
CROWDSOURCING THE ACQUISITION OF NATURAL LANGUAGE CORPORA:

METHODS AND OBSERVATIONS

William Yang Wang, Dan Bohus, Ece Kamar and Eric Horvitz

Microsoft Research, Redmond, WA, 98052, U.S.A.

ww@cmu.edu, {dbohus, eckamar, horvitz}@microsoft.com

ABSTRACT

We study the opportunity for using crowdsourcing methods

to acquire language corpora for use in natural language

processing systems. Specifically, we empirically investigate

three methods for eliciting natural language sentences that

correspond to a given semantic form. The methods convey

frame semantics to crowd workers by means of sentences,

scenarios, and list-based descriptions. We discuss various

performance measures of the crowdsourcing process, and

analyze the semantic correctness, naturalness, and biases of

the collected language. We highlight research challenges

and directions in applying these methods to acquire corpora

for natural language processing applications.

Index Terms— crowdsourcing, natural language elicitation

methods, language understanding, spoken dialog.

1. INTRODUCTION

Interactive technologies with natural language input and

output must capture the variation in language usage

associated with specific users’ intentions. For example,

data-driven spoken language understanding systems rely on

corpora of natural language utterances and their mapping to

the corresponding semantic forms. Similarly, data-driven

approaches to natural language generation use corpora that

map semantic templates to multiple lexical realizations of

that template. Multilingual processing tasks such as machine

translation rely on the availability of target language

sentences in a parallel corpus that capture multiple valid

translations of a given sentence in the source language.

Developing or extending the recognition prowess of an

existing interactive natural language system can be a

challenging task. In the initial stages, a deployed system is

required to collect natural language data from users. same

However, data is required to build the initial system. System

developers must often create initial grammars and prompts,

either manually or based on small-scale wizard-of-Oz

studies. Once an initial version of a system is deployed, data

is collected, transcribed and labeled, and the language

models and grammars are updated. This approach suffers

from several drawbacks. The initial grammars might not

generalize well to real users, and poor system performance

in the initial stages can subsequently bias the users’ input

and the collected data. The development lifecycle can have

high costs, and refining the system’s performance can take a

long time. Also, the systems face adoption difficulties in the

early stages, because of limited functionality and lack of

robustness. Moreover, every time new functionality is added

to an existing system, developers are faced with the

challenge of building or acquiring new language resources

and expanding grammars.

We investigate the use of crowdsourcing methods for

collecting natural language corpora. Previous work with

crowdsourcing in language technologies has focused largely

on transcription, search relevance, speech rating, and

collecting read speech. In this work, we focus on the

problem of collecting natural language expressions that

correspond to a given semantic form. We investigate an

approach for this structured natural language elicitation

problem using crowdsourcing. The approach aims to harvest

at low cost a language corpus that reflects the natural

variation of human-generated language.

We investigate three alternative structured language

elicitation methods: we present sentences, scenarios, or list-

based descriptions to a crowd and ask workers to rephrase

the language in their own words. We discuss several

performance measures of this crowdsourcing process, we

analyze of the semantic correctness and naturalness of the

collected language, and we discuss some of the biases these

methods might create. We highlight several lessons learned

and outline directions for future work.

2. RELATED WORK

Crowdsourcing methods have attracted considerable

attention because of assumed efficiencies of collecting data

and solving tasks via programmatic access to human talent.

In the realm of language technologies, crowdsourcing has

been used for speech transcription [1], system evaluation [2],

read speech acquisition [3], search relevance [4], translation

[5], and most recently, paraphrase generation [6, 7]. We

shall introduce and address the problem of crowdsourcing

language that corresponds to a given semantic form. Some

of the methods we use bear similarities to previous work in

paraphrase generation. While paraphrase generation seeks

mappings between surface-level realizations of language

without knowledge of the underlying semantics, we focus

on capturing the mapping from semantic to lexical forms.

To the best of our knowledge, this is the first report on the

use of crowdsourcing to address this problem.

