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1 Introduction

The certainty-factor (CF) model is a method for managing uncertainty in rule-based systems.

Shortliffe and Buchanan (1975) developed the CF model in the mid-1970s for MYCIN, an

expert system for the diagnosis and treatment of meningitis and infections of the blood.

Since then, the CF model has become the standard approach to uncertainty management in

rule-based systems.

When the model was created, many artificial-intelligence (AI) researchers expressed con-

cern about using Bayesian (or subjective) probability to represent uncertainty. Of these

researchers, most were concerned about the practical limitations of using probability theory.

In particular, information-science researchers were using the idiot-Bayes model to construct

expert systems for medicine and other domains. This model included the assumptions that

(1) faults or hypotheses were mutually exclusive and exhaustive, and (2) pieces of evidence

were conditionally independent, given each fault or hypothesis. (See Bayesian Inference
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Methods (qv) for a definition of these terms.) The assumptions were useful, because their

adoption made the construction of expert systems practical. Unfortunately, however, the

assumptions were often inaccurate in practice.

The CF model was created to avoid the unreasonable assumptions in the idiot-Bayes

model. In this article, however, we see that the CF model is no more useful than is the idiot-

Bayes model. In fact, in certain circumstances, the CF model implicitly imposes assumptions

of conditional independence that are stronger than those of the idiot-Bayes model. We trace

the flaws in the CF model to the fact that the model imposes the same sort of modularity on

uncertain rules that we ascribe to logical rules, although uncertain reasoning is inherently less

modular than is logical reasoning. In addition, we examine the belief network, a graphical

representation of beliefs in the probabilistic framework. We see that this representation

overcomes the difficulties associated with the CF model.

2 The Mechanics of the Model

To understand how the CF model works, let us consider a simple example taken from

Bayesian Inference Methods (qv):

Mr. Holmes receives a telephone call from his neighbor Dr. Watson stating

that he hears a burglar alarm sound from the direction of Mr. Holmes’ house.

Preparing to rush home, Mr. Holmes recalls that Dr. Watson is known to be

a tasteless practical joker, and he decides to first call his other neighbor, Mrs.

Gibbons, who, despite occasional drinking problems, is far more reliable.

A miniature rule-based system for Mr. Holmes’ situation contains the following rules:

R1: if WATSON’S CALL then ALARM, CF1 = 0.5

R2: if GIBBON’S CALL then ALARM, CF2 = 0.9

R3: if ALARM then BURGLARY, CF3 = 0.99

2



ALARM

WATSON�S 
CALL

GIBBON�S 
CALL

BURGLARY

0.5

0.9

0.99

Figure 1: An inference network for Mr. Holmes’ situation.

Each arc represents a rule. For example, the arc from ALARM to BURGLARY represents the rule

R3 (“if ALARM then BURGLARY”). The number above the arc is the CF for the rule.

In general, rule-based systems contain rules of the form “if e then h,” where e denotes a piece

of evidence for hypothesis h. Using the CF model, an expert represents her uncertainty in a

rule by attaching a single CF to each rule. A CF represents a person’s (usually, the expert’s)

change in belief in the hypothesis given the evidence. In particular, a CF between 0 and

1 means that the person’s belief in h given e increases, whereas a CF between -1 and 0

means that the person’s belief decreases. Unlike a probability, a CF does not represent a

person’s absolute degree in belief of h given e. In Section 4.3, we see exactly what a CF is

in probabilistic terms.

Several implementations of the rule-based representation display a rule base in graphical

form as an inference network. Figure 1 illustrates the inference network for Mr. Holmes’

situation. Each arc in an inference network represents a rule; the number above the arc is

the CF for the rule.

