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Abstract
We present a new approach to general-activity human

pose estimation from depth images, building on Hough
forests. We extend existing techniques in several ways: real
time prediction of multiple 3D joints, explicit learning of
voting weights, vote compression to allow larger training
sets, and a comparison of several decision-tree training ob-
jectives. Key aspects of our work include: regression di-
rectly from the raw depth image, without the use of an arbi-
trary intermediate representation; applicability to general
motions (not constrained to particular activities) and the
ability to localize occluded as well as visible body joints.
Experimental results demonstrate that our method produces
state of the art results on several data sets including the
challenging MSRC-5000 pose estimation test set, at a speed
of about 200 frames per second. Results on silhouettes sug-
gest broader applicability to other imaging modalities.

1. Introduction
Estimation of the pose of the human body from images

has been a goal of computer vision for decades, and the
recent availability of high-speed depth sensors has made re-
altime body tracking a reality [13]. However, even with
depth images, the best existing systems exhibit failures
when faced with unusual poses, occlusion, sensor noise, and
the constraints of super-realtime operation (i.e. with a bud-
get of a fraction of the total processor cycles). In this pa-
per we combine some ideas from the regression-based ap-
proaches that have been a staple of monocular 2D human
pose estimation [1, 19, 10, 15] with the tools of high-speed
object recognition based on decision trees.

In particular, we address the task of general-activity pose
estimation [19], where the subjects are assumed capable of
any motion, rather than introducing a prior restricting the
range of motions. We assume a system architecture where a
fast discriminative process predicts a set of candidate joint
positions from each image independently, which is fed to
a ‘downstream’ kinematic tracker, for example a generative
model such as [4], in order to produce final pose estimates.
Our focus in this paper is on the first phase: designing a
fast algorithm which generates a high-quality shortlist of
candidates for each joint position.

A common theme in many recent approaches for human
pose estimation has been the focus on localizing different
body parts [2, 16, 18]. For example, Shotton et al. [18],
which appears to represent the state of the art as imple-
mented in the Kinect system, works by segmenting the dif-

ferent human body parts using a random forest classifier.
The resulting segmentation is used to localize the parts’
spatial modes, which in turn are used for predicting par-
ticular joint locations. Such classification approaches are
extremely efficient and have been shown to obtain good re-
sults, but suffer from a number of problems:
• the methods require an arbitrary definition of body

parts that roughly align with the body joints;
• the surface segmentation modes lie on the surface,

whereas joints are inside the body; and
• the location of a joint cannot be estimated when the

associated part is occluded.
In contrast, the regression-based approaches cited above
provide a direct prediction of the joint positions, even un-
der occlusion. However, even with an appropriate image
descriptor, few of the approaches can run at very high
speed, because the regressors used typically require com-
parison of the descriptors with a potentially large collection
of relevance vectors (even after sparsification) for activity-
independent estimation [19].

A related problem is solved in object localization. For
example, in the implicit shape model (ISM) [11], visual
words are used to learn voting offsets to predict 2D object
centers. ISM has been extended in two ways relevant to
this paper’s work. Müller et al. [14] apply ISM to body
tracking by learning separate offsets for each body joint.
Gall and Lempitsky [7] replace the visual word codebook of
ISM by learning a random forest in which each tree assigns
every image pixel to a decision-tree leaf node at which is
stored a potentially large collection of votes. This removes
the dependence of ISM on repeatable feature extraction and
quantization, as well as the somewhat arbitrary intermediate
codebook representation. Associating a collection of ‘vote
offsets’ with each leaf node/visual word, these methods then
accumulate votes to determine the object centers/joint po-
sitions. Advantages over the body-part-based methods in-
clude: pixels which belong to different body parts or at dif-
ferent locations in the image can combine their votes; and a
single depth pixel can vote for the location of any subset of
joints. Another, somewhat different, random forest based
method for pose estimation was proposed by [17]. Their
method quantizes the space of rotations and gait cycle and
using classification forests to approximate the gait/rotation
regression problem, but does not directly produce a detailed
pose estimate.

