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Abstract

We study the task of teaching a machine to classify objects using features and
labels. We introduce the Error-Driven-Featuring design pattern for teaching using
features and labels in which a teacher prefers to introduce features only if they are
needed. We analyze the potential risks and benefits of this teaching pattern through
the use of teaching protocols, illustrative examples, and by providing bounds on
the effort required for an optimal machine teacher using a linear learning algo-
rithm, the most commonly used type of learners in interactive machine learning
systems. Our analysis provides a deeper understanding of potential trade-offs of
using different learning algorithms and between the effort required for featuring
and labeling.

Introduction

Featuring and labeling are critical parts of the interactive machine learning process in which a per-
son and a machine learning algorithm coordinate to build a predictive system (a classifier, entity
extractor, etc.). Unlike the case of using labels alone, little is known about how to quantify the effort
required to teach a machine using both features and labels. In this paper, we consider the problem
of teaching a machine how to classify objects when the teacher can provide labels for objects and
provide features—functions from objects to values. Our aim is to understand the effort required by
a teacher to find a suitable representation for objects, to teach the target classification function, and
to provide guidance to teachers about how to provide features and labels when teaching.

Similar to previous work on active learning and teaching dimension, we take an idealized view of
the cost of labeling and featuring. In particular, we ignore variability in the effort required for these
respective actions. In addition, similar to the work on teaching dimension, we assume an idealized
teacher with complete knowledge about the learner, target classification function and the range of
possible objects that we want to classify.

We analyze the effort required to teach a classification function relative to a given set of feature
functions. This set of features functions can be thought of as a set of teachable functions. There are
several observations that motivate us to quantify teaching effort relative to a set of feature functions.
It is natural to expect that the available set of teachable functions depends on the specific learner that
we are teaching and the types of objects that we want to classify (e.g., images versus text documents).
In addition, the teaching effort required to teach a learner is heavily dependent on the available set
of functions. For instance, if the teacher could directly teach the learner the target classification
function then only one function would be required, and, for wide variety of learning algorithms, the
teacher would only be require to provide two labeled examples in the case of binary classification. Of
course, it is unreasonable to expect that the target classification function can directly be encoded in
a feature function and, in fact, if this is possible then we need not use a machine learning algorithm
to build the predictor. For these reasons, we assume that there is a set of features that are teachable
and define the effort relative to this set of features. In order to capture dependencies among features
we consider a lattice of sets of features rather than a set of features. We use the lattice to enforce
our assumption that features are taught one at a time and to capture other dependencies such as only



allowing features to be taught if all of the constituent features have been taught (e.g., the feature of
tall and heavy can only be included in a feature set if the features of being tall and of being heavy
have previously been defined). Thus, the lattice of feature sets captures the potential alternative
sequences of features that the teacher can use to teach a learner.

We introduce the Error-Driven-Featuring (EDF) design pattern for teaching in which the teacher
prefers to add features only if they are needed to fix a prediction error on the training set. In order to
analyze the risks and benefits of the EDF teaching pattern we consider two teaching protocols, one
which forces the teacher to use the EDF teaching pattern and the other which does not. By quanti-
fying the featuring and labeling effort required by these protocols we can provide a deeper under-
standing of the risks and benefits of the EDF pattern and potential trade-offs between featuring and
labeling more generally. In our analysis we consider two specific learning algorithms; a one-nearest-
neighbor classifier and a linear classifier. Using our measures of teaching cost we demonstrate that
there are significant risks of adding features for high-capacity learning algorithms (1NN) which can
be controlled by using a low-capacity learning algorithm (linear classifier). We also demonstrate that
the additional labeling costs associated with using the EDF teaching pattern for both high and low
capacity learning algorithms can be bounded. The combination of these results suggest that it would
be valuable to empirically evaluate the EFT design pattern for teaching. In analyzing the costs of
the Error-Driven-Featuring protocol we provide new results on the hypothesis specific pool-based
teaching dimension of linear classifiers and pool-based exclusion dimension of linear classifiers. 1

Related Work

There has been a a variety of work aimed at understanding the labeling effort required to build
classifiers. In this section we briefly review related work. First we note that this work shares a
common roots with the work of Meek (2016) but there the focus is on prediction errors rather than
teaching effort.