Our language acquisition task aligns with challenges in

the domain of spoken dialog systems. While authoring

spoken dialog systems is a labor-intensive process that

requires specific domain knowledge [8], many spoken

dialog systems (e.g., [9, 10, 11]), still rely on developers to

author predefined grammars and plausible language rules.

An alternative is to use transcriptions of human to human

conversations [12] or data collected in wizard-of-Oz studies

[13], but it is generally difficult and expensive to collect

data in these ways. Crowdsourcing of grammars holds

promise for alleviating the “cold-start” problem seen at the

outset of the fielding of a system by enabling access to

natural language data, and helping developers to extend

functionality incrementally. Furthermore, the methods we

describe may also be useful for other tasks, such as

generating templates for the natural language generation

module of spoken dialog systems.

3. ELICITATION METHODS

We now present several methods for eliciting natural

language data for given semantic forms via crowdsourcing.

Consider a request for finding a Chinese restaurant for

dinner in Seattle. Semantically, this request might be

captured by a frame with slots and values, such as

FindRestaurant(City=Seattle; Cuisine=Chinese). Lexically it may

be expressed in a variety of ways, for instance: Could you

please find a Chinese restaurant in Seattle? or I’m looking

for a Chinese restaurant in Seattle., etc. Our goal is to

convey the information captured by the semantic frame to

the crowd worker in a manner that prompts them to produce

corresponding natural language. By repeating this task with

multiple workers, we seek to harvest the natural language

usage that corresponds to the given semantic form.

We propose and investigate three different methods for

conveying the frame semantics to the crowd worker:

 In the sentence-based method we present a

corresponding natural language sentence, e.g. “Find a

Seattle restaurant that serves Chinese food.”

 In the scenario-based method we adopt a story-telling

scheme that presents multiple sentences that form a

scenario with a specific goal, e.g. “The goal is to find

a restaurant. The city is Seattle. You want to have

Chinese food.”

 For the list-based method, we present a specific goal,

and a set of items corresponding to the slots and

values in the form of a list. For instance:

Goal: Find restaurant

City: Seattle

Cuisine type: Chinese

In each case, we ask the worker to construct a single

sentence, in their own words, that captures all the given

information.

In the next section, we study different characteristics of

these elicitation methods with experiments performed on a

crowdsourcing platform. First, we study empirically whether

crowd workers can perform this type of task efficiently and

correctly; the elicitation methods are successful only in as

much as the language collected corresponds to the given

semantic form, i.e., no information is omitted or added.

Second, the elicitation methods rely on specific templates

authored by system developers (sentence, scenario, or list)

for every semantic frame. Since the aim is to elicit the

natural language variation that corresponds to a given

semantic form, we seek to understand how much the

templates affect the language data produced by the crowd.

Do the methods create systematic biases, and are there

significant differences among methods regarding the biases

they create?

4. EXPERIMENTS

4.1. Setup
The experiments discussed below were designed to

investigate whether we can elicit natural language for a set

of semantic frames, based on the methods described above.

Specifically, we create an ontology consisting of nine

semantic frames that cover different information seeking

domains (shown in Figure 1). The choice of frames is

informed by previous work in the dialog community and by

existing corpora, so that lessons learned from these

experiments generalize to typical dialog domains.

The proposed elicitation methods take as input

instantiated semantic frames. We illustrate the process we

use for instantiating semantic frames with an example in

Figure 1. For each of the nine frame types in the ontology,

we create instances of that type that have none, one, or more

slots instantiated. For example, the frame-type ReserveRoom

can take up to three slots in our ontology (NumPeople,
Duration, Day – see Figure 1). We create instances for this

frame with all possible subsets of these slots instantiated. In

addition, since the order of slots could bias the crowd

workers, for each instantiated frame we consider all possible

slot orderings. The resulting frames are displayed in the

middle column of Figure 1.

