains are encountered in which hypothesis-specific independence can sig-
nificantly simplify assessments, the development of procedures for testing the mutual
consistency of partitions and similarity networks will be useful.

3.11 Summary

In Section 3.3, we defined formally the hypothesis-specific, comprehensive, and ordinary
similarity network, and the comprehensive and ordinary global knowledge map. We
saw that all representations except the hypothesis-specific similarity network could be
constructed from another representation among this collection. In Section 3.4, we saw
that each construction maps a more detailed representation into a less detailed one and,
consequently, that each construction is sound for strictly positive distributions. In Sec-
tion 3.5, we examined hypothesis-specific networks and minimal comprehensive networks
and showed that they can be inconsistent. We showed that a minimal comprehensive
similarity network is consistent for some strictly positive joint distribution if and only
if it can be constructed from a consistent hypothesis-specific similarity network. We
employed this result to derive necessary and sufficient conditions for a comprehensive
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√

Figure 3.16: Using partitions for assessment.
The figure shows how partitions are used to simplify the assessments shown in Figure 3.15. The check
mark indicates the assessment that we avoid by taking advantage of hypothesis-specific independence.
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network to be consistent and, based on these conditions, derived an algorithm for testing
the consistency of such networks. In Section 3.6, we used these necessary and sufficient
conditions to show that the c-global and o-global maps constructed from a consistent
comprehensive network are identical. From this result, we proved that the construction
of an o-global map from an ordinary similarity network is sound. In Section 3.7, we
modified the algorithm for testing consistency, developed in Section 3.5, to accommo-
date ordinary similarity networks. We saw that the algorithm was tractable and could
be modified further to assist users in the resolution of inconsistencies. In Section 3.8, we
examined an alternative, more useful definition of ordinary local knowledge maps. In Sec-
tion 3.9, we proved that the construction of an o-global map from an ordinary similarity
network is exhaustive. Finally, in Section 3.10, we considered the two asymmetric forms
of conditional independence encoded by a similarity network—subset independence and
hypothesis-specific independence—and examined an approach for assessment that takes
advantage of both forms of independence.





4 Pathfinder: A Case Study

In this chapter, we examine similarity networks and partitions from a practical perspec-
tive. In particular, we examine highlights of the composition and assessment of the
Pathfinder knowledge map using these representations. We begin with a brief history of
the Pathfinder project. Next, we look at representative portions of the similarity network
and partitions that combine to form the joint probability distribution for Pathfinder. We
then discuss, in quantitative terms, the amount of effort that went into the creation of
the knowledge base. After this discussion, we examine important insights about the new
representations that the expert and I gained by building Pathfinder. Finally, we look at
the Pathfinder inference algorithm.

4.1 History of Pathfinder

The latest generation of Pathfinder, composed with the similarity-network and parti-
tion representations, is the fourth implementation of the expert system. The Pathfinder
project began in 1983 as a joint project among researchers at Stanford University and
the University of Southern California, including Larry Fagan, Eric Horvitz, Bharat Nath-
wani, and me (Heckerman et al., 1985). The earliest version of the Pathfinder, called
Pathfinder I, was a rule-based system written in the Meta-Level Representation System
(MRS) (Genesereth, 1983). This version of Pathfinder had two major problems: (1) it
did not incorporate any mechanism for uncertain reasoning, and (2) it recommended fea-
tures for observation based on a fixed depth-first traversal through the rule-base graph,
rather than on an analysis of the current differential diagnosis.

The Pathfinder team modeled the second version of Pathfinder, called Pathfinder II,
after INTERNIST-1, a diagnostic program for internal medicine that was the precur-
sor of Quick Medical Reference (QMR) (Miller et al., 1982; Miller et al., 1986). This
version of Pathfinder, implemented in LISP on a DEC-2060, addressed both problems
encountered with the first version. Specifically, we incorporated into Pathfinder the
hypothetico-deductive approach, discussed in Chapter 1, so that the system could base
its recommendations for additional observations on the current differential diagnosis.
Furthermore, the expert and I experimented with several methods for uncertain reason-
ing, including the Mycin certainty-factor (CF) model (Shortliffe and Buchanan, 1975),
the Dempster–Shafer theory of belief (Shafer, 1976), and the simple Bayes model, which
we examined in Chapter 1.

In an experiment similar to the one described in the next chapter, I showed that the
diagnostic accuracy of the simple Bayes model was superior to that of the other two
models (Heckerman, 1988). The experiments convinced us to use probability theory as
a representation for uncertainty. These same experiments, however, revealed two flaws
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in knowledge-base composition that were more serious than the failure to represent the
dependencies among features. First, the expert was too cavalier when assigning 0 to
the probability of many events. In preliminary evaluations of Pathfinder, we found that
over 10 percent of the cases were diagnosed incorrectly, because the correct disease was
ruled out by a feature that was unlikely (but not impossible) to be seen in that disease.
Second, the expert was not comfortable with many of the probability assessments that he
provided for the second version of the program. Specifically, he assessed the probability
matrix required by the simple Bayes model, p (feature|disease, ξ) for all diseases and
features, by fixing a disease and assessing probabilities across all features. In an analysis
that followed the completion of the knowledge base, we found that he strongly preferred
making assessments by fixing a feature and assessing probabilities of that feature across
all diseases. Thus, the expert reassessed the entire probability matrix for the simple
Bayes model with this new ordering, paying close attention to unlikely events. The
result constituted the next version of Pathfinder, called Pathfinder III. The program was
implemented first in LISP on an HP-9836 workstation, and later using MacApp on the
Macintosh II.

Finally, we tackled the problem of representing dependencies among features. As
mentioned in Chapter 1, the expert and I could not compose the knowledge map for the
lymph-node domain using available techniques. With the aid of similarity networks and
partitions, however, we were able to complete the construction of such a knowledge map.
This knowledge base and the associated inference algorithms, discussed in Section 4.5,
constituted Pathfinder IV. This version of the expert system was implemented in MacApp
on the Macintosh II.

From this history, we see that a comparison of Pathfinder III and IV reveals the advan-
tages and disadvantages of the new representations developed in this book. In particular,
the expert was comfortable with probability assessment throughout the construction of
both systems; the single difference between the two knowledge bases is that we used
the similarity-network and partition representations to construct only Pathfinder IV. In
the remainder of this chapter, and in Chapter 5, we compare Pathfinder III and Path-
finder IV.

4.2 Highlights of Knowledge-Base Composition

We created the similarity network and partitions for Pathfinder IV using the SimNet
program. An important product of our efforts—the global knowledge map for Path-
finder IV—is shown in Figure 4.1. In all phases of the construction, the expert and I
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worked together. In the early phases of development, I demonstrated the various ca-
pabilities of the program to the expert, and asked pointed questions to evoke portions
of his knowledge about the lymph-node domain. As our work progressed, however, the
expert became familiar with the program and with the strategies I was using to elicit
knowledge, and my role as knowledge engineer diminished.

4.2.1 Similarity Network

Figure 4.2 shows the similarity graph for the lymph-node domain. The expert had no
trouble creating the graph; in fact, he completed its composition in approximately 3
hours. We began building the graph by identifying the most similar sets of diseases
from the list of diseases found in Pathfinder III. Then, we connected these diseases, and
moved them close to one another on the computer screen. We continued, connecting
diseases that were less and less similar, until there was a path from every disease in the
graph to every other disease. In several cases, we composed more than one path between
diseases (see, for example, the nodes AIDS EARLY, RHEUMATOID ARTHRITIS, and GLH

PLASMA CELL TYPE in Figure 4.2). At the time of composition, the expert was thinking
only about how similar one disease was to another—that is, how likely it was that he or
another pathologist would confuse one disease with another. He was not thinking about
whether he could build a local knowledge map for each pair of diseases connected in the
graph.

We composed the local knowledge maps using the two-phase approach described in
Section 3.8. Specifically, in phase 1, for each pair of diseases connected in the similarity
graph, the expert identified those features that were relevant to that disease pair in
some context (see Definitions 2.1 and 3.17). We consulted the list of features from
Pathfinder III, during this process. In phase 2, he represented the dependencies among
the features. As I mentioned in Chapter 3, the expert found the added decomposition
afforded by this approach to be extremely useful.

Figure 4.3 shows the local knowledge map for L&H DIFFUSE HD (lymphocytic and
histiocytic diffuse Hodgkin’s disease) and MIXED-CELLULARITY HD (mixed-cellularity
Hodgkin’s disease). The knowledge map expresses the expert’s assertion that only
MUMMY (mummy cells), L&H SR (lymphocytic and histiocytic variants of Sternberg–
Reed cells), MONONUCLEAR SR (mononuclear variants of Sternberg–Reed cells and), and
CLASSIC SR (classic Sternberg–Reed cells) are relevant to the pair of diseases represented
by the local knowledge map. In addition, the knowledge map—asserted to be minimal by
the expert—represents independencies and dependencies among these features. For ex-
ample, the arcs among the features reflect the expert’s assertion that CLASSIC SR depends
on MONONUCLEAR SR, and that MONONUCLEAR SR depends on MUMMY. In contrast,
the lack of an arc from MUMMY to CLASSIC SR represents his assertion that CLASSIC
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Figure 4.1: The global knowledge map for Pathfinder.
This figure is identical to Figure 1.10 on page 15, except that all conditioning arcs from DISEASE to other
nodes are not shown so that the conditional dependencies among features are highlighted. Appendix C
contains a key to the feature abbreviations.
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Figure 4.2: The similarity graph for Pathfinder.
Nodes in the graph represent the mutually exclusive diseases that can manifest in a lymph node. Edges
in the graph connect diseases that are similar. The graph is multiply connected. Appendix C contains
a key to the disease abbreviations.
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Figure 4.3: A small local knowledge map.
This knowledge map is the local knowledge map for the diseases L&H DIFFUSE HD (lymphocytic and
histiocytic diffuse Hodgkin’s disease) and MIXED-CELLULARITY HD (mixed-cellularity Hodgkin’s
disease). The knowledge map represents the assertions that only the features MUMMY (mummy cells),
L&H SR (lymphocytic and histiocytic variants of Sternberg–Reed cells), MONONUCLEAR SR (mononu-
clear variants of Sternberg–Reed cells and), and CLASSIC SR (classic Sternberg–Reed cells) are relevant
to the disease pair. The knowledge map also represents assertions of conditional independence and de-
pendence among these features.

SR is independent of MUMMY if MONONUCLEAR SR is known. The lack of other arcs
represents the expert’s assertion that the feature L&H SR is conditionally independent of
the other features.

Most of the local knowledge maps in the similarity network are small, as is the one
shown in Figure 4.3. Several of the local knowledge maps, however, are extremely large.
Figure 4.4 shows the largest local knowledge map in the similarity network. The map
represents the problem of distinguishing the diseases T-IMMUNOB LRG (T-immunoblastic
lymphoma, large-cell type) and IBL-LIKE T-CELL LYM (immunoblastic lymphadenopathy-
like T-cell lymphoma). For clarity, several features that are not directly relevant to the
disease pair and all arcs from the disease node to the feature nodes, are omitted from
the figure.

The knowledge map is complex for the following reason. In IBL-like T-cell lymphoma,
we see clusters of lymphoid cells with clear cytoplasm. These clusters can occur inside
blood vessels (intravascular) or outside blood vessels (extravascular). In addition, the
lymphoid cells in these clusters may be small (less than 10 microns in diameter), of
medium size (10 to 20 microns in diameter), large (greater than 20 microns in diameter),
or they may be a combination of sizes. The presence of these clusters is an important
clue for discriminating IBL-like T-cell lymphoma from T-immunoblastic lymphoma. In
fact, by definition, such clusters must be seen in IBL-like T-cell lymphoma, and they may
or may not be seen in T-immunoblastic lymphoma. Pathologists say that the presence
of such clusters is a criterion for the disease IBL-like T-cell lymphoma.

The size of the cells in the clusters is not directly relevant to the discrimination of the
disease pair. In contrast, the number of small, medium-sized, and large lymphoid cells
in the lymph-node section as a whole is directly relevant to the discrimination of the two
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Figure 4.4: A large local knowledge map.
This knowledge map represents the problem of discriminating T-IMMUNOB LRG (T-immunoblastic
lymphoma, large-cell type) and IBL-LIKE T-CELL LYM (IBL-like T-cell lymphoma). Arcs from the
distinguished node to other nodes are not shown.
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diseases.1 In fact, if the number of medium and large cells (both in and not in clusters)
is less than 50 percent of the total cell population, then the disease T-immunoblastic
lymphoma, large-cell type is ruled out. That is, the predominance of medium and large
lymphoid cells is a criterion for this disease. Such predominance, however, is not a
criterion for IBL-like T-cell lymphoma. In addition, the amounts of cytoplasm in the
majority of small, medium-sized, and large cells are criteria for other diseases in the
lymph-node domain. Thus, we must include nodes in the Pathfinder knowledge map
that represent the size and cytoplasm of the total lymphoid-cell population, the presence
of clusters of clear cells (which contribute to the total population of lymphoid cells with
clear cytoplasm), and the dependencies among these features.

In Figure 4.4, the nodes EXTRAVASC CLUS CLEAR C and INTRAVASC CLUS CLEAR C

represent the number of cells found in extravascular and intravascular clusters, regardless
of the distribution of cell size within the clusters. The nodes SLC NUM, MLC NUM, and
LLC NUM denote the total number of small, medium-sized, and large cells that make
up the lymph-node section, regardless of whether or not the cells occur in clusters.
Similarly, the nodes SLC CYTOPLASM, MLC CYTOPLASM, and LLC CYTOPLASM reflect
the amount of cytoplasm in the majority of small, medium-sized, and large cells in the
lymph-node section, regardless of whether or not the cells occur in clusters. The features
SLC IV CLUS, MLC IV CLUS, MLC IV CLUS, SLC EV CLUS, MLC EV CLUS, and MLC IV CLUS

represent the number of cells in intravascular and extravascular clusters for each cell
size. The inclusion of these features break many of the dependencies among the primary
features. For example, if we did not include the features SLC EV CLUS, MLC EV CLUS,
and MLC IV CLUS in the knowledge map, seeing extravascular clusters of clear cells would
fail to render the features SLC CYTOPLASM, MLC CYTOPLASM, and LLC CYTOPLASM

independent, given disease. That is, if we see extravascular clusters and observe no small
cells with clear cytoplasm, the chances that we will see medium-sized and large cells with
clear cytoplasm increase. In contrast, if we see extravascular clusters and we know how
many small, medium-sized, and large cells are in the clusters, then the lack of small cells
with clear cytoplasm does not alter the chances that we will see medium-sized and large
cells with clear cytoplasm.

There are two nodes in Figure 4.4 that we have not yet discussed. The node
LLC+MLC>50% in Figure 4.4 represents the event that the combined number of the large
and medium-sized cells in the lymph-node section exceeds 50 percent. As mentioned pre-
viously, this event is a criterion for T-immunoblastic lymphoma, large-cell type. A special

1In lymph-node pathology, the number of cells of a particular cell type is expressed in terms of percent
of the total cell population in a lymph-node section. In Pathfinder, for example, the feature SLC NUM
(number of small lymphoid cells) has the instances 0 percent, 1 to 10 percent, 11 to 50 percent, 51 to
90 percent, and 91 to 100 percent of the total cell population.
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node for this feature is included in the knowledge map, because the instances for large
and medium-size lymphoid cells are discretized too coarsely to capture the threshold of 50
percent. The node LLC IDENTITY denotes the identity of the majority of large lymphoid
cells. This feature is included because it helps to break the dependencies among features
describing the cytoplasm, nuclear shape, nucleoli, and chromatin of the large lymphoid
cells. Although these features are not directly relevant to the discrimination of IBL-like
T-cell lymphoma and T-immunoblastic lymphoma, they are criteria for other diseases
and must be included in the Pathfinder knowledge map. The feature LLC IDENTITY is
included in the knowledge map of Figure 4.4 because the presence of clear-cell clusters
increases the chances that a large lymphoid cell of a particular type will predominate.

In closing this section, let us examine two techniques that we employed to represent the
dependencies among features. We captured most of the dependencies among features in
the Pathfinder similarity network by representing each feature explicitly, and by drawing
arcs among those features. We represented dependencies for about 10 groups of features,
however, using a technique that Pearl calls clustering (Pearl, 1988, pages 195–197). To
understand clustering, let us consider the three features that describe the nucleoli in large
lymphoid cells: the number of nucleoli (0, 1, or more than 1), the size of the nucleoli
(small or large), and the location of the nucleoli within the nucleus (central or peripheral).
These features are mutually dependent, given disease. Furthermore, these dependencies
are asymmetric. In particular, if there are no nucleoli, then the size and shape of nucleoli
are features that do not apply to the current case; if there is only one nucleolus and it
is small, then its location is irrelevant to diagnosis; if there is only one nucleolus and
it is prominent, then its location is necessarily central; finally, if there are two or more
nucleoli, their size are irrelevant to diagnosis. Figure 4.5(a) shows a knowledge map that
describes these features and the dependencies among them. As illustrated in the figure,
each feature is associated with three instances. Alternatively, we can represent these
features by clustering them into a single variable, as shown in Figure 4.5(b). Usually,
when we cluster a set of variables, the number of instances of the clustered variable
is equal to the product of the number of instances over each feature that we cluster.
Due to the asymmetries in the dependencies among the nucleolar features, however, the
total number is far less (5 instances, instead of 33 = 27 instances). In general, it is
prudent to cluster features when they are mutually dependent and are easily observed in
combination, and when those features exhibit asymmetrical dependencies that lead to a
reduction in the number of instances for the feature that is formed by their clustering.

Also, to simplify our efforts, we approximated several of the dependencies in the lymph-
node domain. One approximation that we employed is illustrated in a portion of the
global knowledge map shown in Figure 4.6. The nodes in the middle row of the figure
represent the six cell types that can contribute significantly to the total cell population
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LLC NUCLEOLI LOC
 • NOT APPLICABLE
 • CENTRAL
 • PERIPHERAL

LLC NUCLEOLI NUM
 • 0
 • 1
 • >1

LLC NUCLEOLI SIZE
 • NOT APPLICABLE
 • SMALL
 • LARGE

LLC NUCLEOLI
 • 0
 • 1 SMALL
 • 1 LARGE (CENTRAL)
 • >1 CENTRAL
 • >1 PERIPHERAL

(a) (b)

→

Figure 4.5: The clustering of nodes in Pathfinder.
(a) The knowledge map for the features LLC NUCLELOI NUM (number of nucleoli), LLC NUCLEOLI
SIZE (size of the nucleoli), and LLC NUCLEOLI LOC (location of the nucleoli within the nucleus),
where each feature is represented by a single node. (b) The knowledge map for these same features when
they are clustered into a single variable.



Pathfinder: A Case Study 115

TOTAL 100%

DISEASE

LLC NUM PLASMA MONOCYTMLC NUMSLC NUM BNG HIST

Figure 4.6: An approximation of dependencies.
The portion of the Pathfinder global knowledge map for the features SLC NUM (small lymphoid cell
number), MLC NUM (medium-sized lymphoid cell number), LLC NUM (large lymphoid cell number),
BEN HIST (benign histiocyte number), PLASMA (plasma cell number), and MONOCYT (monocytoid
cell number). The presence of the deterministic node TOTAL 100% approximates the mutual dependency
among the feature nodes.

of a lymph node. We have already mentioned the nodes SLC NUM, MLC NUM, and
LLC NUM. The nodes BNG HIST, PLASMA, and MONOCYT represent the cell types of
benign histiocytes (nonfoamy, non–starry sky, and nonlangherhans), plasma cells, and
monocytoid cells, respectively. The feature for each cell type is associated with a set of
instances that denote ranges for the percent number of cells of that type that are seen in
the lymph-node section (the ranges differ from one feature to the next). These six features
are dependent, and, in principle, should be represented by a fully connected knowledge
map. In Pathfinder, however, we approximate these dependencies as follows. First, we
assume that the six features are conditionally independent, given disease. Then, we
define a deterministic node called TOTAL 100% that represents the fact that the number
of cells of each type must sum to 100 percent. This node is unlike an ordinary node in
a knowledge map, in that it has only one preinstantiated instance. Next, we condition
the node TOTAL 100% on the six features in the middle row. Finally, we approximate the
summation constraint using the probability matrix for TOTAL 100% shown in Table 4.1.
In the table, an instance of the six features is assigned a probability of 1 if and only if
that instance is consistent with a total of 100 percent. As we see in the following chapter,
this approximation, and others that we employed in the construction of the knowledge
base, do not lead to poor performance of the system.
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Table 4.1: The probability distribution for the node TOTAL 100%.

Conditioning Events (percent of total cell population)

SLC NUM MLC NUM LLC NUM BNG HIST PLASMA MONOCYT p

0 0 0 0–4 0 0 0

0 0 0 0–4 0 1–4 0

0 0 0 0–4 0 5–50 0

0 0 0 0–4 0 51–100 1
...

...

11–50 11–50 11–50 5–50 21–50 5–50 1

11–50 11–50 11–50 5–50 21–50 51–100 0

11–50 11–50 11–50 5–50 51–90 0 1

11–50 11–50 11–50 5–50 51–90 1–4 1
...

...

91–100 91–100 91–100 51–100 91–100 5–50 0

91–100 91–100 91–100 51–100 91–100 51–100 0

4.2.2 Partitions

We assessed probabilities for the global knowledge map for Pathfinder using the par-
tition representation. We began the assessment phase of knowledge-base construction
by composing the partition shown in Figure 4.7. This partition was modeled after a
classification hierarchy (see Section 2.2.3) for lymph-node pathology used commonly by
hematopathologists. We next identified features or distinctions that were created by
research pathologists to rule in a specific disease or a specific group of diseases, and
composed the partitions for those features. These partitions tended to contain a small
number of sets. In the process of composing these structures, the expert became familiar
with the partition concept and with the mechanisms in SimNet for copying and modify-
ing partitions. We then composed the partitions for the remaining features. The expert
provided the probabilities for each partition before composing the next partition.

More than 40 percent of the features are associated with partitions that are small (i.e.,
contain less than 10 sets). Figure 4.8 shows one such partition for the feature progres-
sively transformed germinal centers (PTGC). This partition contains only five sets: MOST

DISEASES (majority of diseases), MOST BENIGN (majority of benign diseases), OTHER

BENIGN (a small set of benign diseases for which the probability of seeing progressively
transformed germinal centers is greater than for most benign diseases), and the singletons
FLORID FOLLIC HYPERP (follicular hyperplasia) and L&H NODULAR HD (lymphocytic and



Pathfinder: A Case Study 117

Figure 4.7: A template for many of Pathfinder’s partitions.
We derived partitions for many of Pathfinder’s features from this partition. The partition reflects a
classification hierarchy used commonly by expert hematopathologists. Diseases are grouped into 5 sets
that represent BENIGN, HODGKIN’S, NONHODGKIN’S, METASTATIC, and OTHER diseases; these
sets reflect the uppermost branch of the classification hierarchy. Each set, in turn, is organized as a tree
(note the indentation in each set); these trees represent the lower branches of the classification hierarchy.
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histiocytic nodular sclerosing Hodgkin’s). The structure of this partition is closely re-
lated to that of the partition shown in Figure 4.7. Using SimNet, we can exploit this
fact, and can compose the partition for PTGC from the partition in Figure 4.7 with just
a few mouse and keystroke commands.

Figure 4.9 shows an equivalent partition for the feature PTGC. In the figure, the sub-
structure of some of the sets in the partition are hidden from view. Using SimNet, we
can hide or reveal the contents of any set or component of a set (such as HODGKIN’S)
with a single mouse command. This feature of SimNet immensely helped the expert to
manage the complexity of the probability-assessment task.

Figure 4.10 shows the partition for the feature NECROSIS. Obviously, this partition is
more complex than is the partition for PTGC. Nonetheless, much of the structure found
in the partition for PTGC is preserved in the partition for NECROSIS. For example, most
of the benign and metastatic diseases remain clustered in the set labeled MOST DISEASES.
Again, using SimNet, we can exploit this fact to compose this partition with ease.

4.3 Construction Statistics

Table 4.2 summarizes the statistics for the construction of Pathfinder III and IV. Path-
finder IV contains three more diseases than does Pathfinder III. The reason for this
difference is that three diseases in Pathfinder III—AIDS, necrotizing lymphadenitis, and
T-immunoblastic lymphoma—are each split into two subtypes in Pathfinder IV. In Sec-
tion 5.4.1, we discuss the significance of adding these distinctions. Also, Pathfinder IV
contains four fewer features than does Pathfinder III. Two factors that we have already
discussed account for the difference in number. First, additional features are included
in the Pathfinder IV knowledge base to break dependencies among particular sets of
features. Second, several groups of features in Pathfinder III are clustered into single
features in Pathfinder IV. The latter factor dominated the former by a small amount.

We created the structure of the Pathfinder III knowledge base in approximately 8
hours. Because we employed the simple Bayes model to build the knowledge base, we
did not compose a knowledge map explicitly. Instead, we simply enumerated all lymph-
node diseases and all features and instances relevant to the diagnosis of those diseases. In
contrast, the expert and I spent approximately 35 hours constructing the global knowl-
edge map for Pathfinder IV. As shown in Table 4.2, we spent about 3 hours building the
similarity graph, and the remainder of the time composing the local knowledge maps.
We consulted the list of diseases and features from Pathfinder III during the construction
of Pathfinder IV. Therefore, to make the comparison of the two systems fair, we add 8
hours to the construction time for the Pathfinder IV knowledge map.
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Figure 4.8: A partition for the feature PTGC.
For any two diseases in the same set, the feature PTGC is not relevant to that disease pair. Thus, for
each set, we require only a single probability distribution for PTGC given disease. These distributions
are shown below each set.
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Figure 4.9: A partition for PTGC equivalent to that in Figure 4.8.
In this partition for PTGC, the substructure of MOST BENIGN DISEASES and most of the substructure
of MOST DISEASES are hidden from view. Using SimNet, we can easily transform the structure of this
partition to that of the partition shown in Figure 4.8, and vice-versa.
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Figure 4.10: A partition for NECROSIS.
The structure of this partition is more complex than is that of the partition for germinal centers.
Nonetheless, portions of this partition resemble the simpler partition.
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Table 4.2: Statistics for the construction of Pathfinder III and IV.