One closely related concept is that of teaching dimension. The primary aim of this work is to quan-
tify the worst case minimal effort to teach a learner one classification function (typically called a
concept in this literature) from among a set of alternative classification functions. There is a large
body of work aimed at understanding the teaching dimension, refining teaching dimension (e.g.,
extended, recursive) and the relationship between these and other concepts from learning theory
such as the VC-dimension (e.g., Doliwa et al 2014, Balbach 2008, Zilles et al 2011). Our work,
rather than attempting to quantify the difficulty of learning among a set of classifications, is aimed
at quantifying the effort required to teach any particular classification function and to understand the
relationship between adding features and adding labels. The work on teaching dimension abstracts
the role of the learner and rather deals directly with hypothesis classes of classification functions.
Furthermore, the work on teaching dimension abstracts away the concept of features making it use-
less for understanding the interplay between learner, featuring and labeling. That said, several of
the concepts that we use have been treated previously in this and related literature. For instance,
the idea of a concept teaching set is closely related to that of a teaching sequence (Goldman and
Kearns 1995) and our optimal concept specification cost is essentially the specification number of a
hypothesis (Anthony et al 1992); we add concept to distinguish it from representation specification
cost. Other existing concepts include the exclusion dimension (Angluin 1994) and the unique speci-
fication dimension (Hedigus 1995) and the certificate size (Hellerstein et al 1996) which are similar
to our invalidation cost. In addition, Liu et al (2016) define the teaching dimension of a hypothesis
which is equivalent to the specification number and our concept specification cost. They also pro-
vide bounds on the concept specification cost for linear classifiers. Their results are related to our
Proposition 7 but, unlike our result, assume that the space of objects is dense. In the terms of Zhu
(2015), we provide the hypothesis specific teaching dimension for pool-based teaching. For many
domains such as image classification, document classification and entity extraction and associated
feature sets the assumption of a dense representation is unnatural (e.g., we cannot have a fractional
number of words in a document). Like other work on classical teaching dimension, this work does
not consider teaching with both labels and features.

The other body of related work is active learning. The aim of this body of work is to develop algo-
rithms to choose which items to label and the quality of an algorithm is measured by the number

1This paper is an extended version of the paper by Meek et al (2016).
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of labels that are required to obtain a desirable classification function. Thus, given our interest on
both labeling and featuring this body of work is perhaps better named “active labeling”. In contrast
to the work on teaching dimension where the teacher has access to target classification function, in
active learning, the teacher must choose the item to label without knowledge of the target classifi-
cation function. This makes active learning critical to many practical systems. An excellent survey
of research in this area is given by Settles (2012). Not surprisingly, the work on active learning is
related to work on teaching dimension (Hanneke 2007).

Features, Labels and Learning Algorithms

In this section, we define features, labels and learning algorithms. These three concepts are the core
concepts needed to discuss the cost of teaching a machine to classify objects. Thus, these definitions
are the foundation of the remainder of the paper. In addition to providing these definitions, we also
describe two properties of learning algorithms related to machine teaching and we describe two
specific learning algorithms that are used in the remainder of the paper.

We are interested in building a classifier of objects. We use x and xi to denote particular objects and
X to denote the set of objects of interest. We use y and yi for particular labels and Y to denote the
space of possible labels. For binary classification Y = {0, 1}. A classification function is a function
from X to Y .2 The set of classification functions is denoted by C = X → Y . We use c∗ to denote
the target classification function.

Central to this paper are features or functions which map objects to scalar values. A feature fi (or
gi) is a function from objects to real numbers (i.e. fi ∈ X → R). A feature set is a set of features
and we use F, Fi and Gi to denote generic feature sets. The feature set Fi = {fi,1, . . . , fi,p} is
p-dimensional. We use a p-dimensional feature set to map an object to a point in Rp. We denote the
mapped object xk using feature set Fi by Fi(xk) = (fi,1(xk), . . . , fi,p(xk)) where the result is a
vector of length p where the jth entry is the result of applying the jth feature function in Fi to the
object.