The proposed elicitation methods present an instantiated

frame to workers by means of a corresponding sentence,

scenario, or list template. For experiments reported in this

paper, these templates were authored by three co-authors of

the paper. For the sentence case, a separate template was

generated for each frame and slot order. For the list and

scenario cases, we only generate the sub-templates for each

slot, and we concatenate these sub-templates according to

the slot order. The templates are then instantiated by

randomly sampling slot values from a predefined list of

possible values for each slot. The authoring effort involved

is thus larger for the sentence-based method than for the

scenario and list methods.

As we seek to acquire natural language for use in an

interactive system, we explicitly asked crowd workers to

“imagine talking to an automated assistant in a natural

manner.” For example, the guideline for the list method

states: We’d like to find out how you would naturally request

assistance from the assistant. We’ll provide you with a list

and specify a goal that the assistant can help you with and

we’d like you to type the words that you’d say to make the

request. The instructions and user interface design were

minimally modified to accommodate the differences

between methods.

We used Microsoft’s Universal Human Relevance

System (UHRS) crowdsourcing platform. Similar to other

crowdsourcing platforms, such as Amazon Mechanical Turk,

UHRS is a marketplace that connects a large worker pool

from different countries with human intelligence tasks.

UHRS workers are hired, qualified, and managed by third-

party vendors. For the American English market, UHRS

provides access to thousands of unique workers. Previous

experiments on this system have shown that it can gather

high-quality responses from workers with low task latency.

4.2. Crowdsourcing Experiments
In an initial experiment, we created 10 tasks for each

instantiated frame, template and method by sampling values

for slots. We required that each task be performed by a

single judge. Due to the constraints of the UHRS system, we

were unable to set the maximum number of tasks to be

performed by each judge. As a result, in many cases, many

of the 10 tasks for each instantiated frame were performed

by the same judge, which led to many repeated sentences for

the same semantic form. Furthermore, while we posted the

three methods nearly simultaneously, they were addressed

largely in the order of appearance on the market. Thus, the

tasks for each method ended up being performed at different

times of the day and night. As a consequence, the workload

distribution was different across the methods: there were

few judges in the sentence method and many more in the

scenario and list methods, which made the comparison of

methods challenging. To address these issues, we modified

the experimental design as follows: we created a single task

for each instantiated frame, and asked that 10 unique judges

perform each of these tasks. Furthermore, we divided the

workload into 6 batches: each batch was posted in the

morning on a weekday and had a different ordering of the

methods. Each batch corresponded to one of the 6 possible

orderings of methods. The analysis presented in the

following section is based on this latter experimental design.

5. ANALYSIS

We begin by reporting crowdsourcing process statistics. In

Subsection 5.2, we discuss whether the language collected

from the crowd matches the given frame semantics. Then, in

Subsection 5.3 we investigate whether and to what extent

these methods elicit the natural structure of language.

5.1. Crowdsourcing process statistics

9360 tasks were completed by 68 judges: 53 on the sentence

method, 51 on the scenario method, and 51 on the list

method. As typical for crowdsourcing tasks, the amount of

work performed by different judges was unequal. For

instance, the top 20% most active judges performed 55% of

the tasks in the sentence method, 58% in the tasks in the

scenario method, and 55% in the list method. Overall, the

distribution of the number of tasks performed by the judges

was similar across the three methods.

Each of the six batches posted were completed in about

five hours. The average duration per task was 26.9 seconds

for the sentence method, 28.5 seconds for scenario method

and 25.7 seconds for the list method. The duration for the

list method is statistically significantly different than that of

sentence and scenario, with p < 10
-4

 in a Mann-Whitney test.