Our method may be seen as a novel combination of [7]
and [14], with the following additional contributions:



• We examine several regression and classification ob-
jective functions for decision tree learning, showing
that a pure classification objective based on body parts
for learning tree structure combined with leaf-node
regression models for predicting continuous outputs
yields best results.
• We employ regression models that compactly summa-

rize the offset distributions at leaf nodes (‘vote com-
pression’), which not only make our method much
faster but also much more accurate compared to [7].
• We learn the model hyper-parameters that weight

votes, yielding a significant accuracy increase.
• Our novel use of reservoir sampling, vote compression,

and test-time subsampling enables training from large
data sets and permits super-realtime test performance.

2. Data
The Kinect sensor [13] comprises both a traditional RGB

camera feed and a structured light depth feed. The depth
readings are calibrated, giving a per-pixel scene distance
in meters at high resolution. Depth cameras bring many
advantages to pose estimation including easy background
subtraction, color and texture invariance, and ease of syn-
thesizing realistic training data. In this work we use only
the depth information and assume foreground/background
separation. Using just depth allows tracking in the dark and
keeps computation cost low.

Despite the benefits of depth imaging, humans come in
a huge range of shapes, sizes and poses. We employ the
training data from [18] where the use of a highly varied
synthetic training data set was suggested, such that a classi-
fier might learn invariance to shape, size and pose. Driven
by a large corpus of general-activity motion capture data
retargetted to diverse body shapes and sizes, this data set
contains hundreds of thousands of distinct rendered depth
images with ground truth body joint positions. Artificial
noise, calibrated to match the Kinect sensor, was added.
Since we address the problem of static body pose recog-
nition, our training and testing algorithms operate on many
single frames rather than sequences. For the experiments
in this paper we aim to predict the 3D locations of 16 body
joints: head, neck, shoulders, elbows, wrists, hands, knees,
ankles, feet. We also evaluate on silhouette data, where the
depth images are flattened to a fixed depth.

3. Joint Position Regression
Our algorithm infers the 3D position of several body

joints by aggregating votes cast by a regression forest. In
this section we describe regression forests: first how they
are used at test time, and then how they are trained.

A regression forest is an ensemble of decision trees [3]
that predicts continuous outputs [6]. Due to space limita-
tions, we assume the reader is acquainted with the well-
known classification random forest, e.g. [12]. Each binary

decision tree consists of split nodes and leaf nodes: the split
nodes contain tests which evaluate image features to de-
cide whether to branch to the left or right child; the leaf
nodes contain some prediction (either categorical for classi-
fication, or continuous for regression).

At the split nodes, we employ the features from [18]
which compare the depth at nearby pixels to a thresh-
old. Building on those used in [12], these features are ex-
tremely fast to evaluate, and additionally are depth-invariant
and have been shown to discriminate human appearance in
depth images well.

At each leaf node l we store a distribution over the rel-
ative 3D offset to each body joint j of interest (potentially
to all joints), i.e. a continuous regression output. The use of
large training sets means that storing all the offsets seen at
training time [7] would be prohibitive, and we must instead
use a compact representation of the distribution. Further-
more, even for fairly deep trees, we observe highly multi-
modal offset distributions (see Fig. 2). For many nodes and
joints, approximating the distribution over offsets as a Gaus-
sian would thus be inappropriate. We instead represent the
distribution using a few 3D relative vote vectors ∆ljk ∈ R3,
obtained by taking the centers of the K largest modes (in-
dexed by k) found by mean shift.1 Unlike [14], we assign
a confidence weight wljk to each vote, given by the size of
its cluster. Our experiments in Sec. 4.3 highlight the impor-
tance of this. We refer below to the set of relative votes for
joint j at node l as Vlj = {(∆ljk, wljk)}Kk=1.

In our approach, and in contrast to [11, 7], we store very
few relative votes at each leaf node, e.g. K = 1 or 2. While
the main reason for keeping K small is for efficiency, we
also empirically observe (Sec. 4.3) that increasing K be-
yond 1 gives only a very small increase in accuracy.