Using the CF model, we can compute the change in belief in any hypothesis in the

network, given the observed evidence. We do so by applying simple combination functions

to the CFs that lie between the evidence and the hypothesis in question. For example, in

Mr. Holmes’ situation, we are interested in computing the change in belief of BURGLARY,

given WATSON’S CALL and GIBBON’S CALL. We combine the CFs in two steps. First, we

combine CF1 and CF2, the CFs for R1 and R2, to give the CF for the rule R4:

R4: if WATSON’S CALL and GIBBON’S CALL then ALARM, CF4
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We combine CF1 and CF2 using the function

CF4 =






CF1 + CF2 − CF1CF2 CF1, CF2 ≥ 0

CF1 + CF2 + CF1CF2 CF1, CF2 < 0

CF1+CF2
1−min(|CF1|,|CF2|) otherwise

(1)

In Mr. Holmes’ case, we have

CF4 = 0.5 + 0.9− (0.5)(0.9) = 0.95

Equation 1 is called the parallel-combination function. In general, we use this function to

combine two rules that share the same hypothesis.

Second, we combine CF3 and CF4, to give the CF for the rule R5:

R5: if WATSON’S CALL and GIBBON’S CALL then BURGLARY, CF5

The combination function is

CF5 =






CF3CF4 CF3 > 0

0 CF3 ≤ 0
(2)

In Mr. Holmes’ case, we have

CF5 = (0.99)(0.95) = 0.94

Equation 2 is called the serial-combination function. We use this function to combine two

rules where the hypothesis in the first rule is the evidence in the second rule.

If all evidence and hypotheses in a rule base are simple propositions, we need to use only

the serial and parallel combination rules to combine CFs. The CF model, however, also can

accommodate rules that contain conjunctions and disjunctions of evidence. For example,

suppose we have the following rule in an expert system for diagnosing chest pain:

R6: if CHEST PAIN and

SHORTNESS OF BREATH

then HEART ATTACK, CF6 = 0.9
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Further, suppose that we have rules that reflect indirect evidence for chest pain and shortness

of breath:

R7: if PATIENT GRIMACES then CHEST PAIN, CF7 = 0.7

R8: if PATIENT CLUTCHES THROAT then SHORTNESS OF BREATH, CF8 = 0.9

We can combine CF6, CF7, and CF8 to yield the CF for the rule R9:

R9: if PATIENT GRIMACES and

PATIENT CLUTCHES THROAT

then HEART ATTACK, CF9

The combination function is

CF9 = CF6 min(CF7, CF8) = (0.9)(0.7) = 0.63 (3)

That is, we compute the serial combination of CF6 and the minimum of CF7 and CF8. We

use the minimum of CF7 and CF8, because R6 contains the conjunction of CHEST PAIN and

SHORTNESS OF BREATH. In general, the CF model prescribes that we use the minimum of

CFs for evidence in a conjunction, and the maximum of CFs for evidence in a disjunction.

There are many variations among the implementations of the CF model. For example,

the original CF model used in MYCIN treats CFs less than 0.2 as though they were 0 in

serial combination, to increase the efficiency of computation. For the sake of brevity, we will

not describe other variations.

3 An Improvement over Idiot Bayes?

In the simple case of Mr. Holmes, the CF model is an improvement over the idiot-Bayes

model. In particular, WATSON’S CALL and GIBBON’S CALL are not conditionally independent,

given BURGLARY, because even if Mr. Holmes knows that a burglary has occurred, receiving

Watson’s call increases Mr. Holmes belief that Mrs. Gibbons will report the alarm sound.

The lack of conditional independence is due to the fact that the calls are triggered by the
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alarm sound, and not by the burglary. The CF model represents accurately this lack of

independence through the presence of ALARM in the inference network.

Unfortunately, the CF model cannot represent most real-world problems in a way that

is both accurate and efficient. In the next section, we shall see that the assumptions of

conditional independence associated with the parallel-combination function are stronger (i.e.,

are less likely to be accurate) than are those associated with the idiot-Bayes model.

4 Theoretical Problems with the CF Model

Rules that represent logical relationships satisfy the principle of modularity. That is, given

the logical rule “if e then h,” and given that e is true, we can assert that h is true (1) no

matter how we established that e is true, and (2) no matter what else we know to be true.

We call (1) and (2) the principle of detachment and the principle of locality, respectively.

For example, given the rule

R10: if L1 and L2 are parallel lines then L1 and L2 do not intersect

we can assert that L1 and L2 do not intersect once we know that L1 and L2 are parallel

lines. This assertion depends on neither how we came to know that L1 and L2 are parallel

(the principle of detachment), nor what else we know (the principle of locality).

The CF model employs the same principles of detachment and locality to belief updating.