Across all methods, the average duration per task increases

FindMovie{Gendre,Rating,Nationality}

FindJob{Type,Salary,Location}

FindRestaurant{Cuisine,Location,Range}

ScheduleMeeting{Person,Day,Location}

ReserveRestaurant{Name,NumGuests,Time}

ReserveRoom{NumPeople,Duration,Day}

QueryWeather{Location,Day}

QueryTraffic{Road}

QueryTime{}

ReserveRoom(NumPeople,Duration,Day)

ReserveRoom(NumPeople,Day,Duration)

ReserveRoom(Day,NumPeople,Duration)

…

ReserveRoom(Duration,NumPeople,Day)

ReserveRoom(NumPeople,Duration)

ReserveRoom(Duration,NumPeople)

ReserveRoom(Day,Duration)

ReserveRoom(Duration,Day)

…

ReserveRoom(Day)

ReserveRoom()

- Make a room reservation for [Day] for [Duration] hours

- I want to make a room reservation for [Day] for [Duration] hours

- I want a room on [Day] for [Duration] hours

- You are trying to make a room reservation. The reservation should be

for [Day]. You will need the room for a duration of [Duration] hours.

- I’d like to book a room. The day of the reservation should be [Day]. The

duration of the reservation should be [Duration] hours.

- You would like to reserve a room. The day to reserve is [Day]. You

want the length to be [Duration] hours.

 - Goal: Make a room reservation.

 Day: [Day]

 Duration (hours): [Duration]

Ontology (9 frame types) 3 templates are created for each instantiated

frames by 3 different authors.
For each frame type, we instantiate all

frames with different slot subsets and

their orderings

se
nt

en
ce

sc

en
ar

io

lis
t

Figure 1. Methodology for generating instantiated frames.

- Goal: Book a room

 day: [Day]

 meeting length in hours: [Duration]

 - Goal: Reserve a room

 Day: [Day]

 Hours you wish to reserve: [Duration]

from 19.5 seconds for frames with 0 slots, to 21.1 seconds

for one slot, 26.9 seconds for two slots, and 32.6 seconds for

three slots. These differences are statistically significant

with p < 10
-4

 in a Mann-Whitney test.

5.2. Semantic error rate

We now examine the semantic correctness of the collected

sentences. We used a semi-automatic labeling process to

assess the semantics for the collected data and compared

them to the given semantics.

We first performed spell checking by using Microsoft

Word. Next, we manually inspected the resulting vocabulary

to identify additional errors that were not found in the first

pass. Overall about 8% of the collected utterances contained

at least one spelling error. Finally, a text normalization step

was performed, e.g. lowercasing, eliminating punctuation,

converting numbers, time to a common format, etc.

We used an automated process to construct semantic

labels for the normalized response utterances: for each

utterance, we assumed that the frame was correct and we

scanned for the slot values presented in the task. If all values

were found, the result utterance was labeled as correct

(94.5% of utterances), otherwise it was labeled as error

(5.5% of utterances). We note that this labeling process is

imperfect. For instance, it may mistakenly label some

collected utterances as error due to the use of synonyms for

slot values. To more accurately estimate the semantic error

rate, we manually inspected all utterances that were labeled

as error, as well as a random sample of equal size (5.5% of

total) of the utterances labeled as correct.

This analysis revealed that 154 of the 513 utterances

which had been automatically labeled error were in fact

semantically correct; the labeling process failed on these

utterances due to use of synonyms for slot values (e.g.

expensive  high-end) and remaining spelling and

normalization issues. The remaining 359 utterances (3.8%

of the total) contained errors. 243 of these (2.6% of total)

can clearly be assigned to worker mistakes, such as the use

of incorrect slot values (149), missing or added slots (77), or

garbage utterances (18). An analysis of these worker errors

across methods shows that 107, 77, and 59 of these errors

occurred in the sentence, scenario, and list methods

respectively. 116 other errors (1.2% of total) could be traced

to ambiguities introduced by the experimental design:

workers doing separate tasks were not aware of the set of

possible values in the ontology for the Price slot, and

sometimes replaced values like “very expensive” with

“expensive” (considered distinct values in our ontology).

The analysis of the 516 randomly sampled utterances

that were tagged correct by the semantic labeler reveal that

only a very small proportion (2.3%) contained semantic

errors. We estimate therefore the semantic error rate in the

entire corpus is 6%.