3.1. Inference
We detail the test time inference in Algorithm 1, whereby

the set Zj of absolute votes cast by all pixels for each body
joint j is aggregated using mean shift.

Note that only those relative votes that fulfil a per joint
distance threshold λj are used.2 This threshold prunes out
long range predictions which are unlikely to be reliable, and
was found to improve accuracy considerably. Following
[18], we re-weight the confidence of each relative vote to
compensate for observing fewer pixels when imaging a per-
son standing further from the camera. Optionally, the set Zj

can be sub-sampled to dramatically improve speed while
maintaining high accuracy (Fig. 7(c)). We include results
below evaluating both taking the top N weighted votes or
instead taking N randomly sampled votes.

To aggregate the absolute votes Zj , we define per joint
a continuous distribution over world space z′ using a Gaus-

1We use K to indicate the maximum number of relative votes for each
joint. Some leaf nodes may store fewer than K votes for some joints.

2The threshold could equivalently be applied at training time.
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Figure 1. Aggregation of pixel votes at test time. Each pixel (black square) casts a 3D vote (orange line) for each joint. Mean shift is
used to aggregate these votes and produce a final set of hypotheses for each joint. Note accurate predictions of internal body joints even
when occluded. The highest confidence hypothesis for each joint is shown. NB ‘left’ refers to the user’s left as if looking in a mirror.

sian Parzen density estimator as

pj(z
′) ∝

∑
(z,w)∈Zj

w · exp

(
−
∥∥∥∥z′ − z

bj

∥∥∥∥2
2

)
, (1)

where bj is a learned per-joint bandwidth (see Sec. 3.2.2).
We employ mean shift [5] to efficiently find the modes of
this distribution3, which form our 3D position hypotheses
for each joint. We get a final confidence for each joint hy-
pothesis by summing up the depth-adjusted weightsw of all
votes that reached each mode. This was found to work con-
siderably better than using the inferred density at the mode.

The proposal of multiple hypotheses for each joint al-
lows us to capture the inherent uncertainty in the data. Note
how our approach can, in contrast to [18], predict joints that
lie behind the depth surface or are occluded or outside the
image frame. To illustrate inference, each pane of Fig. 1
shows an input depth image, the top 50 votes cast for a tar-
get joint, and the highest scoring hypothesis.

3For extra speed we fix the set of neighbors used to compute the mean
shift vectors after the first iteration. This has little effect on accuracy in
practice.

Algorithm 1 Inferring joint position hypotheses
1: // Collect absolute votes
2: initialize Zj = ∅ for all joints j
3: for all pixels q in the test image do
4: lookup 3D pixel position xq = (xq, yq, zq)

>

5: for all trees in forest do
6: descend tree to reach leaf node l
7: for all joints j do
8: lookup weighted relative vote set Vlj

9: for all (∆ljk, wljk) ∈ Vlj do
10: if ‖∆ljk‖2 ≤ distance threshold λj then
11: compute absolute vote z = ∆ljk + xq

12: adapt confidence weight w = wljk · z2q
13: Zj := Zj ∪ {(z, w)}
14: // Aggregate weighted votes
15: sub-sample Zj to contain N votes
16: aggregate Zj using mean shift on Eq. 1
17: return weighted modes as final hypotheses

3.2. Training
Training consists of estimating the structure and features

of the trees, the set of relative votes Vlj to each joint at
each leaf, and the hyper-parameters of the model. An ideal
learning algorithm would jointly optimize all these compo-
nents to maximize our final accuracy metric (mean aver-
age precision) on the training data, which we do for several
hyper-parameters. However, for the scale of our problem,
this is sadly infeasible to do for all model parameters, and
so we employ approximations whereby the tree structure is
learned separately from the relative votes at the leaves and
from the hyper-parameters. Despite these approximations,
our evaluation in Sec. 4 demonstrates state of the art ac-
curacy. We now describe the three stages in our training
procedure, describing first how to learn the relative votes
given an arbitrary binary decision tree structure, then the
optimization of hyper-parameters, and finally how to train
the tree structure.
3.2.1 Learning the leaf node regression models
Algorithm 2 describes how the set of relative votes is
learned, given a known tree structure: each training pixel
induces a relative offset to all ground truth joint positions
and these are clustered using mean shift.