Knowledge Base

Statistic Pathfinder III Pathfinder IV

Number of diseases 60 63

Number of features 112 108

Time to define distinctions (hours) 8 8

Time to build similarity graph (hours) - 3

Time to build knowledge map (hours) - 32

Assessments required by system 16,620 74,854

Assessments derived from partitions - 61,118

Assessments made by expert 16,620 13,736

Time to assess probabilities (hours) 35–40 39

As shown in Table 4.2, Pathfinder IV contains approximately 4.5 times as many as-
sessments as does Pathfinder III.2 The figure of 74,854 assessments for Pathfinder IV,
however, does not take into account the decrease in the number of assessments resulting
from the use of partitions. If we count only the number of actual assessments (one distri-
bution for every set in a partition), Pathfinder IV contains only 13,736 assessments—5.4
times fewer assessments than without partitions. Overall, Pathfinder IV contains slightly
fewer probability assessments than did Pathfinder III. Furthermore, the time we spent on
probability assessment for the two versions of the system are comparable (35 to 40 hours
for Pathfinder III versus 39 hours for Pathfinder IV). When building Pathfinder IV, we
spent only a small fraction of assessment time (less than 20 percent) composing parti-
tions.

The statistics in Table 4.2 do not reflect our efforts in testing and refining the knowledge
maps for the two systems. Testing consisted mostly of observing differential diagnoses
generated from imagined cases. When the expert was dissatisfied with a differential
diagnosis, it usually was easy to pinpoint the source of his dissatisfaction and to correct
the problem. We have tested Pathfinder III—constructed over 3 years ago—on over 300
imagined cases, whereas we have tested Pathfinder IV on only about 70 imagined cases.
Also, Pathfinder III was tested on 24 real cases in a formal evaluation (Heckerman, 1988).

2These figures do not count the assessments that are determined by the fact that the probabilities
for the instances of a given feature must sum to 1.
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In the following chapter, we compare the diagnostic accuracy of Pathfinder III and IV.
In examining the results of the comparison, we should keep these facts in mind, because
the greater efforts spent on testing and refining Pathfinder III bias the results in favor
of this system.

Overall, the similarity-network and partition representations greatly facilitated the
capture of dependencies among features in the lymph-node domain. A similarity network
made possible the construction of the global knowledge map for the domain; partitions
reduced the number of probability assessments (and time to assess) by more than a factor
of five.

These observations apply to a single expert who was familiar with decision-theoretic
concepts at the time we began the construction of Pathfinder IV. Nonetheless, I expect
that even experts who are not accustomed to thinking in decision-theoretic terms will find
these representations useful for knowledge acquisition. There are many techniques for
helping people to structure decision-theoretic models and to provide accurate probability
and utility assessments (Winkler, 1967a; Winkler, 1967b; Spetzler and Stael von Holstein,
1975; Howard, 1988a; Langlotz, 1989; Klein, 1989).3 I used several of these techniques
to train the Pathfinder expert prior to the construction of Pathfinder III. My experience,
and the experience of other researchers, suggests that most people can adapt easily to
decision-theoretic thinking.

4.4 Insights

In building the Pathfinder knowledge base, the expert and I developed important in-
sights about the similarity-network and partition representations, and about probability
assessment. In this section, we examine several of these insights.

4.4.1 Insights About Similarity Networks

Let us reexamine the sufficient conditions for the soundness result, and discuss how
they affected the construction of the global knowledge map for Pathfinder. Recall, from
Chapter 3, that the construction of a global knowledge map from a similarity network is
sound whenever the following constraints are satisfied:

1. Hypotheses are mutually exclusive and exhaustive.

2. The similarity graph is connected.

3. The global knowledge map that is equal to the graph union of the local knowledge
maps contains no directed cycles.

3Also, see Appendix A.
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4. There are no arcs pointing to the distinguished node in any local knowledge map.

5. The joint distribution for the domain is strictly positive (i.e., there are no proba-
bilities in the distribution that are equal to zero).

As we discussed in Chapter 1, constraint 1 does not pose a problem for the lymph-node
domain, because diseases that co-occur in the same patient almost always manifest in
different lymph nodes or in different sections of the same lymph node. In Chapter 6, we
discuss a procedure for using the similarity-network representation even when diseases
or hypotheses are not mutually exclusive. As a consequence of this procedure, the first
constraint is of little concern for many domains.

In Section 4.2, we saw that the lymph-node expert had no trouble composing a con-
nected similarity graph for Pathfinder. This observation suggests that constraint 2 will
not be a serious impediment to the use of the similarity-network representation, in gen-
eral. If we do come across a domain in which an expert cannot compose a connected
similarity graph, we should consider the possibility that the domain is actually two or
more well-isolated subdomains, and build separate expert systems for each cluster of
connected hypotheses in the similarity graph.

Constraint 3 implies that the arcs in each knowledge map must flow in the same
direction. More precisely, if there is an arc from nodes x to y in some local knowledge
map, there can be no path from nodes y to x in any local knowledge map. Due to the
particular implementation of the similarity-network representation within SimNet, this
constraint was not a significant barrier to the construction of the global knowledge map.
Specifically, when we added feature x to a local knowledge map, then for all features y
already in the local knowledge map, SimNet automatically added an arc between x and
y if that arc existed in the global knowledge map. It was up to the expert to remove an
arc if, given the context of the local knowledge map, he wanted to assert the conditional
independence constraints implied by that removal. Thus, it was impossible for the expert
to draw an arc from features x to y in one local knowledge map and an arc in the opposite
direction in another local knowledge map. Furthermore, in the rare circumstances when
we created a directed cycle in the global knowledge map by adding an arc in a local
knowledge map, SimNet notified us of this condition. By immediately inspecting the
global knowledge map, we were able to remove the cycle we had created with little effort.

Constraint 4 also did not impose any barrier to the construction of the knowledge map
for Pathfinder. That is, the expert did not introduce any features that were predecessors
of the disease node. This situation, however, is not typical across medical domains. In
many such domains, features can cause disease. For example, excessive alcohol intake
tends to cause liver disease. In such cases, experts are almost always more comfortable
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drawing arcs from features to diseases. In Chapter 6, we discuss an approach for using
the similarity-network representation in these situations.

Constraint 5 affected significantly the construction of the global knowledge map. Many
of the distributions in Pathfinder contain probabilities equal to 0. To circumvent this
constraint, the expert spent considerable time (over 8 hours) checking that the global
knowledge map was valid by direct inspection. That is, he considered many conditional
independence constraints implied by the global knowledge map, and, by introspection,
determined that he was willing to assert those constraints. In general, this solution
is not adequate. If an expert finds it difficult to compose a knowledge map for the
entire domain, he should not be expected to validate that knowledge map once it is
constructed. Indeed, in the words of the expert, this process of validating of the global
knowledge map for Pathfinder was “quite painful.” More theoretical work is needed to
characterize those joint probability distributions for which the construction of the global
knowledge map from the similarity network is sound. I suspect that the soundness result
will hold for many types of nonpositive distributions. For example, as is suggested by the
similarity network in Figure 3.4(c) on page 76, it appears that the soundness result for
comprehensive similarity networks will apply to any distribution provided nodes that are
nondeterministic in the global knowledge map do not become deterministic in any local
knowledge map within the similarity network. If this or a similar result can be proved
and can be extended to ordinary similarity networks, then direct validation of the global
knowledge map for many domains will become unnecessary. In addition, we must extend
the algorithm for checking the consistency of a similarity network to include nonpositive
distributions.

Aside from evaluating the effect of theoretical constraints on the soundness of knowledge-
map construction, we discovered several other properties of similarity networks during the
construction of the Pathfinder knowledge map. Recall that, in phase 1 of the two-phase
composition of a local knowledge map, the expert identified features that were relevant to
disease pairs without considering dependencies among the features. This process helped
to remind the expert of all features that were relevant to the lymph-node domain. In
particular, during this phase, the expert discovered several features that were excluded
from Pathfinder III, simply because he had not thought to include them. In addition,
the results of phase 1 provided a reminder tool for probability assessment. Occasionally,
during assessment, the expert forgot why a particular feature was useful for diagnosis.
In this situation, we had SimNet highlight on the similarity graph those disease pairs
that were discriminated by the feature. In these cases, the expert immediately recalled
the value of the feature for diagnosis, and then proceeded with probability assessment.

In phase 2 of local-knowledge map composition, when we add a feature to a local knowl-
edge map, SimNet automatically adds arcs between this feature and any other features
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in the local knowledge map whenever those arcs exist in the global knowledge map. This
feature of SimNet greatly facilitated the capture of dependencies. After about one-third
of the local knowledge maps were created, most of the arcs that eventually would be
drawn in the global knowledge map were present in this knowledge map. Furthermore,
as we discussed in Section 3.8, if two features were dependent in one local knowledge
map, they were also dependent in almost all other maps. Thus, for the majority of
local knowledge maps, the expert needed only to verify the dependency arcs that were
automatically created by SimNet in those maps.

Also, during phase 2, the expert quickly appreciated how arcs drawn in a local knowl-
edge map affected the global knowledge map. With this understanding, he occasionally
assessed dependencies among features while viewing the global knowledge map directly.
In particular, he would assume that only one of two diseases were present (as he did
when building a local knowledge map), but draw the informational arcs appropriate to
this background knowledge on the global knowledge map. At times, this mode of com-
position was useful, because the expert could see all the features on the computer screen
simultaneously, and thereby could easily identify those features that were dependent in
the local context.

4.4.2 Insights About Partitions

We made two important observations about partitions during the construction of the
Pathfinder knowledge base. First, the expert found it exceptionally easy to compose the
partitions. Of the 40 or so hours spent assessing probabilities for the knowledge map,
we spent only about 4 hours composing the partitions. As we discussed in Chapter 2,
construction was easy because (1) the expert could make judgments concerning subset
irrelevance without first having to assess the underlying probability distributions, and
(2) many partitions were identical or closely related from one feature to another.

Second, partitions improved the quality of the expert’s probability assessments. In an
informal experiment, the expert compared probability distributions for approximately
10 features from Pathfinder III with those distributions for identical features from Path-
finder IV. For each feature, the expert strongly preferred the distributions from Path-
finder IV. The experiment was not blinded, because the expert could easily identify the
distributions taken from Pathfinder IV. Nonetheless, the expert had no incentive to favor
one set of distributions over the other, and the results appear to be significant.

Several attributes of the partition representation contributed to the improvement. Of-
ten, the probability p (feature|disease, ξ) does not depend on the disease itself. Instead,
this probability depends on some abstract property of the disease. For example, consider
the feature NECROSIS, which refers to the presence of dead cells. The degree of necrosis
or cell death seen in a lymph-node section depends on the aggressiveness of the disease.
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If a disease progresses rapidly, remnants of cells that have been killed by the spread of
the disease are often present; if a disease progresses slowly, the immune system of the pa-
tient typically removes any such traces of the spread of the disease. In Pathfinder IV, we
used the partition for NECROSIS (see Figure 4.10) to represent this knowledge explicitly.
That is, in the partition, we grouped the diseases by their aggressiveness. In contrast,
when constructing Pathfinder III without partitions, the expert assessed a probability
distribution for NECROSIS given a particular class of aggressiveness many times. Each
assessment produced a slightly different distribution. (The expert could rarely reproduce
any probability assessment to within more than one significant figure.) Thus, these direct
probability assessments indicated incorrectly that necrosis was relevant to many disease
pairs. The partition representation provided us with a means to avoid the introduction
of such spurious relevancies.

Another attribute of partitions that facilitated better assessments is illustrated by the
partition for progressively transformed germinal centers shown in Figure 4.9. In this
partition, the sets of diseases are arranged such that a set S2 is below S1 if and only if
the probability of seeing germinal centers, given a disease in set S2, is higher than the
probability of seeing germinal centers, given a disease in set S1. To assess the probabilities
for PTGC, the expert first arranged the sets as described. He then used the graphical
arrangement of these sets to avoid assessments that were inconsistent with his qualitative
understanding of the relationship between PTGC and disease. In its basic form, a partition
allows an expert to represent equivalencies among probability distributions. Here, we see
that a partition, implemented in graphical form, allows an expert to represent differences
among assessments as well. Such representation facilitates the comparison and, thereby,
the evaluation of probability assessments.

4.4.3 An Insight About Probability Assessment

While assessing probabilities, the expert and I repeatedly encountered a problem that
has a simple solution. I mention this difficulty and its solution here for other researchers
who plan to construct large influence diagrams.

Let us consider the feature NECROSIS, which conditions the feature KARYORRHEXIS.
From Figure 4.10, the probability that NECROSIS is ABSENT, given CAT SCRATCH DIS-

EASE is 0. Thus, we do not need to assess a probability distribution for KARYORRHEXIS

and CAT SCRATCH DISEASE, given that there is no necrosis in the tissue section. In
SimNet, we represent distributions with impossible conditioning events, by placing 0 in
each slot of the distribution. This convention is illustrated in the partition for KARYOR-

RHEXIS, shown in Figure 4.11.
In the current implementation of SimNet, the user must make sure that the assess-

ments obey this convention. Thus, there is the possibility of inconsistency. In particular,
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Figure 4.11: The probability assessments for the feature KARYORRHEXIS.
The probability that NECROSIS is ABSENT, given CAT SCRATCH DISEASE, is 0. Thus, we do
not assess a probability distribution for KARYORRHEXIS and CAT SCRATCH DISEASE, given the
absence of necrosis. Similarly, we do not assess a probability distribution for either form of NECR
LYMPHADENITIS (necrotizing lymphadenitis).
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when assessing a feature that is dependent on other features, an expert might forget that
a particular conditioning instance is impossible, and thereby needlessly assess a distri-
bution. Conversely, the expert might sometimes believe incorrectly that a conditioning
instance was impossible, and fail to assess a needed distribution. Avoiding inconsis-
tencies becomes especially difficult during the phase of knowledge-base development in
which the system is tested and the probabilities are modified. When a probability of
seeing a feature is changed from 0 to another value, an expert easily can forget to assess
the distributions that are conditioned by that feature.

While assessing the probabilities for Pathfinder, the expert and I were careful to avoid
these errors. Whenever there was a question as to the possibility of a conditioning in-
stance, we checked the probability of that event, using the display facilities of SimNet.
Nonetheless, the process of maintaining a consistent set of probability assessments was
tedious and time consuming. Furthermore, despite our efforts, we made several errors
when modifying probability distributions in the later stages of knowledge-map construc-
tion.

To avoid this problem, SimNet—and other influence-diagram programs—could identify
graphically all probability distributions that have impossible conditioning events. For
example, the boxes that surround such a probability distribution could be displayed in a
shade of gray, rather than in black. Also, when a probability is changed from 0 to another
value, these programs could inform the user that additional assessments are required, and
direct the user to those assessments.

4.5 The Pathfinder Inference Algorithm

So far in this chapter, we have discussed exclusively the construction of the knowledge
base for lymph-node pathology. In concluding this chapter, let us examine the algorithm
for probabilistic inference that Pathfinder employs to manipulate this knowledge. (For a
definition of probabilistic inference, see Appendix A, page 184).

The algorithm, designed and implemented by Jaap Suermondt, exploits the assertions
of symmetric conditional independence in the global knowledge map. Specifically, the
algorithm is based on the observation that the global knowledge map consists of relatively
small clusters of features such that each cluster is conditionally independent of all others,
given a disease.4 This observation is illustrated schematically in Figure 4.12(a). The
clusters X1, X2, . . . Xn, which each contain one or more features, are conditionally
independent, given an instance of the disease variable d.

4This observation is apparent in Figure 4.1. In the figure, all arcs from DISEASE to the feature nodes
are omitted. Thus, a cluster is a set of features that is connected by an undirected path in the figure.
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To understand the algorithm, suppose we observe one or more features O1 in X2 and
one or more features O2 in X2. Let O1

i and O2
j denote the instances that we observe

for O1 and O2, respectively. From Bayes’ theorem and the conditional independence of
clusters, we can compute the probability of each disease, given our observations.
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In the current version of the algorithm, we calculate the terms p
°
O1

i |dm, ξ
¢

and
p

°
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j |dm, ξ
¢

using a brute-force computation that does not exploit conditional inde-
pendence within the clusters. For example, suppose cluster Xi is composed of the three
features x, y, and z, as illustrated in Figure 4.12(b). Further, suppose that we have
observed the instance zk for z. We compute

p (zk|dm, ξ) =
X

xi,yj

p (zk|yj , dm, ξ) p (yj |xi, dm, ξ) p (xi|dm, ξ) p (dm|ξ) (4.5.2)

where the sum runs over all the instances of the features x and y.
Given observations for the majority of features in Pathfinder, this inference algorithm

requires less than 1 second to compute the posterior probability of all diseases. For some
features in the large cluster containing lymphoid cells (see Figure 4.4), however, the
algorithm requires almost 20 minutes to compute these probabilities. Thus, members of
the Pathfinder team are currently investigating methods for increasing the efficiency of
inference. In one approach, we could exploit conditional independence within the clusters
by applying either the Lauritzen–Spiegelhalter algorithm (Lauritzen and Spiegelhalter,
1988) or Pearl cutset-conditioning algorithm (Pearl, 1988) to compute p (Oi|dk, ξ) for
each cluster Xi. Either algorithm, for example, would simplify the computation in
Equation 4.5.2, by exploiting the fact that z is independent of x, given d and y. In effect,
either algorithm would move the summation over x to the right of the first term to obtain

p (zk|dl, ξ) =
X

yj

p (zk|yj , dl, ξ)
X

xi

p (yj |xi, dl, ξ) p (xi|dl, ξ) p (dl|ξ) (4.5.3)

To simplify inference further, we could exploit the assertions of asymmetric conditional
independence represented within the similarity network. We discuss this approach further
in Section 6.2.1.
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Figure 4.12: A schematic knowledge map for Pathfinder.
(a) The features in Pathfinder can be arranged into clusters of features X1, X2, . . . Xn. The features
within each cluster are dependent, but the clusters are conditionally independent, given the disease
variable d. (b) A detailed view of the features x, y, and z within cluster Xi.





5 An Evaluation of Pathfinder

In the previous chapter, we saw that similarity networks made possible the construction
of a version of Pathfinder in which dependencies among features are represented, and
that partitions significantly reduced the time that would otherwise be required to assess
a knowledge map. In this chapter, we examine whether the knowledge base created
through the use of these new representations is more accurate for diagnosis than is the
original simple Bayes knowledge base.1 Specifically, we compare Pathfinder III and IV
in a three-phase experiment. In the first phase, we ask the question: Is the diagnostic
accuracy of Pathfinder IV greater than Pathfinder III? In the second phase, we ask:
What factors are responsible for improvement, if any? In the third phase, we ask: Are
the improvements worth the effort of building the more sophisticated knowledge base?

5.1 Selection of Cases

A set of cases for the experiment was selected in sequence from a large library of cases that
had been referred to Dr. Nathwani from community pathologists. Because such cases
were referrals, they were likely to be at least as difficult as cases in which nonexperts
would seek the help of a computer aid. Cases were rejected only if glass slides were
unavailable or if the case did not involve lymph-node tissue. Sections that were poorly
stained or improperly sliced were not excluded. Over 100 cases were selected; because of
time constraints, however, the experiment was conducted on only the first 53 cases.

5.2 Entry of Features

A community pathologist entered features observed in each case into both Pathfinder III
and Pathfinder IV. She entered only morphologic features (i.e., features observed through
a microscope); she did not perform tests that were expensive or that would have caused
significant delays in the experiment. She was allowed to see the recommendations for
additional observations made by both systems if she was unsure about what feature to
enter next. Also, if she was unsure about the identification of a feature, she was allowed
to access a library of over 4000 video images that illustrates the morphologic features that
can be reported to the two systems. For each case, the pathologist entered features until
she believed that no additional observations were relevant to that case. In most instances,
she stopped entering features when neither program had further features to recommend

1Several attributes of expert systems other than diagnostic accuracy are critical to the acceptance
of such systems in clinical practice. These attributes include the usability of a system and the degree
to which a system can improve the quality of physicians’ decisions. Here, we concentrate on diagnostic
accuracy, because this attribute of expert-system performance is most directly affected by the new
representations described in this work.
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Table 5.1: Expert ratings for Pathfinder III and IV.

Knowledge Expert Ratings (0-10 scale)

Base mean sd

Pathfinder III 7.99 2.32

Pathfinder IV 8.94 1.51

that she examine. For several cases, however, although one or both systems recommended
that she examine additional features, she did not observe any of those features, because
she believed that they would not have a significant effect on the differential diagnosis.
For several other cases, where neither system recommended that she examine additional
features, she identified on her own features that she thought might be relevant to the
case, and entered those features.

The pathologist chosen for the experiment was recently a fellow in hematopathology
with Dr. Nathwani. She was selected because she was familiar with the lymph-node
domain and with most of the terminology used by Pathfinder.

5.3 Phase 1: An Expert-Rating Metric

In phase 1 of the experiment, we wanted to determine whether the diagnostic accuracy
of Pathfinder IV was greater than that of Pathfinder III. For each case, our expert was
shown the features reported by the nonexpert, as well as the probability distributions
produced by the two versions of the system. The expert was blinded as to the identity
of the distributions, and the distributions were displayed in random order. For each
probability distribution, the expert was asked, “On a scale from zero to ten—zero being
unacceptable and ten being perfect—how accurately does the distribution reflect your
beliefs?”

The mean and standard deviation of the expert ratings for Pathfinder III and Path-
finder IV are shown in Table 5.1. The case-by-case results are shown in Appendix D.
The experiment reveals a significant difference between the two systems. Specifically, a
bootstrap permutation test (Diaconis and Efron, 1983) yields an achieved significance
level (ASL) of 0.007. The permutation test indicates that there is only a 0.007 chance
that a more extreme result would be obtained if data were drawn at random from the
set union of the ratings for both Pathfinder III and Pathfinder IV.
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Table 5.2: Factors of Pathfinder IV that affected its diagnostic accuracy relative to Pathfinder III.

Factors that Increased Diagnostic Accuracy

Number of

Cases Affected Factor

5 Conditioning produced better assessments

3 Dependencies existed among observed features

2 Partitions reduced spurious relevance in probability assessments

2 Comparisons afforded by partitions produced better assessments

2 Expert’s knowledge improved since construction of Pathfinder III

1 Disease subdistinction introduced

2 Probability assessments improved for unknown reasons

Factors that Decreased Diagnostic Accuracy

Number of

Cases Affected Factor

1 Failure to maintain consistency of knowledge base

2 Probability assessment worsened for unknown reasons

5.4 Phase 2: A Case-by-Case Analysis

The experiment described in the previous sections shows that there is a difference
between Pathfinder III and Pathfinder IV, but it does not identify those aspects of the
two knowledge bases that are responsible for these differences. To discern the causes for
the observed differences, I examined each patient case where the difference between the
expert ratings for Pathfinder III and IV exceeded 1.5.

There were 12 cases in which the expert rating for Pathfinder IV exceeded that for
Pathfinder III by this threshold. In nine cases, a single factor was responsible for the
increased performance; in two cases, two factors were responsible; and in one case, four
factors were responsible. In contrast, there were only three cases in which the expert
rating for Pathfinder III exceeded that for Pathfinder IV by 1.5. In all three cases,
a single factor of the knowledge base was responsible for this decrease in diagnostic
accuracy. Table 5.2 summarizes the factors of the Pathfinder IV knowledge base that
increased or decreased its diagnostic accuracy relative to Pathfinder III. Many of these
factors affected performance in more than one case. The tables show the number of times
each attribute contributed to a difference in performance.
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5.4.1 Causes of Increased Diagnostic Accuracy

In eight of the 12 cases where Pathfinder IV outperformed Pathfinder III, the represen-
tation of feature dependencies contributed to the superior performance of Pathfinder IV.
In three of the cases, Pathfinder IV’s increased accuracy was a direct consequence of the
explicit encoding of dependencies. That is, in these three cases, the community pathol-
ogist observed features that were dependent. In the remaining five cases, however, the
source of the improvement was indirect. In particular, by conditioning probability assess-
ments for a feature on other features, the expert provided probabilities of higher quality.
For example, let us consider the assessment of the probability distribution for LLC CY-

TOPLASM (color of large-lymphoid-cell cytoplasm), given DISEASE. In Pathfinder III, the
expert provided these assessments directly. In Pathfinder IV, however, the expert con-
ditioned these assessments on LLC IDENTITY (identity of large lymphoid cells). That is,
he assessed a probability distribution for LLC IDENTITY, given DISEASE, and probability
distributions for LLC CYTOPLASM, given DISEASE and LLC IDENTITY. This technique
for decomposing the assessment of a probability distribution is called extending the con-
versation. Using this technique, an expert can avoid having to average over a set of
distributions in his head, and thereby can produce better assessments. For a detailed
discussion of this technique and the conditions under which it is useful, see Tribus (1969,
Chapter 3), de Finetti (1977), and Heckerman and Jimison (1987).