For example, given the rule

R3: if ALARM then BURGLARY, CF3 = 0.99

and given that we know ALARM, the CF model allows us to update Mr. Holmes’ belief

in BURGLARY by the amount corresponding to a CF of 0.99, no matter how Mr. Holmes

established his belief in ALARM, and no matter what other facts he knows.

Unfortunately, uncertain reasoning often violates the principles of detachment and lo-

cality. Use of the CF model, therefore, often leads to errors in reasoning.1 In the remainder

1Heckerman and Horvitz (1987 and 1988) first noted the nonmodularity of uncertain reasoning, and

the relationship of such nonmodularity to the limitations of the CF model. Pearl (1988, Chapter 1) first
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Figure 2: Another inference network for Mr. Holmes’ situation.

In addition to the interactions in Figure 1, RADIO NEWSCAST increases the chance of EARTH-

QUAKE, and EARTHQUAKE increases the chance of ALARM.

of this section, we examine two classes of such errors.

4.1 Multiple Causes of the Same Effect

Let us consider the simple embellishment to Mr. Holmes’ problem given in Bayesian Inference

Methods (qv):

Mr. Holmes remembers having read in the instruction manual of his alarm system

that the device is sensitive to earthquakes and can be triggered by one acciden-

tally. He realizes that if an earthquake had occurred, it would surely be on the

news. So, he turns on his radio and waits around for a newscast.

Figure 2 illustrates a possible inference network for his situation. To the original inference

network of Figure 1, we have added the rules

R11: if RADIO NEWSCAST then EARTHQUAKE, CF11 = 0.9998

R12: if EARTHQUAKE then ALARM, CF12 = 0.95

decomposed the principle of modularity into the principles of detachment and locality.
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The inference network does not capture an important interaction among the propositions.

In particular, the modular rule R3 (“if ALARM then BURGLARY”) gives us permission to

increase Mr. Holmes’ belief in BURGLARY, when his belief in ALARM increases, no matter

how Mr. Holmes increases his belief for ALARM. This modular license to update belief,

however, is not consistent with common sense. If Mr. Holmes hears the radio newscast, he

increases his belief that an earthquake has occurred. Therefore, he decreases his belief that

there has been a burglary, because the occurrence of an earthquake would account for the

alarm sound. Overall, Mr. Holmes’ belief in ALARM increases, but his belief in BURGLARY

decreases.

When the evidence for ALARM came from WATSON’S CALL and GIBBON’S CALL, we had

no problem propagating this increase in belief through R3 to BURGLARY. In contrast, when

the evidence for ALARM came from EARTHQUAKE, we could not propagate this increase

in belief through R3. This difference illustrates a violation of the detachment principle in

uncertain reasoning: the source of a belief update, in part, determines whether or not that

update should be passed along to other propositions.

Pearl (1988, Chapter 1) describes this phenomenon in detail. He divides uncertain

inferences into type types: diagnostic and predictive.2 In an diagnostic inference, we change

the belief in a cause, given an effect. All the rules in the inference network of Figure 2, except

R12, are of this form. In a predictive inference, we change the belief in an effect, given a cause.

R12 is an example of such an inference. Pearl describes the interactions between the two

types of inferences. He notes that, if the belief in a proposition is increased by a diagnostic

inference, then that increase can be passed through to another diagnostic inference—just

what we expect for the chain of inferences from WATSON’S CALL and GIBBON’S CALL to

BURGLARY. On the other hand, if the belief in a proposition is increased by a predictive

inference, then that belief should not be passed through a diagnostic inference. Moreover,

when the belief in one cause of an observed effect increases, the beliefs in other causes should

decrease—just what we expect for the two causes of ALARM.

2Henrion (1987) also makes this distinction.
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We might be tempted to repair the inference network in Figure 2, by adding the rule

R13: if EARTHQUAKE then BURGLARY, CF13 = −0.7

Unfortunately, this addition leads to another problem. In particular, suppose that Mr.

Holmes had never received the telephone calls. Then, the radio newscast should not affect

his belief in a burglary. The modular rule R13, however, gives us a license to decrease Mr.