We define the potential sequences of teachable features via a lattice of feature sets. Our defi-
nition of a feature lattice enforces the restriction that features are taught sequentially. We use
R = {f1, f2, f3, . . .} to denote the set of all teachable feature functions for a set of objects X .
A feature lattice F for a feature set R is a set of finite subsets of R (thus F ⊆ 2R) such that if
Fi ∈ F then either Fi = ∅ or there is a Fj ∈ F such that Fj ⊂ Fi and |Fj | + 1 = |Fi|. We
restrict attention to finite sets to capture the fact that teachers can only teach a finite number of fea-
tures. We note that the feature lattice also allows us to represent constraints on the order in which
features can be taught. Such constraints arise naturally. For instance, before teaching the concept
of the area of a rectangle one needs to first teach the concepts of length and width (e.g., feature
f3(x) = f1(x)× f2(x) can be added only if both f1 and f2 have been added as features).

These definitions are illustrated in Figure 1.

In order to define a learning algorithm we first define training sets and, because we are considering
learning with alternative feature sets, featurized training sets. A training set T ⊂ X × Y is a set of
labeled examples. We consider only honest training sets, that is, T ⊂ X × Y such that ∀(x, y) ∈ T
it is the case that c∗(x) = y. We say that the training set T has n examples if |T | = n and denote the
set of training examples as {(x1, y1), . . . , (xn, yn)}. A training set is unfeaturized. We use feature
sets to create featurized training sets. For p-dimensional feature set Fi and an n example training set
T we denote the featurized training set Fi(T ) = {(Fi(x1), y1), . . . , (Fi(xn), yn)} ∈ {Rp × Y }n.
We call the resulting training set an Fi featurized training set or an Fi featurization of training set T .

Now we are prepared to define a learning algorithm. First, a d-dimensional learning algorithm `d
is a function that takes a p-dimensional feature set F and a training set T and outputs a function
hp ∈ Rp → Y . Thus, the output hp of a learning algorithm using Fi and training set T can be
composed with the functions in the feature set to yield a classification function of objects (i.e.,
hp ◦ Fi ∈ C). The hypothesis space of a d-dimensional learning algorithm `d is the image of the
function `d and is denoted by H`d (or Hd if there is no risk of confusion). A classification function
c ∈ C is consistent with a training set T if ∀(x, y) ∈ T it is the case that c(x) = y. A d-dimensional

2Note that, while we call this mapping a classification function, the definition encompasses a broad class of
prediction problems including structured prediction, entity extraction, and regression.
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Figure 1: Two example feature lattices each with four feature sets and nine objects. The shape and
color of the objects denote the target binary classification. Each rectangular region is associated with
a d-dimensional feature set and contains a plot of the objects in Rd. The lowest rectangular region
in each panel is associated with an empty feature set which maps all objects to the same point. We
graphically depict this mapping by overlaying the circles on top of the rectangles.

learning algorithm `d is consistent if the learning algorithm outputs a hypothesis consistent with the
training set whenever there is a hypothesis in Hd that is consistent with the training set. A vector
learning algorithm ` = {`0, `1, . . .} is a set of d-dimensional learning algorithms one for each
dimensionality. A consistent vector learning algorithm is one in which each of the d-dimensional
learning algorithms is consistent. Finally, a (feature-vector) learning algorithm L takes a feature set
F , a training set T , and a vector learning algorithm ` and returns a classification function in C. In
particular L`(F, T ) = `|F |(F, T ) ◦F ∈ C. When the vector learning algorithm is clear from context
or we are discussing a generic vector learning algorithm we drop the ` and write L(F, T ).
One important property of a feature set is whether it is sufficient to teach the target classification
function c∗. A feature feature set F is sufficient for learner L and target classification function c∗ if
there exists a training set T such that L(F, T ) = c∗.

A natural desiderata of a learning algorithm is that adding a feature to a sufficient feature set should
not make it impossible to teach a target classification function. We capture this with the following
property of a learning algorithm. We say that a learning algorithm L is monotonically sufficient if it
is the case that if F is sufficient then F ′ ⊃ F is sufficient. Many learning algorithms, in fact, have
this property.

We distinguish two type of training sets that are central to teaching. First, a training set T is a concept
teaching set for feature set F and learning algorithm L if L(F, T ) = c∗. Second, a training set T an
invalidation set if there is an example (x, y) ∈ T that is not correctly classified by L(Fi, T ).

The following proposition demonstrates that, for consistent learning algorithms, finding an invalida-
tion set demonstrates that a feature set is not sufficient for the target classification function.

Proposition 1 If learning algorithm L is consistent and T is an invalidation set for feature set Fi,
target concept c∗, and L then Fi is not sufficient for c∗ and L.