The use of partitions led to increased performance in four of the 12 cases. In Sec-
tion 4.4.2, we discussed two attributes of the partition representation that facilitated
probability assessment. Specifically, partitions reduced the introduction of spurious rel-
evancies, and partitions facilitated the comparison of probability assessments. Both of
these attributes produced improvements in diagnostic accuracy in two of the 12 cases.

Another source of increased accuracy was that the expert’s knowledge improved since
the construction of Pathfinder III. For example, in a previous evaluation of Pathfinder III
(Heckerman, 1988), the system performed poorly in many cases because the probabilities
assessed for the feature epithelioid clusters of histiocytes were contradicted by data. That
is, the expert said that these clusters were never seen in most diseases, yet, in the process
of evaluating the system, he saw small numbers of these clusters in unexpected settings.
During the year since that experiment, the expert paid close attention to these clusters
in his daily diagnostic workups. Thus, the probability distributions for this feature
that he provided later were significantly more informed than were those he provided for
Pathfinder III.

In one case, the diagnostic accuracy of Pathfinder IV was superior to that of Path-
finder III because we introduced disease subtypes into the latter system. To see how
the failure to include disease subtypes can decrease diagnostic accuracy, let us consider
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the disease necrotizing lymphadenitis, which has subtypes Kikuchi’s and nonKikuchi’s.
In nonKikuchi’s necrotizing lymphadenitis, we always see necrosis, and we sometimes
see large numbers of plasma cells. On the other hand, in Kikuchi’s necrotizing lym-
phadenitis, we may not see necrosis, and we never see large numbers of plasma cells.
Furthermore, these two features are conditionally independent, given disease. Thus, if
we fail to observe necrosis in a given lymph node, and if we see a large number of plasma
cells in that same node, then both subtypes of necrotizing lymphadenitis should be ruled
out. Suppose, however, that we construct an expert system that does not distinguish the
two subtypes of disease, and retains the assertion of conditional independence. In this
case, if we observe no necrosis and abundant plasma cells in a given lymph node, the
expert system incorrectly reports that necrotizing lymphadenitis is a possible contender
for the diagnosis of that node. Here, when we combine the two subtypes of necrotizing
lymphadenitis, necrosis and plasma cells become conditionally dependent, given disease.
Consequently, the diagnostic accuracy of such a system is less than that of a system that
includes the distinction.2

Finally, in two of the 12 cases, we traced the improvements to differences between
the systems in specific probability assessments. We could not, however, identify the
underlying cause of the improvements.

5.4.2 Causes of Decreased Diagnostic Accuracy

In three cases, Pathfinder III outperformed Pathfinder IV. In Section 4.4.3, we dis-
cussed the problem of maintaining consistent probability assessments in a large knowl-
edge map associated with nonpositive distributions. This difficulty was the source of
Pathfinder IV’s poor performance in one of these three cases. In the other two cases, we
traced the decrement in accuracy to differences in specific probability assessments, but
we could not determine the source of these differences.

5.5 Phase 3: A Decision-Theoretic Metric

The two approaches for evaluation that we have examined are easy to apply. Further-
more, they readily expose differences between the diagnostic accuracy of Pathfinder III
and IV and the causes of these differences. Unfortunately, it is difficult to infer the
importance of differences based on these experiments. Specifically, in Chapter 4, we saw
that the construction of Pathfinder IV required approximately 40 more hours of effort
than did the construction of Pathfinder III. Neither the difference between the average

2In principle, we could avoid the introduction of disease subtypes by representing the feature depen-
dencies that result from such a representation. Usually, however, the number of induced dependencies
is large, and this approach is impractical.
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expert ratings of approximately 1.0 on a scale from 0 to 10 nor the identification of
system factors responsible for the improvement, however, can tell us whether this ad-
ditional effort was worth the improvement in diagnostic accuracy. In this section, we
use an evaluation procedure, based on decision theory, that can address this tradeoff.
The approach described here is similar to previous evaluations of several medical expert
systems (Smets et al., 1975; Asselain et al., 1977; Habbema and Hilden, 1981).

We compare Pathfinder III and IV by computing a quantity called inferential loss
for both versions of the program and for each of the 53 test cases. The inferential loss
associated with a version of Pathfinder and a given case is the decrease in expected
utility that results from using a distribution produced by that version of the program,
rather than the correct or gold-standard probability distribution associated with that
case. To compute inferential loss, we require (1) gold-standard probability distributions
for each case, and (2) the utility of every possible correct and incorrect diagnosis, given
every disease that a patient might have. In Sections 5.5.1 and 5.5.2, we examine these
components of the computation; in Section 5.5.3, we discuss the computation in detail.

5.5.1 Gold-Standard Distributions

It is difficult to produce an adequate gold standard in the domain of pathology. One
approach, illustrated in Figure 5.1(a), is simply to use the true disease to construct
the gold-standard distribution. That is, we assign a probability of 1 to the established
diagnosis. In pathology, the disease that is manifested in a lymph node is determined (1)
by an expert pathologist examining tissue sections under a microscope; (2) by expensive
immunology, molecular biology, or cell-kinetics tests; (3) through observations of the time
course of a patient’s illness; or (4) by a combination of these approaches.

There are two problems with this gold standard. First, its use ignores the distinction
between a good decision and a good outcome. For example, suppose the observations
for a case suggest—say, through statistical data—that there is a 0.7 chance of Hodgkin’s
disease and a 0.3 chance of mononucleosis. Furthermore, suppose that mononucleosis is
the true disease (not an unlikely event). In such a situation, an inference method that
produces exactly this probability distribution for Hodgkin’s disease and mononucleosis
receives (unjustly) a lower rating than a distribution that produces a higher chance
of mononucleosis. This problem with the approach, however, is not serious. We can
attenuate differences between good decisions and good outcomes by considering a large
number of cases.

A second, more serious, problem with this construction stems from details of how
microscopic observations are made by experts and nonexperts. In my experience, when
experts examine such biopsies, they typically see many features at once and come to a
diagnosis immediately. When asked to identify specific features that appear in the biopsy,
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these pathologists report mostly features that confirm their diagnosis. Moreover, it is
difficult to train these experts to do otherwise, and essentially impossible to determine
whether or not such training is successful. Thus, when experts are used to identify
features, both Pathfinder III and IV tend to perform well, and, in practice, it becomes
impossible to identify significant differences from an experimental comparison. On the
other hand, pathologists who do not specialize in the lymph-node domain misrecognize
or fail to recognize some of features associated with diagnosis. It is unreasonable to
compare the distributions produced by Pathfinder III and IV, derived from one set of
observations, with the true disease, derived from a different set of observations. In fact,
in a separate study, I showed that errors in diagnosis resulting from the misrecognition
and lack of recognition of features by a nonexpert were sufficient to obscure completely
the differences between the two versions of Pathfinder, when the true diagnosis was used
as the gold standard (Heckerman et al., 1990).

An alternative procedure for constructing a gold standard is shown in Figure 5.1(b).
In this procedure, an expert looks at only a list of observations for a case produced by
another pathologist (expert or nonexpert), and assesses directly a probability distribution
over the diseases. An associated drawback is that this construction ignores the possibility
that one or both versions of Pathfinder might outperform the initial impressions of the
expert. That is, if, for each case, our expert were to undergo a detailed decision analysis,
costing thousands of dollars, the probability distributions determined by these analyses
may be closer to the distributions produced by Pathfinder III or IV than to the expert’s
initial assessments of probability.

Thus, in the pathology domains, there appears to be no ideal gold standard. For this
experiment, however, the construction of the gold-standard distribution using the true
disease is unworkable, given the difficulties of feature observation associated with experts
and nonexperts. Consequently, I employed the procedure illustrated in Figure 5.1(b). As
mentioned in Section 5.2, a nonexpert pathologist identified features.

5.5.2 A Utility Model for Diagnosis

Pathfinder III and IV share the same utility model. The model is illustrated in the
schematic influence diagram for Pathfinder IV shown in Figure 5.2. The chance node d
represents the set of all possible diseases. The decision node dx represents all possible
diagnoses, where a diagnosis is simply a statement of the form, “the patient has disease
dj .” The node u represents a patient’s utility for all possible combinations of disease and
diagnosis. We use the term udi,dj to denote the utility of having disease di and being
diagnosed with disease dj .

As we have discussed, a diagnosis in the domain of lymph-node pathology is a decision
because clinicians base their treatment on the diagnoses rendered by pathologists. There
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Figure 5.1: Alternative gold standards for a given case.
(a) From the morphologic observations of the expert, expensive immunology, molecular biology and
cell-kinetics tests, and information about the time course of the patient’s illness, we determine the true
disease. (b) Given only the list of observations reported by another pathologist, the expert assesses a
gold-standard probability distribution (represented by the shaded probability wheel).

dx

d

u

Figure 5.2: An influence diagram for Pathfinder IV.
The node d represents a set of mutually exclusive and exhaustive diseases. The node dx represents all
possible diagnoses—that is, all possible statements of the form, “the patient has disease di.” The node
u represents a patient’s disutilities for all disease–diagnosis combinations. Pathfinder III uses the same
utility model.
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are exceptions to this observation. For example, the treatment of Hodgkin’s disease
depends not only on the subtype of Hodgkin’s disease, but also on the clinical stage
of the disease (i.e., the degree to which the disease has spread throughout the body).
In constructing the utility model, however, the expert and I addressed these exceptions
by averaging over factors relevant to treatment that would be unknown at the time of
diagnosis.

An important consideration in the assessment of diagnostic utilities is that preferences
will vary from one decision maker to another. For example, the diagnostic utilities of a
decision maker—the patient—faced with the results of a lymph-node biopsy are likely
to be influenced by the person’s age, gender, and state of health. Consequently, the
inferential losses computed in this evaluation are meaningful to an individual only to the
degree that the diagnostic utilities used in the evaluation match the diagnostic utilities
of that individual.

For this experimental comparison, I used the utilities of the expert on the Pathfinder
project. I choose the expert for two practical reasons. First, he was reasonably familiar
with many of the ramifications of correct and incorrect diagnosis. Second, I had estab-
lished a good working relationship with him during the construction of Pathfinder. The
expert, because he is an expert, however, had biases that made his initial preferences
deviate from those of a typical patient. For example, many sets of diseases of the lymph
node currently have identical treatments and prognoses. Nonetheless, experts like to
distinguish diseases within each of these sets, because doing so allows research in new
treatments to progress. That is, experts often consider the value of their efforts to future
patients. In addition, experts generally suffer professional embarrassment when their
diagnoses are incorrect. Also, experts are concerned about the legal liability associated
with misdiagnosis. In an effort to remove these biases, I asked the the expert to ignore
specifically these attributes of utility. Further, I asked him to imagine that he himself
had a particular disease, and to assess the diagnostic utilities accordingly.

Another important consideration in almost any medical decision problem is the wide
range of severities associated with outcomes. For example, if a patient has a viral infec-
tion and is incorrectly diagnosed as having cat-scratch disease—a disease caused by an
organism that is killed with antibiotics—the consequences are not severe. In fact, the
only nonnegligible consequence is that the patient will take antibiotics unnecessarily for
several weeks. If, however, a patient has Hodgkin’s disease and is incorrectly diagnosed as
having an insignificant benign disease such as a viral infection, the consequences are often
lethal. If the diagnosis had been made correctly, the patient would have immediately
undergone radio- and chemotherapy, with a 90-percent chance of a cure. If the patient
is diagnosed incorrectly, however, and thus is not treated, the disease will progress. By
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the time its major symptoms appear and the patient once again seeks help, the cure rate
with appropriate treatment will have dropped to less than 20 percent.

It is important for us to measure preferences across such a wide range, because some-
times we must balance a large chance of a small loss with a small chance of a large
loss. For example, even though the probability that a patient has syphilis is small—say,
0.001—treatment with antibiotics may be appropriate, because the patient may prefer
the harmful effects of antibiotics to the small chance of the harmful effects of untreated
disease.

Early attempts to assess preferences for both minor and major outcomes in the same
unit of measurement were fraught with paradoxes. For example, in a linear willingness-
to-pay approach, a decision maker might be asked, “How much would you have to be
paid in order to accept a one in ten-thousand chance of death?” If the decision maker
answered, say, $1000, then the approach would dictate that he would be willing to be
killed for $10 million. This inference is absurd.

Recently, Howard has constructed an approach that avoids many of the paradoxes of
earlier models (Howard, 1980). Like several of its predecessors, the model determines
what an individual is willing to pay to avoid a given chance of death, and what he is
willing to be paid to assume a given chance of death. Also, like many of its predecessors,
Howard’s model shows that, for small risks of death (typically, p < 0.001), the amount
someone is willing to pay to avoid, or is willing to be paid to to assume, such a risk is
linear in p. That is, for small risks of death, an individual acts as would an expected-
value decision maker with a finite value attached to his life. For significant risks of
death, however, the model deviates strongly from linearity. For example, the model
shows that there is a maximum probability of death, beyond which an individual will
accept no amount of money to risk that chance of death. Most people find this result to
be intuitive.3

In this book, the details of the model will not be presented; for a discussion of the
approach see Howard (1980). Here, we need to assume only that willingness to buy or sell
small risks of death is linear in the probability of death. Given this assumption, prefer-
ences for minor to major outcomes can be measured in a common unit, the probability of
immediate, painless death that a person is willing to accept to avoid a given outcome and
to be once again healthy. The undesirability of major outcomes can be assessed directly
in these terms. For example, a decision maker might be asked, “If you have Hodgkin’s
disease and have been incorrectly diagnosed as having a viral infection, what probability
of immediate, painless death would you be willing to accept to avoid the illness and

3The result makes several assumptions, such as the decision maker is not suicidal and is not concerned
about how his legacy will affect other people.
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incorrect diagnosis, and to be once again healthy?” At the other end of the spectrum,
the undesirability of minor outcomes can be assessed by willingness-to-pay questions,
and can be translated, via the linearity result, to the common unit of measurement. For
example, a decision maker might be asked, “How much would you be willing to pay to
avoid taking antibiotics for two weeks?” If he answered $100, and if his small-risk value
of life were $20 million, then the answer could be translated to a utility of a 5 in 1 million
chance of death.

An important task in assessing the udi,dj is the determination of the decision maker’s
small-risk value of life. Howard proposes a model by which this value can be computed
from other assessments (Howard, 1980). A simple version of the model requires a decision
maker to trade off the amount of resources he consumes during his lifetime and the
length of his lifetime, to characterize his ability to turn present cash into future income
(summarized, for example, by an interest rate), and to establish his attitude toward risk.
However, our expert did not find it difficult to assess the small-risk value of life directly.4

When asked what dollar amount he would be willing to pay to avoid chances of death
ranging from 1 in 20 to 1 in 1000, he was consistent with the linear model to within a
factor of 2, with a median small-risk value of life equal to $20 million.

Note that, with this utility model, the inferential losses computed for Pathfinder III
and IV will have units “probability of death.” In many cases, we shall see that the losses
are small in these units (on the order of 0.0001). Consequently, it is useful to define a
micromort, a one–in–1-million chance of death. In these units, for example, the expert,
who has a small-risk value of life of $20 million, should be willing to buy and sell risks of
death at the rate of $20 per micromort. This unit of measurement is also useful because
it helps to emphasize that the linear relationship between risk of death and willingness
to pay holds for only small probabilities of death. Howard (1989b) discusses in detail the
use of the micromort for medical decision making.

Finally, an important consideration is the complexity of the utility-assessment pro-
cedure. There are approximately 60 diseases represented in Pathfinder. The direct
measurement of the udi,dj therefore requires about 602 = 3600 assessments. Clearly, the
measurement process would be tedious. Thus, several steps were taken to reduce the
complexity of the task. For one, the expert established sets of diseases that have identi-
cal treatments and prognoses. The expert identified 36 such equivalence classes, reducing
the number of direct utility assessments to 362 = 1296. In addition, the expert and I de-
composed many of the utilities into independent assessments such as the disutility of a
disease when correctly treated, the disutility of delaying the appropriate treatment, and
the disutility of the treatment in the absence of disease (e.g., the disutility of taking

4Howard also has observed that the small-risk value of life can be assessed directly (Howard, 1990).
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Figure 5.3: The computation of inferential loss.
Based on the features reported, Pathfinder (III or IV) produces a probability distribution over diseases
(represented by the shaded probability wheel). Based on these same features, we also determine a
gold-standard distribution. Given theses distributions, we identify the optimal diagnoses associated
with them, denoted dxpf and dxgs, using the principle of maximum expected utility. We compute the
expected utility of the two diagnoses with respect to the gold-standard distribution. We then calculate
the inferential loss associated with the Pathfinder distribution by subtracting the expected utility of the
Pathfinder distribution from the expected utility of the gold-standard distribution.

antibiotics or undergoing surgery). Through such decomposition, more than 80 percent
of the direct assessments were avoided. In total, the construction of the utility model
took approximately 60 hours.

5.5.3 The Computation of Inferential Loss

The procedure for computing inferential loss is identical for both versions of Pathfinder
and is illustrated in Figure 5.3. First, based on the features reported for a given case,
Pathfinder produces a probability distribution over diseases. Next, based on these same
features, we determine a gold-standard distribution as described in Section 5.5.1.

Then, we determine the optimal diagnosis associated with a Pathfinder distribution,
denoted dxpf , by identifying the diagnosis that maximizes the expected utility of the
patient given that distribution. Similarly, we determine the optimal diagnosis associated
with the gold-standard distribution, denoted dxgs. Formally, we compute

dxpf = argmaxdj

"
X

di

ppf(di) udi,dj

#
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dxgs = argmaxdj

"
X

di

pgs(di) udi,dj

#

where ppf(di) and pgs(di) represent the probability of the ith disease under the Pathfinder
and gold-standard probability distributions, respectively.

Next, we compute the expected utility of dxpf and dxgs, denoted eu(dxpf) and eu(dxgs),
respectively. When computing expected utility, we use the gold-standard distribution,
which reflects the assumed best distribution. That is, we compute

eu(dxpf) =
X

di

pgs(di) udi,dxpf

eu(dxgs) =
X

di

pgs(di) udi,dxgs

Finally, we determine inferential loss, denoted IL, for the Pathfinder distribution, by
subtracting the expected utility of the Pathfinder diagnosis from the expected utility of
gold-standard diagnosis. That is,

IL = eu(dxgs)− eu(dxpf)

By construction, IL is always a nonnegative quantity. If both a Pathfinder distribution
and the gold-standard distribution imply the same diagnosis, then the inferential loss for
that Pathfinder distribution is zero, a perfect score. Note that the units of inferential
loss are the same as those for the diagnostic utilities udi,dj —namely, micromorts.

5.5.4 Results

The mean and standard deviation of inferential loss for the two versions of Pathfinder
are shown in Table 5.3. The case-by-case results are shown in Appendix D. Unlike
the difference of 0.95 produced by the expert-rating metric, these results clearly reflect
the increase in value of Pathfinder IV as a result of this system’s superior diagnostic
accuracy. Specifically, assuming that a patient is willing to convert micromorts to dollars
at a rate of $20 per micromort5, as our expert was, the results in this metric show that
it is worth approximately $6000 per case to the patient to have the more sophisticated
Pathfinder knowledge be used instead of the earlier knowledge base that assumed global
independence among features. As was mentioned earlier, it took approximately 40 hours
longer to construct Pathfinder IV than it did to construct Pathfinder III. Thus, assuming
a combined hourly rate of $400 for the expert and myself, the additional effort would

5The value of $20 per micromort applies to the expert when he is healthy. We use this value to
approximate his small-risk value of life in situations where he is ill.
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Table 5.3: Inferential losses for Pathfinder III and IV.

Knowledge Inferential Loss (micromorts)

Base mean sd

Pathfinder III 340 1684

Pathfinder IV 16 104

more than pay for itself after only three cases had been run. If we include the time
required to construct the utility model (60 hours), then the additional effort would more
than pay for itself after seven cases had been run.

The standard deviations for inferential loss are quite large relative to the means. The
reason for such large variances is easily appreciated. For many of the cases, the optimal
diagnosis associated with the distributions produced by both versions of Pathfinder are
identical to the optimal diagnosis associated with the gold standard. In particular, the
optimal diagnoses for Pathfinder III agreed with the gold-standard diagnoses in 47 of the
53 cases; those for Pathfinder IV agreed in 50 of the 53 cases. In these cases, inferential
loss is zero. In the remaining cases, the approaches determine a diagnosis that differs
from the gold standard. Most of these nonoptimal diagnoses are associated with expected
utilities that are significantly lower than is the expected utility associated with the gold-
standard diagnosis. Thus, inferential losses fluctuate from zero in most cases to large
values in the remainder.

Despite the large standard deviations for inferential loss, a Bootstrap permutation
test suggests that the results are not due only to chance. In particular, the test yields
an ASL of 0.08. Again, this means that there is only an 8 percent chance that the
difference in diagnostic accuracy would be more extreme than what the current results
show, if inferential losses were drawn at random for the set union of inferential losses for
Pathfinder III and IV.

5.6 Discussion

All phases of this experiment provided useful results. The expert-rating approach was
easy to implement, and it showed that there were differences in diagnostic accuracy
between the two versions of Pathfinder. Thereby, it suggested that pursuing each of the
second two phases would be worthwhile. The second phase showed that several factors
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were responsible for the superior performance of Pathfinder IV, the most frequent being
that improvements in probability assessments resulted from conditioning the assessments
on other events. Finally, the third phase showed that the additional work required to
construct Pathfinder IV was well worth the effort.

The expert-rating metric used in phase 1 was more sensitive to differences in the two
systems than was the decision-theoretic metric used in phase 3. This observation is not
surprising because experts, who have their integrity at stake, tend to be hypersensitive to
errors in diagnosis, regardless of the degree to which such errors matter to the patient. Of
course, the decision-theoretic metric can be modified to be more sensitive. Considerations
of integrity or liability, for example, can be incorporated into the diagnostic utilities.
Indeed, the fact that components of preference can be made explicit and are under the
direct control of the expert is one advantage of the decision-theoretic approach.

This evaluation has concentrated on an analysis of differences in diagnostic accuracy
between Pathfinder III and IV that arise from differences in the probabilistic knowledge
represented within these systems. This focus is important for evaluating the usefulness
of similarity networks and partitions. Nonetheless, we can use the experimental design
described in this chapter to investigate other facets of Pathfinder performance. For ex-
ample, as I mentioned, I used this methodology to measure the decrease in diagnostic
accuracy that aries from the misrecognition and lack of recognition of morphologic fea-
tures by a nonexpert (Heckerman et al., 1990). Also, using this approach, the Pathfinder
group plans to compare the diagnostic accuracy of community pathologists who have
access to Pathfinder to that of pathologists who do not have such access. In addition,
the dependencies among lymphoid cells and clusters of clear cells make the Pathfinder
inference algorithm sluggish (see Section 4.5). Of course, there is a much room for
improvement in the algorithm. Nonetheless, we can use the decision-theoretic metric
to determine the negative value of ignoring these dependencies altogether, and thereby
trade off the value of representing the dependencies with the cost of improving the al-
gorithm. In yet another study, we can measure the sensitivity of diagnostic accuracy to
changes in the joint probability distribution of Pathfinder IV. In general, we can use this
approach to evaluate, in clear terms, a wide variety of issues related to the building of
real-world expert systems.





6 Conclusions and Future Work

In this chapter, we consider possible extensions to the similarity-network and partition
representations. We then examine conclusions that we can draw from the work presented
in this book.

6.1 Weaker Conditions for Soundness

In Chapter 4, we discussed the conditions that are sufficient to guarantee the soundness of
the global-knowledge-map construction. There, we examined the effect of each condition
on the construction of the Pathfinder knowledge map, and outlined briefly the work we
require to relax the positivity condition. In this section, we examine approaches for
relaxing several of the other soundness conditions.

6.1.1 Local Knowledge Maps for More Than Two Diseases

Similarity-network theory and implementation, in their current form, require that we
compose local knowledge maps only for pairs of hypotheses. This restriction lessened the
usefulness of the representation for building the Pathfinder knowledge map. For example,
Figure 6.1(a) contains a portion of Pathfinder’s similarity graph where the diseases AIDS

EARLY, RHEUMATOID ARTHRITIS, and GLH PLASMA CELL TYPE form a clique. Given
this representation, the expert had to assess a local knowledge map for each of the three
edges in the graph. The expert, however, preferred to assess one local knowledge map
for the disease triplet.

In general, we can extend the similarity-network representation to include local knowl-
edge maps for hypothesis sets of arbitrary size. In such an extension, we replace the
similarity graph with a similarity hypergraph. A hypergraph consists of nodes and hy-
peredges that connect sets of nodes. We then compose one local knowledge map for each
hyperedge. For example, we can replace the graph in Figure 6.1(a) with the hypergraph
in Figure 6.1(b). In this hypergraph, the small oval and the three lines represent a hy-
peredge that connects the disease triplet. Given this hypergraph, the Pathfinder expert
needs to compose only one local knowledge map.

To ensure that the global knowledge map constructed from such a network is sound,
we must replace only the constraint that the similarity graph be connected, using instead
the constraint that the similarity hypergraph be connected. We can generalize the proof
of soundness in Chapter 3 in a straightforward fashion to demonstrate this observation.

6.1.2 Distinguished Node with Predecessors

One of the sufficient conditions for soundness is that the distinguished node can have no
predecessors. We can eliminate this condition using the following steps. First, we build a
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(b)

(a) AIDS EARLY GLH PLASMA CELL TYPE

RHEUMATOID ARTHRITIS

AIDS EARLY GLH PLASMA CELL TYPE

RHEUMATOID ARTHRITIS

Figure 6.1: A similarity graph and its corresponding similarity hypergraph.
(a) A portion of the Pathfinder similarity graph (see the upper-right corner of Figure 4.2 on page 109).
The graph is associated with three local knowledge maps. (b) A similarity hypergraph that corresponds
to the graph in (a). The similarity hypergraph is associated with one local knowledge map for the disease
triplet.

similarity network for only those nodes that are not (direct or indirect) predecessors of the
distinguished node. Second, we construct the global knowledge map from this similarity
network. Third, we compose the remainder of the global knowledge map directly. This
procedure will be useful in those domains where only a few nodes are predecessors of the
distinguished node. In more complicated situations, we must look for extensions to the
theory.