5.3. Slot order analysis

Next, we investigate the structure of the language collected

from the crowd, focusing our attention on the order of slots

in the collected utterances. We explore whether the methods

elicit language that follows a natural distribution over

possible slot orderings. Consider for instance the

FindRestaurant(Location, Price, Cuisine) semantic frame. In our

experiment, we created templates for each of the 6 possible

slot orderings over these three slots (numbered 1 through 6,

shown in Figure 2.D) and presented an equal number of

templates based on each of these orderings to the crowd. If

the elicitation method created a strong bias and the workers

followed the same slot order as presented in the template,

we would expect the distribution over the slot orders in the

collected language to be uniform. However, in natural

language, the distribution over the order of slots is non-

uniform, as certain orderings are more likely than others.

Figure 2.D (top row) shows the distribution over slot

orderings in the language collected for the FindRestaurant
frame. The figure shows that the collected language strongly

converges on a preferred ordering: FindRestaurant(Price,
Cuisine, Location). The bottom row in Figure 2.D decomposes

this distribution further by conditioning on the slot ordering

of the template. As these figures show, regardless of the slot

ordering in the template, the crowd is converging to the

single preferred order. This is not surprising: Find me an

expensive Italian restaurant in Bellevue is a more likely and

natural request than Find me a restaurant in Bellevue that is

expensive and serves Italian food.

Figure 2 also shows these distributions for the five other

frames that take three slots in our ontology. We notice that

for three of the frames, i.e. FindJob, FindMovie and Find-
Restaurant, there is high convergence to preferred slot

orderings. For the other three frames, ScheduleMeeting,

ReserveRoom and ReserveRestaurant, while there is still

convergence (the resulting distributions exhibit similarities

for different source orderings), there is no single preferred

ordering. It is important to note that this result is in line with

the linguistic structure of the frames. For the Find frames the

slot values operate as adjectives, and the result is consistent

with the existence of a canonical order of adjectives in

English. For the other three frames, the slot values often

appear in the sentence as post-modifying phrases (such as

prepositional phrases), and the order of attachment is not

constrained. We observed similar results for frames that

contain two slots: strong convergence to preferred orderings

for frames like FindRestaurant(Price, Cuisine), FindMovie(Natio-
nality, Gendre), FindJob(Location, Type), but no strong

convergence for ReserveRestaurant(Hour, Name), Reserve-
Room(Day, Duration), etc. These results suggest that the

proposed methods do not significantly bias the crowd in

terms of slot ordering. Where a natural ordering exists, it is

being captured by the crowd responses.

While the analysis above aggregates the data across all

elicitation methods, we also investigated whether any of the

three methods is more or less sensitive than the others to the

ordering of slots in the prompt. To quantify how sensitive

the collected language is to the prompt ordering, we

computed an ordering sensitivity score for a frame (in a

given method) as follows: for each pair of templates with

different slot orderings we computed the distance between

the resulting slot ordering distributions in the corresponding

collected data using Hellinger distance. The ordering

sensitivity score is the average of these distances across all

pairs. We compared the ordering sensitivity scores across

methods in a paired (by frame) sign test. For the 19

instantiated frames with two slots, a statistically significant

difference was detected between the list and scenario

methods, with the scenario method being less sensitive

(p<0.01). For the six instantiated frames with three slots, no

significant differences were detected. Further experiments

are needed to better understand the sensitivity of the

methods and how it is affected by the number of slots.

6. DISCUSSION

The analysis in Section 5 suggests that the crowd can

perform the task efficiently and with high accuracy, and that

the methods are capable of eliciting some of the natural

patterns in language.

 An important question with text-based elicitation is

whether the lexical content of the prompts presented to the

crowd significantly influences the language collected. In the

absence of a language gold standard, it is difficult to

compare the biases various elicitation methods might create.

In an effort to understand this phenomenon, we investigate

the sensitivity of the elicited language to the prompt. For

each pair of prompts for a given frame, we calculate the

distance between the prompts (prompt-distance) and the

distance between the corresponding elicited language

(language-distance). We then explore the correlation

between prompt distance and language distance for different

elicitation methods as a measure of lexical sensitivity.

