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ABSTRACT

In the form of 2D image array, Lumigraph captures the complete appearance of an
object or a scene, and is able to quickly render a novel view independent of the
scene/object complexity. Since the data amount of Lumigraph is huge, the efficient storage
and access of Lumigraph are essential. In this paper, we propose a multiple reference frame
(MRF) structure to compress the Lumigraph data. By predicting the Lumigraph view from
multiple neighbor views, a higher compression ratio is achieved. We also implement the
key functionality of just-in-time (JIT) Lumigraph rendering, in which only a small portion
of the compressed bitstream necessary for rendering the current view is accessed and
decoded. JIT rendering eliminates the need to predecode the entire Lumigraph data set,
thus greatly reduces the memory requirement of Lumigraph rendering. A decoder cache
has been implemented to speed up rendering by reusing the decoded data. The trade off
between the computational speed and cache size of the decoder is discussed in the paper.

KEYWORDS: image-based rendering (IBR), Lumigraph, multiple reference frame (MRF)
structure, data compression, just-in-time (JIT) rendering

1. INTRODUCTION

There has been great interest in image-based rendering (IBR) systems recently. By
recording the intensity of light rays passing through every space location and shooting at
every possible direction, over any range of wavelengths and at any time, Adelson and
Bergen [1] stated that the 7D plenoptic function could completely represent a 3D dynamic
scene. By ignoring time and wavelength, McMillan and Bishop [2] defined image-based
rendering (IBR) as generating a continuous plenoptic function from a set of discrete
samples. The Lumigraph [3] and Lightfield [4] presented a clever 4D parameterization of
the plenoptic function if the object (or conversely the camera view) can be constrained in a
bounding box. We refer the technology as Lumigraph in the following discussion, though
the object/scene of both Lumigraph and Lightfield fits the description. By placing the
object in its bounding box which is surrounded by another larger box, the Lumigraph
indexes all possible light rays entering and exiting one of the six parallel planes of the
double bounding boxes. The Lumigraph data is thus composed of six 4D functions, where
the plane of the inner box is indexed with coordinate (u,v) and that of the outer box with
coordinate (s,t). Usually, it is discretized more precisely for the inner bounding box closer
to the object, and more coarsely for the outer bounding box. Alternatively, the Lumigraph
can be considered as six two-dimensional image arrays, with all the light rays coming from
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a fixed (s,t) coordinate forming one image. This is equivalent to set a camera at each
coordinate (s,t) and taking a picture of the object with the imaging plane be the (u,v) plane.
An example of the Lumigraph/Lightfield image array is shown in Figure 1. Note that the
neighboring Lumigraph images are very similar to one another. To create a new view of the
object, we just split the view into its light rays, which are then calculated by interpolating
existing nearby light rays in the image arrays. The novel view is then generated by
reassembling the split rays together.

Lumigraph is attractive because it has information of all views of the object/scene.
With Lumigraph, a scene can be rendered realistically yet fast compared with a top-notch
graphic rendering algorithm such as ray tracing, and regardless of the scene complexity.
However, the data amount of Lumigraph is huge. Using the Lumigraph scene of the fruit
plate (Figure 1) as an example, there are 32 sample points in each axis on the (s,t) plane,
256 sample points in each axis on the (u,v) plane, 3 color samples per light ray, and 6
parallel image planes bounding the object. For such a relatively low resolution Lumigraph
(the object resolution is that of the (u,v) plane, which is only 256x256), the total raw data
amount is 32x32x256x256x3x6=1.125GB. It is huge for storage in harddisk and
distribution on CD, not to say browsing over the Internet. Practical Lumigraph applications
may call for even higher sampling density, and therefore, result in even larger data amount.