6.1.3 Multiple Hypotheses

Another sufficient condition for soundness is that the hypotheses in a similarity network
must be mutually exclusive. In many domains, however, hypotheses are not mutually
exclusive. Patients admitted to the internal-medicine ward of a hospital, for example,
often present with four to five coexisting diseases. In this section, we examine how we
can use the similarity-network and partition representations to facilitate the construction
of knowledge maps for the diagnosis of multiple hypotheses.

Figure 6.2 contains a small portion of a knowledge map for internal medicine. In
the examples we have examined previously, we have represented diseases as instances of
a single variable, under the assumption that these diseases are mutually exclusive. In
Figure 6.2, however, the node APPI represents the absence or presence of unruptured
acute appendicitis. Similarly, the node RUPTURED ECTOPIC represents the absence or
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VAGINAL BLEEDINGPERITONITISANOREXIA

RUPTURED ECTOPICAPPI

Figure 6.2: A knowledge map for the diagnosis of multiple diseases.
The nodes APPI and RUPTURED ECTOPIC represent the disorders unruptured acute appendicitis
and acute ruptured ectopic pregnancy, respectively. Each disease may be absent or present. The nodes
ANOREXIA, PERITONITIS, and VAGINAL BLEEDING represent patient findings relevant to the
diagnosis of these diseases.

f

1d 2d nd•   •   •

Figure 6.3: Multiple causes of the same finding.
Each disease di may cause the finding f to be present. If the diseases and the finding are binary, then
we require 2n probability assessments to quantify the interaction.

presence of acute ruptured ectopic pregnancy. Thus, this knowledge map does not exclude
the possibility that both diseases can manifest in the same patient.

This example illustrates a difficulty that arises typically in situations where multiple
hypotheses are possible. In particular, both diseases in Figure 6.2 condition the node
PERITONITIS, which represents the absence or presence of an inflammatory response
in the peritoneum (the lining of the abdominal cavity). Thus, without any additional
information, we would have to assess four probability distributions for this finding. More
generally, we can have the situation, illustrated in Figure 6.3, where diseases d1, d2, . . . dn

can each cause finding f to appear. Here, the node f is associated with 2n probability
distributions.

We can reduce dramatically the number of probability assessments for node f by
making an additional assertion of conditional independence, called causal independence.
In the context of Figure 6.3, let pi denote the probability that a patient, initially without
disease di and without finding f , will develop finding f when getting disease di. When
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we assert causal independence in this situation, we state that probability pi does not
depend on whether or not the patient has any other diseases before he has di, and that
the finding f cannot disappear when the disease di manifests in the patient.

Now let Da denote an arbitrary instance of the set of variables D = {d1, d2, . . . , dn}.
That is, let Da denote some assignment of absent or present to each disease di. In
addition, let D− denote the particular instance of D where all diseases are absent. Given
the assertion of causal independence, the finding f will be absent in a patient only if two
conditions are met: (1) the finding f cannot be present in the patient initially, and (2)
none of the patient’s diseases can act to cause f to appear. Thus, we obtain

p (f−|Da, ξ) = p (f−|D−, ξ)
Y

i∈Ia

£
1− pi

§
(6.1.1)

where Ia is the set of indices i such that di is present in Da. Applying the sum rule to
Equation 6.1.1, we obtain

p (f+|Da, ξ) = 1 − [1− p (f+|D−, ξ)]
Y

i∈Ia

£
1− pi

§
(6.1.2)

If the patient has only disease di, Equation 6.1.2 becomes

p
°
f+|only di

+, ξ
¢

= 1 − [1− p (f+|D−, ξ)]
£
1− pi

§
(6.1.3)

Solving for pi in Equation 6.1.3, and substituting the result in Equation 6.1.2, we obtain

p (f+|Da, ξ) = 1− [1− p (f+|D−, ξ)]
Y

i∈Ia

"
1− p

°
f+|only di

+, ξ
¢

1− p (f+|D−, ξ)

#

(6.1.4)

Thus, with the assertion of causal independence, we can determine all the probabil-
ity distributions associated with the node f in Figure 6.3, from only the probabilities
p (f+|D−, ξ) and p

°
f+|only di

+, ξ
¢
, i = 1, 2, . . . , n.

Good and other theorists have described various forms of the causal-independence as-
sertion (Good, 1961a; Suppes, 1970; Pearl, 1988). Pearl refers to the particular form we
have discussed, where diseases and findings are binary, as a noisy OR-gate (Pearl, 1988).
(We consider the origin of this name in the following paragraph.) Several researchers
have noted that we can apply the noisy OR-gate and more general forms of causal inde-
pendence to numerous situations within domains ranging from medicine to motorcycle
repair (Habbema, 1976; Heckerman, 1987; Henrion and Cooley, 1987; Henrion, 1987).

The model of the noisy OR-gate, as we have examined it so far, makes reference to
the appearance of diseases over time. We can also represent the model in an influence
diagram, without this temporal reference, as illustrated in Figure 6.4. In the figure, the
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OR
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Figure 6.4: An atemporal representation of causal independence.
The node di represents the absence or presence of disease di in a given patient. The node di–causes–
f represents the absence or presence of an intermediate event through which di causes finding f to
be present with certainty. The deterministic node f is the disjunction of its parents. Thus, if any of
these intermediate events occur, then the finding f will appear in the patient for certain. The lack
of arcs between nodes in the upper two rows of the influence diagram reflects an assertion of causal
independence.

node labeled di–causes–f represents the absence or presence of an intermediate event
through which di causes finding f to be present with certainty. As is indicated by the
label OR above the deterministic node f , if any of these intermediate events occur, then
the finding f will appear for certain (hence the name noisy OR-gate). The arc from di

to di–causes–f reflects the assertion that the absence or presence of di influences the
probability distribution for the variable di–causes–f .1 In particular, we assume that, if
di is absent, then the disease cannot act to cause f , whereas if di is present, then it causes
f to be present with some probability greater than 0. This probability corresponds to
pi in the temporal formulation of the model. The lack of arcs between nodes in the
upper two rows of the knowledge map reflects the assertion of causal independence. In
particular, the missing arcs represent the statement that the probability distribution for
the variable di–causes–f depends neither on the absence or presence of any other disease
nor on the absence or presence of any other event leading to the occurrence of f . We
require the node d0–causes–f to capture the possibility that finding f will appear when
all diseases are absent.

To make this model more concrete, let us consider the simple medical example in
Figure 6.2. In this example, acute ruptured ectopic pregnancy can cause peritonitis,
because blood from the rupture of a fallopian tube can collect in the peritoneal cavity,

1Here, we assume that the knowledge map is minimal.



154 Chapter 6

and thereby irritate the peritoneum. In contrast, the presence of unruptured acute
appendicitis is associated with the release of substances that mediate the inflammatory
response within the appendix. These substances can leak out of the appendix, and
thereby cause an inflammatory response in the nearby peritoneum. Thus, the variable
RUPTURED ECTOPIC–causes–PERITONITIS refers to the absence or presence of blood
in the peritoneal cavity, whereas the variable APPI–causes–PERITONITIS refers to the
absence or presence of inflammatory triggers of appendiceal origin in the peritoneum.
To a good approximation, the probability that blood will collect in the peritoneal cavity
is influenced neither by the presence of an unruptured acute appendicitis nor by the
presence of inflammatory triggers of appendiceal origin in the peritoneum. Conversely,
the probability that inflammatory triggers from the appendix will reach the peritoneum
is influenced neither by the presence of an acute ruptured ectopic pregnancy nor by the
presence of blood in the peritoneal cavity. Thus, we can assert causal independence for
the interaction among these variables.

We can derive Equation 6.1.4 from both the temporal and atemporal models for causal
independence. The atemporal model is somewhat problematic, because we often cannot
define events of the form di–causes–f precisely. Nonetheless, most people find this model
easy to understand. In addition, we can use the framework to extend causal independence
to situations where diseases and findings are not binary (Heckerman, 1987; Henrion,
1987).

Now let us examine how we can use assumptions of causal independence in conjunction
with an assessed similarity network to construct a knowledge map for the diagnosis of
multiple diseases (or hypotheses). The construction derives from Equation 6.1.4, which
states that the only probability assessments we need to define the interaction illustrated
in Figure 6.3 are those probabilities of the form p

°
f+|only di

+, ξ
¢
, i = 1, 2, . . . , n and the

probability assessment p (f+|D−, ξ). These probabilities are exactly those assessments
that we can derive from a similarity network where we represent each disease as an
instance of the distinguished node, and where we include the hypothesis NORMAL to
represent the instance D−.

With this observation in mind, let us consider the similarity network shown in Fig-
ure 6.5. From this similarity network, we can construct the multiple-disease knowledge
map shown in Figure 6.2, in the following steps. First, we construct the global knowledge
map from the similarity network, and transfer the findings ANOREXIA, PERITONITIS, and
VAGINAL BLEEDING in the global knowledge map to the multiple-disease knowledge map.
Also, if there were any arcs between these findings, we would transfer those arcs to the
multiple-disease knowledge map. Second, for each node in the similarity graph, except
NORMAL, we construct a binary chance node in the multiple-disease knowledge map. In
particular, we construct the binary nodes APPI and RUPTURED ECTOPIC. Third, in the
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VAGINAL BLEEDING

PERITONITIS

ANOREXIA

APPI

NORMAL

RUPTURED ECTOPIC

PERITONITIS

Figure 6.5: A similarity network for APPI and RUPTURED ECTOPIC.
The similarity network contains a local knowledge map for APPI and NORMAL and a local knowl-
edge map for RUPTURED ECTOPIC and NORMAL. The former knowledge map contains the findings
ANOREXIA and PERITONITIS, whereas the latter knowledge map contains the findings PERITONI-
TIS and VAGINAL BLEEDING. The small ovals from which the arcs emanate represent the distin-
guished node in the local knowledge maps. (See Chapter 3, page 67, for a detailed description of this
graphical shorthand for a similarity network.) In composing this network, we assume that APPI, NOR-
MAL, and RUPTURED ECTOPIC are mutually exclusive hypotheses. From this similarity network
and additional assertions of conditional independence, including assertions of causal independence, we
can construct the multiple-disease knowledge map shown in Figure 6.2.

multiple-disease knowledge map, we draw an arc from APPI to ANOREXIA, and from APPI

to PERITONITIS. Conversely, we do not draw an arc from APPI to VAGINAL BLEEDING.
We can omit this arc because the local knowledge map for APPI and NORMAL states that
the probability distribution for VAGINAL BLEEDING given APPI is equal to the distribu-
tion for VAGINAL BLEEDING given NORMAL, and because we assert causal independence.
Similarly, we draw arcs from RUPTURED ECTOPIC to PERITONITIS and to VAGINAL

BLEEDING, but we do not draw an arc from RUPTURED ECTOPIC to ANOREXIA. Fourth,
we use the probability assessments associated with the similarity network in conjunction
with the noisy-OR-gate model (Equation 6.1.4) to compute the probability distributions
for each finding. Finally, we assert that APPI and RUPTURED ECTOPIC are marginally
independent, and assess the prior probabilities for these variables.

In transforming the similarity network to a multiple-disease knowledge map, we added
several assertions of conditional independence. In particular, the similarity network im-
plies only that the findings are conditionally independent given NORMAL, APPI alone, and
RUPTURED ECTOPIC alone. The multiple-disease knowledge map, however, also encodes
the assertion that the findings are independent given that both APPI and RUPTURED EC-

TOPIC are present in a patient. In general, when we apply the transformation described
in the previous paragraph, we must verify that these additional assertions hold.

Also, in transforming the similarity network to a multiple-disease knowledge map, we
used the fact that NORMAL was connected to each of the remaining hypotheses in the
similarity graph. That is, we used the fact that the similarity graph had a star topology,
with NORMAL as its center. To understand this observation, let us consider the similarity
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VAGINAL BLEEDING

PERITONITIS

ANOREXIA

APPI NORMAL

RUPTURED ECTOPIC

PERITONITIS

VAGINAL BLEEDING

Figure 6.6: An alternative similarity network for APPI and RUPTURED ECTOPIC.
In this similarity network, there is no local knowledge map for the hypothesis pair APPI and NORMAL,
and thus we cannot determine that APPI (when considered a binary variable) and VAGINAL BLEED-
ING are conditionally independent. Consequently, we cannot construct the knowledge map shown in
Figure 6.2 from this similarity network.

network in Figure 6.6. Here, APPI and NORMAL are not connected, and thus we cannot
identify those findings that are conditioned by the chance node APPI in the multiple-
disease knowledge map. Of course, we could add an arc from APPI to every finding in
the multiple-disease knowledge map, but, in so doing, we would loose the assertions of
conditional independence implied by the absence of the arc from APPI to ANOREXIA.

Although the transformation is facilitated by a similarity graph with a star topology, we
should not require an expert to compose such graphs. Indeed, an expert might not be able
to compose a local knowledge map for distinguishing a particular disease from NORMAL.
Fortunately, however, we can transform any similarity network to one whose similarity
graph has a star topology. Specifically, given any similarity network, we first construct
and assess the global knowledge map associated with that similarity network. Then,
for each hypothesis in the similarity graph (other than NORMAL), we construct a local
knowledge map for discriminating that hypothesis with NORMAL, using the probability
distributions from the global knowledge map, and any ordering over the nondistinguished
variables that is consistent with the global knowledge map (see Theorem 3.3). Once we
obtain this new similarity network, we can construct the multiple-hypothesis knowledge
map from that similarity network as described previously.

In this section, we have outlined only one possible transformation procedure in the
context of a simple example. We require a general transformation algorithm and a proof
that the algorithm is sound and exhaustive under certain conditions. In Appendix E, we
consider a candidate for such an algorithm.



Conclusions and Future Work 157

6.2 Applications Other Than Coherent Knowledge Acquisition

In this section, we examine several possible uses of the similarity-network and partition
representations other than the coherent construction and assessment of a knowledge map.

6.2.1 Inference and Explanation

We can use the asymmetric assertions of conditional independence encoded in a similarity
network to simplify and sometimes to avoid inference and value-of-clairvoyance compu-
tations. For example, consider the local knowledge map for L&H DIFFUSE HD and MIXED

CELLULARITY in Figure 4.3 on page 110. For a given patient case, if we acquired enough
evidence to rule out all diseases except the two diseases in this local knowledge map, then
the subsequent observation of any feature other than L&H SR, MUMMY, MONONUCLEAR

SR, and CLASSIC SR would not change the probabilities of the two diseases. In addition,
the value of clairvoyance for all features not in this local knowledge map must be 0.
Consequently, in this situation, we can avoid potentially time-consuming inference and
value-of-clairvoyance computations.2 We can generalize this procedure for simplifying
computations to cases where more than two hypotheses are possible.

We can also use a similarity network to explain how the observations for a given case
affect the probability distribution over hypotheses, and to justify the recommendations
for evidence gathering that the system provides to the user. For example, let us examine
the current facility in Pathfinder for justifying evidence-gathering recommendations. In
Chapter 1, we saw a sample dialog between Pathfinder and a user of the system. In
that dialog, the user entered the feature–instance pairs F % AREA: >90%, F DENSITY:

BACK-TO-BACK, and F POLARITY: PROMINENT, and then asked the system to identify
features that were cost-effective for narrowing the differential diagnosis (see Figure 1.7
on page 11). A justification for one of Pathfinder’s recommendations—MONOCYTOID

CELLS—is illustrated in Figure 6.7.
The dollar amount at the bottom of the window reflects the monetary cost associated

with observing the feature. In general, the user can elect to display several components
of cost, including an estimate of the time it takes to observe a feature, and the degree of
tedium associated with such a task.

The graph in the middle of the window reflects the benefits associated with observing
the feature. In general, for each instance fi of the feature f being justified, the system
graphs (on a log scale) the quantity

2Other researchers are also investigating methods that exploit asymmetries for inference (Smith,
1990).
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Figure 6.7: A justification for the recommendation of MONOCYTOID CELLS.
For each instance of the feature, the length and direction of a bar reflects the change in the probability
of AIDS EARLY relative to the change in the probability of FLORID FOLLIC HYPERP, given the
observation of that feature–instance pair. The justification also includes the monetary cost of observing
the feature.
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p (fi|d1, ξ)
p (fi|d2, ξ)
where d1 and d2 are the most probable and second most probable diseases, respectively,
and where ξ includes those features that the user has already observed. This quantity is
called a likelihood ratio. The logarithm of this quantity is known as the weight of evidence
for fi in favor of d1 relative to that of d2, given ξ (Good, 1950). The likelihood ratio
reflects the degree to which the probability of d1 changes relative to d2, when we observe
fi. Thus, according to the graph in Figure 6.7, if a user of the system observes that
MONOCYTOID CELLS are ABSENT, then the probability of FLORID FOLLIC HYPER will
increase relative to the probability of AIDS EARLY by almost a factor of 10. In contrast,
if the user observes that MONOCYTOID CELLS are PRESENT, then the probability of AIDS

EARLY will increase relative to FLORID FOLLIC HYPERP by more than a factor of 100.
The graph in Figure 6.7 gives an indication of whether or not MONOCYTOID CELLS is

useful for narrowing the differential diagnosis. It does not however, describe the effect of
observations on all the diseases. To overcome this drawback of the approach, the system
can partition the diseases on the differential diagnosis into two sets. The system can
then generate justifications like the one illustrated in Figure 6.7, replacing single diseases
with disease groups. The Pathfinder research group has implemented this procedure
(Heckerman et al., 1985; Heckerman et al., 1990). In another approach, we could make
available the Pathfinder similarity graph to a user, who can then ask the system to
generate justifications of the form shown in Figure 6.7 for one or more disease pairs
defined by the similarity graph. Alternatively, the user may wish to see justifications
generated based on a similarity graph of his own composition.

6.2.2 Heuristic Applications

For extremely large and complex domains, the similarity-network and partition represen-
tations might play a useful heuristic role in knowledge acquisition. In particular, when
composing a similarity network, an expert may wish to include in a local knowledge map
only those nondistinguished variables that are strong discriminators of the hypotheses
associated with that local knowledge map. Similarly, when composing a partition for a
given nondistinguished variable x, an expert may wish to allow two hypotheses h1, h2 to
remain in the same set, even though x is relevant to {h1, h2}, for several reasons. For
example, p (x|h1, ξ) might be approximately equal to p (x|h2, ξ), or the disutilities asso-
ciated with the misdiagnosis of h1 for h2 and of h2 for h1 might be small. Alternatively,
the variable x might be conditioned by other variables, and the conditioning events under
which the expert is composing the partition might be extremely unlikely.

If we are to use similarity networks and partitions in this heuristic fashion, the quality
of the knowledge bases we produce must exhibit graceful degradation. That is, if we
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decrease the amount of effort that we expend to compose a knowledge base by a small
amount, then the diagnostic accuracy of that knowledge base must also decrease by
only a small amount. The determination of the degradation characteristics of these
representations requires both theoretical and empirical investigation.

6.2.3 Utility Assessment

The similarity-network representation might also facilitate the assessment of utilities.
For example, a decision maker can compose a similarity graph (or hypergraph) where
each node in the graph represents a decision outcome. For each edge or hyperedge in
the graph, he can then identify attributes of preference (e.g., monetary losses and gains,
pain, disability, and length of life) that discriminate the outcomes associated with that
edge or hyperedge. This simple approach would serve to remind the decision maker of
attributes that are important for his decision.

6.3 Conclusions

The computer-based transfer of knowledge through expert systems has helped many
people who are confronted with confusing, important decisions. Furthermore, normative
expert systems have the potential to deliver high-quality expertise that is free from many
of the stereotypic errors in decision making made by both nonexperts and experts.

In this book, I have made several advances toward the goal of making the construction
of normative expert systems practical. In particular, working with the Pathfinder expert,
I have developed:

• A general approach to the capture and representation of probabilistic knowledge. In
this approach, we identify assertions of conditional independence that an expert
makes implicitly about his domain, and create a representation in which that expert
can represent such assertions easily. This representation, in turn, facilitates the
construction of an accurate probabilistic model for the expert’s domain.

• Similarity networks and partitions, two examples of the general approach. In partic-
ular, the representations exploit subset independence and hypothesis-specific inde-
pendence to facilitate the construction of knowledge maps for single- and multiple-
fault diagnosis.

• SimNet, an implementation of these representations on the Macintosh computer.

• Pathfinder, a normative expert system for lymph-node pathology. The similarity-
network and partition representations made the construction of Pathfinder not only
tractable, but also cost effective.
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The similarity-network and partition representation suffer from several weaknesses:

• The assumption of strict positivity. In proving that the construction of a global
knowledge map from a similarity network is sound, I assumed that the underlying
joint probability distribution of the network was strictly positive. This assumption
is unrealistic for many domains, including Pathfinder’s. Consequently, the expert
and I had to expend additional effort to construct the global knowledge map for
Pathfinder.

• Limited experience: I have demonstrated the usefulness of the similarity-network
and partition representations for only one expert in a single domain. Whether we
can apply these representations to diagnostic tasks in many other domains remains
uncertain.3

• Limited extensibility: The representations will not be useful when there is no dis-
tinguished variable that can serve as the focus for attention during knowledge-map
construction and assessment. Thus, the representations are less likely to facilitate
knowledge acquisition for problems other than diagnosis.

Nonetheless, we can relax the assumption of strict positivity with additional theoretical
work. In addition, given the extensions to similarity networks described in this chapter,
the representation will probably make tractable the construction of a wide variety of
normative expert systems for diagnosis. Furthermore, as we discussed in Chapter 4,
most experts are likely to find the similarity-network and partition representations easy
to use.

Most important, the general approach for making knowledge acquisition practical that
I have described offers promise for problems that deviate from the model of diagnosis
we have examined in this work. For such problems, a challenge lies in making forms of
independence explicit and self-consistent, and in extending the influence-diagram repre-
sentation to facilitate the expression of such forms of independence. If we can meet this
challenge, then we will be able to construct normative expert systems for a wide variety
of real-world domains.

3As of July, 1991, one year after the completion of this work, knowledge engineers have used the
similarity-network and partition representations to construct expert systems for the diagnosis of (1)
breast, intestine, ovary, skin, soft-tissue, testis, and thymus pathology, (2) sleep disorders, (3) eye dis-
eases, (4) jet-engine failures, and (5) efficiency problems in gas turbines that generate electricity.





A Background

In this book, we examine practical methods for using probability and decision theory
to represent and manipulate knowledge within expert systems. This appendix provides
an overview of the decision-theoretic concepts and techniques with which the reader
must be familiar to understand this work. We begin with a discussion of the rules of
probability and decision theory. We then examine decision analysis, the application of
decision theory to real-world problems. Next, we consider alternative methodologies
for reasoning under uncertainty, and discuss the advantages and disadvantages of these
approaches with respect to decision theory. Finally, we examine the knowledge-map and
influence-diagram representations, which are formal languages for plausible-inference and
decision problems.

A.1 Decision Theory and Decision Analysis

Decision theory is a tool for clearly describing and reasoning about a decision. The theory
divides a decision into three fundamental components: what a decision maker can do (his
alternatives), what he knows (his beliefs), and what he wants (his preferences). Within
the theory, we use we use probabilities to describe a person’s beliefs about whether or
not various events will occur, and utilities to describe his preferences for each possible
consequence of events.

A.1.1 Uncertain Variables and Instances

A primary element of the language of probability is the uncertain variable. An uncertain
variable represents a distinction about the world—that is, a set of mutually exclusive and
exhaustive instances or events. An uncertain variable can represent a binary or simple
distinction: an instance or event, and its negation. Alternatively, an uncertain variable
can have more than two (possibly infinite) instances.

In this book, we denote uncertain variables with lower case letters, such as x, y, and z.
We consider only variables with a finite number of instances; we subscript a variable to
denote an instance or event for that variable. For example, xi denotes the ith instance
of variable x. Also, we use x+ and x− to refer to an instance or event and its negation.

A.1.2 Probability as Personal Belief

The prevalent conception of the probability of some instance xi is that it is a measure
of the frequency with which xi occurs, when we repeat many times an experiment with
possible outcomes that correspond to the instances of x. A more general notion, however,
is that the probability of xi represents the degree of belief held by a person that the event
xi will occur in a single experiment. If a person assigns a probability of 1 to xi, then he
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believes with certainty that xi will occur. If he assigns a probability of 0 to xi, then he
believes with certainty that xi will not happen. If he assigns a probability of between 0
and 1 to xi, then he is to some degree unsure about whether or not xi will occur.

The interpretation of a probability as a frequency in a series of repeat experiments
traditionally is referred to as the objective or frequentist interpretation. In contrast, the
interpretation of a probability as a degree of belief is called the subjective or Bayesian
interpretation, in honor of the Reverend Thomas Bayes, a scientist from the mid-1700s
who helped to pioneer the theory of probabilistic inference (Bayes, 1958; Hacking, 1975).

In the Bayesian interpretation, a probability or belief will always depend on the state
of knowledge of the person who provides that probability. For example, if we were to
give someone a coin, he would likely assign a probability of 1/2 to the event that the coin
would show heads on the next toss. If, however, we convinced that person that the coin
was weighted in favor of heads, he would assign a higher probability to the event. Thus,
we write the probability of xi as p (xi|ξ), which is read as the probability of xi given ξ.
The symbol ξ represents the state of knowledge or background knowledge of the person
who provides the probability. Occasionally, when there is no ambiguity, we omit explicit
mention of ξ.