Holmes’ belief in BURGLARY, whether or not he receives the phone calls. This problem

illustrates that uncertain reasoning also can violate the principle of locality: The validity of

an inference may depend on the truth of other propositions.

To represent accurately the case of Mr. Holmes, we must include a rule for every possible

combination of observations:

if WATSON’S CALL and

GIBBON’S CALL and

RADIO NEWSCAST

then BURGLARY

if NOT WATSON’S CALL and

GIBBON’S CALL and

RADIO NEWSCAST

then BURGLARY

...

This representation is inefficient and is difficult to modify, and needlessly clusters propositions

that are only remotely related. Ideally, we would like a representation that encodes only

direct relationships among propositions, and that infers indirect relationships. In Section 6,

we examine the belief network, a representation with such a capability.

We find the same difficulties in representing Mr. Holmes’ situation with the CF model,

whenever we have multiple causes of a common effect. For example, if a friend tells us that

our car will not start, we initially may suspect that either our battery is dead or the gas

tank is empty. Once we find that our radio is dead, however, we decrease our belief that the
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Figure 3: An inference network for the Chernobyl disaster (from Henrion, 1986).

When we combine CFs as modular belief updates, we overcount the chance of THOUSANDS DEAD.

tank is empty, because now it is more likely that our battery is dead. Here, the relationship

between CAR WILL NOT START and TANK EMPTY is influenced by RADIO DEAD, just as the

relationship between ALARM and BURGLARY is influenced by RADIO NEWSCAST. In general,

when one effect shares more than one cause, we should expect violations of the principles of

detachment and locality.

4.2 Correlated Evidence

Figure 3 depicts an inference network for news reports about the Chernobyl disaster. On

hearing radio, television, and newspaper reports that thousands of people have died of ra-

dioactive fallout, we increase substantially our belief that many people have died. When we

learn that each of these reports originated from the same source, however, we decrease our

belief. The CF model, however, treats both situations identically.

In this example, we see another violation of the principle of detachment in uncertain rea-

soning: The sources of a set of belief updates can strongly influence how we combine those

updates. Because the CF model imposes the principle of detachment on the combination of

belief updates, it overcounts evidence when the sources of that evidence are positively cor-
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related, and it undercounts evidence when the sources of evidence are negatively correlated.

4.3 A Probabilistic Interpretation for Certainty Factors

Heckerman (1986) delineated precisely the limitations of the CF model. He proved that

we can give a probabilistic interpretation to any scheme—including the CF model—that

combines belief updates in a modular and consistent fashion. In particular, he showed that

we can interpret a belief update for hypothesis h, given evidence e, as a function of the

likelihood ratio

λ =
p(e|h, ξ)

p(e|NOT h, ξ)
(4)

In Equation 4, p(e|h, ξ) denotes the probability (i.e., degree of belief) that e is true, given

that h is true, and ξ denotes the background knowledge of the person to whom the belief

belongs. Using Bayes’ theorem (Bayesian Inference Methods, qv), we can write λ as the ratio

of the posterior odds to prior odds of the hypothesis:

λ =
O(h|e, ξ)
O(h|ξ) =

p(h|e,ξ)
1−p(h|e,ξ)

p(h|ξ)
1−p(h|ξ)

(5)

Equation 5 shows more clearly that λ represents a change in belief in a hypothesis, given

evidence. Bayesian Inference Methods (qv) contains a detailed description the likelihood

ratio.

For the CF model, Heckerman showed that, if we make the identification

CF =






λ−1
λ λ ≥ 1

λ− 1 λ < 1
(6)

then the parallel-combination function (Equation 1) follows exactly from Bayes’ theorem. In

addition, with the identification in Equation 6, the serial-combination function (Equation 2)

and the combination functions for disjunction and conjunction are close approximations to

the axioms of probability.

In developing this probabilistic interpretation for CFs, Heckerman showed that each

combination function imposes assumptions of conditional independence on the propositions
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involved in the combinations. For example, when we use the parallel-combination function

to combine CFs for the rules “if e1 then h” and “if e2 then h,” we assume implicitly that

e1 and e2 are conditionally independent, given h and NOT h. Similarly, when we use the

serial-combination function to combine CFs for the rules “if a then b” and “if b then c,” we

assume implicitly that a and c are conditionally independent, given b and NOT b.