Meek (2016) suggests that identifying minimal invalidation sets might be helpful for teachers want-
ing to identify mislabeling errors and representation errors. In this paper, an invalidation set is an
indication of a representation errors because we assume that the labels in the training set are correct
implying that there are no mislabeling errors.

In the remainder of the paper we consider two binary classification algorithms (Y = {0, 1}). The
first learning algorithm is a consistent one-nearest-neighbor learning algorithm L1NN . Our one-
nearest-neighbor algorithm is a set of d-dimensional one-nearest-neighbor learning algorithms that
use a d-dimensional feature set to project the training set into Rd. The algorithm identifies the set of
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closest points and outputs the minimal label value of points in that set. Thus, if there is more than one
closest point and their labels disagree then the learned classification will output 0. By construction,
this is a consistent learning algorithm.

The second learning algorithm is a linear learning algorithm Llin. Our consistent linear learning al-
gorithm is a set of d-dimensional linear learning algorithms for which the decision surface is defined
by a hyperplane in the Rd or, more formally, by c(x|F,w, b) = sign(w · F (x) + b) where the hy-
perplane is defined in terms of weights (w, b). We consider the linear learner Llin that produces the
maximum margin separating hyperplane for a training set when one exists and outputs the constant
zero function otherwise. Note that the maximum margin separating hyperplane for a training set is
the separating hyperplane that maximizes the minimum distance between points in the training set
and the hyperplane. again, by construction, this is a consistent learning algorithm.

Note that we say that a feature set F is linearly sufficient for the target classification function if F is
sufficient for the target classification function when using a consistent linear learning algorithm.

We finish this section with the following proposition that demonstrates our learning algorithms are
both monotonically sufficient.

Proposition 2 The learning algorithms L1NN and Llin are monotonically sufficient.

Teaching Patterns, Protocols and Costs

In this section, we introduce our Error-Drive-Featuring (EDF) design pattern for teaching and two
teaching protocols. We introduce the teaching protocols as a means to study the risks and benefits of
our EDF teaching pattern.

Teaching patterns are related to design patterns (Gamma et al 1995). Whereas design patterns for
programming are formalized best practices that a programmer can use to design software solutions
to common problems, a design pattern for teaching (or teaching pattern) is a formalized best practice
that a teacher can use to teach a computer.

We use a pair of teaching protocols to study the risks and benefits of our EDF teaching pattern. A
teaching protocol is an algorithmic description of a method by which a teacher teaches a learner. In
order to study a teaching pattern, in one protocol, we force the teacher to follow the teaching pattern
and, in the other, we allow the teacher full control over their actions.

We contrast our teaching protocols by comparing the optimal teaching costs and, in a subsequent
section, bounds on optimal teaching costs. To facilitate the discussion of optimal teaching costs we
next define several teaching costs associated with a feature set.

Optimal Feature Set Teaching Costs

Next we define a set of costs for a feature set. The first measure is a measure of the cost of specifying
the feature set. We measure the representation specification cost of a feature set F by the cardinality
of the feature set |Fi|. This idealized measure does not differentiate the effort required to specify
features. In practice, different features might require different effort to specify and the cost to specify
different features will depend upon the interface through which features are communicated to the
learner.

The second measure of a feature set is a measure of the cost of specifying a target classification
function using the feature set and a given learning algorithm. We measure the optimal concept spec-
ification cost by the size of the minimal concept teaching set for F using learner L if F is sufficient
and to be infinite otherwise.

The third measure of a feature set is a measure of the cost of demonstrating that the feature set is
not sufficient for a given learning algorithm. We measure the optimal invalidation cost of a feature
set F using learner L by the size of the minimal invalidation set if F is not sufficient and infinite
otherwise.

We define the optimal feature set cost vector FSCost(F,L) for a feature set F and learning al-
gorithm L. The feature set cost vector is of length three where the first component is the feature
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Algorithm 1 Open-Featuring

Input learning algorithm L, set of objects
X , a feature lattice F , and target classifica-
tion function c∗.
T = {} // training set T ⊂ X×Y
F = {} // feature set F ∈ F
c = L(T, F );
while ∃x ∈ X such that c(x) 6= c∗(x) do
Action = Choose-action(F, T,L);
if (Action == ”Add-feature”) then
PossFeat =

⋃
i{Fi ∈ Fs.t.|Fi| =

|F |+ 1} \ F
f = Add-feature(PossFeat);
F = F ∪ {f}
c = L(T, F );

else
(x, y) = Add-example(X,F, T,L)
T = T ∪ (x, y);
c = L(T, F );

end if
end while
return c;