Also, in this interpretation, a person can assess a probability based on information that
he assumes to be true. For example, our coin tosser can assess the probability that the
coin would show heads on the next toss, under the assumption that the same coin comes
up heads on each of ten previous tosses. We write p (x+|y+, ξ) to denote the probability
of x+ given that y+ is true, and given background knowledge ξ.

The conception of probability as a measure of personal belief is central to research
on the use of probability theory for representing and reasoning with expert knowledge
in computer-based reasoning systems. There is usually no alternative to acquiring from
experts the bulk of probabilistic information used in an expert system. Gathering a
significant portion of frequencies through empirical study would entail much time and
great expense. For example, in this book, we examine Pathfinder, an expert system for
the diagnosis of lymph-node diseases. There are over 75 thousand probabilities in this
expert system; some of these probabilities are on the order of 10−6. Furthermore, even
when statistical studies have been performed in some domain, we often cannot employ
the frequencies that these studies produce, because the specific distinctions used in an
expert system for that domain may not match those distinctions used in the studies.
Nonetheless, Bayesian probability theory provides for the gradual integration of appro-
priate statistical data into an expert system as those data become available (Howard,
1970a; Pearl, 1985; Spiegelhalter, 1986).
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A.1.3 Rules of Probability Theory

The framework of Bayesian probability theory consists of a set of rules that describes
constraints among a collection of probabilities provided by a given person. We say that
any set of beliefs that abide by these rules is coherent. There are many equivalent sets
of rules. Here, we use the following set, where x+ and y+ are arbitrary events:

0 ≤ p (x+|ξ) ≤ 1 (A.1.1)

p (x+ OR x−|ξ) = 1 (A.1.2)

p (x+|ξ) + p (x−|ξ) = 1 (A.1.3)

p (x+, y+|ξ) = p (x+|y+, ξ) p (y+|ξ) (A.1.4)

The disjunction of x+ and x− in Equation A.1.2 is an event that is always true. The
concatenation of x+ and y− in Equation A.1.4 denotes the logical conjunction of the two
events. Equations A.1.3 and A.1.4 are called the sum rule and product rule, respectively
(Tribus, 1969; Jaynes, 1985).

Let us consider several consequences of these rules that we shall use frequently. By
repeated application of the sum rule and product rule, we obtain

p (x+ OR y+|ξ) = p (x+|ξ) + p (y+|ξ)− p (x+, y+|ξ) (A.1.5)

Applying Equation A.1.5 to uncertain variable z with mutually exclusive and exhaustive
instances z1, z2, . . . , zn, we obtain the following more general version of the sum rule:
X

zi

p (zi|ξ) ≡ p (z1|ξ) + p (z2|ξ) + · · ·+ p (zn|ξ) = 1 (A.1.6)

Similarly, we have
X

zi

p (zi, wj |ξ) = p (wj |ξ) (A.1.7)

Applying the product rule to each term in the sum of Equation A.1.7, we obtain the
expansion rule for probabilities, which tells us how to expand the probability of variable
w over variable z:

p (wj |ξ) =
X

zi

p (wj |zi, ξ) p (zi|ξ) (A.1.8)
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Finally, if we divide both sides of the product rule by p (y+|ξ), we get

p (x+|y+, ξ) =
p (x+, y+|ξ)

p (y+|ξ)
(A.1.9)

Applying the product rule to p (x+, y+, ξ) in Equation A.1.9 gives us

p (x+|y+, ξ) =
p (y+|x+, ξ) p (x+|ξ)

p (y+|ξ)
(A.1.10)

which is Bayes’ theorem. We sometimes refer to p (x+|ξ) and p (x+|y+, ξ) as the prior
and posterior probability of x+, respectively.

A.1.4 Proof of the Probability Rules

Within the frequentist interpretation, we can easily defend the rules of probability. A
simple defense is not possible, however, within the Bayesian interpretation. For example,
statisticians typically refer to Equation A.1.9 (omitting the reference to ξ) as the defini-
tion of a conditional probability. In the Bayesian interpretation, however, all probabilities
are conditional. In particular, the probability p (x+|y+, ξ) reflects a person’s belief that
x+ will occur, given that he knows y+, and given his background knowledge ξ. This
person can assess p (x+|y+, ξ) directly, as he can assess the other two probabilities in
Equation A.1.9. Thus, in the Bayesian interpretation, Equation A.1.9—or the product
rule, from which we derived Equation A.1.9—is a constraint among probabilities that we
should prove. Similarly, we should prove the sum rule.

In the last 60 years, several researchers have derived the rules of probability (in one
form or another) from fundamental axioms. For example, Ramsey and deFinetti have
argued that anyone who is willing to bet in accordance with incoherent beliefs would be
willing to accept a “Dutch book:” a combination of bets leading to a guaranteed loss
under any circumstances (Ramsey, 1931; de Finetti, 1937).

The proof of the rules that I find most convincing was developed by the physicist
Richard Cox. He was able to derive the probability rules without any mention of bets or
payoffs. In particular, Cox identified a set of compelling axioms for a measure of belief.
The axioms can be stated informally:

• Clarity: Events or variables should be well-defined.

• Completeness: A person can assign a degree of belief to any well-defined event.

• Context dependency: The degree of belief that a person assigns to an event can
depend on the person’s knowledge of other events. We denote the degree of belief
in x+, given background knowledge ξ, as φ (x+|ξ).
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• Consistency: If a person knows that events x+ and y+ are logically equivalent and
that z+ and w+ are logically equivalent, then

φ (x+|z+, ξ) = φ (y+|w+, ξ)

• Complementarity: For all simple distinctions x, there exists some function f of
φ (x+|ξ) such that

φ (x+|ξ) = f [φ (x−|ξ)]

That is, we can compute the belief in the negation of an event from the belief in
the event itself.

• Hypothetical conditioning: For all events x+ and y+, there exists some function g
of φ (x+|y+, ξ) and φ (y+|ξ) such that

φ (x+, y+|ξ) = g [φ (x+|y+, ξ) , φ (y+|ξ)]

where g is nondecreasing in both of its arguments. That is, we can calculate the
belief in a conjunction of events, from the belief in one event and the belief in the
other event given that the first event is observed.

Cox showed that, given these axioms, the quantity φ (·) must be a probability. That is, he
proved that some monotonic transformation of φ (·) must satisfy Equations A.1.1 through
A.1.4. In deriving this result, Cox assumed that degrees of belief were represented by
real numbers, and that the functions f and g were twice differentiable. Later, Aczel
generalized the proof, showing that the functions f and g need only to be continuous
(Aczel, 1966). Most recently, Aleliunas examined the case where degrees of belief are
discrete. He showed that, provided we can multiply any degree of belief by itself enough
times such that the product is not less than any other degree of belief, and provided that
this measure of belief satisfies Cox’s principles, then this measure must be isomorphic to
a subalgebra of ordinary real-valued probabilities (Aleliunas, 1988).

Cox’s axioms, with the exception of complementarity and hypothetical conditioning,
require little if any justification. Tribus gives a detailed yet convincing argument for
the axiom of hypothetical conditioning (Tribus, 1969). Here, we justify the axiom of
complementarity. To many readers, it might seem obvious that, once a person provides
a degree of belief in event x+, then his degree of belief in the negation of that event is
determined, because x+ is the logical antithesis of x−. Nonetheless, several artificial-
intelligence researchers argue that, if our belief in the event x− is determined from our
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belief in the event x+, then there is no room for us to express our degree of confidence
about our belief in either event. There are, however, at least two mechanisms within
the probabilistic framework for representing degrees of confidence. In one approach,
we provide bounds on probabilities. Given a collection of probability bounds, we can
infer bounds on other probabilities by applying the rules of probability on all possible
point probabilities within those bounds. This approach was originally developed by
Good (Good, 1962), and has attracted interest recently within the artificial-intelligence
community (Nilsson, 1986). In another approach, we can equate a person’s degree of
confidence in his assessment of p (x+|ξ) with the degree to which that person’s probability
will change, when he obtains new information (de Finetti, 1977; Heckerman and Jimison,
1987; Pearl, 1987a; Pearl, 1988; Howard, 1988b). That is, if a persons holds a probability
with a high degree of confidence, then he will not change that probability significantly, no
matter what he learns about the world. In contrast, if he holds a probability with a low
degree of confidence, then he is likely to change that probability, given new information.

Despite the arguments of Cox and other researchers for the rules of probability, there
is still controversy in the artificial-intelligence field about the adequacy of probability for
representing beliefs. We return to this discussion in Section A.2.

A.1.5 The Maximum Expected Utility Principle

We can think of a decision as a choice among one or more lotteries. Given a lottery,
we receive exactly one of a set of prizes. Associated with each prize is a chance (i.e., a
probability) that we get that prize. In this section, we use decision trees to represent
lotteries. For example, Figure A.1(a) illustrates a simple lottery where we receive a 2-
week all-expenses-paid trip to Hawaii with probability 3/4, and nothing with probability
1/4. Figure A.1(b) shows a compound lottery with two stages. The number of prizes
that we associate with a lottery can be infinite; to simplify the discussion, however, we
assume that lotteries are finite.

People naturally ascribe degrees of preference to prizes. Let us represent a person’s
degree of preference for a prize by a real-valued quantity called the utility of that prize.
Using upper-case letters (such as A, B, and C) to denote prizes, we let u(A) represent
the utility of prize A, for a given decision maker.

Suppose that we have a lottery with prizes A1, A2, . . . , An, and that the probability
of receiving Ai is pi, for i = 1, 2, . . . , n.1 The expected utility of that lottery is

nX

i=1

pi u(Ai)

1In this and the following section, we deviate slightly from the notation described earlier, to simplify
the presentation.



Background 169

3/4

1/4

HAWAIIAN
VACATION

NOTHING

(a)

1/2

1/2

1/10

9/10

-$120

$100

$1000

(b)
Figure A.1: Two lotteries.

(a) A simple lottery. The lottery offers a 3/4 chance of winning a 2-week all-expenses-paid trip to Hawaii,
and a 1/4 chance of winning nothing. (b) A compound lottery. In the first round of the lottery, we face
a 1/2 probability of losing $120. If we do not lose in the first round, we get a 9/10 chance of winning
$1000 and a 1/10 chance of winning $100.

Now suppose we are offered a choice between two lotteries. If we could choose between the
same two lotteries many times, we would do best in the long run by always choosing the
lottery with the greatest expected utility. In real life, however, we seldom are faced with
a series of identical choices. So what do we do? The maximum expected utility (MEU)
principle says that we should choose the lottery (i.e., alternative) with the maximum
expected utility.

A.1.6 Proof of the Maximum Expected Utility Principle

Pascal and his associates first suggested the MEU principle over 300 years ago (Hacking,
1975). It was not until 1947, however, that vonNeumann and Morgenstern provided
the first formal argument for the principle (von Neumann and Morgenstern, 1947). In
their argument, they identified five axioms that describe how a decision maker should
choose among simple lotteries. They showed that if the person follows these axioms, then
whenever he faces a choice among more complicated lotteries, he must act as if he had
assigned a utility to each prize in the lottery, and then had selected the lottery with the
greatest expected utility. These axioms (which include the rules of probability) form the
basis of decision theory.

Let us examine a simple version of the argument presented by Howard (1970b). Von-
Neumann and Morgenstern proposed the following axioms:

• Orderability: A decision maker must be able to state his preferences among the
prizes of any lottery. That is, given any two prizes A and B, he must be able to
state whether he prefers A to B, prefers B to A, or is indifferent between A and
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B. Furthermore, his preferences must be transitive. If a decision maker prefers A
to B, we write A ¬ B; if he is indifferent between A and B, we write A ∼ B.

• Continuity: Consider the lottery shown in Figure A.2, in which a decision maker
receives prize A with probability p and prize C with probability 1−p. If the decision
maker has expressed the preferences A ¬ B ¬ C, then, for some probability p, the
decision maker must be indifferent between receiving B for certain, and receiving
the lottery. We call the lottery where the decision maker receives B with certainty
the certain equivalent of the lottery involving A and C.

• Substitutability: We can exchange a lottery with its certain equivalent without
affecting preferences. For example, suppose a decision maker is indifferent between
having B for certain and having the lottery with prizes A and C illustrated in
Figure A.2. Then he must be indifferent between the two lotteries in Figure A.3.
The only difference between these two lotteries is that prize B is substituted for
the lottery with A and C.

• Monotonicity: Let us suppose that a decision maker can choose between two lotter-
ies L1 and L2, and that both lotteries have the same prizes A and B. In addition,
let us suppose that the probability of receiving prize A is p1 for lottery L1, and is
p2 for lottery L2. If the decision maker prefers A to B, then he must prefer L1 to
L2 if and only if p1 > p2. That is, the decision maker must prefer the lottery that
offers the greater chance of receiving the better prize. This axiom is illustrated in
Figure A.4.

• Decomposability: We can reduce compound lotteries to simple ones using the rules
of probability. An example of such a reduction is shown in Figure A.5.

The axioms are compelling. For example, let us suppose that a person has the intransitive
preferences A ¬ B ¬ C ¬ A, and that he holds prize A. Because he prefers C to A,
he should be willing to exchange A for C and a small payment. Similarly, this person
should be willing to exchange C for B, and A for B. As a result, we can extract payments
from him, and yet leave him with the same prize. This imaginary device, called a money
pump, provides a strong argument for the orderability axiom. We can defend each of the
axioms with arguments like this one (Howard, 1970b).

Now let us examine the consequences of these axioms. Suppose that a decision maker
must choose between two lotteries L1 and L2, each with prizes A1, A2, . . . An. Using the
orderability axiom, we can assume that A1 ¬ A2 ¬ · · · ¬ An. Further, suppose that the
probability of receiving prize Ai, in lotteries L1 and L2, is p1

i and p2
i , respectively, for

i = 1, 2, . . . n. Some of these probabilities might be equal to 0, so that all prizes may not
be available in both lotteries.
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If A     B     C, then, for some p,

Figure A.2: The continuity axiom.
If a decision maker prefers A to B, and B to C, then for some probability p, he must be indifferent
between having B for certain, and having a lottery that rewards A with probability p and C with
probability 1− p.
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Figure A.3: An indifference implied by the substitutability axiom.
Given that a decision maker is indifferent between to two lotteries in Figure A.2, the substitutability
axioms states that the decision maker must also be indifferent between the two lotteries shown here. In
the lottery on the left of the figure, a person receives B with probability q. In the lottery on the right
of the figure, the person receives the lottery involving A and C with the same probability.
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if and only if  p > q

Figure A.4: The monotonicity axiom.
A decision maker should always prefer the lottery that offers the greater chance of winning the better
prize (A in this case).
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Figure A.5: An example of the decomposability axiom.
We apply the sum and product rules to the compound lottery on the left to obtain the simple lottery
on the right.
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A i
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Figure A.6: A consequence of the continuity axiom.
For some probability ui, a decision maker must be indifferent between getting prize Ai for certain, and
the lottery that awards A1 with probability ui and An with probability 1− ui.

Given the continuity axiom, we know that, for every prize Ai, there exists a probability
ui, such that the decision maker is indifferent between receiving prize Ai and the lot-
tery that offers the most desirable prize, A1, with probability ui, and the least desirable
prize, An, with probability 1 − ui. The equivalence is illustrated in Figure A.6. Using
the substitutability axiom, we can replace each prize Ai in lotteries L1 and L2 with its
corresponding lottery derived from the continuity axiom. The substitution for lottery
L1 appears in Figure A.7. Applying the decomposability axiom, as shown in Figure A.8,
we know that lottery L1 is equivalent to a lottery that offers prize A1 with probabilityPn

i=1 uip1
i and prize An with probability 1−

Pn
i=1 uip1

i . We can derive a similar equiv-
alence for lottery L2. Finally, given the monotonicity axiom, we know that the decision
maker must prefer L1 to L2 if and only if

nX

i=1

ui p1
i >

nX

i=1

ui p2
i (A.1.11)

This result is the MEU principle. We can identify ui as the utility of prize Ai, and the
sums in Equation A.1.11 as the expected utilities of the lotteries.
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Figure A.7: A consequence of the substitutability axiom.
The decision maker must be indifferent between the simple lottery L1 and the compound lottery where
we replace each prize Ai in L1 by a lottery of the form shown in Figure A.6.
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Figure A.8: A consequence of the decomposability axiom.
We derive this statement of indifference by applying the sum and product rules to the compound lottery
on the left.
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Figure A.9: A consequence of the monotonicity axiom.
The MEU principle follows directly from this application of the monotonicity axiom. We can identify ui
as the utility of prize Ai, and the sums as the expected utilities of the original lotteries L1 and L2.



176 Appendix A

A.1.7 Normative Versus Descriptive Decision Making

In the proof of the MEU principle, we simply reduce a choice between two (or more)
complex lotteries to a series of choices between simpler lotteries, using several desir-
able axioms. Although this approach is attractive from a theoretical perspective, many
researchers have shown that people follow neither the MEU principle nor the axioms
when they make decisions (Edwards, ed., 1956; Tversky and Kahneman, 1974; Kahne-
man et al., 1982). In fact, several researchers have demonstrated that people exhibit
stereotypical deviations or biases from the axioms (Tversky and Kahneman, 1974; Kah-
neman et al., 1982). Thus, we distinguish between normative and descriptive decision
making. That is, we distinguish between how we wish we could make decisions, and how
we actually make them, when unaided by the axioms.

This distinction is important to people who build expert systems for medicine and for
other domains where the stakes are high. Unaided physicians, whether they are non-
specialists or specialists, are not immune to errors in decision making (Elstein, 1976;
Elstein et al., 1978). Thus, from the perspective of decision theory, these physicians
are taking actions that sometimes incur great costs to their patients. Normative expert
systems—computer-based systems that deliver expert knowledge in a decision-theoretic
framework—have the potential to increase the quality of decisions made by physicians,
and thereby to improve patient outcome dramatically. Such systems probably will be
an improvement over traditional (nonnormative) expert systems, which faithfully repro-
duce the errors of experts. In addition, normative expert systems probably will allow
specialists to benefit from their own knowledge—knowledge encoded with the aid of the
axioms.

A.1.8 Decision Analysis

Decision analysis is an engineering discipline that addresses practical issues concerning
the application of decision theory to real-world decision problems. The discipline grew out
of the fields of systems science and statistical decision theory in the mid-1960s (Howard,
1966; Howard, 1968). Since that time, decision analyses have been applied with great
success to many domains, including those within the areas of government, industry, law,
and medicine (Howard and Matheson, 1983).

Decision analysis augments decision theory with a set of representations and techniques
that help a person confronted by a difficult decision. Representations include the strategy-
generation table, a device for creating new alternatives, and the influence diagram, a
graphical language that we examine in Section A.3.

Decision-analytic techniques include the clarity test, a procedure that helps a decision
maker to define events and variables clearly (Howard, 1988a). This task is important,
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because it eliminates a component of uncertainty often associated with the assessment of
beliefs and preferences. To apply the clarity test to an event, we ask ourselves whether
or not a clairvoyant—an omniscient being able to see the past, present, and future with
certainty—could tell us the outcome of that event. If the clairvoyant cannot determine
the outcome, then we must work to make the definition of that event more precise. For
example, using the clarity test, we could sharpen the definition of the event it will rain at
Stanford next Monday to obtain the definition the majority of people at the Stanford coffee
house at 9pm next Monday (who are willing to vote) will say that it rained somewhere
on the Stanford campus between sunrise and sunset that day.

Other decision-analytic techniques include methods for correcting the biases in the
probability and utility assessments of a decision maker. One such method is the almanac
game (Raiffa, 1968; Howard, 1985). Decision analysts invented this game in response to
the observation that most people believe they know more than they actually do know. In
a simple version of this game, a decision analyst uses an almanac to generate a question
whose answer is a continuous (or at least an ordered) value. For example, the decision
maker might generate the question: “What is the height of the tallest building in Iowa?”
Next, the decision maker is asked to provide two quantities LOW and HIGH, such that he
believes the true answer to the question lies below LOW with probability 1/4 and above
HIGH with the same probability. After answering a series of these questions, the decision
analyst reveals the true answers to the questions. If the decision maker has accurately
reflected his beliefs, then the true answers to the questions should lie between LOW and
HIGH about one-half of the time. Typically, however, the true answers lie in that interval
much less than one-half of the time. On observing this outcome, the decision maker can
improve his probability assessments for the next round of play. As the game continues,
the accuracy of the decision maker’s probabilities increase.

Another decision-analytic technique is sensitivity analysis. The are several types of sen-
sitivity analysis, including deterministic sensitivity analysis and several forms of stochas-
tic sensitivity analysis. In applying a deterministic sensitivity analysis to a decision
model, we sweep one or more variables in the model through their possible instances.
We then observe whether or not such actions affect the utility of the resulting outcomes.
We fix those variables that do not have a pronounced affect on utility at their nominal
values, and we continue to model the remaining variables as such.

We can apply stochastic sensitivity analysis to decisions in a similar fashion. In one
form of stochastic sensitivity analysis, we sweep one or more probabilities and utilities
in a decision model through wide ranges of value, and determine whether or not such
action affects the decision or decisions in the model. Both deterministic and stochastic
sensitivity analyses help to direct a decision maker’s attention to those components of
his decision problem that are most worthy of consideration.
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Besides representations and specific interview techniques, decision analysis provides
a philosophy that emphasizes the insights that can be gained by a decision maker who
goes through the decision-analytic process, rather than the results of MEU calculations.
For example, the decision-analytic philosophy highlights the distinction between a good
decision and a good outcome: a good decision is one that is consistent with the preferences
and complete information of a decision maker; a good outcome is desirable. Sometimes,
a good decision will, through a course of bad luck, lead to a bad outcome. Conversely, a
bad decision will, with a great deal of good luck, lead to a good outcome. Nonetheless,
the best way to achieve good outcomes in the long run, short of being all-knowing, is
to make good decisions consistently. With this realization, people faced with confusing
high-stakes decisions more easily can overcome feelings of helplessness that often paralyze
their actions.

A.2 Decision Theory Versus Other Formalisms for Decision Making

In the last two decades, several researchers have suggested that decision theory is not
adequate for the representation and manipulation of uncertain knowledge. Investiga-
tors have cited both theoretic (Shafer, 1986) and practical (Gorry, 1973; Shortliffe and
Buchanan, 1975) limitations of the theory. In response to such criticisms, researchers
have developed alternative methods for uncertain reasoning. These approaches include
the Dempster–Shafer theory of belief functions (Shafer, 1976; Shafer, 1981), fuzzy-set the-
ory (Zadeh, 1983), and the Mycin certainty–factor (CF) model (Shortliffe and Buchanan,
1975). Although the developers of each of these approaches have concentrated on the
representation of belief, they have suggested methods for decision making within their
frameworks as well (Shafer, 1982; Zadeh, 1983; Kacprzyk and Orlovski, 1987; Buchanan
and Shortliffe, 1984).

Despite such criticisms and the availability of these alternatives, I have employed the
decision-theoretic framework exclusively in the work described in this book. I believe that
decision theory is by far the most appropriate framework for encoding and reasoning with
knowledge, in expert systems and elsewhere. Because this claim is controversial, I present
my reasons for preferring decision theory, and point to other discussions of the relative
merits of each approach.

There are five major advantages of using decision theory as a framework for expert
systems. Not one of the alternative approaches shares all five of these advantages. First,
a decision-theoretic framework requires that expertise encoded in a knowledge base be
self-consistent. I have found that this consistency requirement exposes flaws in the rea-
soning of experts in much the same way that a computer-programming language exposes
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errors in human-designed algorithms. Revelations of this sort should improve the quality
of knowledge stored in an expert system, and thereby improve the performance (e.g.,
diagnostic accuracy) of the system.

Second, assumptions that experts make during the process of encoding their knowl-
edge in a decision-theoretic framework—for example, assumptions of conditional
independence—are represented with clarity. The unambiguous representation of assump-
tions allows system builders and experts to address explicitly the inevitable tradeoffs that
they encounter during the construction of an expert system, such as the tradeoff between
the completeness of a knowledge base and the time and effort dedicated to knowledge-
base construction. In addition, such clarity can simplify the evaluation and modification
of an expert system. For example, if we find that a system’s performance is poor, we
first can examine and modify those assumptions that we believe to be least reasonable.
Finally, the explicit representation of assumptions allows researchers to build on the work
of other investigators.

Third, decision theory is general. That is, any aspect of rational thought related to
decision making can be captured by decision theory. For example, despite claims to the
contrary, we can express the degree of confidence a person has in a probability within
a probabilistic framework (see Section A.1.4). Also, we can incorporate the results of
statistical studies directly into a decision-theoretic model (Howard, 1970a; Pearl, 1985;
Spiegelhalter, 1986).

Fourth, decision theory—especially probability theory—is well developed. That is, the
theory has existed for several centuries. As a result of its maturity, probability theory is
familiar to most researchers who have studied the representation of beliefs. Consequently,
investigators can share work easily: researchers can build on the work of other people,
and can avoid previous mistakes.

Fifth, and most important, decision theory is normative. That is, the axioms of decision
theory are compelling, and psychologists have characterized people’s deviations from
these axioms, in detail. As a consequence of this characterization, decision analysts have
developed techniques that help people to avoid mistakes in reasoning (see Section A.1.8).

The Dempster–Shafer theory of belief is neither general (it lacks a formal theory for
decision making) nor well developed. In addition, many of the assumptions associated
with the use of the theory are unclear (Pearl, 1990). Finally, with rare exceptions, most
researchers do not believe that the theory is normative. That is, most investigators do
not believe that people should act in accordance with the Dempster–Shafer theory. (For
the two sides of this debate, see Lindley, 1982, and Shafer, 1986).

