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Abstract

Proof systems for verifiable computation (VC) have the potential to make cloud outsourcing
more trustworthy. Recent schemes enable a verifier with limited resources to delegate large
computations and verify their outcome based on succinct arguments: verification complexity is
linear in the size of the inputs and outputs (not the size of the computation). However, cloud
computing also often involves large amounts of data, which may exceed the local storage and
I/O capabilities of the verifier, and thus limit the use of VC.

In this paper, we investigate multi-relation hash & prove schemes for verifiable computations
that operate on succinct data hashes. Hence, the verifier delegates both storage and computation
to an untrusted worker. She uploads data and keeps hashes; exchanges hashes with other parties;
verifies arguments that consume and produce hashes; and selectively downloads the actual data
she needs to access.

Existing instantiations that fit our definition either target restricted classes of computations
or employ relatively inefficient techniques. Instead, we propose efficient constructions that lift
classes of existing arguments schemes for fixed relations to multi-relation hash & prove schemes.
Our schemes (1) rely on hash algorithms that run linearly in the size of the input; (2) enable
constant-time verification of arguments on hashed inputs; (3) incur minimal overhead for the
prover. Their main benefit is to amortize the linear cost for the verifier across all relations
with shared I/O. Concretely, compared to solutions that can be obtained from prior work, our
new hash & prove constructions yield a 1,400x speed-up for provers. We also explain how
to further reduce the linear verification costs by partially outsourcing the hash computation
itself, obtaining a 480x speed-up when applied to existing VC schemes, even on single-relation
executions.

1 Introduction

Cryptographic proof systems let a verifier check that the computation executed by an untrusted
prover was performed correctly [28]. These systems are appealing in a variety of scenarios, such
as cloud computing, where a user outsources computations and wishes to verify their integrity
given their inputs and outputs (I/O) [2, 36, 27, 25], or privacy-preserving applications, where a

∗An extended abstract of this paper appears in the proceedings of ACM CCS 2016. This is the full version.
†Work done at Microsoft Research.
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user owns sensitive data and wishes to release partial information with both confidentiality and
integrity guarantees [42, 24]. Typically, these systems require the prover to perform considerable
additional work to produce a proof that can be easily checked by the verifier.

Recent advances in verifiable computations have crossed an important practical threshold: ver-
ifying a proof given some I/O is faster than performing the computation locally [40, 7, 43, 45].
While these systems perform well when delegating computation-intensive algorithms, they do not
help much with data-intensive applications, inasmuch as verification remains linear in the applica-
tion’s I/O.

Although some linear work is unavoidable when uploading data, ideally one would like to pay
this price just once, rather than every time one verifies a computation that takes this data as input.
This is particularly relevant for cloud computing on big data, where the verifier may not have
enough local resources to encode and upload the whole database each time she delegates a query
or, more generally, where many parties contribute data over a long period of time.

Approaches providing amortized verification do exist for limited classes of computations, such
as data retrieval. For instance, the user may keep the root of a Merkle hash tree, and use it to
verify the retrieved content. Unfortunately, as explained below, embeddings of this approach into
generic proof systems incur large overheads for the prover.

Our goal is to enable practical verifiable computation for data-intensive applications. In par-
ticular, we wish to design schemes where verification time is independent of both the size of the
delegated computations and the size of their I/O. Moreover, we wish to preserve the expressive-
ness of existing VC schemes (e.g., supporting NP relations) without adding to the prover’s burden,
which is already several orders of magnitude higher than the original computation.

Modelling Hash & Prove (HP) We first propose a model that captures the idea of hashing and
uploading data once and then using the resulting hashes across multiple verifiable computations. In
this model, the verifier needs only to keep track of hashes, while the prover stores the corresponding
data. The prover can use the data to perform computations and then (selectively) return results in
plaintext to the verifier. As described below, hashes yield several benefits when delegating verifiable
computations.