With this understanding of the CF model, we can identify precisely the problem with

the representation of Mr. Holmes’ situation. There, we use serial combination to combine

CFs for the sequence of propositions EARTHQUAKE, ALARM, and BURGLARY. In doing so, we

make the inaccurate assumption (among others) that EARTHQUAKE and BURGLARY are con-

ditionally independent, given ALARM. No matter how we manipulate the arcs in the inference

network of Figure 2, we generate inaccurate assumptions of conditional independence.

The assumptions of independence imposed by the CF model are not satisfied by most

real-world domains. Moreover, the assumptions of the parallel-combination function are

stronger than are those of the idiot-Bayes model. That is, when we use the idiot-Bayes

model, we assume that evidence is conditionally independent given each hypothesis. When

we use the parallel-combination function, however, we assume that evidence is conditionally

independent given each hypothesis and the negation of each hypothesis. Unless the space of

hypotheses consists of a single proposition and the negation of that proposition, the parallel-

combination assumptions are essentially impossible to satisfy, even when the idiot-Bayes

assumptions are satisfied (Johnson, 1986).

For example, let us consider the task of identifying an unknown aircraft. Let us suppose

that the aircraft could be any type of commercial or military airplane. Further, let us

suppose that we have clues to the identity of the aircraft such as the airspeed, the fuselage

size, and the distribution of the plane’s heat plume. It may be reasonable to assume that the

clues are conditionally independent, given each possible aircraft type. Under this idiot-Bayes

assumption, however, the clues cannot be conditionally independent, given each aircraft type

and the negation of each aircraft type.
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4.4 A Fundamental Difference

We can understand the problems with the CF model at a more intuitive level. Logical

relationships represent what we can observe directly. In contrast, uncertain relationships

encode invisible influences: exceptions to that which is visible. For example, a burglary

will not always trigger an alarm, because there are hidden mechanisms that may inhibit the

sounding of the alarm. We summarize these hidden mechanisms in a probability for ALARM

given BURGLARY. In the process of summarization, we lose information. Therefore, when we

try to combine uncertain information, unexpected (nonmodular) interactions may occur. We

should not expect that the CF model—or any modular belief updating scheme—will be able

to handle such subtle interactions. Pearl (1988, Chapter 1) provides a detailed discussion of

this point.

5 A Practical Problem with the CF Model

In addition to the theoretical difficulties of updating beliefs within the CF model, the model

contains a serious practical problem. Specifically, the CF model requires that we encode

rules in the direction in which they are used. That is, an inference network must trace a

trail of rules from observable evidence to hypotheses.

Unfortunately, we often do not use rules in the same direction in which experts can most

accurately and most comfortably assess them. Kahneman and Tversky have shown that

people are usually most comfortable when they assess predictive rules—that is, rules of the

form

if CAUSE then EFFECT

For example, expert physicians prefer to assess the likelihood of a symptom, given a disease,

rather than the likelihood (or belief update) of a disease, given a symptom (Tversky and

Kahneman, 1982). Henrion attributes this phenomenon to the nature of causality. In par-

ticular, he notes that a predictive probability (the likelihood of a symptom, given a disease)
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reflects a stable property of that disease. In contrast, a diagnostic probability (the likelihood

of a disease, given a symptom) depends on the incidence rates of that disease and of other

diseases that may cause the manifestation. Thus, predictive probabilities are a more useful

and parsimonious way to represent uncertain relationships—at least in medical domains (see

Horvitz et al., 1988, pages 252–3).

Unfortunately for the CF model, effects are usually the observable pieces of evidence,

and causes are the sought-after hypotheses. Thus, we usually force experts to construct rules

of the form

if EFFECT then CAUSE

Consequently, in using the CF model, we force experts to provide judgments of uncertainty

in a direction that makes them uncomfortable. We thereby promote errors in assessment.

In the next section, we examine the belief network, a representation that allows an expert

to represent knowledge in whatever direction she prefers.