Intuitively, if a method has low sensitivity to the prompts,

the language collected would be similar regardless of how

different the prompts are (the prompts follow the same

semantics). The Spearman rank correlation coefficient was

lowest for the list method =0.08, followed by the scenario

method =0.23, followed by the sentence method =0.43.

These results seem to indicate that the list method is the

least sensitive. We believe that more study is needed to

confirm results about the relative lexical sensitivity of the

methods. One issue is that the prompts for the list and

scenario methods are not independently generated (we

generate a prompt for each slot and compose the list and

scenario), whereas individual prompts are generated for

each slot order in the sentence method. Also, this analysis

aggregates across frames with different number of slots, and

hence does not consider the possible effects of number of

slots on lexical sensitivity.

Other approaches for structured language elicitation can

also be envisioned. One example is priming with images.

While images would eliminate biases due to lexical

variation, an image-based approach could pose design and

authoring challenges, and ambiguities might arise with

attempts to convey semantic content with imagery.

To date, crowdsourcing methods have focused largely on

building consensus and accuracy (e.g. transcription). In

L
o
c
a
ti
o

n
,
D

a
y
,
P

e
rs

o
n

L
o
c
a
ti
o

n
,
P

e
rs

o
n
,
D

a
y

D
a
y
,
P

e
rs

o
n
,

L
o
c
a
ti
o
n

D
a
y
,

L
o
c
a
ti
o

n
,
P

e
rs

o
n

P
e
rs

o
n
,
D

a
y
,

L
o
c
a
ti
o
n

P
e
rs

o
n
,

L
o
c
a
ti
o

n
,
D

a
y

S
a
la

ry
,
L

o
c
a
ti
o
n

,
T

y
p
e

L
o
c
a
ti
o

n
,

T
y
p

e
,
S

a
la

ry

S
a
la

ry
,
T

y
p
e

,
L

o
c
a

ti
o
n

T
y
p

e
,

L
o
c
a
ti
o

n
,
S

a
la

ry

L
o
c
a
ti
o

n
,
S

a
la

ry
,
T

y
p
e

T
y
p

e
,
S

a
la

ry
,
L

o
c
a

ti
o
n

G
e
n

re
,

R
a
ti
n
g
,

N
a
ti
o
n

a
lit

y

R
a
ti
n

g
,
G

e
n

re
,

N
a
ti
o
n

a
lit

y

G
e
n

re
,

N
a
ti
o
n

a
lit

y
,
R

a
ti
n
g

R
a
ti
n

g
,
N

a
ti
o

n
a
lit

y
,
G

e
n

re

N
a
ti
o

n
a
lit

y
,
G

e
n
re

,
R

a
ti
n
g

N
a
ti
o

n
a
lit

y
,
R

a
ti
n
g

,
G

e
n

re

G
e
n

re
,

R
a
ti
n
g
,

N
a
ti
o
n

a
lit

y

R
a
ti
n

g
,
G

e
n

re
,

N
a
ti
o
n

a
lit

y

G
e
n

re
,

N
a
ti
o
n

a
lit

y
,
R

a
ti
n
g

R
a
ti
n

g
,
N

a
ti
o

n
a
lit

y
,
G

e
n

re

N
a
ti
o

n
a
lit

y
,
G

e
n
re

,
R

a
ti
n
g

N
a
ti
o

n
a
lit

y
,
R

a
ti
n
g

,
G

e
n

re

C
u
is

in
e
,
L

o
c
a

ti
o

n
,
P

ri
c
e

L
o
c
a
ti
o

n
,
C

u
is

in
e
,
P

ri
c
e

P
ri
c
e
,
C

u
is

in
e
,

L
o
c
a
ti
o

n

C
u
is

in
e
,
L

o
c
a

ti
o

n
,
P

ri
c
e

C
u
is

in
e
,
P

ri
c
e
,

L
o
c
a
ti
o

n

L
o
c
a
ti
o

n
,
P

ri
c
e
,
C

u
is

in
e

N
u
m

G
u
e

s
ts

,
N

a
m

e
,

T
im

e

N
u
m

G
u
e

s
ts

,
T

im
e
,

N
a

m
e

T
im

e
,
N

u
m

G
u
e

s
ts

,
N

a
m

e

N
a
m

e
,

T
im

e
,
N

u
m

G
u

e
s
ts

T
im

e
,
N

a
m

e
,
N

u
m

G
u

e
s
ts

N
a
m

e
,
N

u
m

G
u
e

s
ts

,
T

im
e

A.ScheduleMeeting B.FindJob C.FindMovie D.FindRestaurant E.ReserveRoom F.ReserveRestaurant

Figure 2. Slot ordering analysis. Top row: Each plot shows the probability of different slot orderings in the collected data

for a given frame. Bottom row: Plots show the probability of different slots orderings in the collected data for a given frame,

conditioned on the slot order in the seed template.

1 2 3 4 5 6

1

2

3

4

5

6

collected order