The most significant weakness of fuzzy-set theory is the ambiguity of the assumptions
associated with the theory. In particular, the developers of the theory have not defined
clearly the meanings of the quantities that represent degrees of belief and preference
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(Cheeseman, 1985). Furthermore, the theory is neither well developed nor normative
(Cheeseman, 1985).

The CF model exhibits none of the advantages of decision theory that we have exam-
ined. For example, I have shown that the model allows—and sometimes encourages—
the representation of inconsistent knowledge (Heckerman, 1985). In addition, the model
makes strong assumptions of conditional independence that are not apparent to the user
(Heckerman, 1985).

A.3 Knowledge Maps and Influence Diagrams

One important advantage of the CF model and other ad hoc approaches is that these
techniques are tractable. The main purpose of this book, however, is to demonstrate
that we can make decision-theoretic methods tractable as well. The representations that
we discuss in this section are a first step toward this goal.

A.3.1 Knowledge Maps

A knowledge map is a graphical knowledge-representation language that encodes proba-
bilistic dependencies among distinctions (Howard, 1989a). The representation rigorously
describes probabilistic relationships, yet has a human-oriented qualitative structure that
facilitates communication between the expert and the probabilistic model. In addition,
the representation can represent any probabilistic-inference problem. Several researchers
have developed and studied knowledge maps, although they have used various names for
this representation such as causal nets (Good, 1961a; Good, 1961b), probabilistic cause–
effect models (Rousseau, 1968), Bayesian belief networks and causal networks (Pearl,
1982; Pearl, 1988; Verma and Pearl, 1988; Geiger and Pearl, 1988; Lauritzen and Spiegel-
halter, 1988), and probabilistic causal networks (Cooper, 1984). An influence diagram is
an extension of the knowledge-map representation that can represent any decision prob-
lem (Howard and Matheson, 1981). In particular, an influence diagram can serve as a
knowledge base for an expert system.

Let us first consider the knowledge-map representation, using a simple example taken
from Kim and Pearl (1983):

Mr. Holmes receives a telephone call from his neighbor, who notifies him that
he has heard a burglar alarm sound from the direction of his home. As he
is preparing to rush home, Mr. Holmes recalls that the previous sounding of
his alarm was triggered by an earthquake. A moment later, he hears a radio
newscast reporting an earthquake 200 miles from his house.
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Figure A.10 shows a knowledge map for Mr. Holmes’ situation. The knowledge map
is a directed acyclic graph,2 whose nodes represent the uncertain variables relevant to
the problem, and whose arcs represent potential probabilistic dependencies among those
variables. In the remainder of this discussion, we make no distinction between the variable
x and the node x that represents that variable.

In a knowledge map, an arc from node x to node y reflects an assertion by the builder
of that network that the probability distribution for y may depend on the instance of
the variable x. We say that x conditions y. In the knowledge map for Mr. Holmes’
situation, all variables are binary or simple distinctions. Thus—for example—the arc
from ALARM to PHONE CALL in Figure A.10 represents Mr. Holmes’ assertion that
the probability of receiving the telephone call may depend on whether or not there
was an alarm. Conversely, the lack of arcs in a knowledge map reflect assertions of
conditional independence. For example, there is no arc from BURGLARY to PHONE CALL

in Figure A.10. The lack of this arc encodes Mr. Holmes’ belief that the probability of
receiving the telephone call from his neighbor does not depend on whether or not there
was a burglary, provided Mr. Holmes knows whether or not the alarm sounded.

In Chapter 3, we examine the formal relationship between conditional-independence
assertions and the topology of a knowledge map. Here, it is important to recognize that,
using knowledge maps, experts can control the assertions of conditional independence
that are encoded in normative expert systems. Such control was not available to experts
who constructed probabilistic expert systems in the 1960s (see Chapter 1).

Each node in a knowledge map is associated with a set of probability distributions.
These distributions appear below the knowledge map in Figure A.10. In particular, a
node has a probability distribution for every instance of its conditioning nodes. (An
instance of a set of nodes is an assignment of an instance to each node in that set.)
For example, in Figure A.10, ALARM is conditioned by both EARTHQUAKE and BUR-

GLARY. Therefore, there are four probability distributions for ALARM, corresponding
to the instances where both EARTHQUAKE and BURGLARY occur, BURGLARY occurs
alone, EARTHQUAKE occurs alone, and neither EARTHQUAKE nor BURGLARY occurs. In
contrast, RADIO NEWSCAST and PHONE CALL are each conditioned by only one node.
Thus, there are two probability distributions for RADIO NEWSCAST and two probability
distributions for PHONE CALL. Finally, EARTHQUAKE and BURGLARY do not have any
conditioning nodes, and hence each node has only one—marginal—probability distribu-
tion.

2A directed acyclic graph contains no directed cycles. That is, in a directed acyclic graph, we cannot
travel from a node and return to that same node along a nontrivial directed path.



182 Appendix A

Radio
Newscast

ca

b

e

n

ALARM

RADIO
NEWSCAST

PHONE
CALL

BURGLARY

EARTHQUAKE

p(b   | ξ ) =  0.003+

p(e   | ξ ) =  0.001+

p(c   | a   , ξ )  =  0.05+ -
p(c   | a   , ξ )  =  0.3+ +

p(n   | e   , ξ ) =  0.00002+ -
p(n   | e   , ξ ) =  0.2+ +

p(a   | b   , e   , ξ ) =  0.0003+ - -
p(a   | b   , e   , ξ ) =  0.6+ + -
p(a   | b   , e   , ξ ) =  0.5+ - +
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Figure A.10: A knowledge map for Mr. Holmes’ situation.
The nodes in the knowledge map represent the uncertain variables relevant to Mr. Holmes’ situation.
The node PHONE CALL represents the event (and its negation) that Mr. Holmes received a telephone
call from his neighbor reporting the alarm sound. The node ALARM and BURGLARY encode the events
that the alarm sounded and that the burglary occurred, respectively. The node RADIO NEWSCAST
corresponds to the event that Mr. Holmes heard a radio newscast reporting an earthquake, whereas
the node EARTHQUAKE corresponds to the event that the earthquake itself occurred. The lack of
arcs between nodes represent assertions of conditional independence. Each node in the knowledge map
is associated with a set of probability distributions. These distributions appear below the graph. The
variables in the probabilistic expressions correspond to the nodes that they label in the knowledge map.
For example, p (b+|ξ) denotes the probability that a burglary has occurred. The figure does not display
the probabilities that the events failed to occur. We can compute these probabilities by subtracting the
probabilities shown from 1.0.
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The probability distributions associated with each node are shown below the knowledge
map in Figure A.10. For example, the probability that PHONE CALL occurs, given that
ALARM occurs, and given Mr. Holmes’ background knowledge ξ—denoted p (c+|a+, ξ)—
is 0.3. Some texts refer to the combination of the graph and the probability distributions
associated with the nodes in the graph as a knowledge map. In this work, however, we
use the term knowledge map to refer to only the graph.

The joint probability distribution for a set of variables is the collection of probabilities
for each instance of that set. A knowledge map determines a unique joint distribution over
its variables. In particular, we can construct the joint distribution from the probability
distributions associated with each node in the knowledge map, and from the assertions
of conditional independence reflected by the lack of arcs in the knowledge map.

Let us again consider Mr. Holmes’ situation. From repeated application of the product
rule, we know that the probability that e+, b+, a+, n+, and c+ will occur is given by

p (e+, b+, a+, n+, c+|ξ) = p (e+|ξ) · (A.3.12)
p (b+|e+, ξ) ·
p (a+|e+, b+, ξ) ·
p (n+|e+, b+, a+, ξ) ·
p (c+|e+, b+, a+, n+, ξ)

We obtain a similar equality for each instance of the five variables. In this book, we
represent the collection of these equalities by omitting the subscripts on the variables.
Thus, we write

p (e, b, a, n, c|ξ) = p (e|ξ) p (b|e, ξ) p (a|e, b, ξ) p (n|e, b, a, ξ) p (c|e, b, a, n, ξ) (A.3.13)

The lack of an arc between EARTHQUAKE to BURGLARY implies that these two nodes
are independent. Formally, we have

p (b|e, ξ) = p (b|ξ) (A.3.14)

From the lack of other arcs in the knowledge map (see Chapter 3), we obtain

p (n|e, b, a, ξ) = p (n|e, ξ) (A.3.15)

p (c|e, b, a, , ξ) = p (c|a, ξ) (A.3.16)

Combining Equations A.3.13 through A.3.16, we have

p (e, b, a, n, c|ξ) = p (e|ξ) p (b|ξ) p (a|e, b, ξ) p (n|e, ξ) p (c|a, ξ) (A.3.17)

The probability distributions on the right-hand side of Equation A.3.17 are exactly those
distributions associated with the nodes in the knowledge map.
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A.3.2 Knowledge Maps and Probabilistic Inference

Probabilistic inference is the computation—via the rules of probability—of one set of
probabilities from another set. Given a joint probability distribution over a set of vari-
ables, we can compute any conditional probability that involves those variables. For
example, Mr. Holmes undoubtedly wants to determine the probability of BURGLARY

given RADIO NEWSCAST and PHONE CALL. Applying the product rule and a generaliza-
tion of the sum rule to the joint probability distribution for Mr. Holmes’ situation, we
obtain

p (b+|n+, c+, ξ) =
p (b+, n+, c+|ξ)

p (n+, c+|ξ)

=
P

ei,ak
p (ei, b+, ak, n+, c+|ξ)P

ei,bj ,ak
p (ei, bj , ak, n+, c+|ξ)

where ei, bj , and ak denote arbitrary instances of the variables e, b, and a, respectively.
In the previous section, we saw that we can construct a joint distribution for a set of

variables from the knowledge map for those variables. Thus, given a knowledge map for
some domain, we can perform any probabilistic inference for that domain by constructing
the joint distribution from the knowledge map, and by applying the rules of probability
directly to this joint distribution.

We can also perform probabilistic inference directly within a knowledge map. In one
such algorithm—developed by Howard, Matheson, Olmsted, and Shachter—we reverse
arcs in the knowledge map (Howard and Matheson, 1981; Olmsted, 1983; Shachter, 1988).
For example, let us consider the portion of the knowledge map for Mr. Holmes’ situa-
tion shown in Figure A.11(a). The knowledge map contains a marginal distribution for
EARTHQUAKE, and conditional distributions for RADIO NEWSCAST given EARTHQUAKE.
We can transform this knowledge map into the one shown in Figure A.11(b) by reversing
the arc between the two nodes. To transform the knowledge map, we use Bayes’ theorem
and the expansion rule. In particular, we obtain

p (e+|n+, ξ) =
p (n+|e+, ξ) p (e+|ξ)

p (n+|ξ)

=
p (n+|e+, ξ) p (e+|ξ)

p (n+|e+, ξ) p (e+|ξ) + p (n+|e−, ξ) p (e−|ξ)
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Figure A.11: Probabilistic inference as arc reversal in a knowledge map.
(a) The arc between EARTHQUAKE and RADIO NEWSCAST is oriented as it is oriented in Fig-
ure A.10. (b) Using Bayes’ theorem, we can reverse the arc so that it points from RADIO NEWSCAST
to EARTHQUAKE. The probability distributions for the transformed knowledge map appear below the
graph.

=
(0.2) (0.001)

(0.2) (0.001) + (0.00002) (0.999)
= 0.91

In general, an arc reversal corresponds to an application of Bayes’ theorem. Shachter has
shown that we can perform any probabilistic inference in a knowledge map with a series
of arc reversals (Shachter, 1988). More important, he has shown that the arc-reversal
transformation can exploit assertions of conditional independence that are encoded in a
knowledge map.

Investigators have created other inference algorithms that exploit assertions of condi-
tional independence in a knowledge map. In these algorithms, the topology of the directed
graph remains fixed. For example, Pearl has developed a message-passing scheme that
updates the probability distributions for each node in a knowledge map in response to
observations of one or more variables (Pearl, 1986). Lauritzen and Spiegelhalter have
created an algorithm that first builds an undirected graph from the knowledge map
(Lauritzen and Spiegelhalter, 1988). The algorithm then exploits several mathematical
properties of undirected graphs to perform probabilistic inference. Most recently, Cooper
has developed an inference algorithm that recursively bisects a knowledge map, solves the
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inference subproblems, and reassembles the component solutions into a global solution
(Cooper, 1990a).

Although we can exploit assertions of conditional independence in a knowledge map
for probabilistic inference, such inference in an arbitrary knowledge map is an NP-hard
task (Cooper, 1990b). Researchers are developing several techniques to circumvent this
difficulty. For example, investigators are developing techniques for optimizing inference
algorithms for a specific knowledge maps and for specific inference problems within a
given knowledge map (Ramamurthi and Agogino, 1988; Shachter et al., 1990; Jensen
and Andersen, 1990). In addition, researchers are creating hybrid algorithms that
are custom-tailored to particular graph topologies (Heckerman, 1989; Suermondt and
Cooper, 1991),3 and are developing approximate algorithms that are based on stochastic-
simulation techniques (Henrion, 1986; Pearl, 1987b; Shachter and Peot, 1989; Chavez and
Cooper, 1990).

A.3.3 Knowledge Maps for Knowledge Acquisition

A knowledge map simplifies knowledge acquisition—the capture and representation of
knowledge—by exploiting a fundamental observation about the ability of people to assess
probabilities. Namely, a knowledge map takes advantage of the fact that people can make
assertions of conditional independence much more easily than they can assess numerical
probabilities (Howard and Matheson, 1981; Pearl, 1986). In using a knowledge map, a
person first builds the graph that reflects his assertions of conditional independence, and
only then does he assess the probabilities underlying the graph. Thus, a knowledge map
helps a person to decompose the construction of a joint probability distribution into the
construction of a set of smaller probability distributions. In the main body of this work,
we examine extensions to the knowledge-map representation that also profit from this
observation about probability assessment.

Knowledge maps also facilitate the modification of probabilistic knowledge. This ob-
servation has important implications with respect to the construction of expert systems
that must manage uncertainty. In the 1970s, researchers lauded the production-rule ar-
chitecture for expert systems, because knowledge bases represented by this architecture
were easy to modify. In particular, researchers cited the modularity of rules; they noted
that rules could be added, deleted, or modified without the meaning of other rules in a
knowledge base being affected. The production-rule architecture, however, was inspired
by the properties of logical facts. In 1986, Horvitz and I showed that rules in a production
system are not modular when they represent knowledge that is uncertain. In particu-
lar, we demonstrated that the addition, deletion, or modification of such rules within a

3See also Section 4.5.



Background 187

knowledge base might necessitate the modification of all other rules in that knowledge
base. We went on to establish that assertions of conditional independence represent a
weaker form of modularity more appropriate to knowledge that is uncertain. Finally, we
showed that knowledge maps, because they faithfully represent assertions of conditional
independence, greatly simplify the process of modifying a probabilistic knowledge base
(Heckerman and Horvitz, 1986; Heckerman and Horvitz, 1987).

The example in Figure A.11 illustrates another feature of knowledge maps for knowl-
edge acquisition. Namely, a knowledge provider can often choose the order in which he
prefers to assess probability distributions. If Mr. Holmes wanted to specify the probabil-
ity of EARTHQUAKE given RADIO NEWSCAST, he simply would create the knowledge map
in Figure A.10, drawing instead an arc from RADIO NEWSCAST to EARTHQUAKE. Re-
gardless of the direction in which Mr. Holmes assesses the conditional distributions, we
can reverse arcs in the knowledge map to reveal the conditional probabilities of interest,
if the need arises.

A.3.4 Influence Diagrams

The influence diagram, an extension of the knowledge-map representation, represents the
alternatives and preferences of a decision maker in addition to his beliefs. Let us consider
the following embellishment to Mr. Holmes’ situation, taken from Breese (1990):

Mr. Holmes believes that, in the event of a burglary, he is more likely to
recover his stolen goods if he reports the crime immediately. Therefore, if in
fact a burglary has occurred, it is important that he return home as soon as
possible. On the other hand, if he rushes home, he will miss an important
sales meeting that could result in his earning a substantial commission.

The influence diagram for Mr. Holmes’ decision is illustrated in Figure A.12. The oval
nodes in the diagram are called chance nodes. Chance nodes are the type of nodes that we
find in a knowledge map; they represent uncertain variables. The square node GO HOME?

is called a decision node. This node represents Mr. Holmes’ two mutually exclusive and
exhaustive alternatives: go home (immediately), or remain at work. The rounded-square
node UTILITY is a special type of chance node that represents Mr. Holmes’ preferences
regarding the possible outcomes of his decision. In general, an influence diagram can
contain many decision nodes, but only one preference node.

The node ATTENDANCE AT MEETING in Figure A.12 is a special kind of chance node
called a deterministic node. This node is distinguished from other chance nodes by its
double-oval border. In general, the instance that we observe for a deterministic node
x is determined with certainty, given any instance of the nodes that condition x. The
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deterministic node in Figure A.12 reflects the fact that Mr. Holmes will attend the
meeting if and only if he does not go home.

An influence diagram contains two types of arcs. Solid arcs are called conditioning
arcs, and represent probabilistic dependence. For example, in Figure A.12, the arc from
GO HOME? to CRIME REPORT represents Mr. Holmes’ assertion that the probability of
reporting the crime quickly depends on his decision to go home. In general, if an arc
points to a chance node, then it must be a conditioning arc. In contrast, arcs that point to
decision nodes are informational arcs. These arcs appear as dashed lines in Figure A.12.
An informational arc from a chance or decision node x to a decision node y indicates
that the decision maker knows x at the time decision y is made. The informational arcs
in Figure A.12, for example, encode the fact that Mr. Holmes has received the telephone
call, and has heard the radio newscast, at the time he must decide whether or not to go
home.

We can represent any decision or series of decisions in an influence diagram that we
can represent in a decision tree, provided the conditioning and informational arcs (1)
form no directed cycles, and (2) reflect a complete ordering of the decisions over time.
(Shachter, 1990, discusses the significance of these conditions.) An important advantage
of the influence-diagram representation, however, is that we can represent assertions of
conditional independence, and thereby make knowledge encoding and manipulation more
tractable.

A.3.5 Computations in Influence Diagrams

There are several computations that we perform commonly in an influence diagram. In
this section, we examine two such computations that are relevant to the main body
of this work. First, we can solve the influence diagram. That is, we can determine
the alternative or alternatives in the diagram that maximize the expected utility of
the decision maker, and, in the process, determine the expected utility of the decision
maker. Several approaches exist for solving an influence diagram. In one approach, we
convert the influence diagram to a decision tree, and then solve the tree (Howard and
Matheson, 1981; Shachter, 1990). In another approach, we apply probabilistic-inference
and expectation computations to the influence diagram directly (Shachter, 1986). Also,
we can use any knowledge-map algorithm for probabilistic inference to solve an influence
diagram (Cooper, 1988).

Second, we can compute the value of clairvoyance or value of perfect information for a
variable. In general, the value of clairvoyance for x is the largest amount (e.g., in dollars)
that the decision maker would be willing to pay to observe x with certainty. For example,
let us return to Mr. Holmes’ situation.
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Figure A.12: An influence diagram for Mr. Holmes’ decision.
The oval nodes, called chance nodes, represent the uncertain variables for Mr. Holmes’ decision. Some
of these nodes appear in Figure A.10. The node CRIME REPORT represents the various times at
which Mr. Holmes might report the crime. The node RECOVERED GOODS represents the event (and
its negation) that Mr. Holmes will recover his stolen property. ATTENDANCE AT MEETING and
SALES COMMISSION correspond to the events that Mr. Holmes attends the meeting and obtains a
sales commission, respectively. The node GO HOME?, called a decision node, represents Mr. Holmes’
mutually exclusive and exhaustive alternatives: go home, or remain at work. The node UTILITY is
a special type of chance node that encodes Mr. Holmes’ preferences for the possible outcomes of his
decision. The double-oval node ATTENDANCE AT MEETING is another special type of chance node
called a deterministic node; the outcome of ATTENDANCE AT MEETING is a deterministic function
of GO HOME?. The solid arcs are conditional arcs. These arcs represent probabilistic dependence, just
as they do in a knowledge map. The dashed arcs are informational arcs. These arcs indicate what Mr.
Holmes knows at the time that he must make his decision.
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Mr. Holmes remembers that his other next door neighbor, Mr. Watson, works
as a security guard at night. He knows that Mr. Watson is always home at
this time of day, and he imagines that, for suitable compensation, Mr. Watson
would visit the house and determine whether it has been burglarized. Mr.
Holmes need only to call Mr. Watson and wait for a return call.

The highest compensation that Mr. Holmes should offer Mr. Watson to check his house
is the value of clairvoyance on the variable BURGLARY.

Using Mr. Holmes’ influence diagram, we easily can approximate the value of clairvoy-
ance for BURGLARY. First, we solve the influence diagram in Figure A.12 to determine
Mr. Holmes’ expected utility (u1) if he does not call Mr. Watson. Then, we add an
informational arc from BURGLARY to GO HOME? to indicate that Mr. Holmes’ knows
with certainty whether or not a burglary occurred. We solve this new diagram to de-
termine Mr. Holmes’ expected utility (u2) if he does call Mr. Watson. Next, we invert
Mr. Holmes’ mapping from value to utility to determine the certain equivalents c1 and
c2 from u1 and u2, respectively. Finally, we approximate the value of clairvoyance for
BURGLARY by the difference between the two certain equivalents (c2 − c1).

In general, we can approximate the value of clairvoyance for node x in an influence
diagram with a single decision node by subtracting the certain equivalent of the current
diagram from the certain equivalent of a modified diagram, in which we add an arc from
x to the decision node. If there is more than one decision node in the influence diagram,
we add the arc from x to the decision node that represents the point in time at which
the decision maker is considering how much to pay for the observation of x.

The influence-diagram computation of value of clairvoyance is exact, provided the
decision maker’s utilities satisfy the delta property. In terms of lotteries and prizes, the
delta property states that an increase in value of all prizes in a lottery by an amount
4 increases the certain equivalent of that lottery by 4. The property is illustrated in
Figure A.13. Howard discusses the computation of value of clairvoyance when the delta
property does not hold (Howard, 1985, page 27).
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Figure A.13: The delta property.
The delta property holds if and only if an increase of all prizes in a lottery by an amount 4 increases
the certain equivalent of that lottery by 4.





B Proof of Theorems and Notation

B.1 Proof of Theorem 2.1

As in Chapter 2, let h denote a variable with mutually exclusive and exhaustive instances
or hypotheses h1, h2, . . . hn, and let h⊆ denote a subset of these hypotheses. Recall that,
when used in the conditioning part of a probability, h⊆ denotes the disjunction of its
elements.

Theorem 2.1 The variable x is not relevant to the set of hypotheses h⊆, given a state
of knowledge ξ, if and only if

p(x|hi, ξ) = p(x|hj , ξ) (B.1.1)

for all pairs hi, hj ∈ h⊆.

Proof: From Bayes’ theorem, we know that

p (x|hi, h⊆, ξ) =
p (hi|x, h⊆, ξ)
p (hi|h⊆, ξ)

p (x|h⊆, ξ)

for all hi. It follows from Definition 2.1 that x is not relevant to the set h⊆ if and only if

p (x|hi, h⊆, ξ) = p (x|h⊆, ξ)

for all hi ∈ h⊆. Furthermore, because hi logically implies the disjunction of the elements
in h⊆, x is not relevant to h⊆ if and only if

p (x|hi, ξ) = p (x|h⊆, ξ) (B.1.2)

for all hi ∈ h⊆. Consequently, if x is not relevant to h⊆, Equation B.1.2 applies to any
pair of hypotheses hi, hj ∈ h⊆, and Equation B.1.1 follows. Conversely, if Equation B.1.1
holds for every pair of hypotheses in h⊆, it follows from the product and addition rules
for probabilities that

p (x|h⊆, ξ) =
p (x, h⊆|ξ)
p (h⊆|ξ)

=

P
hj

p (x|hj , ξ) p (hj |ξ)
P

hj
p (hj |ξ)
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=
p (x|hi, ξ)

P
hj

p (hj |ξ)
P

hj
p (hj |ξ)

= p (x|hi, ξ)

for all hi ∈ h⊆, which implies Equation B.1.2. Hence, x is not relevant to the set h⊆. ✷
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B.2 Proof of Theorem 3.7(a)

Theorem 3.7(a) The construction of a comprehensive similarity network from a hypothesis-
specific similarity network is sound for strictly-positive distributions. The construction
remains sound when both networks are minimal.

Proof: The proof for nonminimal networks is a special case of the proof for minimal
networks. Here, we prove the more general result.

Let HS be the given hypothesis-specific similarity network, let C be the comprehensive
similarity network constructed from HS, and let Gc be the c-global map constructed from
C. Suppose we have assigned a strictly-positive joint distribution to the variables in HS
that satisfy the assertions of conditional independence and dependence implied by the
network, making HS consistent. (If no such distribution exists, then the constraints
of HS imply trivially the constraints of C.) Let ≤E be some expansion order that is
consistent with Gc. We show that, for all nondistinguished variables y and all c-local
maps hi–hj in C,

p
°
y|Cij(y), {hi, hj}, ξ

¢
= p (y| ≤E(y), {hi, hj}, ξ) (B.2.3)

for all instances of Cij(y). Furthermore, we show that, for all x ∈ Cij(y),

p
°
y|Cij(y)\x, {hi, hj}, ξ

¢
6= p

°
y|Cij(y), {hi, hj}, ξ

¢
(B.2.4)

for some instance of Cij(y). By Theorems 3.3 and 3.5, it follows that the joint distribution
satisfies the assertions of conditional independence and dependence implied by C, and
the theorem follows.