Algorithm 2 Error-Driven-Featuring

Input learning algorithm L, set of objects
X , a feature lattice F , and target classifica-
tion function c∗.
T = {} // training set T ⊂ X×Y
F = {} // feature set F ∈ F
c = L(T, F );
while ∃x ∈ X such that c(x) 6= c∗(x) do
(x, y) = Add-example(X,F, T,L);
T = T ∪ (x, y);
c = L(T, F );
while (∃(x, y) ∈ T such that c(x) 6= y)
do

PossFeat =
⋃

i{Fi ∈ Fs.t.|Fi| =
|F |+ 1} \ F
f = Add-feature(PossFeat);
F = F ∪ {f}
c = L(T, F );

end while
end while
return c;

Figure 2: Algorithms for two teaching protocols; Open-Featuring and Error-Driven-Featuring.

specification cost, the second component is the optimal concept specification cost and the third
component is the optimal invalidation cost.

Consider the feature set F2 in Figure 1a. The training set with three objects T = {x2, x5, x8} is a
minimal concept teaching set for F2 and a minimal invalidation set for F1. Thus, we can now specify
the optimal feature set costs for F2: the representation specification cost is |F2| = 1, the optimal
concept specification cost is |T | = 3, the optimal invalidation cost is∞ (i.e., FSCost(F2,L1NN ) =
(1, 3,∞)). The optimal feature set cost vectors for other feature sets are shown in Table 1a.

Analysis of Teaching Protocols

Figure 2 describes two teaching protocols. In Algorithm 1, the teacher is able to choose whether to
add a feature or to add a labeled example. Because the teacher can choose when to add a feature and
when to add a labeled example (i.e., the teacher implements the Choose-action function) we call this
teaching protocol the Open-Featuring protocol. When adding a feature (the Add-feature function),
the teacher selects one of the features that can be taught given the feature lattice F and the teaching
protocol adds the feature to the current feature set and retrain the current classifier. When adding a
label (the Add-example function), the teacher chooses which labeled example to add to the current
training set and the teaching protocol adds the example to the training set and retrains the current
classifier.

In Algorithm 2, the teacher can only add a feature if there is a prediction error in the training set.
From Proposition 1, if we are using a consistent learner we know that this implies that the feature set
is not sufficient and indicates the need to add additional features. Note this assumes that the teacher
provides correct labels. For a related but alternative teaching protocol that allows for mislabeling
errors see Meek (2016). In this protocol, if the current feature set is not sufficient, a teacher adds
labeled examples to find an invalidation set which then enables them to add a feature to improve the
feature representation. This process of creating invalidation sets continues until a sufficient feature
set is identified. An ideal teacher under this protocol would want to minimize the effort to invalidate
feature sets that are not sufficient. The cost of doing this for a particular feature set can be measured
by the invalidation cost. There is a possibility that one can reuse examples from the invalidation sets
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of previously visited smaller feature sets, but the sum of the invalidation costs along paths in the
feature lattice provides an upper bound on the cost of discovering sufficient feature sets.

Given these two protocols is natural to compare costs by the number of features added and the
number of labeled examples that are added in defining the classifier. We can then associate a teaching
cost with each feature set in the feature lattice F . The teaching cost is also a function of the learning
algorithm, and the featuring protocol (Open or Error-driven). The optimal teaching costs for Llin

and L1NN for different feature sets is given in Table 1b. An infinite label cost indicates that the
feature set cannot be used to teach the target classification function using that protocol and learning
algorithm. Because our teaching cost has two components, we would need to choose method to
combine these two quantities in order to discuss optimal teaching policies. Once the teacher has
provided the learner a feature set that is sufficient the teacher needs to teach the concept represented
by the c∗ classification function. The labeling cost required to do this is captured by the concept
specification cost.

Feat. Set L1NN Llin

F1 (0,∞,2) (0,∞,2)
F2 (1,3,∞) (1,∞,3)
F3 (2,7,∞) (2,∞,3)
F4 (2,2,∞) (2,2,∞)
G1 (0,∞,2) (0,∞,2)
G2 (1,9,∞) (1,∞,3)
G3 (1,8,∞) (1,∞,3)
G4 (2,9,∞) (2,3,∞)

(a) Feature set costs for using L1NN

and Llin.