Flexible Reuse Hashes depend only on the data and are not tied to any particular computation.
Hence, once a data hash is computed, it can be used to verify any computation that uses the
corresponding data. It can also be used with different proof systems, as long as they rely on
the same hash format.

Sharing Hashes are a compact representation of the data that can be easily shared and authenti-
cated. Hence, verifiers can delegate computations on someone else’s hashes, or chain multiple
computations using intermediate hashes, without ever seeing or receiving the corresponding
data.

Provenance A record of an input hash, an output hash, and a proof can serve as a succinct
provenance token that can be easily and independently verified.

Confidentiality The verifier checks arguments on hashes of data that she may never see in plain-
text; hence randomized hashes enable zero-knowledge arguments.

Updates If the hash mechanism also supports efficient updates, that is, given hash(x), one can
compute hash(x′) in time that depends only on the difference between x and x′, then it also
enables applications with dynamic data and streaming. For instance, a hashed database may
be updated by uploading the new data and locally updating the hash.

Our hash & prove model extends non-interactive proof systems, with an intermediate hash algo-
rithm between the input and the proof verification, and with the possibility of proving multiple
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relations. It is inspired by multi-function verifiable computation [41, 23], with relations instead of
functions so that we can capture more general use cases, notably those where the prover provides
its own (private) input to the computation.

Instantiating Hash & Prove Now equipped with a model for outsourcing multiple computations
on authenticated data, we survey how existing work could be used to instantiate HP schemes. In
particular, we observe that existing solutions have limitations either in efficiency or in generality.

Some prior work [11, 26, 5, 16] considers the idea of proving the correctness of a computation
on data succinctly represented by a hash. This approach consists of encoding the verification of the
hash as part of a relation for the underlying proof system. Namely, if y = f(x) is the statement
to be proved, then one actually proves an extended statement of the form y = f(x) ∧ σ = hash(x),
essentially treating x as an additional witness. We henceforth refer to this method as an inner
encoding. Inner encodings are simple and general, and can also be extended to more general data
encodings such as Merkle trees or authenticated data structures (ADS) [44, 22]. On the other hand,
inner encodings incur a significant overhead for the prover—indeed, unless hash is carefully tuned
to the proof system, its verifiable evaluation on large inputs may dominate the prover costs.

Other works address reusability and succinct data representation by using different data encod-
ing approaches that we will call outer encodings. The basic idea of outer encodings is that proofs
are produced for the original statement, e.g., y = f(x), and are linked to the encoded data x using
some external mechanism. Works that can be explained under this approach are commit & prove
schemes [33, 17, 20] and homomorphic authenticators [4, 18, 29]. While we discuss them in detail
in Section 7, the main observation is that all these works fall short in generality; i.e., they limit the
class of computations that can be executed on an hash value. While commit & prove schemes can
achieve greater generality by using universal relations (as, e.g., in [5, 7, 9]), this typically entails a
significant penalty in concrete efficiency.

New Hash & Prove Constructions Our main technical contributions are efficient, general HP
constructions. Compared to general inner encoding solutions, ours incurs minimal overheads for
the prover. Compared to prior outer encoding solutions, ours is fully general, in the sense that
one can hash data first, without any restriction on the functions that may later be executed and
verified on it.

We instantiate multi-relation hash & prove schemes both in the public and designated verifier
settings. Our solutions are built in a semi-generic fashion by combining

(1) a verifiable computation (VC) or succinct non interactive argument (SNARG) scheme, and

(2) an HP scheme for simple, specific computations.

At a high level, our construction uses an outer data encoding, where general computation integrity
is handled by (1), whereas data authentication and linking to the computation is handled by (2).
As expected from an outer approach, this combination does not add any overhead in the use of (1),
and the overhead introduced by (2) can be very low.