The importance of compression has been realized through the birth of Lumigraph.
However, Lumigraph bears some unique characteristics, which have lead to new
challenges in compression. Since Lumigraph consists of array of images, its compression
resembles that of video. However, there is difference. On the one hand, Lumigraph is a 2D
image array, and there is more correlation in Lumigraph than in the 1D video sequences.
On the other hand, the distortion tolerance of Lumigraph is small, as each view of
Lumigraph is static, yet the human visual system (HVS) is much more sensitive to static
distortions than time-variant distortions. Since a rendered view of Lumigraph is a
combination of the image rays, certain HVS properties such as spatial and temporal
masking may not be used. Most important, a compressed image bitstream is usually
decompressed to get back the decoded image, a compressed video bitstream is played
frame by frame, however, a compressed Lumigraph bitstream should not be decompressed
and then rendered. In fact, the decompressed Lumigraph data is so large that most
hardware today has difficulties to handle it. It is therefore essential to maintain the
Lumigraph data in the compressed form, and decode only the contents needed to render the
current view. We call such concept the just-in-time (JIT) rendering. JIT rendering is a key
to design the Lumigraph compression algorithm, and thus, the Lumigraph decoder should
be reasonably fast to accommodate the real-time decoding need.

To accommodate JIT decoding, most technologies used in IBR compression involves
only intraframe coding. That is, the IBR data are segmented into blocks/chunks, and each
block/chunk is compressed independently of each other. Levoy and Hanrahan [4] proposed
a vector quantization (VQ) approach to compress the Lightfield. Sloan and Cohen [3]
proposed to use JPEG (block DCT with run-level Huffman coding) to compress the
Lumigraph. Both VQ and JPEG are fast in decoding, however, the compression
performance of both approaches is limited. Image quality is acceptable at a low
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compression ratio of 25-50:1, and the quality of scene degraded quickly thereafter.
Considering the huge data amount and high redundancy in the Lumigraph scene, better
compression performance is expected. Kiu et al.[9] and Magnor[10] have proposed the use
of an MPEG like algorithm to compress the Lightfield. Their algorithm has achieved a high
efficiency, however, they did not address the problem of JIT rendering, which is crucial in
the Lumigraph application.

In this paper, we propose the use of multiple reference frame (MRF) structure to
compress the Lumigraph image array. A special contribution of the paper is that we achieve
JIT rendering for a highly compressed Lumigraph scene with predictive coding. MRF
bears strong resemblance to the video coding standard such as MPEG or H.26x. The image
array in the Lumigraph scene is classified into two categories – the anchor frame (A) that is
regularly distributed and independently encoded, and the predicted frame (P) that is
referred to a nearby anchor frame through motion compensation and predictively encoded.
Considering the 2D image array structure of the Lumigraph, the P frame in MRF may refer
to any one of its four neighbor A frames. We restrict that the P frame refers only to an A
frame, not another P frame so that the access of an arbitrary frame in the rendering stage
can be reasonably fast. The compressed Lumigraph bitstream is attached with a two-level
hierarchy index structure to enable random access to the compressed bitstream. We have
also implemented a decoder cache to avoid the most recently used content s being decoded
over and over again. The proposed MRF coder not only greatly improves the compression
performance of the Lumigraph, but also spares the decoder from buffering an entire
decoded Lumigraph. It also fits well for Lumigraph browsing over the Internet, as the
codec has a high compression ratio and only decodes the necessary contents to render the
current view.

For simplicity, we focus on the compression and rendering of one of the six image
arrays of the Lumigraph in the following part of the paper. The technology can be easily
extended to a full 3D view of the Lumigraph object. The multiple reference frame (MRF)
compression algorithm is presented in section 2, as well as the two-level hierarchy index
structure of the compressed bitstream. Section 3 discusses the JIT rendering
implementation with the decoder cache. Simulation results and conclusions are presented
in section 4 and 5, respectively.