The problem addressed in this work requires a large
number of training pixels (10s or 100s of millions). Vot-
ing with all training offsets for all body joints at test time
(as done in Hough forests) is prohibitively slow for a real
time system. Furthermore, storing all offsets in a Hough
forest to predict 16 joint locations, using 10k images × 2k
pixels per image requires roughly 10GB.

We thus summarize the offset distributions observed in
the training set to reduce memory usage and improve test
time speed. Looking at the empirical offset distributions
(see Fig. 2), we typically observe scattered outliers and
a few denser clumps. Simple options for summarization,
such as sub-sampling the offsets uniformly or fitting a sin-
gle Gaussian model, are inappropriate due to these outliers
and multi-modality. We instead cluster the offsets per leaf
per joint to obtain the set of relative votes Vlj . Mean shift
is used again for clustering, on a density estimator similar
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Figure 2. Empirical offset distributions. We visualize the set of 3D relative offsets for four body joints at two different leaf nodes each.
For each set of axes we plot an orange square at the offset from each training pixel reaching a particular node to the target joint. (The red,
green, and blue squares indicate respectively the positive x, y, and z axes; each half-axis represents 0.5m in world space). We show training
images for each node illustrating the pixel that reached the leaf node as a cyan cross, and the offset vector as an orange arrow. Note how the
decision trees tend to cluster pixels with similar local appearance at the leaves, but the inherent remaining ambiguity results in multi-modal
offset distributions. Our algorithm compresses these distributions to a very small number of modes while maintaining high test accuracy.

to Eq. 1, though here defined over relative offsets, without
weighting, and using a learned bandwidth b?. The positions
of the modes form the relative votes ∆ljk and the numbers
of offsets that reached each mode form the vote weights
wljk. In Sec. 4.3, we show that there is no benefit to storing
more than K = 2 relative votes per leaf.

To maintain practical training times and keep memory
consumption reasonable we use reservoir sampling [20] to
maintain a fixed-size unbiased sample of C offsets. We dis-
cuss the effect of varying the reservoir capacity in Sec. 4.3.
In our unoptimized implementation, learning these relative
votes for 16 joints in 3 trees trained with 10k images took
approximately 45 minutes on a single 8-core machine. The
vast majority of that time is spent traversing the tree; the use
of reservoir sampling ensures the time spent running mean
shift totals only about 2 minutes.

The trained model can be thought of as a Gaussian mix-
ture model (GMM) with shared isotropic variance b2j . Note
however that taking the top K modes found by mean shift

Algorithm 2 Learning relative votes
1: // Collect relative offsets
2: initialize Rlj = ∅ for all leaf nodes l and joints j
3: for all pixels q in all training images i do
4: lookup ground truth joint positions zij

5: lookup 3D pixel position xiq

6: compute relative offset ∆iq→j = zij − xiq

7: descend tree to reach leaf node l
8: store ∆iq→j in Rlj with reservoir sampling
9: // Cluster

10: for all leaf nodes l and joints j do
11: cluster offsets Rlj using mean shift
12: take top K weighted modes as Vlj

13: return relative votes Vlj for all nodes and joints

gives a very different output to learning a GMM using EM
with a fixed K. In particular, fitting a model with K = 1 is
not the same as fitting a single Gaussian to all the data.

3.2.2 Learning the hyper-parameters
The training-time clustering bandwidth b? and length
threshold ρ, and the test-time per-joint aggregation band-
width bj and vote length thresholds λj were optimized by
grid search to maximize mean average precision over a 5000
image validation set. The optimal bandwidth b? was 0.05m.
The optimized length thresholds λj fall between 0.1m and
0.55m, indicating that some joints benefit from fairly long
range offsets, while other joints require shorter range pre-
dictions. For comparison with [18], the main error metric
does not penalize failures to predict occluded joints. Inter-
estingly, when the error metric is changed to penalize such
failures, the optimized λj are typically larger (in some cases
dramatically so) than when optimizing with the main error
metric. We include a table of the λj found under both error
metrics in the supplementary material.