s
o
u
rc

e
 o

rd
e
r

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1
.

2
.

3
.

4
.

5
.

6
.

collected order

1 2 3 4 5 6

1

2

3

4

5

6

collected order

s
o
u
rc

e
 o

rd
e
r

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1
.

2
.

3
.

4
.

5
.

6
.

collected order

1 2 3 4 5 6

1

2

3

4

5

6

collected order

s
o
u
rc

e
 o

rd
e
r

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1
.

2
.

3
.

4
.

5
.

6
.

collected order

1 2 3 4 5 6

1

2

3

4

5

6

collected order
s
o
u
rc

e
 o

rd
e
r

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1
.

2
.

3
.

4
.

5
.

6
.

collected order

1 2 3 4 5 6

1

2

3

4

5

6

collected order

s
o
u
rc

e
 o

rd
e
r

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1
.

2
.

3
.

4
.

5
.

6
.

collected order

1 2 3 4 5 6

1

2

3

4

5

6

collected order

s
o
u
rc

e
 o

rd
e
r

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1
.

2
.

3
.

4
.

5
.

6
.

collected order

language elicitation, the objective function is more complex;

beyond accuracy (in this case semantic accuracy), we seek

to elicit the natural distribution of language usage across a

population of users. As such, task design and crowdsourcing

controls on the worker population are important. We learned

an important lesson in our first experiment: allowing the

same worker to address multiple instances of the same task

can lead to a lack of diversity. In the second experiment,

using crowdsourcing with more controls enabled us to

engage a wider population. In principle, engaging a wide

population should lead to the construction of a corpus that

better captures the natural distribution of language patterns,

than when the corpus is authored by a single person,

whether that is a crowd worker or a system designer. We

seek in future study, a deeper understanding of the tradeoffs

between providing enough tasks to attract workers and

maintaining engagement, balancing workloads, and

developing and refining these controls in a crowdsourcing

platform.

Another lesson is the challenge of performing method

comparisons based on data collected via crowdsourcing. As

important variables (e.g. maximum number of tasks per

worker, at which time of the day different tasks will be

performed, etc.) cannot be controlled, it is generally

challenging to ensure a balanced design for controlled

experiments. We believe that repeated experiments and,

ultimately, end-to-end evaluations are required to draw

robust conclusions. Future work is needed to investigate the

performance of deployed spoken dialog systems with

language corpora elicited with different methods.

The methods we have discussed focus on eliciting the

corresponding language (lexical form) for a given semantic

form. Successful implementations of such methods may

enable a number of natural language processing tasks. For

instance, for data-driven natural language generation, the

methods are sufficient to collect the required data, as the set

of semantic forms of interest are known to the system

developer. For other tasks, such as developing a spoken

dialog system, the distribution of instantiated semantic

forms, which is required as an input for our methods, is an

important aspect of the corpus that must be collected. This

distribution over semantic forms may still be authored, or

may be collected by transcribing and annotating interactions

of a dialog system with real users.