2. THE MULTIPLE REFERENCE FRAME (MRF) COMPRESSION

The framework of the multiple reference frame (MRF) structure is shown in Figure 2.
Let the Lumigraph be a 2D image array indexed by coordinate (s,t), with pixels inside each
image indexed by coordinate (u,v). The 2D image array is shown in the left part of Figure 2,
where each box represents one image. We select certain images as the reference or anchor
frames (A frames). The rest images are called predicted frames (P frames), which refer to
one of the anchor frames through motion compensation. The A frames are independently
encoded, while only the prediction residue of the P frames is encoded. In the current
implementation, the A frames are located on a regular grid in the (s,t) plane, as shown by
boxes marked with symbol “*” in Figure 2.
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Both anchor and predicted frame are segmented into square blocks and each block is
encoded independently into a unit bitstream. In the current implementation, each square
block is of size 16x16, which we call a macroblock (MB), for its similarity with the
macroblock used in JPEG and MPEG. The size of the macroblock is a compromise of
access granularity, the overhead spent on each macroblock (motion vectors and index
information), and motion compensation efficiency. Each anchor frame is encoded
independently, macroblock by macroblock. The macroblock is further split into six 8x8
subblocks, with four of which luminance subblocks, and the other two chrominance
subblocks which have been subsampled by a factor of 2 in both horizontal and vertical
direction. The subblocks are transformed by a basis-8 discrete cosine transform (DCT),
quantized by an intra Q-table with a quantization scale QA, and then entropy encoded by a
run-level Huffman coder. The whole procedure of macroblock coding is exactly the same
as MPEG I frame coding [5] . Though not the best in terms of compression performance,
the DCT and Huffman algorithm can be quickly inversed so that the macroblocks can be
decoded in great speed. The quantization parameter QA determines the bitrate and the
quality of anchor frame coding. The larger the value QA, the higher the compression ratio,
however, the poorer the quality of reconstructed anchor frames. The quantization and
Huffman tables used in MRF coding are exactly the same as those in MPEG2.

Four neighbor anchor frames are established for each predicted frame. Because the
macroblock of each predicted frame may refer to multiple frames, we name the approach
multiple reference frame (MRF) prediction. In Figure 2 for example, the predicted frame
“☺” has four references which are the anchor frames with arrows pointing to the current
one. A predicted frame only refers to an anchor frame, not another predicted frame. The
predicted frame is also split into macroblocks, and each macroblock is encoded using
motion compensation. For each macroblock, we search in an area around the current
position of the macroblock in its four reference frames a best matching macroblock. A true
best match should minimize the coding length and distortion of the residue error. However,
since such a search is computational expensive, we use more simple criterion, i.e., the
minimum mean square error (MSE) criterion that minimize the energy of the difference
between the current macroblock and the matching one. A reference vector is transmitted
for each macroblock of the predicted frame, indicating the position of the matching
macroblock and its reference frame. After that, the difference between the current
macroblock and its matching one, or the prediction residue, is encoded again through 8x8
DCT, an inter Q-table quantization with controlling parameter QP, and run-level Huffman
coding. Because only the residue is encoded, typically it costs much few bits to encode a
predicted frame than an anchor frame. The operation is similar to MPEG P frame coding,
except that MPEG P frame has only one reference frame, and the reference frame may be
either an I or a P frame. By enabling multiple frames as references, we improve the
prediction efficiency with a price of two additional bits per macroblock for index.  The
overhead for using the multiple reference frames may be reduced if we encode the index of
the reference frame, because the nearest anchor frame is more probable to be the best
reference. By referring the predicted frames only to the anchor frames, we reduce the
number of accessed frames to render an arbitrary Lumigraph view. Such easy data access is
critical for just-in-time (JIT) rendering of the Lumigraph scene.
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There are more advanced motion models, such as the affine motion model [6] and the
perspective motion model [7] . A two-stage motion compensation method may be used [8] ,
which consists of global motion and local affine motion compensation. They achieve better
motion compensation with more coding overhead for the motion parameters and much
more complexity in obtaining the parameters. But in the current implementation, we prefer
the simpler translation-based motion model due to the concern of the rendering speed.

The Lumigraph compression engine with MRF prediction is shown in Figure 3. Given
a Lumigraph image array and the quality control parameters QA and QP, we first encode all
anchor frames. After that, we decompress the anchor frames and use them as references for
P frame coding, as the decoder can only access the compressed anchor frames, not the
original ones. The predicted frames are then encoded, with each macroblock MRF
predicted and its residue compressed. All the compression results are then fed into a
bitstream, with a two-level hierarchical index table designed for easy random access. The
first level of the index table resides in the head of the compressed Lumigraph bitstream,
and records the encoded bitstream length of each individual frame, for both the A and P
frame. A second level index table is stored within the bitstream of each compressed frame,
and records the compressed bitstream length of each individual macroblock. With the
two-level index tables, we may locate and access the compressed bitstream of any
macroblock in any frame very quickly. The overhead added by the two-level index table is
not trivial, especially at high compression ratio. The current implementation incurs a table
overhead of 10% of the entire bitstream at a compression ratio 100:1, which increases to
30% when the compression ratio reaches 160:1.