3.2.3 Learning the tree structure
To train the tree structure and image feature tests used at the
split nodes, we use the standard greedy decision tree train-
ing algorithm. The set of all training pixels Q = {(i, q)}
(pixels q in images i) is recursively partitioned into left
Ql(φ) and right Qr(φ) subsets by evaluating many split-
ting function candidates φ under an error function E(Q)
(see below). The best splitting function is selected accord-
ing to

φ∗ = argmin
φ

∑
s∈{l,r}

|Qs(φ)|
|Q|

E(Qs(φ)) (2)

which minimizes the error while balancing the sizes of the
left and right partitions. If the tree is not too deep, the al-



gorithm recurses on the examples Ql(φ
∗) and Qr(φ

∗) for
the left and right children respectively. See e.g. [12, 18] for
more details. As proxies to our ideal objective of maximiz-
ing joint detection accuracy on the training set, we investi-
gated both regression and classification objective functions,
as described below.
Regression. Here, the objective is to partition the exam-
ples to give nodes with minimal uncertainty in their joint
offset distributions [9, 7]. In our problem, the offset dis-
tribution for a given tree node is likely to be highly multi-
modal. A good approach might be to fit a GMM to the
offsets (perhaps similarly to how the leaf regression mod-
els are learned) and use the negative log likelihood of the
offsets under this model as the objective. However, GMM
fitting would need to be repeated at each node for thousands
of splitting candidates, making this prohibitively expensive.

Following existing work [7], we employ the much
cheaper sum-of-squared-differences objective:

Ereg(Q) =
∑
j

∑
(i,q)∈Qj

||∆iq→j − µj ||22 , (3)

µj =
1

|Qj |
∑

(i,q)∈Qj

∆iq→j , where (4)

Qj = { (i, q) ∈ Q | ‖∆iq→j‖2 < ρ } (5)

Unlike [7], we introduce an offset vector length threshold ρ
to remove offsets that are large and thus likely to be outliers
(results in Sec. 4.1 highlight its importance). While this
model implicitly assumes a uni-modal Gaussian, which we
know to be unrealistic, for learning the tree structure, this
assumption can still produce satisfactory results.
Classification. Since the tree structure is learned inde-
pendently from the regression models at the leaves, we ex-
plored a second objective Ecls(Q) that minimizes the Shan-
non entropy for a classification task. Entropy is computed
over the normalized histogram of a set of ground truth body
part labels ciq for all (i, q) ∈ Q. We re-use the parts pro-
posed in [18], a set of 31 body parts defined to localize par-
ticular regions of the body close to joints of interest.

Optimizing for body part classification is a good proxy
for the regression task, as image patches reaching the re-
sulting leaf nodes tend to have both similar appearances and
local body joint configurations. This means that for nearby
joints the leaf node offsets are likely to be small and tightly
clustered. The objective further avoids the assumption of
the offset vectors being Gaussian distributed.

We experimented with other node splitting objectives, in-
cluding various forms of mixing body part classification and
regression (as used in [7]), as well as separate regression
forests for each joint. As we discuss in Sec. 4.1, we found
that trees trained for the body part classification task outper-
formed trees trained with all other tested methods, including
single joint regression.

4. Experimental Results and Discussion
In this section we evaluate several aspects of our work

and compare with existing techniques. We evaluate on sev-
eral datasets including the MSRC dataset of 5000 synthetic
depth images [18] and the Stanford dataset of real depth
images [8], obtaining state of the art results. We follow the
protocol from [18] as follows. Joint prediction is cast as a
detection problem, and average precision (AP) and its mean
across joints (mAP) is used to measure accuracy. The most
confident joint hypothesis within distance D = 0.1m of the
ground truth counts as a true positive; any others count as
false positives. Missing predictions for occluded joints do
not count as false negatives, except in one experiment be-
low.