First, observe that ≤E must be consistent with every hs map, provided we omit h from
the ordering. Thus, we know that

≤E(y)\h ⊆ S̄i(y) (B.2.5)

for every hs map bhi.
Now, for node y in c-local map hi–hj , consider the following two cases.

i. h6∈Cij(y). Because there is no arc from h to y, it follows from the definition of
construction HS →̀C that

Ci(y) = Cj(y) ≡ Ci/j(y)

Also, from the definition of the construction, we know that
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Ci(y) = Cj(y) = Cij(y)

Since the joint distribution satisfies the constraints implied by the hs maps bhi and
bhj , it follows from Equation B.2.5 and Theorem 3.1 that

p
°
y|Cij(y), hi, ξ

¢
= p (y| ≤E(y)\h, hi, ξ) (B.2.6)

p
°
y|Cij(y), hj , ξ

¢
= p (y| ≤E(y)\h, hj , ξ) (B.2.7)

Also, from the relevance set Rij , we have the assertion

p
°
y|Cij(y), hi, ξ

¢
= p

°
y|Cij(y), hj , ξ

¢
(B.2.8)

From equations B.2.6, B.2.7, and B.2.8 it follows that

p
°
y|Cij(y), {hi, hj}, ξ

¢
= p (y| ≤E(y)\h, h, {hi, hj}, ξ) (B.2.9)

which is equivalent to Equation B.2.3.

Because the joint distribution satisfies the constraints of bhi and bhj , we also know
that

p
°
y|Cij(y)\x, xr, hi, ξ

¢
6= p

°
y|Cij(y)\x, xs, hi, ξ

¢
(B.2.10)

p
°
y|Cij(y)\x, xr, hj , ξ

¢
6= p

°
y|Cij(y)\x, xs, hj , ξ

¢
(B.2.11)

for some instance of Cij(y)\x and for some instances of x, xr 6= xs. Given Equa-
tion B.2.8, however, the two terms on the left-hand sides of Equations B.2.10 and
B.2.11 must be equal. Similarly, the two terms on the right-hand side of the equa-
tions are equal. Consequently,

p
°
y|Cij(y)\x, xr, {hi, hj}, ξ

¢
6= p

°
y|Cij(y)\x, xs, {hi, hj}, ξ

¢
(B.2.12)

which is equivalent to Equation B.2.4.

ii. h ∈ Cij(y). By construction, we have

Cij(y) = Ci(y) ∪ Cj(y) ∪ h
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Thus, given Equation B.2.5 and Theorem 3.1, we obtain

p
°
y|Cij(y)\h, hi, ξ

¢
= p (y| ≤E(y)\h, hi, ξ) (B.2.13)

p
°
y|Cij(y)\h, hj , ξ

¢
= p (y| ≤E(y)\h, hj , ξ) (B.2.14)

Together, Equations B.2.13 and B.2.14 imply Equation B.2.3.

To derive Equation B.2.4, consider the cases x = h and x 6= h separately.

1. x = h. If Ci(y) = Cj(y) = Cij(y)\h, then, by construction, the relevance set
Rij must contain the assertion

p
°
y|Cij(y)\h, hi, ξ

¢
6= p

°
y|Cij(y)\h, hj , ξ

¢
(B.2.15)

Equation B.2.15 implies

p
°
y|Cij(y), {hi, hj}, ξ

¢
6= p

°
y|Cij(y)\h, {hi, hj}, ξ

¢
(B.2.16)

which is equivalent Equation B.2.4.
If Ci(y) 6= Cj(y), choose node z such that z ∈ Ci(y) and z 6∈Cj(y). From
Theorem 3.5, we obtain

p
°
y|Cij(y)\{z, h}, zr, hi, ξ

¢
6= p

°
y|Cij(y)\{z, h}, zs, hi, ξ

¢
(B.2.17)

for some instance of Cij(y) \ {z, h} and for some instances of z, zr 6= zs.
However, since z 6∈Cj(y), we know from Theorem 3.1 that

p
°
y|Cij(y)\{z, h}, zr, hj , ξ

¢
= p

°
y|Cij(y)\{z, h}, zs, hj , ξ

¢
(B.2.18)

for all instances of Cij(y)\{z, h}. Thus, either the two terms on the left-
hand sides of Equations B.2.17 and B.2.18 are not equal, or the two terms
on the right-hand sides of the equations are not equal. In either case, we get
Equation B.2.4. This observation proves that if Ci(y) 6= Cj(y), then y must
be relevant to {hi, hj}, given some instance of Ci(y)∪Cj(y). Thus, we do not
include assertions of subset independence and dependence in a relevance set
Rij , when Ci(y) 6= Cj(y).

2. x 6= h. By construction, we know that x ∈ Ci(y) or x ∈ Cj(y). If x ∈ Ci(y),
Theorem 3.5 implies

p
°
y|Cij(y)\{x, h}, hi, ξ

¢
6= p

°
y|Cij(y)\h, hi, ξ

¢

for some instance of Cij(y)\h, which is equivalent to Equation B.2.4. Similarly,
we obtain Equation B.2.4 when x ∈ Cj(y). ✷
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Note that the assumption of strict positivity was used in the proof only to show that
the assertions of conditional dependence are preserved by the construction. Thus, for
nonminimal networks, the construction of the c-local maps from the hs maps is sound
for all distributions.
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B.3 Proof of Theorem 3.7(b)

Theorem 3.7(b) The construction of an c-global map from a comprehensive similarity
network is sound for strictly-positive distributions. The construction remains sound when
both representations are minimal.

Proof: Let C be the given comprehensive similarity network, and let Gc be the c-global
map constructed from C. Suppose we have assigned a strictly-positive joint distribution to
the variables in C that satisfies the constraints of the c-local maps. (If no such distribution
exists, then the constraints of C imply trivially the constraints of Gc.) To prove the result,
we must show that, for all nondistinguished variables y,

p
°
y|CGc(y), ξ

¢
= p

°
y|S̄Gc(y), ξ

¢
(B.3.19)

for all instances of CGc(y). If the given network is minimal, we must also show that for
every x ∈ Cij(y),

p
°
y|CGc(y)\x, ξ

¢
6= p

°
y|CGc(y), ξ

¢
(B.3.20)

for some instance of CGc(y). We need to consider only nondistinguished variables, because
h has no nonsuccessors in the c-global map. (If there is a node completely disconnected
from h in the c-global map, it is irrelevant to the diagnosis of h, and it can be omitted
from consideration.)

To begin, observe that, for each c-local map hi–hj ,

Cij(y) ⊆ CGc(y) and S̄Gc(y) ⊆ S̄ij(y) (B.3.21)

by construction. Thus, because the joint distribution satisfies the constraints of each
c-local map, it follows from Theorem 3.1 that

p
°
y|CGc(y), {hi, hj}, ξ

¢
= p

°
y|S̄Gc(y), {hi, hj}, ξ

¢
(B.3.22)

for every pair of hypotheses hi and hj that is directly connected in the similarity graph.
To see that this fact implies Equation B.3.19, consider the following two cases.

i. h ∈ CGc(y). In this case, Equation B.3.22 becomes

p
°
y|CGc(y)\h, h, {hi, hj}, ξ

¢
= p

°
y|S̄Gc(y)\h, h, {hi, hj}, ξ

¢
(B.3.23)

Since hi or hj alone logically implies the disjunction of hi and hj , we can rewrite
Equation B.3.23 to be



200 Appendix B

p
°
y|CGc(y)\h, h, ξ

¢
= p

°
y|S̄Gc(y)\h, h, ξ

¢
, h = hi, hj (B.3.24)

Because the similarity graph is connected, there is a c-local map associated with
every hypothesis, and hence

p
°
y|CGc(y)\h, hi, ξ

¢
= p

°
y|S̄Gc(y)\h, hi, ξ

¢
, ∀ hi (B.3.25)

which is equivalent to Equation B.3.19.

ii. h6∈CGc(y). From Equation B.3.22, we get

p
°
y|CGc(y), {hi, hj}, ξ

¢
= p

°
y|S̄Gc(y)\h, h, {hi, hj}, ξ

¢
(B.3.26)

However, because there is no arc from h to y, it follows from Theorem 3.1 that

p
°
y|CGc(y), h, {hi, hj}, ξ

¢
= p

°
y|CGc(y), {hi, hj}, ξ

¢
(B.3.27)

Consequently, we can rewrite Equation B.3.26 to obtain

p
°
y|CGc(y), h, {hi, hj}, ξ

¢
= p

°
y|S̄Gc(y)\h, h, {hi, hj}, ξ

¢
(B.3.28)

Furthermore, since hi or hj alone logically implies the disjunction of hi and hj ,
Equation B.3.28 becomes

p
°
y|CGc(y), h, ξ

¢
= p

°
y|S̄Gc(y)\h, h, ξ

¢
, h = hi, hj (B.3.29)

and we obtain

p
°
y|CGc(y), hi, ξ

¢
= p

°
y|S̄Gc(y)\h, hi, ξ

¢
, ∀ hi (B.3.30)

because there is a c-local map associated with every hypothesis.

Now from Equation B.3.27, it follows that

p
°
y|CGc(y), hi, ξ

¢
= p

°
y|CGc(y), hj , ξ

¢
(B.3.31)

for any hypothesis pair hi and hj that is directly connected in the similarity graph.
However, Equation B.3.31 must also hold for any hypothesis pair in the network,
whether or not that hypothesis pair is directly connected, because the similarity
graph is connected and the joint distribution is strictly positive (see the discussion
that follows the statement of the theorem in Chapter 3). Thus, we obtain



Proof of Theorems and Notation 201

p
°
y|CGc(y), hi, ξ

¢
= p

°
y|CGc(y), ξ

¢
, ∀ hi (B.3.32)

Together, Equations B.3.30 and B.3.32 imply Equation B.3.19.

Now suppose the given comprehensive network is minimal. If there is an arc from x
to y in the c-global map, where x is either a nondistinguished node or the distinguished
node h, then there must be a corresponding arc in some c-local map—say, hi–hj—by
construction. In this case, because the joint distribution is strictly positive, it follows
from Equation B.3.21 and Theorem 3.5 that

p
°
y|CGc(y)\x, {hi, hj}, ξ

¢
6= p

°
y|CGc(y){hi, hj}, ξ

¢
(B.3.33)

for some instance of CGc(y). If x = h, Equation B.3.33 becomes

p
°
y|CGc(y)\h, {hi, hj}, ξ

¢
6= p

°
y|CGc(y), {hi, hj}, ξ

¢
(B.3.34)

for some instance of CGc(y) where h = hi or hj . Consequently, it follows that

p
°
y|CGc(y)\h, hi, ξ

¢
6= p

°
y|CGc(y)\h, hj , ξ

¢
(B.3.35)

for some instance of CGc(y)\h. If x 6= h, Equation B.3.33 becomes

p
°
y|CGc(y)\{x, h}, h, ξ

¢
6= p

°
y|CGc(y)\h, h, ξ

¢
(B.3.36)

for some instance of CGc(y)\h where h = hi or hj . In either case, we obtain Equa-
tion B.3.20. ✷
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B.4 Proof of Theorem 3.8

Theorem 3.8 A hypothesis-specific similarity network is consistent if and only if there is
no cycle in the similarity graph such that, for any nondistinguished node y, the assertion

p
≥
y|Ci/j(y), hi, ξ

¥
= p

≥
y|Ci/j(y), hj , ξ

¥
(B.4.37)

is in all but one relevance set Rij in the cycle.

Proof (only if): Consider the cycle defined by the c-local maps h1–h2, h2–h3, . . . hn–h1,
where n > 2. Suppose the assertion

p
≥
y|Ci/i+1(y), hi, |ξ

¥
= p

≥
y|Ci/i+1(y), hi+1, |ξ

¥
(B.4.38)

is in the relevance set Ri,i+1 for only i = 1, 2, . . . n−1. By definition of hypothesis-specific
similarity networks, it follows that

C(y) = C1(y) = C2(y) = · · · = Cn(y)

Consequently, the assertion

p
≥
y|C1/n(y), h1, ξ

¥
= p

≥
y|C1/n(y), hn, ξ

¥
(B.4.39)

must be in the relevance set R1n, a contradiction.

Proof (if): The proof for nonminimal networks is a special case of the proof for minimal
networks. So let us suppose that the given network is minimal. If there are no cycles
in the similarity graph, we can always find a joint distribution over the variables in
the network that satisfies the constraints in each hs map. First, choose any hi in the
similarity graph. Assign distributions p

°
y|Ci(y), hi, ξ

¢
to each node y in the hs map

bhi. Use Theorem 3.5 to be sure that the distributions imply that every arc from x to
y, x ∈ Ci(y), is nonsuperfluous. Second, choose any hj that is directly connected to hi

in the similarity graph. If Ci(y) 6= Cj(y), choose distributions for y in bhj in the same
manner as they were chosen for bhi. If Ci(y) = Cj(y) and the assertion

p
≥
y|Ci/j(y), hi, ξ

¥
6= p

≥
y|Ci/j(y), hj , ξ

¥

is in the relevance set Rij , select distributions for y that satisfy both this assertion and
the constraints of Theorem 3.5. If Ci(y) = Cj(y) and the assertion

p
≥
y|Ci/j(y), hi, ξ

¥
= p

≥
y|Ci/j(y), hj , ξ

¥
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is in the relevance set Rij , copy the distributions p
°
y|Ci/j(y), hi, ξ

¢
to

p
°
y|Ci/j(y), hj , ξ

¢
. Finally, repeat the second step of the assignment process, traversing

each arc in the similarity graph.
If there are cycles in the similarity graph, add the following “look-ahead” procedure

to the second step. Before assigning distributions to y in bhj , determine whether there is
a path from hj to some hk in the similarity graph such that the distributions for y in chk

have been assigned, and such that the assertion

p
≥
y|Cm/n(y), hm, ξ

¥
= p

≥
y|Cm/n(y), hn, ξ

¥

is in every relevance set Rmn along the path. If such a path exists, copy p
°
y|Ck(y), hk, ξ

¢

to p
°
y|Cj(y), hj , ξ

¢
for every instance of Ck(y) = Cj(y). Otherwise, select distributions

for y as described in the previous paragraph. Because Equation B.4.37 never holds for
only one relevance set, no conflicting assignments can be generated. ✷
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B.5 Proof of Theorem 3.10

Algorithm 3.1 (Consistency, comprehensive networks)

1 For every pair of nondistinguished nodes x and y such that x −→ y
in the c-global map constructed from the given network do

2 For every c-local map hi–hj such that x −→/ y do
3 Post the constraint “x −→/ y” on hi and on hj

4 For every c-local map hi–hj such that x −→ y do
5 If h −→ y and “x −→/ y” is posted on hi and on hj then
6 Return “inconsistent”
7 Else if h −→/ y and “x −→/ y” is posted on hi or on hj then
8 Return “inconsistent”
9 For every hypothesis hi do

10 If the constraint “x −→/ y” is not posted on hi then
11 Add x −→ y to bhi

12 For every nondistinguished node y in the c-global map do
13 For every c-local map hi–hj where h −→ y do
14 From the similarity graph, construct the edge-induced subgraph, G,

containing edge (hi, hj), and edges (hk, hl) such that h −→/ y in hk–hl

15 If the edge (hi, hj) is in a cycle in G
16 Return “inconsistent”
17 For every nondistinguished node y in the c-global map do
18 For every c-local map hi–hj such that Ci(y) = Cj(y) ≡ Ci/j(y) do
19 If h −→/ y then
20 Add “p

°
y|Ci/j(y), hi, ξ

¢
= p

°
y|Ci/j(y), hj , ξ

¢
” to Rij

21 Else if h −→ y then
22 Add “p

°
y|Ci/j(y), hi, ξ

¢
6= p

°
y|Ci/j(y), hj , ξ

¢
” to Rij

23 Return “consistent”

Theorem 3.10 (Consistency, comprehensive networks) Algorithm 3.1 applied to
a comprehensive similarity network returns “consistent” if and only if there is a strictly-
positive joint distribution that makes the network consistent and minimal. Moreover, if
Algorithm 3.1 returns “consistent,” it generates the hypothesis-specific network that is
the maximal constructor of the given network.

Proof (if): If the algorithm returns “inconsistent” within the for-loop beginning at
line 1, it follows from Corollary 3.1 that the network is inconsistent for strictly-positive
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distributions. If the algorithm returns “inconsistent” within the for-loop beginning at
line 12, then there is some cycle in the similarity graph such that there is an arc from
h to y in exactly one c-local map of that cycle. Thus, by Corollary 3.2. the network is
inconsistent.

Proof (only if): Suppose Algorithm 3.1 returns “consistent.” Since the for-loop begin-
ning at line 12 does not return “inconsistent,” there is no cycle in the similarity graph
such that there is an arc from h to y in exactly one c-local map of the cycle. Con-
sequently, by Theorem 3.8, the hypothesis-specific network created by the algorithm
is consistent. Thus, we need only to show that the given network can be constructed
from this hypothesis-specific network. It then follows from soundness of the construction
(Theorem 3.7a) that the comprehensive network is consistent and minimal.

The structure among nondistinguished nodes in each c-local map is correctly repro-
duced by the hs maps created by the algorithm. If there is an arc from x to y in the
c-local map hi–hj , Algorithm 3.1 guarantees that there is such an arc in either bhi or bhj .
Therefore, the c-local map hi–hj constructed from bhi and bhj contains the arc. Conversely,
if there is no arc from x to y in the c-local map hi–hj , Algorithm 3.1 guarantees that
there is no such arc in either bhi or bhj . It follows that the c-local map hi–hj constructed
from bhi and bhj does not contain the arc. Also, by construction, the arcs and missing
arcs from h to nondistinguished nodes in the c-local maps are correctly reproduced by
the relevance sets created by the algorithm.

Proof (maximal constructor): Algorithm 3.1 places an arc from x to y in the hs map bhi

whenever there is such an arc in the c-global map constructed from the given network and
whenever there is no constraint derived from the c-local maps that makes the addition
impossible. Since there can be no arc in any hs map unless there is a corresponding arc
in the c-global map, it follows that the hypothesis-specific similarity network generated
by the algorithm is a maximal constructor of the comprehensive network. ✷
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B.6 Proof of Theorem 3.12

Algorithm 3.2 (Consistency, ordinary networks)

1 For every pair of nondistinguished nodes x and y such that x −→ y in
the o-global map constructed from the given network do

2 For every o-local map hi–hj such that x −→/ y do
3 Post the constraint “x −→/ y” on hi and on hj

4 For every o-local map hi–hj such that only one of x and y is on
the map do

5 Post the constraint “x −→/ y” on hi and on hj

6 Mark all o-local maps as unvisited
7 While there is an unvisited o-local map containing neither x nor y

such that the constraint “x −→/ y” is posted on hi or on hj do
8 Post the constraint “x −→/ y” on hi and on hj

9 Mark the o-local map as visited

10 For every o-local map hi–hj such that x −→ y do
11 If h −→ y and “x −→/ y” is posted on hi and on hj then
12 Return “inconsistent”
13 If h −→/ y and “x −→/ y” is posted on hi or on hj then
14 Return “inconsistent”

15 For every hypothesis hi do
16 If the constraint “x −→/ y” is not posted on hi then
17 Add x −→ y to bhi

18 For every nondistinguished node y in the c-global map do
19 For every c-local map hi–hj where h −→ y do
20 From the similarity graph, construct the edge-induced subgraph, G,

containing edge (hi, hj), and edges (hk, hl) such that h −→/ y in hk–hl

21 If the edge (hi, hj) is in a cycle in G
22 Return “inconsistent”

23 For every nondistinguished node y in the c-global map do
24 For every c-local map hi–hj such that Ci(y) = Cj(y) ≡ Ci/j(y) do
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25 If h −→/ y then
26 Add “p

°
y|Ci/j(y), hi, ξ

¢
= p

°
y|Ci/j(y), hj , ξ

¢
” to Rij

27 Else if h −→ y then
28 Add “p

°
y|Ci/j(y), hi, ξ

¢
6= p

°
y|Ci/j(y), hj , ξ

¢
” to Rij

29 Return “consistent”

Theorem 3.12 (Consistency, ordinary networks) Algorithm 3.2 applied to an
ordinary similarity network returns “consistent” if and only if there is a strictly-positive
distribution that makes the network consistent and minimal. Moreover, if Algorithm 3.2
returns “consistent,” it generates the hypothesis-specific network that is the maximal
constructor of the given network.

Proof (if): Let O be the given ordinary similarity network. Suppose some strictly-
positive joint distribution satisfies the constraints implied by the o-local maps of O.
From the definition of ordinary similarity networks, we know that the joint distribution
satisfies the constraints of some minimal comprehensive similarity network from which
we can construct O. Call this comprehensive network C. Given Theorem 3.10, we know
that Algorithm 3.1 applied to C returns “consistent.” We use this fact to show that
Algorithm 3.2 applied to O must also return “consistent.”

First, observe that the o-global constructed from O and the c-global constructed from
C are identical, because O is consistent. Thus, the main for-loops in Algorithms 3.1 and
3.2 iterate over the same set of arcs.

Second, observe that if the constraint “x −→/ y” is posted on hi by Algorithm 3.2
applied to O, then the constraint is posted on hi by Algorithm 3.1 applied to C. In
particular, Algorithm 3.2 posts no more constraints than does Algorithm 3.1. To derive
this observation, consider separately the case where the constraint is posted by line 3 or
5 of Algorithm 3.2 and the case where the constraint is posted by line 8 of the algorithm.
In the first case, the observation follows immediately from the definition of o-local maps.
In the second case, we can prove the observation using an inductive argument. Consider
the first time within the while-loop of Algorithm 3.2 that the constraint “x −→/ y” is
posted on some hi by line 8 of the algorithm. If the algorithm is checking the o-local
map hi–hj , we know that the constraint “x −→/ y” is already posted on hj by both
Algorithms 3.1 and 3.2. Furthermore, we know that neither x nor y are on the o-local
map and, hence, that there is no arc from h to y on the c-local map hi–hj . It follows
that there can be no arc from x to y on the c-local map and Algorithm 3.1 must post the
constraint “x −→/ y” on hi. Applying this argument to each subsequent constraint posted
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by line 8 of Algorithm 3.2, we find that an identical constraint must also be posted by
Algorithm 3.1.

Third, observe that Algorithm 3.2 applied to O cannot return “inconsistent” at line
12 or 14. This observation follows from the previous observation, from the fact that
Algorithm 3.1 applied to C returns “consistent,” and from the fact that an arc in C from
x to y is considered by Algorithm 3.1 in line 4 only if the corresponding arc in O is
considered by Algorithm 3.2 in line 10.

Finally, observe that there is an arc from h to y in an o-local map if and only if there
is such an arc in that o-local map’s corresponding c-local map. Therefore, line 22 of
Algorithm 3.2 cannot return “inconsistent” when applied to O, because Algorithm 3.1
applied to C returns “consistent.”

Proof (only if): We know that Algorithm 3.2 applied to O returns “consistent.” So let
HS be the hypothesis-specific similarity network created by the algorithm, and let C be
the comprehensive similarity network constructed from HS. We show that Algorithm 3.1
applied to C returns “consistent.” It then follows from Theorem 3.10 that O is consistent
and minimal.

First, observe that, by construction, the c-global of C is identical in structure to the
o-global of O. Consequently, the main for-loops in Algorithms 3.2 and 3.1 iterate over
the same set of arcs.

Second, observe that, if the constraint “x −→/ y” is posted on hi by Algorithm 3.1
applied to C, then the constraint is posted on hi by Algorithm 3.2 applied to O. To see
this fact, let us suppose that there is an arc from x to y on the (c- or o-) global map,
and that the constraint “x −→/ y” is not posted on hi by Algorithm 3.2 applied to O. In
this case, the for-loop at line 15 of Algorithm 3.2 guarantees that there is an arc from x
to y on the hs map bhi. Consequently, there is an arc from x to y on all c-local maps that
are bordered by hi, and the constraint “x −→/ y” is not posted by Algorithm 3.1 when
applied to C.

Third, observe that neither line 6 nor line 8 of Algorithm 3.1 returns “inconsistent”
when applied to C. If x and y are both connected to h in the c-local map hi–hj , this
observation follows from the previous observation and from the fact that Algorithm 3.2
applied to O returns “consistent.” If only one of x and y is connected to h in hi–hj ,
there can be no arc from x to y. In this case, it is impossible for Algorithm 3.1 to
return “inconsistent.” If both x and y are disconnected from h in the c-local map hi–hj ,
Algorithm 3.2 guarantees that there is an arc from x to y in bhi or bhj only if the constraint
“x −→/ y” is not posted on either hi or hj . Thus, Algorithm 3.1 returns “inconsistent”
when considering this arc.



Proof of Theorems and Notation 209

Finally, observe that line 16 of Algorithm 3.1 does not return “inconsistent” when
applied to C because Algorithm 3.2 applied to O returns “consistent.”