3. JUST-IN-TIME RENDERING

We do not decode the entire set of Lumigraph scene any time during the rendering.
Only the data necessary to render the current view are accessed and decoded right in time,
interpolated and rendered on the screen. The concept is termed just-in-time (JIT) rendering.
JIT rendering not only spares the huge memory required to buffer the entire Lumigraph
scene, but also speeds up the Internet browsing of the Lumigraph as only the compressed
data corresponding to the current view needs to be streamed over the Internet during
browsing. The implementation of JIT is rather straightforward for compression algorithms
that involve only local block access and fixed length coding, such as the spatial domain
vector quantization (VQ) or the block truncation coding (BTC)[11] . However, the
compression performance of such algorithms is limited. We implement JIT first time for a
high compression ratio Lumigraph codec with frame prediction. To facilitate JIT rendering,
we have built the two-level hierarchy index table inside the compressed bitstream so that
each macroblock can be accessed independently. Moreover, cache has been established for
both the anchor (A) and predicted (P) frame so that constantly accessed area needs not to be
decoded again and again.

The JIT rendering flow is driven by the rendering engine, and runs as follows. When
the Lumigraph viewer is launched, the two-level hierarchy index table is first decoded
from the bitstream. When a new request is sent by the user to render a view of the
Lumigraph, the rendering engine splits the view into multiple rays, where each ray passes
through two parallel planes (u,v) and (s,t), and the intersecting coordinate locates the ray in
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the Lumigraph data set. Since the coordinate may not be integral, the ray is calculated
through a 4D bilinear interpolation in the (u,v,s,t) space with at most 16 rays. Up till now,
the operation is exactly the same for any Lumigraph viewer. These 16 rays are accessed
from the Lumigraph decoder. As shown in Figure 4, for each accessed ray (u,v,s,t), its
associated macroblock is located and checked if it has already been decoded and stored in
the cache. For instance, if the ray belongs to an A frame, the anchor frame cache is checked,
otherwise, the predicted frame cache is checked. If the macroblock is in cache, the intensity
of the ray is returned to the rendering engine. Otherwise, the macroblock is decoded from
the bitstream with the assistance of the two-level index table, put in the cache and accessed.
The macroblock of the anchor frame is directly decoded from the compressed bitstream.
However, to decode the macroblock of a predicted frame, its referred macroblocks in the
anchor frame must be decoded first. There may be up to four referred macroblocks as the
motion vector may not point to the start position of a macroblock. We check if the referred
macroblocks are in cache, and if they are not, they are decoded from the compressed
bitstream first. After all the referred anchor frame macroblocks are available, the
prediction residue of the current macroblock is decoded and added to the motion
compensated macroblock, and the resultant decoded P frame macroblock is stored in the P
frame cache for later access.

In the current implementation, the combined size of anchor and predicted frame cache
is around 800KB, which holds roughly 8 YUV images at resolution 256x256. This is only a
fraction of the entire Lumigraph raw data set, which is 200MB. Besides, the cache size
grows slower relative to the size of the Lumigraph data. If the resolution doubles, we can
expect that the Lumigraph data size will increase by 16 folds, i.e., double in each of the
u,v,s and t axis. However, the cache size only needs to quadruple, as it is more a factor of
the image resolution at the (u,v) plane. A random replacement cache strategy is
implemented for the management of the cache. Any time the anchor or the predicted frame
cache is full and a new macroblock is to be decoded, we randomly drop one of the
macroblocks in cache to leave room for the new one.

4. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have implemented a Lumigraph encoder with the multiple reference frame (MRF)
structure and a just-in-time (JIT) Lumigraph decoder. A running scene of the JIT
Lumigraph viewer is shown in Figure 5. The JIT Lumigraph viewer can run real-time on a
desktop with Pentium II 300 CPU and 64MB RAM, without specific optimization. The test
Lumigraph scene is a head rendered from the visible human project. As mentioned above,
the data set is only one of the six parallel planes of the Lumigraph. The sampling resolution
of the Lumigraph is 256x256 in the (u,v) plane and 32x32 in the (s,t) plane.