4.1. Tree structure training objectives
We evaluated several objective functions for training the

structure of the decision trees, using forests of 3 trees each
trained to depth 20 with 5000 images. The results, com-
paring average precision on all joints, are summarized in
Fig. 3. The task of predicting continuous joint locations
from depth pixels is fundamentally a regression problem.
Intuitively, we might expect a regression-style objective
function to produce the best trees for our approach. Per-
haps surprisingly then, for all joints except head, neck, and
shoulders, trees trained using the body part classification
objective from [18] gave the highest accuracy. We believe
the uni-modal assumption implicit in the regression objec-
tive may be causing this, and that body part classification is
a reasonable proxy for a regression objective that correctly
accounts for multi-modality. Investigating efficient meth-
ods for fitting multi-modal distributions in a regression ob-
jective remains future work. In the remainder of this section
we base all of our experiments on 3 trees trained to depth
20 using the body part classification objective.

4.2. Comparisons
Hough forests [7]. We compare our use of offset cluster-
ing during training and a continuous voting space for test-
ing, with the approach taken by [7] where all offset vectors
are stored during training and a discretized voting volume
is used for testing, given a fixed tree structure. The diverse
MSRC-5000 test data covers a large voting volume of 4m
× 4m× 5m. To allow accurate localization we used a voxel
resolution of 2cm per side, resulting in a voting volume with
10 million bins. Note that the inherent 3D nature of the
problem makes discrete voting much less attractive than for
2D prediction. At test time, we smooth the voting volume
using a Gaussian of fixed standard deviation 1.3cm.

We re-trained the leaf nodes, storing up to 400 offset
votes for each joint, uniformly sampled (using all votes
would have been prohibitive). Due to memory and runtime
constraints we compare on two representative joints (head
and left hand) in Fig. 4. Interestingly, even with discrete
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Figure 3. Comparison of tree structure training objectives. In
all cases, after the tree structure has been trained, the same regres-
sion model is fit for each leaf node, as described in Sec. 3.2.1.

voting, using two votes per leaf performs slightly better than
voting with a large number of stored offsets. This is likely
due to the clustering removing many outliers making the fi-
nal density much peakier. The results also show the clear
improvement obtained by using the classification objective
for training tree structure compared to the regression objec-
tive used in [7]. (This finding is also borne out in Fig. 3,
especially for articulated joints.)

Our implementation of the Hough voting ran at approx-
imately 0.5 fps for only 2 body joints, compared to 200
fps for our algorithm which predicts all 16 joints (both im-
plementations unoptimized). We experimented with a few
voxel resolutions and smoothing kernel sizes, though the
slow runtime speed prohibited selection of per joint smooth-
ing kernel widths by grid search.

Shotton et al. [18]. We compared directly on the MSRC-
5000 test set. We give some example inferences in Fig. 5. In
Fig. 6(a) we compare mean average precision for different
training set sizes. In all cases we observe significant im-
provements over [18]. Even with only 15k training images,
our algorithm obtains a mAP of 0.736, edging out the best
result in [18] of 0.731 which used 60 times more data. We
obtain our best result, a mAP of 0.799, using 300k images.

In Fig. 6(b) we show a per-joint breakdown of our im-
provement over [18]. One source of improvement is likely
to be the ability of algorithm to directly regress the posi-
tions of joints inside the body: the joints showing the most
substantial improvements (head, neck, shoulder, and knee
joints) are also those where surface body parts cover a large
area and are furthest from the joint center.

Another ability of our algorithm is to predict occluded
joints. When the mean average precision metric is changed
to penalize failure to predict occluded joints, the improve-
ment of our method over [18] is even more apparent: 0.663
vs. 0.560, yielding a difference of 10.3% compared to 8.5%
when the error metric is unchanged (both methods trained
with 30k images). Example inferences showing localization
of some occluded joints are presented in Fig. 1 and Fig. 5
(middle row).
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Figure 4. Comparison with Hough forest voting [7]. The Hough
forest regression objective performs poorly for articulated joint
such as hands. Vote compression and continuous voting improve
accuracy slightly, while running 3200x faster (see text).