Open Error-Driven
Feat. Set L1NN Llin L1NN Llin

F1 (0,∞) (0,∞) (0,∞) (0,∞)
F2 (1,3) (1,∞) (1,3) (1,∞)
F3 (2,7) (2,∞) (2,7) (2,∞)
F4 (2,2) (2,3) (2,2) (2,3)
G1 (0,∞) (0,∞) (0,∞,) (0,∞)
G2 (1,9) (1,∞) (1,9) (1,∞)
G3 (1,8) (1,∞) (1,8) (1,∞)
G4 (2,9) (2,2) (2,∞) (2,3)

(b) Optimal teaching costs using L1NN and Llin with
the Open-Featuring and Error-Driven-Featuring proto-
cols.

Table 1: Optimal feature set costs and optimal teaching costs for all of the feature sets from Figure 1.

The Open-Featuring protocol affords the teacher more flexibility than the Error-Driven-Featuring
protocol. In particular, assuming that the teacher is an ideal teacher then there would be no reason to
prefer the Error-Driven-Featuring protocol. If, however, the teacher is not an ideal teacher, one not
always able to identify features that improve the representations or one who benefits from inspecting
an invalidation set to identify features, then one might prefer the Error-Driven-Featuring protocol. In
particular, this is a possibility that adding a poor feature can increase the labeling cost. For instance,
when using L1NN , a poor teacher who has taught the learner to use feature f1 might add feature f2
rather than feature f3 significantly increasing the concept specification cost. In the next section we
demonstrate that there is, in fact, unbounded risk for L1NN .

One of the short-comings of the Error-Drive-Featuring protocol is that, once the feature set is suffi-
cient the teacher cannot add another feature. For instance, for the example in Figure 1a, F3 and F4

are inaccessible. This might mean that representations that have lower concept specification costs
cannot be used to teach c∗. For instance, F4 has a concept specification cost of 2 whereas the concept
specification cost of F2 is 3. While this difference is not large, it is easy to create an example where
the costs differ significantly. In contrast, using the Open-Featuring protocol, a teacher can choose
to teach either F2 or F4 trading of the costs of adding features and concept specification (adding
labels).

The use of the Error-Driven-Featuring protocol can mitigate the risk of poor featuring but, as dis-
cussed above, does come with potential costs. An alternative approach to mitigating the risks of
featuring is to use a different learning algorithm. If we use Llin, the potential for a increasing the
cost for concept specification is when adding a feature is significantly limited. This is discussed in
more detail in the next section.
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Bounding Optimal Teaching Cost and Feature Set Costs

In this section, we provide bounds on the optimal feature set teaching costs and optimal teaching
costs for Llin and L1NN with the teaching protocols defined in Section . In this section, we assume
that there is a finite set of realizable objects (i.e., |X| <∞).

Bounding Optimal Feature Set Costs

We provide a set of propositions each of which provides tight bounds for optimal concept specifi-
cation costs and optimal invalidation costs for Llin and L1NN . These propositions are presented in
Table 2 with their full statements with proofs presented in the full paper.

The fact that the optimal concept specification cost is unbounded as a function of the size of the
feature set for L1NN is due to the fact that the 1NN classifier is of high capacity. Proposition 7,
however, bounds the potential increase in effort required to define the concept when adding a feature
for Llin. It is important to note that optimal concept specification cost for Llin can be just two
labeled objects but not in general. In fact, one can construct for d > 1, a set of objects and a feature
set of size d that requires d + 1 objects to specify a linear hyperplane that generalizes to all of the
objects.

Similar to the bound on the optimal concept specification cost, the bound optimal invalidation cost
for Llin (Proposition 9) is tight. This can be demonstrated by constructing, for d ≥ 0 a set of
d + 2 labeled objects in Rd such that any subset of the labeled objects is linearly separable. While
Proposition 9 does provide a bound on the invalidation cost L1NN , this bound for Llin is larger than
that provided by Proposition 8. We suspect, however, that in practice, the invalidation cost for the
linear classifier would typically be far less then d+ 2 for non-trivial d.

Algorithm Concept Spec. Cost Invalidation Cost
Llin ≤ |F |+ 1 (Proposition 7) ≤ |F |+ 2 (Proposition 9)
L1NN unbounded (Proposition 6) =2 (Proposition 8)

Table 2: Summary of propositions bounding the optimal invalidation cost and optimal concept spec-
ification cost for a feature set F using Llin and L1NN .