6 Belief Networks: A Language of Dependencies

The examples in this paper illustrate that we need a language that helps us to keep track of

the sources of our belief, and that makes it easy for us to represent or infer the propositions

on which each of our beliefs are dependent. The belief network is such a language.3 Several

researchers independently developed the representation—for example, Wright (1921), Good

(1961), and Rousseau (1968). Howard and Matheson (1981) developed the influence diagram,

a generalization of the belief network in which we can represent decisions and the preferences

of a decision maker. Probabilistic Networks (qv) and Influence Diagrams (qv), respectively,

contain detailed descriptions of these representations.

Figure 4 shows a belief network for Mr. Holmes’ situation. The belief network is a

directed acyclic graph. The nodes in the graph correspond to uncertain variables relevant

to the problem. For Mr. Holmes, each uncertain variable represents a proposition and

3Other names for belief networks include probabilistic networks, causal networks, and Bayesian networks.
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that proposition’s negation. For example, node b in Figure 4 represents the propositions

BURGLARY and NOT BURGLARY (denoted b+ and b−, respectively). In general, an uncertain

variable can represent an arbitrary set of mutually exclusive and exhaustive propositions;

we call each proposition an instance of the variable. In the remainder of the discussion, we

make no distinction between the variable x and the node x that represents that variable.

Each variable in a belief network is associated with a set of probability distributions.

(A probability distribution is an assignment of a probability to each instance of a variable.)

In the Bayesian tradition, these distributions encode the knowledge provider’s beliefs about

the relationships among the variables. Mr. Holmes’ probabilities appear below the belief

network in Figure 4.

The arcs in the directed acyclic graph represent direct probabilistic dependencies among

the uncertain variables. In particular, an arc from node x to node y reflects an assertion by

the builder of that network that the probability distribution for y may depend on the instance

of the variable x; we say that x conditions y. Thus, a node has a probability distribution for

every instance of its conditioning nodes. (An instance of a set of nodes is an assignment of

an instance to each node in that set.) For example, in Figure 4, ALARM is conditioned by

both EARTHQUAKE and BURGLARY. Consequently, there are four probability distributions

for ALARM, corresponding to the instances where both EARTHQUAKE and BURGLARY occur,

BURGLARY occurs alone, EARTHQUAKE occurs alone, and neither EARTHQUAKE nor BUR-

GLARY occurs. In contrast, RADIO NEWSCAST, WATSON’S CALL, and GIBBON’S CALL are

each conditioned by only one node. Thus, there are two probability distributions for each

of these nodes. Finally, EARTHQUAKE and BURGLARY do not have any conditioning nodes,

and hence each node has only one probability distribution.

The lack of arcs in a belief network reflects assertions of conditional independence. For

example, there is no arc from BURGLARY to WATSON’S CALL in Figure 4. The lack of this arc

encodes Mr. Holmes’ belief that the probability of receiving Watson’s telephone call from

his neighbor does not depend on whether or not there was a burglary, provided Mr. Holmes

knows whether or not the alarm sounded.
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p(a+ | b+, e+, ξ) = 0.96

Figure 4: A belief network for Mr. Holmes’ situation.

The nodes in the belief network represent the uncertain variables relevant to Mr. Holmes’ situation.

The arcs represent direct probabilistic dependencies among the variables, whereas the lack of arcs

between nodes represents assertions of conditional independence. Each node in the belief network

is associated with a set of probability distributions. These distributions appear below the graph.

The variables in the probabilistic expressions correspond to the nodes that they label in the belief

network. For example, p (b+|ξ) denotes the probability that a burglary has occurred, given Mr.

Holmes’ background information, ξ. The figure does not display the probabilities that the events

failed to occur. We can compute these probabilities by subtracting from 1.0 the probabilities shown.
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In Probabilistic Networks (qv), Geiger describes the exact semantics of missing arcs.

Here, it is important to recognize, that, given any belief network, we can construct the joint

probability distribution for the variables in any belief network from (1) the probability dis-

tributions associated with each node in the network, and (2) the assertions of conditional

independence reflected by the lack of some arcs in the network. The joint probability dis-

tribution for a set of variables is the collection of probabilities for each instance of that set.