Beyond predicting joint positions more accurately, our
algorithm also makes predictions faster, running at 200 fps
compared to the 50 fps achieved by [18]. See also Fig. 7c.
Ganapathi et al. [8]. We also compared on the Stanford
data set of real depth images. Our algorithm, predicting 3D
joint poses for each frame independently, obtains a mAP of
0.961 on this data set. This closely matches the results of
[18] (0.947), and surpasses the result of [8] (0.898) which
additionally exploited temporal and kinematic constraints.

4.3. System parameters
We investigated the effects of various system parameters

on prediction accuracy and runtime speed. We used 10k
training images in the following experiments.

Tree depth. Fig. 7(a) shows that mean average precision
rapidly improves as the tree depth increases, though it be-
gins to level off around depth 18. The effect of tree depth is
much more significant than the effect of varying the number
of trees in the forest: with just one tree, we obtain a mAP of
0.730, with two trees 0.759, and with three trees 0.770.

Vote length threshold. We obtain our best results when
tuning a separate voting length threshold λj for each joint
using a validation data set. In Fig. 7(b) we compare accu-
racy obtained using a single threshold shared by all joints,
against the mAP obtained with per-joint thresholds, 0.770,
which is plotted as a dashed red line. This experiment shows
that it is critical to include votes from pixels at least 10cm
away from the target joints, since the joints are typically
over 10cm away from the surface where the pixels lie. Af-
ter reaching a global threshold of 15cm, with mAP of 0.763,
accuracy slowly decreases.
Number of votes per leaf K. Increasing K from 1 to 2
boosted mAP slightly from 0.763 to 0.770. For the range
of K ∈ [2, 10], there was no appreciable difference in ac-
curacy, and so for all other experiments presented we used
K = 2. We hypothesize that aggregating over many image
pixels reaching a diverse set of leaf nodes makes storing
multiple local modes in each leaf node somewhat redun-
dant. The comparison with Hough forests above illustrates
how accuracy may change as K gets much larger.
Using the mean of offsets. We also tried using a single
relative vote ∆lj1 chosen to be the mean of the offsets



Frames of interest: 
0, 250, 350, 400, 750, 850, 950, 1100,  
1150, 1200, 1300, 1450, 1500, 1550,  
1800, 1950, 2800, 2850, 3050, 3100,  
3350, 3550, 3700, 3850, 4200, 4850 

Nice! 

Occluded joint predictions 

Failure modes 
(border occlusion; L/R confusion) 

Rows: 

Frames used here: 
2800, 250, 400, 950 
750, 1100, 3850, 1200 
350, 1300, 3050, 1150 

Figure 5. Inferred joint positions. (Left) Each example shows an input depth image with color-coded ground truth joint positions overlaid,
and then inferred joint positions from front, right, and top views. The size of the boxes indicates the inferred confidence. Our algorithm
achieves accurate prediction of internal body joints for varied body sizes, poses, and clothing. The middle row shows accurate prediction
of even occluded joints, and the bottom row shows some failure cases. (Right) Example inference results on flattened 2D silhouettes.
Ground truth joint positions are plotted as crosses and the highest scoring hypothesis for each joint appears as a color-coded circle, with
size indicating confidence. Despite substantially more visual ambiguity, our algorithm is able to predict many joint positions accurately.
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Figure 6. Results on the MSRC-5000 test set compared to [18]. (a) Mean average precision versus total number of training images. (b)
Average precision on each of the 16 test body joints. Our algorithm achieves substantially better accuracy with fewer training images.