7. CONCLUSION

We presented a case study of structured natural language

elicitation via crowdsourcing. Specifically, we investigated

three text-based elicitation approaches for collecting

language corresponding to a given semantic form. We

studied the feasibility and accuracy of these approaches, and

analyzed and discussed some of the biases these methods

might introduce in the elicited language. The experiments

and analysis we have conducted indicate that the proposed

methods can be used to efficiently elicit natural language

that matches given semantic forms. At the same time, the

study has brought to the fore several challenges and

opportunities for using crowdsourcing methods to acquire

natural language data. Progress in these areas can lead to

faster development cycles, less overhead, and increased

performance. By providing on-demand low-cost access to

human intelligence, crowdsourcing approaches can enable

natural language systems that learn continuously and

improve over their lifetimes.

8. ACKNOWLEDGMENTS

We thank Ashish Kapoor, Kristina Toutanova, and Chris

Brockett for useful suggestions and advice in the

development of this work. This research was performed

during an internship by William Wang at Microsoft

Research.

9. REFERENCES

[1] Marge, M., S. Banerjee and A. I. Rudnicky, “Using the

Amazon Mechanical Turk for Transcription of Spoken Language”,

In Proc. of ICASSP, 2010.

[2] Yang, Z., B. Li, Y. Zhu, I. King, G. Levow, and H.M. Meng,

Collection of user judgments on spoken dialog system with

crowdsourcing, In Proc. of SLT, 2010.

[3] Lane, I., M. Eck, K. Rottmann and A. Waibel, Tools for

Collecting Speech Corpora via Mechanical-Turk., In Proc. Of

Creating Speech and Language Data with Amazon’s Mechanical

Turk, 2010.

[4] Alonso, O., D. E. Rose, and B. Stewart. Crowdsourcing for

relevance evaluation, In Proc. of SIGIR Forum 42, 2008.

[5] Zaidan, O., C. Callison-Burch, Crowdsourcing Translation:

Professional Quality from Non-Professionals, In Proc. of ACL,

2011.

[6] Burrows, S., M. Potthast, and B. Stein. Paraphrase Acquisition

via Crowdsourcing and Machine Learning. In ACM TIST (to

appear), 2012.

[7] Dolan, W. B., C. Brockett. Automatically Constructing a

Corpus of Sentential Paraphrases. In Proc. of The Third

International Workshop on Paraphrasing, 2005.

[8] Ward, W., and B. Pellom, The CU Communicator System, In

Proc. of IEEE ASRU, 1999.

[9] Gandhe, S., D. DeVault, A. Roque, B. Martinovski, R. Artstein,

A. Leuski, J. Gerten, and D. Traum, From Domain Specification to

Virtual Humans: An integrated approach to authoring tactical

questioning characters, In Proc. of Interspeech, 2008.

[10] Aleven, V., Sewall, J., McLaren, B. M., & Koedinger, K. R.

Rapid authoring of intelligent tutors for real world and

experimental use. In Proc. of ICALT, 2006.

[11] Allen, J. F., B. W. Miller, E. K. Ringger, and T. Sikorski.

1996. A robust system for natural spoken dialog, In Proc. of the

ACL. 1996.

[12] Gorin, A. L., G. Riccardi, J. H. Wright, How may I help you?

In Speech Communication, 1997.

[13] Lathrop, B. et al. A Wizard of Oz framework for collecting

spoken human-computer dialogs: An experiment procedure for the

design and testing of natural language in-vehicle technology

systems, In Proc. ITS, 2004.

http://www.cs.jhu.edu/~ccb/publications/crowdsourcing-translation.pdf
http://www.cs.jhu.edu/~ccb/publications/crowdsourcing-translation.pdf
http://www.uni-weimar.de/medien/webis/publications/papers/stein_2012zb.pdf
http://www.uni-weimar.de/medien/webis/publications/papers/stein_2012zb.pdf