Bounding Teaching Costs

In this section we consider bounding the cost of teaching a target classification function c∗ using
learning algorithms L1NN and Llin.

First we consider L1NN . Due to Proposition 6, we cannot bound the risk of adding a bad feature and
thus cannot bound the teaching costs for our teaching protocols. We can, however, provide bounds
for our teaching protocols using Llin. The following proposition provides and upper bound on the
teaching cost for a feature set.

Proposition 3 The labeling cost for a sufficient feature set F using an optimal teacher and the
Open-Featuring protocol with learning algorithm Llin is ≤ |F |+ 1.

For the Error-driven-featuring protocol the computation of cost is more difficult as we need to ac-
count for the cost of invalidating feature sets. Proposition 4 demonstrates a useful connection be-
tween the invalidation sets for nested feature sets when using a linear classifier.

Proposition 4 If T is an invalidation set for F , target classification function c∗ and a consistent
linear learner then T is an invalidation set for F ′ ⊂ F .

Finally, the following proposition provides an upper bound on the teaching cost for a feature set for
the learning algorithm Llin.

Proposition 5 The labeling cost for a minimal sufficient feature set F using an optimal teacher and
the Error-Driven-Featuring protocol with learning algorithm Llin is ≤ 2(|F |+ 1).
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Appendix

In this section we provide proofs for Propositions. Several proofs rely on convex geometry and we
assume that the reader is familiar with basic concepts and elementary results from convex geometry.
We denote the convex closure of a set of points by conv(S).

Proposition 1 If learning algorithm L is consistent and T is an invalidation set for feature set Fi,
target concept c∗, and L then Fi is not sufficient for c∗ and L.

Proof Let T be an invalidation set for Fi, target concept c∗ and consistent learning algorithm L.
Aiming for a contradiction, we assume that Fi is sufficient for c∗ and L. From the fact that Fi is
sufficient for target concept c∗ and learning algorithm L then there exists a training set T ′ such
that L(Fi, T

′) = c∗. This implies that there is a classification function in the hypothesis class of the
learning algorithm that is consistent with any (honest) training set including T . This fact and the
fact that T is an invalidation set implies L is not consistent and we have a contradiction. It follows
that Fi is not sufficient.

Proposition 2 The learning algorithms L1NN and Llin are monotonically sufficient.

Proof For L1NN we simply node that adding features makes more distinctions between objects thus
once sufficient any superset will remain sufficient.

For Llin, let d-dimensional feature set F be sufficient for the target classification function. This
means that ∃(w, b) for w ∈ Rd and b ∈ R such that c∗(x) = sign(w · F (x) + b). For F ′ ⊃ F
if we use an offset b′ = b and a weight vector w′ this agrees with w for any feature f ∈ F and
is zero otherwise is equivalent to the classifier defined by (w, b) (i.e., sign(w′ · F ′(x) + b) =
sign(w · F (x) + b)) which proves the claim.

Lemma 1 If finite sets S, T ⊂ Rd that are strictly separable then there exists a subset U ⊆ S ∪ T
such that |U | ≤ d+1 and the maximum margin separating hyperplane defined by U ∩S and U ∩T
separates S and T .

Proof We define the set of points that are the closest points in the convex closure of S and T (i.e.,
CP (S, T ) = {(s, t)|s ∈ conv(S), t ∈ conv(T ),∀s′ ∈ conv(S)∀t′ ∈ conv(T )dist(s, t) ≤
dist(s′, t′)}). The maximum margin hyperplane defined by any two points (s, t) ∈ CP (S, T )
suffice to define a hyperplane that separate S, T (see, e.g., Liu et al 2016). Consider a pair
(s, t) ∈ CP (S, T ). Due the the construction of the set it must be the case that s belongs to some
face of conv(S) and similarly t belongs to some face of conv(T ). In fact, the points are a subset of
the Cartesian product a face of conv(S) and a face of conv(T ) that share one or more points that
are equidistant.