reaching each leaf for each joint, rather than the top local
mode. To achieve a sensible result, we found the mean
vote’s weight wij1 to be very important. The best result
obtained took wij1 as the number of offsets within 5cm of
the mean. Performance decreased from 0.763 (top local
mode with K = 1) to 0.739 (mean of all offsets). Sig-
nificant degradation was observed in the arm joints which
exhibit much more multi-modality in the offsets. Here,
the mAP computed over elbows, wrists, and hands dropped
from 0.726 to 0.639. For robust results, using the top local
mode thus appears better than the mean.
Learned relative vote weights wljk. To quantify the role
of the relative vote weights, we tested our system with
wljk = 1,∀l, j, k. This uniform weight assignment de-
creased mAP dramatically from 0.770 to 0.542, underscor-
ing the importance of our strategy of learning vote weights.
Reservoir capacity C. The size of the reservoir had rel-
atively little effect on accuracy. Reducing the reservoir ca-
pacity at training time from 100 to 50 led to a small de-
crease in accuracy from mAP 0.770 to 0.766. Interestingly,
increasing the reservoir capacity to 200 and 300 also caused
a small drop (0.755 and 0.747, respectively). These results
suggest that even a small sample of offsets is sufficient to

characterize their distribution well for clustering.

Test time vote sub-sampling N . Even with the learned
vote length thresholds λj , an average of about 1000 votes
are cast per joint when processing a test image. Prior to ag-
gregating votes with mean shift, we optionally sub-sample
the voting space to at most N votes. First, using fixed
N = 200 we experimented with different sub-sampling
strategies: top N weighted votes; uniform sampling; sam-
pling weighted by vote weight. The three methods achieved
mAP scores of 0.770, 0.727, and 0.753, respectively. Using
the top N strategy, we find that accuracy varies slowly with
N . We illustrate the substantial improvement in runtime
speed this allows in Fig. 7(c), where mAP is plotted against
fps as a function of N , and compare with [18] on similar
hardware. Representative values of N from 1 to 400 are
overlaid on the plot. The best tradeoff between prediction
accuracy and prediction speed is at about N = 50. All tim-
ings were measured on an 8-core machine taking advantage
of CPU parallelism.

4.4. Predictions from 2D images
Though we focus on depth images in this paper, our

method applies without modification to 2D silhouette im-
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Figure 7. Effect of various system parameters. (a) Mean average precision versus tree depth; (b) mean average precision versus a single,
shared vote length threshold for all joints; and (c) mean average precision versus frames per second as a function of the number of votes
retained before running mean shift in the voting space at test time.

ages. To test 2D prediction accuracy, we flattened our train-
ing and test images to a fixed depth, 2m, producing silhou-
ettes in which the pose scale is unknown. To compute av-
erage precision for this 2D prediction task, we modified the
true positive radius to an absolute pixel distance, D = 10
pixels. Our algorithm compares very favorably to [18] on
this task, achieving mAP 0.596 vs. 0.465. Example infer-
ences from silhouettes appear in the right column of Fig. 5.
Note how the hypothesis confidences correlate well with the
ambiguity in the signal.

5. Discussion
We have presented a new, extremely efficient regression

forest based method for human pose estimation in single
depth or silhouette images. Unlike previous work [18], our
method does not predict segmentations of the surface of
the body, but instead directly predicts the positions of in-
terior body joints even under occlusion. Our method ex-
tends Hough forests [7] by using compact models for stor-
ing and aggregating relative offset votes. We investigate
different objectives for learning the structure of the forest
and choices of vote representation and aggregation. Due to
our emphasis on efficiency of training, these models can be
automatically learned from large training sets. Results on
several challenging real and synthetic datasets show con-
siderable improvement over the state of the art while main-
taining super-realtime speeds.

Our experimental evaluation reveals that, perhaps sur-
prisingly, for learning the structure of the regression for-
est on our difficult multiple body joint prediction problem,
the Hough forest objective function performs poorly rela-
tive to the body part classification objective used in [18].
We believe that this effect is due to the errors introduced by
the implicit modeling of the inherently multi-modal offset
distributions at the interior tree nodes as uni-modal Gaus-
sians in the tree structure regression objective. This also
may be compounded by the greedy nature of the tree learn-
ing procedure. Further investigation of alternative efficient
tree structure learning regression objectives is a promising
direction for future work.
Acknowledgements. We thank Toby Sharp, Mat Cook, John Winn,
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