In the first experiment, we compare the compression efficiency of the multiple
reference frame (MRF) algorithm with baseline JPEG. The rate control is turned off in
MRF compression, i.e., the predicted frame quantization scale QP is set to be equal to twice
the anchor frame quantization scale QA : QP=2QA=2Q, where scale Q controls the MRF
compression ratio and the quality. We compare only the compression performance of JPEG
and MRF, and do not count the overhead of the two-level index table. Note that if random
access functionality is implemented in JPEG compressed Lumigraph, a two-level index
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table is needed too, and thus ignoring the table is a fair comparison with same functionality.
The subsampling distance of the anchor frame is 4, thus 1/16th of the frames are anchor
frames. Shown in Figure 6, the horizontal axis is the compression ratio, and the vertical
axis is the average peak signal to noise ratio (PSNR), which is calculated as follows:
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where mse is the mean square error, and E(⋅) is the average operation. f and f̂  are the
original and decoded Lumigraph data set, respectively. A curve towards upper right corner
of the figure indicates a larger PSNR at the same compression ratio, and thus superior
compression performance. It is obvious from the figure that the MRF-based Lumigraph
compression is superior to the algorithm with only intra frame coding. The compression
ratio of MRF nearly doubles that of the JPEG compression, especially at low bit rate.

The optimal distance between anchor frames is investigated in Figure 7. The test
Lumigraph scene is compressed with sampling distance 2, 4, 6 and 8, with all the other
compression control parameters the same. The curves of compression ratio versus the
PSNR are shown in Figure 7. It is observed that for the visible human head, a sampling
distance of 2 is optimal for compression ratio below 80:1, and a sampling distance of 4 is
optimal for compression ratio beyond 80:1. Since MRF will be used mostly for
compression ratio above 80:1, a distance of 4 is selected for the other experiments.

In Figure 8, we compare the MRF Lumigraph compression with the single reference
frame (SRF) approach, which is almost the same as MRF except that each macroblock of a
predicted frame refers to only one of the closest anchor frame. In case there are more than
one closest anchor frames with equal distance, the frame toward upper-left corner will be
selected. MRF outperforms SRF for around 0.5dB in PSNR at the same compression ratio,
or 5.6% in compression ratio at the same PSNR. Therefore, the multiple reference frame
structure and the 2 additional bits used as reference (not entropy coded yet) are justified in
Lumigraph compression.

The size of the macroblock cache versus the decoding speed is investigated in Figure 9.
The horizontal axis is the size of the cache, in terms of the number of macroblocks. The
axis is numbered with a base-2 logarithmic coordinate. Therefore, coordinate 5 stands for
25=32 macroblocks. The vertical axis is the average number of macroblocks newly
decoded while rendering a view. We use a designed sequence of views for this experiment.
Two curves are drawn in Figure 9. The solid curve corresponds to a cache design with a
larger anchor frame cache, and the dashed curve corresponds to a design with a larger
predicted frame cache. The ratios between anchor and predicted cache for the two cases are
2:1 and 1:2, respectively. It shows that the number of average decoded macroblocks
decreases steeply as the total cache size increases from 32 (coordinate 5) to 256 (coordinate
8) macroblocks, but the decrease slows down for cache size beyond 256 macroblocks. It is
observed that with the same cache size, more predicted frame cache leads to less decoded
macroblocks per view. Moreover, with a cache larger than 512 macroblocks, the rendering
speed difference between more anchor and more predicted frame cache becomes insensible.
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For global optimization, a cache size of 1024 macroblocks is used in our implementation,
which occupies a memory of only 0.8MB.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, a MRF Lumigraph compression scheme is proposed. The algorithm
significantly outperforms the intraframe Lumigraph compression schemes such as VQ or
JPEG, yet still provides real time rendering that is not supported in a video-like coder. It
outperforms JPEG Lumigraph compression as much as two times. A two-level index table
is inserted into MRF compressed bitstream so that the Lumigraph may be rendered just-
in-time (JIT), with the contents needed to render the current view accessed and decoded in
real time. A JIT Lumigraph viewer can run smoothly on a desktop PC with Pentium II 300
CPU and 64MB RAM. With better tuning, it is possible to run the Lumigraph viewer at an
even lower speed.

The current work may be improved in a number of ways. Lumigraph consists of image
frames formed through regular motion of camera. By modeling the camera motion, we can
achieve a more accurate prediction of neighbor images. We may also use multi-resolution
scheme, such as DWT (discrete wavelet transform) for the residue transform. The entropy
coding may also be made better through the use of bitplane coding.
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Figure 5 Running scene of the just-in-time Lumigraph viewer
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