Proof (maximal constructor): By construction, Algorithm 3.2 places an arc from x to y
in the hs map bhi whenever there is such an arc in the c-global map and whenever there
is no constraint derived from the o-local maps that makes the addition impossible. It
follows that the hypothesis-specific similarity network generated by the algorithm is a
maximal constructor of the ordinary network. ✷





C Glossary of Pathfinder Terms

C.1 Diseases of the Lymph Node

AIDS EARLY: AIDS, early phase

AIDS INVOLUTIONARY: AIDS, involutionary phase

AILD: Angio-immunoblastic lymphadenopathy

ALIP: Atypical lymphoplasmacytic and immunoblastic proliferation

AML: Acute myeloid leukemia

B-IMMUNOBLASTIC: Immunoblastic plasmacytoid diffuse lymphoma

CARCINOMA: Carcinoma

CAT SCRATCH DISEASE: Cat-scratch disease

CELLULAR PHASE NSHD: Cellular phase of nodular sclerosis Hodgkin’s disease

DERMATOPATHIC LADEN: Dermatopathic lymphadenitis

DIFFUSE FIBROSIS HD: Diffuse fibrosis Hodgkin’s disease

EM PLASMACYTOMA: Extramedullary plasmacytoma

FLORID FOLLIC HYPERP: Florid reactive follicular hyperperplasia

GLH HYALINE VACULAR: Giant lymph-node hyperplasia, hyaline vacular type

GLH PLASMA CELL TYPE: Giant lymph-node hyperplasia, plasma-cell type

GRANULOMATOUS LADEN: Granulomatous lymphadenitis

HAIRY CELL LEUKEMIA: Hairy cell leukemia

HISTIOCYTOSIS X: Histiocytosis x

IBL-LIKE T-CELL LYM: Immunoblastic lymphadenopathy-like T-cell lymphoma

INFECTIOUS MONO: Infectious mononucleosis

INTERFOLLICULAR HD: Interfollicular Hodgkin’s disease

JAPANESE ATL: Japanese adult T-cell lymphoma

KAPOSIS SARCOMA: Kaposis sarcoma

L&H DIFFUSE HD: Lymphocytic and histiocytic diffuse Hodgkin’s disease

L&H NODULAR HD: Lymphocytic and histiocytic nodular Hodgkin’s disease

LARGE CELL, DIF: Large cell diffuse lymphoma
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LARGE CELL, FOL: Large cell follicular lymphoma

LEPROSY: Leprosy

LYMPHANGIOGRAPHIC: Lymphangiography effect

LYMPHOBLASTIC: Lymphoblastic lymphoma

MALIG HISTIOCYTOSIS: Malignant histiocytosis

MANTLE ZONE: Mantle-zone lymphoma

MANTLE ZONE HYPERL: Mantle-zone hyperplasia

MAST CELL DISEASE: Mast-cell disease

MELANOMA: Melanoma

MIXED CELLULARITY HD: Mixed-cellularity Hodgkin’s disease

MIXED, FCC DIF: Mixed (follicular center cell type) diffuse lymphoma

MIXED, FOL: Mixed (follicular center cell type) follicular lymphoma

MULTIPLE MYELOMA: Multiple myeloma

MYCOSIS FUNGOIDES: Mycosis fungoides

NECROTIZ NONKIKUCHI: NonKikuchi’s necrotizing lymphadenitis

NECROTIZING KIKUCHI: Kikuchi’s necrotizing lymphadenitis

NODULAR SCLEROSIS HD: Nodular sclerosis Hodgkin’s disease

PLASMACYTOID LYCTIC: Small lymphocytic diffuse lymphoma with plasmacytoid
features

RETICULAR TYPE HD: Reticular type Hodgkin’s disease

RHEUMATOID ARTHRITIS: Rheumatoid arthritis

SARCOIDOSIS: Sarcoidosis

SHML: Sinus histiocytosis with massive lymphadenopathy

SINUS HYPERPLASIA: Sinus hyperplasia

SMALL CLEAVED, DIF: Small cleaved diffuse lymphoma

SMALL CLEAVED, FOL: Small cleaved follicular lymphoma

SMALL LYMPHOCYTIC: Small lymphocytic lymphoma

SMALL NONCLEAVED DIF: Small noncleaved diffuse lymphoma

SMALL NONCLEAVED FOL: Small noncleaved follicular lymphoma

SYNCYTIAL NSHD: Syncytial nodular sclerosis Hodgkin’s disease
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SYPHILIS: Syphilis

T-IMMUNOB LRG: Peripheral T-cell lymphoma, large-cell type

T-IMMUNOB MIX: Peripheral T-cell lymphoma, mixed-cell type

TOXOPLASMOSIS: Toxoplasmosis

TRUE HISTIOCYTIC: True histiocytic lymphoma

TUBERCULOSIS: Tuberculosis

VIRAL NOS: Viral lymphadenitis, not otherwise specified

WHIPPLE’S DISEASE: Whipple’s disease

C.2 Features of the Lymph Node

ABR T-CELL PHENO: Abberrant T-cell phenotype in medium-sized or large lymphoid
cells

ACID FAST STAIN: Acid fast stain

B GENE REARRANGEMENT: Immunoglobulin gene rearrangement

BNG HIST: Benign histiocytes not otherwise specified in the nonfollicular areas

BNG HIST FOAMY: Foamy benign histiocytes in the nonfollicular areas that do not
contribute to mottling

BNG HIST LANGERHANS: Langerhans benign histiocytes in the nonfollicular areas

BNG HIST SS: Starry-sky benign histiocytes in the nonfollicular areas

CAP THICKENING: Capsule thickening (number of lymphocytes thick)

CARCINOMA CELLS: Carcinoma cells

CLASSIC SR: Classic Sternberg–Reed cells (number per 4-square-centimeter

DIL VASC SP: Vascular spaces dilated by red blood cells

EMPERIPOLESIS: Number of histiocytes showing emperipolesis

EOSIN MICROAB: Eosinophil microabscessess

EOSIN MYELO&META: Eosinophilic myelocytes and metamyelocytes

EOSINOPHILS: Eosinophils (not in microabcesses)

EPI HIST CLUS: Epithelioid histiocyte clusters

EPI HIST CLUS FOL EN: Epitheliod histiocyte clusters encroaching and/or within
follicles



214 Appendix C

EPI HIST NONCLUSTERS: Epitheliod histiocyte nonclusters (percent of total cell
population)

EXTRAVASC CLUS CLR C: Extravascular clusters of clear lymphoid cells

F % AREA: Percent area occupied by follicles

F CC CYTOLOGY: Cytology of follicular center cells in most follicles

F CENTERS ATROPHIC: Atrophic centers in any follicles

F CYTOLOGY COMP: Similar cells inside and outside of most follicles

F DEFINITION: Definition of follicles

F DENSITY: Follicle density

F HEMORRHAGES: Hemmorrhages in any of the follicles

F LYMPH INFIL: Lymphocyte infiltration of any follicles

F MANTLE ZONES: Follicle mantle zones in any follicles

F MIT FIGURES: Follicle mitotic figures in 10 high-power fields

F MZ CONCENTRIC RIMS: Mantle zone concentric rims in any follicles

F MZ STATUS: Follicle mantle zones

F POLARITY: Prominent polarity in any follicle

F RADIALLY PEN BV: Number of follicles showing radially penetrating blood vessels

F SS PATTERN: Follicle starry-sky histiocytes (average number in one 10X objective power)

FCB: Fibrocollagenous bands or sclerosis

FCB NODULES: Nodules formed by fibrocollagenous bands

FIBROSIS: Prominent fibrosis

FITE STAIN: Fite stain

FOLLICLES: Follicles

FOREIGN BODY: Foreign body (number in 4-square-centimeter section)

HAIRY CELLS: Hairy cells

HTLV I: HTLV I antibody test

HTLV III: HTLV III antibody test

INTRAVASC CLUS LYMPH: Intravascular clusters of lymphoid cells

KARYORRHEXIS: Karyorrhexis

L&H NODULES: Lymphocytic and hitiocytic nodules
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L&H SR: Lymphocytic and hitiocytic variants of Sternberg–Reed cells (number in
4-square-centimeter section)

LACUNAR SR: Lacunar variants of Sternberg–Reed cells (number in 4-square-centimeter
section)

LANGHANS: Langhans cells (number in 4cm2 section)

LC LYSOZYME: Lysozyme positivity in medium-sized and/or large lymphoid cells

LEUKEMIC CELLS: Leukemic cells

LLC CHROMATIN: Chromatin of most large lymphoid cells

LLC CYTOPLASM: Cytoplasm of most large lymphoid cells

LLC EV CLUS: Large lymphoid cells in extravascular clusters of clear cells

LLC IDENTITY: Identity of most large lymphoid cells

LLC IV CLUS: Large lymphoid cells in intravascular clusters

LLC NUC SHP: Nuclear shape of most large lymphoid cells

LLC NUCLEOLI: Nucleolar features of most large lymphoid cells

LLC NUM: Number of large lymphoid cells in the nonfollicular areas (percent of total cell
population)

LLC+MLC > 50%: Number of medium-sized and large lymphoid cells in the nonfollicular
areas exceeds 50 percent of total cell population

LRG LMPH CELLS: Large lymphoid cells

MAST CELLS: Mast cells (number in 4cm2 section)

MED LYMPH CELLS: Medium-sized lymphoid cells

MELANOMA CELLS: Melanoma cells

MITOTIC FIG: Mitotic figures in 10 high-power fields (nonfollicular areas)

MLC CHROMATIN: Chromatin structure of most medium-sized lymphoid cells

MLC CYTOPLASM: Cytoplasm of most medium-sized lymphoid cells

MLC EV CLUS: Medium-sized lymphoid cells in extravascular clusters of clear cells

MLC IV CLUS: Medium-sized lymphoid cells in intravascular clusters

MLC NUC SHP: Nuclear shape of most medium-sized lymphoid cells

MLC NUCLEOLI: Nucleolar features of most medium-sized lymphoid cells

MLC NUM: Number of Medium-sized lymphoid cells in the nonfollicular areas (percent
of total cell population)
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MONOCYT: Monocytoid cells (percent of total cell population)

MONONUCLEAR SR: Mononuclear variants of Sternberg–Reed cells (number in 4-square-
centimeter section)

MOTTLING HIST: Mottling by langerhans or other histiocytes

MOTTLING LLC: Mottling by large lymphoid cells

MUMMY: Large mummified cells (number in 4-square-centimeter section)

NECROSIS: Necrosis

NEUTROPHIL MICROABSC: Neutrophil microabcessess

NEUTROPHILS: Neutrophils (not in microabcesses)

NONSIN NONFOL AREAS: Nonsinus nonfollicular areas

PAS STAIN: Strong PAS positivity in the histiocytes

PERICAP INFILTR: Pericapsular infiltration

PLASMA: Plasma cells in the nonfollicular areas (percent of total cell population)

PLASMA TYPE: Plasma cell type

PLEOMORPHIC SR: Pleomorphic variants of Sternberg–Reed cells (number in 4-square-
centimeter section)

PSEUDOFOLLICLES: Pseudofollicles

PTGC: Progressively transformed germinal centers

RUSSELL&DUTCHER: Russell and/or Dutcher bodies

SARCOMA CELLS: Sarcoma cells

SCHAUMAN: Schauman cells

SIGNET-RING: Signet-ring cells

SINUSES: Sinuses

SLC CHROMATIN: Chromatin structure of most small lymphoid cells

SLC CYTOPLASM: Cytoplasm of most small lymphoid cells

SLC EV CLUS: Small lymphoid cells in extravascular clusters of clear cells

SLC IV CLUS: Small lymphoid cells in intravascular clusters

SLC NUC SHP: Nuclear shape of most small lymphoid cells

SLC NUM: Number of small lymphoid cells in the nonfollicular areas (percent of total cell
population)



Glossary of Pathfinder Terms 217

SML LYMPH CELLS: Small lymphoid cells

SR-LIKE: Sternberg–Reed-like cells (number in 4cm2 section)

SYSTEMIC AIDS: Systemic AIDS

T GENE REARRANGEMENT: T-cell receptor gene rearrangement

TRANSITION FORMS: Transition forms (lymphoid cells having sizes other than the sizes
of small, medium-sized, or large cells) in the nonfollicular areas

VASC CHANGES: Endarteritis or periarteritis

VASC PROLIF NONSLIT: Vascular proliferation (nonslitlike)

VASC PROLIF SLIT: Vascular proliferation slitlike





D Evaluation Results

Table D.1: Expert ratings and inferential losses for Pathfinder III and IV.

Expert Rating Inferential Loss (micromorts)

Case Pathfinder III Pathfinder IV Pathfinder III Pathfinder IV

bnn1001 7.0 7.0 0 0

bnn1002 10.0 10.0 0 0

bnn1003 10.0 10.0 0 0

bnn1005 1.5 9.5 10 0

bnn1008 9.5 8.5 0 0

bnn1013 9.5 9.8 0 0

bnn1015 9.0 9.0 0 0

bnn1016 8.0 4.0 0 0

bnn1018 8.0 7.0 0 70

bnn1021 9.5 9.5 0 0

bnn1022 9.0 10.0 0 0

bnn1024 8.5 10.0 3269 0

bnn1027 8.5 9.0 0 0

bnn1028 9.0 9.0 0 0

bnn1030 9.5 10.0 0 0

bnn1034 9.5 9.5 0 0

bnn1044 9.5 9.5 0 0

bnn1050 9.0 8.0 0 0

bnn1055 8.5 9.5 0 0

bnn1059 8.0 4.0 0 0

bnn1063 10.0 10.0 0 0

bnn1065 6.0 6.0 0 0

bnn1067 10.0 10.0 0 0

bnn1070 9.0 9.0 0 0

bnn1071 9.5 9.5 0 0

bnn1072 1.0 10.0 0 0

bnn1078 10.0 4.0 0 0

bnn1079 4.5 9.5 106 0
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Table D.2: Expert ratings and inferential losses continued.

Expert Rating Inferential Loss (micromorts)

Case Pathfinder III Pathfinder IV Pathfinder III Pathfinder IV

bnn1084 6.8 10.0 3269 0

bnn1087 8.0 9.5 0 0

bnn1088 10.0 10.0 0 0

bnn1091 8.5 9.0 0 0

bnn1095 9.0 10.0 0 0

bnn1098 9.9 9.9 0 0

bnn1102 5.0 9.5 11358 0

bnn1106 10.0 10.0 0 0

bnn1109 7.0 9.0 0 0

bnn1111 10.0 10.0 0 0

bnn1112 5.0 8.0 0 0

bnn1113 4.0 8.0 0 752

bnn1119 8.0 9.0 0 0

bnn1123 10.0 10.0 0 0

bnn1126 2.0 9.5 7 0

bnn1129 5.0 8.5 0 0

bnn1139 9.5 9.5 0 0

bnn1152 10.0 10.0 0 0

bnn1154 8.0 9.0 0 0

bnn1159 5.8 9.8 0 0

bnn1162 6.5 7.0 0 0

bnn1165 10.0 10.0 0 0

bnn1167 7.5 9.0 0 7

bnn1171 9.5 10.0 0 0

bnn1172 8.5 9.0 0 0



E Transformation for Multiple Hypotheses

In this appendix, we examine an algorithm for transforming a similarity network S into
a multiple-hypothesis knowledge map M. Let h0, h1, h2, . . . , hn denote the instances of
the distinguished variable h in S, where h0 is NORMAL. In addition, let hi, i = 1, 2, . . . , n,
denote the binary variable in M that corresponds to hypothesis hi in S. Also, let x and
y denote arbitrary nondistinguished variables in S. Finally, let S 0 denote a similarity
network constructed from S such that the similarity graph of S 0 has a star topology
with center h0, and let GS0 denote the global knowledge map constructed from S 0. We
transform S into M as follows:

Construct S 0 from S
Construct GS0 from S 0
For all x in GS0 , place x in M
For all x −→ y in GS0 , place x −→ y in M
For hi in S 0, i = 1, 2, . . . , n, place hi in M
For local knowledge map h0i in S 0, i = 1, 2, . . . , n,

For all x in GS0 , if x is in h0i, then place hi −→ x in M
For all x,

Determine the probability distributions for x in M from the distributions for
x in GS0 , using assertions of causal independence

Assess dependencies among the hi in M
For hi in M, i = 1, 2, . . . , n, assess the probability distributions for hi

Note that, in this transformation, the nondistinguished variables do not need to be binary,
provided we generalize beyond the noisy OR-gate model expressed by Equation 6.1.4. In
addition, we can generalize this algorithm to include situations where hi is nonbinary, by
representing each instance of hi in the similarity graph, and by identifying forms of causal
independence that can account for the interaction between hi and each nondistinguished
node.
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Almanac game, 177
Alternatives, 163
Arc reversal, 184
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Background knowledge, 164
Bayes’ theorem, 165
Belief networks, see Knowledge maps
Beliefs, 163

C

Casnet, 20
Causal independence, 151–154
Causal networks, see Knowledge maps
Causality, 151–154
Certainty-factor model, 20, 105, 180
Chance nodes, 187

deterministic, 187
Clarity test, 176
Classification hierarchies, 46
Clustering of variables, 113–114
Cognitive limitations, 21
Completeness

of construction, 72
of logic proof, 72

Composition versus construction, 27
Conditional independence

and interaction, 93, 95–96
asymmetric, 41–42
in knowledge maps, 55, 181

Conditional probabilities, 166
Conditioning arcs, 188
Confidence in probabilities, 167
Consistency

of expansion order with knowledge map, 57
of expansion orders, 56
of logic sentences, 75
of similarity network, 16, 33, 78

comprehensive, 75, 79–85, 204
hypothesis-specific, 75, 79, 202
ordinary, 75, 89–90, 91–94, 207

Construction versus composition, 27
Construction

of c-global map, 67, 69
of comprehensive similarity network, 66, 69
of o-global map, 67, 69
of ordinary similarity network, 66, 69

Criteria for disease, 110

D

d-separation, 55

Decision analysis, 176
philosophy, 177
techniques, 176–177

Decision nodes, 187
Decision theory, 163

advantages of, 178–180
and incomplete models, 22
at the metalevel, 22

Decision trees, 168
Delta property, 6, 190
Dempster–Shafer theory, 105, 179

relationship to partitions, 51–52
Descriptive versus normative reasoning, 176
Diagnosis

as a decision, 13
gold standards, 138–140
in Pathfinder, 3–4, 13
multiple-hypothesis

in Internist-1, 20
using similarity networks, 150–156

single-hypothesis
in early systems, 17, 19
using similarity networks, 16

Differential diagnosis, 5
Distinguished nodes, 16, 27
Domains, 1

E

Events, 163
Exhaustiveness, 16, 34, 97
Expansion order, 56
Expert systems, 1

history of, 17
normative, 1, 176
rule-based, 1, 23, 105

Explanation, 2
and similarity networks, 157–159

F

Foundations
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of utility, 169

Frames, 20
Fuzzy-set theory, 179
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Gold standards for diagnosis, 138–140
Good decision versus good outcome, 138, 177
Graceful degradation, 159
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Heuristic approaches to uncertainty, 20
limitations, 20–21

Hypergraphs, 149
Hypotheses, 16, 27
Hypothesis-specific independence, 16, 41, 68
Hypothetico-deductive approach, 5

I

Inference, see probability, inference
Inferential loss, 138, 144–145
Influence diagrams, 2, 187–189, 190–191

chance nodes, 187
deterministic, 187

conditioning arcs, 188
decision nodes, 187
expressiveness, 188
for Pathfinder, 14–15, 108, 140
informational arcs, 188
solving, 188
utility nodes, 187

Informational arcs, 188
Instances, 163
Intelligent decision systems, 22–26

K

Knowledge acquisition, 2
Knowledge maps, 16, 27, 55, 180–182, 183–187

advantages of, 186
and assessment order, 187
and joint probability distribution, 56
and modularity, 186
assessed, 55
associated probability distributions, 181
construction, 57
d-separation, 55
expressiveness, 183
for Pathfinder, 15, 108
for the diagnosis of multiple diseases, 151
global, 16, 33

comprehensive, 63, 69
ordinary, 63, 69

inference algorithms, 185
local, 16, 29–30, 31

comprehensive, 61, 69
for Pathfinder, 107, 110–112
hypothesis-specific, 61, 69
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ordinary (alternate definition), 93–94, 95–
97

minimal, 33, 58–60
superfluous arcs, 58–60
synonyms, 180
theory, 53–60
uniqueness, 60

L

Likelihood ratio, 157
Logic versus probability, 186
Lotteries, 168

M

Marginal probabilities, 181
Maximum expected utility principle, 168
Micromort, 143
Modularity, 186
Money pump, 170
Multiple hypotheses or causes, 150
Mycin, 1, 20

N

Noisy OR-gate, 151–154
Normative versus descriptive reasoning, 176

P

Partitions, 3, 17, 44–45, 46
and classification hierarchies, 46
and Dempster–Shafer theory, 51–52
and probability assessment, 44–45

with similarity networks, 99, 101–102
composition, 44–45
for Pathfinder, 116–121
use in practice, 126–127

Pathfinder, 3
approximations, 113, 115–116
construction statistics, 118, 122–123
early versions

certainty-factor model, 105
Dempster–Shafer model, 105
rule-based model, 105
simple Bayes model, 105

evaluation of diagnostic accuracy
case-by-case analysis, 135–137
decision-theoretic metric, 137–146
expert-rating metric, 134

inference, 129–131
influence diagrams, 14–15, 108, 140
local knowledge maps, 107, 110–112
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motivation for similarity networks, 13, 35–36
partitions, 116–121
similarity graph, 107, 109
user interface, 5–12
utility model, 139–143

Posterior probability, 165
Preferences, 163
Present Illness Program (PIP), 20
Prior probability, 165
Probability, 163

as a degree of belief, 163–164
as a frequency, 163
assessment, 127–129
Bayes’ theorem, 165
Bayesian (or subjective) interpretation, 163–

164
biases, 176
bounds, 168
coherence, 165
conditional, 166
Cox’s proof of the rules, 166
degree of confidence in, 167
expansion rule, 165
foundations, 166
inference, 2, 184–185

and similarity networks, 157–159
joint distribution, 183

constructed from knowledge map, 56
expansion order, 56

marginal, 181
objective interpretation, 163
posterior, 165
prior, 165
product rule, 165
simple Bayes model, 13, 17, 19–21, 105

limitations, 19
strictly positive distributions, 34, 59
sum rule, 165
versus logic, 186

Propagating uncertainty, see Probability, infer-
ence

Propositional transitivity, 95
Prospector, 1

R

Rachel, 23
Relevance set, 61, 69
Relevance, 41, 44, 51, 193

spurious, 126, 136
Rules, 20

S

Sensitivity analysis, 23, 147, 177
Sequential diagnosis, 13
Similarity graph, 16, 27, 29, 69

composition, 31
for Pathfinder, 107, 109

Similarity networks, 3, 17, 27
advantages of similarity, 35–36
and explanation, 157–159
and heuristic applications, 159
and multiple-hypothesis diagnosis, 150–156
and probabilistic inference, 157–159
and probability assessment, 42–44, 98–100

with partitions, 99, 101–102
and single-hypothesis diagnosis, 16
and utility assessment, 160
assessed, 65
composition, 27, 29–31
comprehensive, 61, 65, 69
construction of global knowledge map, 33
distinguished nodes in, 16, 27
extensions, 149–160
hypothesis-specific, 61, 64, 69
maximal constructor, 68
minimal, 66
motivation, 13, 35–36
ordinary, 61, 65, 69
transformation for multiple hypotheses, 221
use in practice, 123–125

SimNet, 27, 31, 42–43, 49, 51, 106, 116, 118,
120, 124–125, 127, 129

Simple Bayes model, 13, 17, 19–21
limitations, 19

Soundness
informal proof, 36–40
of construction, 16, 33–34, 72–73

of c-global map, 74, 199
of comprehensive similarity network, 74,
195

of o-global map, 74, 87
of logic proof, 72

Strategy-generation tables, 176
Subset independence, 16, 41, 49, 51, 68
Surgical pathology, 3

U

Uncertain variables, 163
binary, 163

Uncertainty about probabilities, 167
Utility node, 187
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Utility, 163, 168
foundations, 169
maximum expected utility principle, 168
model for diagnosis, 139–143

V

Validity
of global knowledge map, 16, 33
of logic sentences, 79
of probability constraints, 77

Value of clairvoyance, 6, 188

W

Weight of evidence, 157
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Notation

x, y, . . . Uncertain variables or their corresponding nodes in a knowledge

map

X, Y , . . . Sets of variables or corresponding sets of nodes

xi The ith instance of variable x

x+, x− The two instances of the binary variable x

x⊆ A subset of the instances of the variable x

Xi The ith instance of set X

X\Y The variables in X that are not in Y

C(x) The conditional or direct predecessors of node x

S(x) The successors of node x

S̄(x) The nonsuccessors of node x

p (xi|Xj , ξ) The probability of xi given Xj and background knowledge ξ

p (xk|{hi, hj}, ξ) The probability of xk given background knowledge ξ and the

knowledge that either hi or hj is true

≤C A partial ordering on nodes in a knowledge map defined by

x ≤C y if and only if there is a directed path from x to y

≤E A total ordering on the nodes in a knowledge map used to

expand the joint distribution

x −→ y Abbreviation for “arc from x to y”

x −→/ y Abbreviation for “no arc from x to y”

HS, C,O A hypothesis-specific, comprehensive, and ordinary similarity

network

Gc A comprehensive global knowledge map (c-global map)

Go An ordinary global knowledge map (o-global map)
bhi The hypothesis-specific knowledge map (hs map) associated

with hi

(hi, hj) The edge between hi and hj in a similarity graph

hi–hj The comprehensive local knowledge map (c-local map) or

ordinary local knowledge map (o-local map) associated with

the edge (hi, hj) in a similarity graph

Ci(x) The conditional predecessors of node x in the hs map bhi

Cij(x) The conditional predecessors of node x in the c-local or o-local

map hi–hj

CGc(x) The conditional predecessors of node x in a c-global map

Rij The relevance set for hi and hj in a hypothesis-specific

similarity network

HS →̀C The construction of C from HS
HS |=P C Abbreviation for “HS logically implies C”