More specifically, for (1) we use any scheme where the input-processing part of the verification
consists of a multi-exponentiation, that is, anything resembling a Pedersen commitment of the
form cx =

∏
i Fi

xi , a property of virtually all modern, efficient SNARGs [40, 7, 20, 9, 31]. Our
generic construction then outsources to the prover the original computation of (1) as well as the
input-processing part of SNARG verification, cx =

∏
i Fi

xi . We then ask the prover to show the
correctness of cx using the auxiliary HP scheme (2). To this end, we only need a scheme that
handles multi-exponentiation computations. We propose our own efficient constructions for such
HP schemes. For the designated verifier setting, we adapt a multi-function VC scheme from prior
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work [23]. For public verifiability, we develop a new scheme, which requires new techniques to
achieve adaptive security.

Our analysis in Section 6 shows that, in comparison to the inner encoding solution mentioned
earlier, our HP scheme yields a 1, 400× speed-up for provers, as well as public (proving) keys that
are shorter by the same factor.

Speeding up Hashing and Verification As mentioned above, VC schemes involve a verification
effort linear in the size of the I/O. Concretely, this verification step is expensive because it relies on
public-key operations (e.g., a few elliptic-curve multiplications for each word of I/O). With Hash &
Prove, this linear work is first shifted to computing the hash, and then amortized across multiple
computations, but the hash still has to be computed once.

When using inner encodings, one can choose standard, very efficient hash functions such as
SHA2, which considerably reduces the effort of the verifier, at the expenses of the prover. Other
trade-offs between verifier and prover costs are possible, e.g., by using algebraic hash construc-
tions [1, 8, 16]. When using outer encodings, the choice of a hash function is more constrained. For
instance, in Geppetto or in our HP scheme, the encoding still consists of a multi-exponentiation
(i.e., n elliptic-curve multiplications where n is the size of the input).

As another contribution, we provide a technique to outsource such (relatively) expensive data
encodings, at a moderate additional cost for the prover, while requiring only a trivial amount of
linear work from the verifier: an arbitrary (fast) hash such as SHA2, and a few cheap field additions
and multiplications, instead of elliptic curve operations. Concretely, this technique saves two orders
of magnitude in verification time. It applies not only to our HP scheme, but also to existing VC
systems [40, 20, 9].

Other Data Encodings In our presentation, we focus on plain hashes as a simple data encoding
for all I/O, but many alternatives and variations are possible, depending on the needs of a given
application. As a first example, the I/O can naturally be partitioned into several variables, each
independently hashed and verified, to separate inputs from different parties, or with different live
spans. (In a data-intensive application, for instance, one may use a hash for the whole database, and
a separate hash for the query and its response.) More advanced examples include authenticated data
structures, and more specific tools such as accumulators. To illustrate potential extensions of our
work, we show that the HP model, and our generic HP construction, can be extended to work with
such outer encodings. Concretely, we consider accumulators [37] and polynomial commitments [32],
with set operations [38] and batch openings as restricted proof systems, respectively. By adapting
our constructions, we obtain a new accumulate & prove system.

Contents The paper is organized as follows: Section 2 defines our notations, reviews assumptions
we rely on, and recalls definitions of succinct non-interactive argument systems. Section 3 defines
our hash & prove model, shows that some of the existing work satisfies it, and discusses their
overhead for the prover. Section 4 presents our efficient HP construction and instantiates it for
public and designated verifier settings. Section 5 presents the definition and construction of a
hash & prove variant that supports hash outsourcing. Section 6 analyze the performance of our
constructions. Section 7 discusses related work.

In the Appendix, we provide auxiliary definitions, detailed proofs, and an extension of our work
from hashes to cryptographic accumulators.
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2 Preliminaries

Notation. Given two functions f, g : N→ [0, 1] we write f(λ) ≈ g(λ) when |f(λ)−g(λ)| = λ−ω(1).
In other words, for all k, there exists an integer n0 such that for all λ > n0, we have |f(λ)−g(λ)| <
1
λk

. We say that f is negligible when f(λ) ≈ 0.