The distribution for Mr. Holmes’ situation is

p (e, b, a, n, w, g|ξ) = p (e|ξ) p (b|ξ) p (a|e, b, ξ) p (n|e, ξ) p (w|a, ξ) p (g|a, ξ) (7)

The probability distributions on the right-hand side of Equation 7 are exactly those distri-

butions associated with the nodes in the belief network.

6.1 Getting Answers from Belief Networks

Given a joint probability distribution over a set of variables, we can compute any conditional

probability that involves those variables. In particular, we can compute the probability of any

set of hypotheses, given any set of observations. For example, Mr. Holmes undoubtedly wants

to determine the probability of BURGLARY (b+) given RADIO NEWSCAST (n+) and WATSON’S

CALL (w+) and GIBBON’S CALL (g+). Applying the axioms of probability (Bayesian Inference

Methods, qv) to the joint probability distribution for Mr. Holmes’ situation, we obtain

p (b+|n+, w+, g+, ξ) =
p (b+, n+, w+, g+|ξ)

p (n+, w+, g+|ξ)

=

P
ei,ak

p (ei, b+, ak, n+, w+, g+|ξ)
P

ei,bj,ak
p (ei, bj, ak, n+, w+, g+|ξ)

where ei, bj, and ak denote arbitrary instances of the variables e, b, and a, respectively.

In general, given a belief network, we can compute any set of probabilities from the

joint distribution implied by that network. We also can compute probabilities of interest

directly within a belief network. In doing so, we can take advantage of the assertions of

conditional independence reflected by the lack of arcs in the network: Fewer arcs lead to less
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computation. Probabilistic Networks (qv) contains a description of several algorithms that

use conditional independence to speed up inference.

6.2 Belief Networks for Knowledge Acquisition

A belief network simplifies knowledge acquisition by exploiting a fundamental observation

about the ability of people to assess probabilities. Namely, a belief network takes advantage

of the fact that people can make assertions of conditional independence much more easily

than they can assess numerical probabilities (Howard and Matheson, 1981; Pearl, 1986). In

using a belief network, a person first builds the graph that reflects his assertions of conditional

independence; only then does he assess the probabilities underlying the graph. Thus, a belief

network helps a person to decompose the construction of a joint probability distribution into

the construction of a set of smaller probability distributions.

6.3 Advantages of the Belief Network over the CF Model

The example of Mr. Holmes’ illustrates the advantages of the belief network over the CF

model. First, we can avoid the practical problem of the CF model that we discussed in Sec-

tion 5; namely, using a belief network, a knowledge provider can choose the order in which

he prefers to assess probability distributions. For example, in Figure 4, all arcs point from

cause to effect, showing that Mr. Holmes prefers to assess the probability of observing an

effect, given one or more causes. If, however, Mr. Holmes wanted to specify the probabilities

of—say—EARTHQUAKE given RADIO NEWSCAST and of EARTHQUAKE given NOT RADIO

NEWSCAST, he simply would reverse the arc from RADIO NEWSCAST to EARTHQUAKE in

Figure 4. Regardless of the direction in which Mr. Holmes assesses the conditional distribu-

tions, we can use any of the available belief-network algorithms to compute the conditional

probabilities of interest, if the need arises. (See Shachter and Heckerman, 1987, for a detailed

discussion of this point.)

Second, using a belief network, the knowledge provider can control the assertions of con-

ditional independence that are encoded in the representation. In contrast, the use of the
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combination functions in the CF model forces a person to adopt assertions of conditional in-

dependence that may be incorrect. For example, as we discussed in Section 4.3, the inference

network in Figure 2 dictates the erroneous assertion that EARTHQUAKE and BURGLARY are

conditionally independent, given ALARM.

Third, and most important, a knowledge provider does not have to assess indirect inde-

pendencies, using a belief network. Such independencies reveal themselves in the course

of probabilistic computations within the network.4 Such computations can tell us—for

example—that BURGLARY and RADIO NEWSCAST are normally independent, but become

dependent, given WATSON’S CALL, GIBBON’S CALL, or both.

Thus, the belief network helps us to tame the inherently nonmodular properties of un-

certain reasoning. Uncertain knowledge encoded in a belief network is not as modular as is

knowledge about logical relationships. Nonetheless, representing uncertain knowledge in a

belief network is a great improvement over encoding all relationships among a set of vari-

ables.
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