Next we choose a subset of CP (S, T ) on the basis of the faces to which each of the pair of points
belongs. Let dim(x, U) be Euclidean dimension of the minimal face of conv(U) containing x or
be∞ if x is not in a face of conv(U). We define the minimal closest pairs (a subset of CP (S, T ))
to be pairs whose summed face Euclidean dimension is minimal (i.e, MinCP (S, T ) = {(s, t) ∈
CP (S, T )|∀s′ ∈ conv(S),∀t′ ∈ conv(T ), (s′, t′) ∈ CP (S, T ) implies dim(s, S) + dim(t, T ) ≤
dim(s′, S) + dim(t′, T )}
Let (s, t) ∈ MinCP (S, T ). Next we establish that dim(s, S) + dim(t, T ) ≤ d − 1. Suppose this
is not the case, that is, ds = dim(s, S), dt = dim(t, T ) and ds + dt ≥ d. In this case, consider
the ds dimensional ball of variation around s and the dt dimensional ball of variation around t.
Because , ds + dt ≥ d there must be a parallel direction of variation. Rays in this direction starting
at s and t define pairs of points in CP (S, T ). Following this common direction of variation from
both s and t we must either hit a lower dimensional face of conv(S) or conv(T ) which implies that
(s, t) 6∈MinCP (S, T ). We have a contradiction and thus ds + dt ≤ d− 1.

Finally, if dim(s, S) + dim(t, T ) ≤ d − 1 then by applying Carathéodory’s theorem twice we can
represent s via ds + 1 point and t via dt + 1 and thus d + 1 points suffice to define a separating
hyperplane for S, T using a maximum margin hyperplane.
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Proposition 4 If T is an invalidation set for F , target classification function c∗ and a consistent
linear learner then T is an invalidation set for F ′ ⊂ F .

Proof Let T be an invalidation set for F ,c∗, and consistent linear learner L. Suppose that T is not
an invalidation set for F ′. In this case, there are parameters (w′, b′) such that c′(x) = sign(w′ ·
F ′(x) + b′) = L(F ′, T ) is consistent with T . This means that there are parameters (w, b) such that
c(x) = sign(w · F (x) + b) is consistent with T and thus T is not an invalidation set for F which is
a contradiction. Thus T must be an invalidation set for F ′ proving the proposition.

Proposition 3 The labeling cost for a sufficient feature set F using an optimal teacher and the Open-
featuring protocol with learning algorithm Llin is upper-bounded by |F |+ 1.

Proof Follows immediately from Proposition 7.

Proposition 5 The labeling cost for a minimal sufficient feature set F using an optimal teacher and
the Error-driven-featuring protocol with learning algorithm Llin is upper-bounded by 2(|F |+ 1).

Proof Consider the ideal teacher that first provides labels to invalidate subsets of F along some path
to F in the feature lattice F and then provides labels to teach the classification function. Because
F is minimally sufficient consider any subset F ′ ∈ F such that F ′ ⊂ F and |F ′| + 1 = |F |. F ′ is
not sufficient and by Proposition 9 there is an invalidation set of size |F |+ 1. Due to Proposition 4
this invalidation set is an invalidation set for all feature sets along paths in F to F ′ and thus the
examples in this set are sufficient to allow the teacher to add the features in F . In the second phase,
the teacher, by Proposition 7 need only provide at most |F |+1 additional labels to create a concept
specification set. Thus, in the two phases, the optimal teacher need provide at most 2(|F |+1) labeled
examples.

Proposition 6 Adding a single feature to a feature set can increase the concept specification cost
variability (by O(|X|)) when using the 1NN learning algorithm.

Proof The example configuration used in the feature set F3 from the example from Figure 1a can be
extended to arbitrarily many points.

Proposition 7 For any consistent linear learner, if a d-dimensional feature set F is linearly suffi-
cient for the target classification function then the concept specification cost is at most d+ 1.

Proof Let X be our set of objects and target be our target classification function. Define S =
{F (x) ∈ Rd|x ∈ X and c∗(x) = 1} and T = {F (x) ∈ Rd|x ∈ X and c∗(x) = 0}. Because F is
linearly sufficient then there exists a hyperplane separating the positive X+ an negative examples
X−. We then apply Lemma 1 using X+ and X− to obtain the desired result.

Proposition 8 (Meek 2016) If Fi is not sufficient for the target classification function c∗ using
learning algorithm L1NN then the invalidation cost for feature set Fi and L1NN is two.

Proposition 9 (Meek 2016) For any consistent linear learner, if d-dimensional feature set F is not
linearly sufficient for the target classification function then the representation invalidation cost is at
most d+ 2.
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