Algebraic Tools and Complexity Assumptions. All our constructions make use of asym-
metric bilinear prime-order groups Gλ = (e,G1,G2,GT , p, g1, g2) with an admissible bilinear map
e : G1 × G2 → GT . We use fixed groups for every value of the security parameter; this lets us
compose schemes that use them without requiring a joint setup algorithm. Even when pairings are
not required, we define schemes for group G1 and generator g1 to anticipate their usage in later
constructions. Our constructions are proven secure under the following assumptions.

Assumption 1 (Strong External Diffie-Hellman [39]). The Strong External Diffie-Hellman (SXDH)
assumption holds if every p.p.t. adversary solves the Decisional Diffie-Hellman (DDH) problems in
G1 and G2 only with a negligible advantage.

We introduce the Flexible co-CDH assumption and prove that it is implied by the above SXDH
assumption.

Assumption 2 (Flexible co-CDH). The Flexible co-CDH assumption holds if, given (g2, g2
a) where

g2
$←− G2, a

$←− Zp, every p.p.t. adversary outputs a tuple (h, ha) ∈ G1
2 such that h 6= 1 only with

negligible probability.

Lemma 2.1. Strong External Diffie-Hellman implies Flexible co-CDH.

Proof. Given A that solves Flexible co-CDH with non-negligible advantage, we show how to build
an adversary A′ for DDH in G2. A′ is given a DDH instance (g, ga, gb, C) ∈ G4

2 and has to decide
if C = gab. A′ runs A with input (g, ga). Let A output (h, ha). Then A′ can check if C = gab

by checking if e(ha, gb)
?
= e(h,C) holds. Hence A′ succeeds in solving the DDH instance with A’s

success probability.

For extractability, we optionally require the following assumption parameterized by hash size
n:

Assumption 3 (Bilinear n-Knowledge of Exponent). The Bilinear n-Knowledge of Exponent as-
sumption holds if, for every p.p.t. adversary A, there exists a p.p.t. extractor E such that for all
large enough λ and ‘benign’ auxiliary input aux ∈ {0, 1}poly(λ)

Pr

[
pp = Gλ;Hi

$←− G1;ω
$←− Zp; (A,B ;(x1, . . . , xn))← (A‖E) (pp, {Hi, H

ω
i }ni=1, aux) :

Aω = B ∧A 6=
n∏
i=1

Hxi
i

]
≈ 0

In the game above, (u;w) ← (A‖E) indicates running both algorithms on the same inputs and
random tape, and assigning their results to u and to w, respectively. This assumption can been
seen as an n-Knowledge of Exponent Assumption [11] but for the general group model. Indeed
the authors of [11] use the argument by Groth [30] to conjecture that their assumption must hold
independently of the bilinear structure. Auxiliary input is required to be drawn from a ‘benign
distribution’ to avoid impossibility of certain knowledge assumptions [12, 10].
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2.1 Online-Offline SNARKs

We recall the definition of succinct non-interactive arguments (SNARG) and arguments of knowl-
edge (SNARK) as used by our constructions.

Let {Rλ}λ be a sequence of families of efficiently decidable relations R ∈ Rλ, with R ⊂ UR×WR.
For pairs (u ;w) ∈ R, we call u the instance and w the witness; we are interested in producing and
verifying arguments that ∃w.R(u ;w) holds. We require that all instances include some data in
a fixed format. That is, for each R ∈ Rλ, we have UR = X × VR and instances are of the form
u = (x, v). For example, u may consist of the input x and output y of a function with domain X,
i.e., y = f(x). More generally, u may consist of the inputs x, y and output z of functions whose
domains include X, i.e., z = f(x, y).

For any sequence of families of efficiently decidable relations {Rλ}λ as defined above, SNARGs
and SNARKs consist of 3 algorithms VC = (KeyGen,Prove,Verify), as follows.

(EK,VK)← KeyGen(1λ, R) takes the security parameter and a relation R ∈ Rλ and computes
evaluation and verification keys.

Π ← Prove(EK, u ;w) takes an evaluation key for R, an instance u, and a witness w such that
R(u ;w) holds, and returns a proof.

b← Verify(VK, u,Π) takes a verification key and an instance u, and either accepts (b = 1) or rejects
(b = 0) the proof Π.

(EK,VK) are also referred to as the common reference string.

Definition 2.1 (Soundness). A VC scheme is sound if, for all sequences {Rλ}λ∈N in {Rλ}λ∈N and
for all p.p.t. adversaries A, we have

Pr

 EK,VK← KeyGen(1λ, Rλ);
u,Π← A(EK,VK, Rλ);

Verify(VK, u,Π) ∧ ¬∃w.Rλ(u ;w)

 ≈ 0.

Online-Offline Verification 1 The verification algorithm of many SNARG constructions can be
split into offline and online computations. Specifically, for many SNARGs, there exists algorithms
(Online,Offline) such that:

Verify(VK, u,Π) = Online(VK,Offline(VK, x), v,Π).

The offline phase can be seen as the computation of one or more Pedersen-like commitments cx
(here, cx = Offline(VK, x)), some of which may be computed by the prover, and possibly never
opened by the verifier. On their own, such commitments are not perfectly binding, so this involves
modelling adversaries that do not output (u,w) but still must ‘know’ the value they are committing
to. For such cases, we require the existence of an algorithm E that can extract x and w from a
verifying proof.

Definition 2.2 (Online Knowledge Soundness). A VC scheme is online knowledge sound if, for all
sequences {Rλ}λ∈N in {Rλ}λ∈N and all p.p.t. adversaries A, there exists a p.p.t. extractor E such
that

Pr

 EK,VK← KeyGen(1λ, Rλ);
(cx, v,Π;x,w)← (A||E)(EK,VK, Rλ);

Online(VK, cx, v,Π) = 1 ∧ ¬Rλ(x, v;w)

 ≈ 0

1The offline phase is not to be confused with input-independent precomputation steps of the verifier in [8, 9].
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Instantiations of Online-Offline SNARKs Many succinct verifiable-computation construc-
tions [21, 7, 9, 31] can be presented in a style that make more apparent their reliance on commit-
ments on their inputs, outputs, and internal witnesses. We may instantiate VC using, for example,
the Geppetto construction [20], which explicitly separates (offline) commitments and (online) proofs
and provides online knowledge soundness.

Instantiation of Offline Verification In our work, we consider schemes where the offline com-
putations consist purely of multi-exponentiations in G1 over the instance u, followed by online
computations that accept or reject the proof. As mentioned above, we consider the case when UR
splits into X,VR. More specifically, we assume that X = Znp and Offline(VK, x) =

∏
F xii from X to

G1, where the group elements (F1, F2, . . . , Fn) ∈ Gn
1 are part of the keys. The VC schemes discussed

above follow this format.

3 Multi-Relation Hash & Prove Schemes (HP)

We define our schemes for efficiently decidable relations R ∈ Rλ, with R ⊂ UR ×WR. Recall that
we are interested in producing and verifying arguments that ∃w.R(u ;w) holds for pairs (u ;w) ∈ R,
where u is the instance and w the witness. The witness can often speed up verification by providing
a non-deterministic hint, as verification is often more efficient than computation, notably in the case
of relations for NP complete languages. We keep the witness implicit when they can be efficiently
computed from the instance. As in Section 2.1, we consider relations where UR splits into X,VR.

A multi-relation hash & prove scheme consists of 5 algorithms HP = (Setup,Hash,KeyGen,Prove,Verify),
as follows.

pp← Setup(1λ) takes the security parameter and generates the public parameter for the scheme;

σx ← Hash(pp, x) produces a hash given some data x ∈ X;

EKR,VKR ← KeyGen(pp, R) generates evaluation key EKR and verification key VKR given a relation
R ∈ Rλ;

ΠR ← Prove(EKR, x, v ;w) produces a proof of R(x, v ;w) given an instance and witness that satisfy
the relation.

b← Verify(VKR, σx, v,ΠR) either accepts (b = 1) or rejects (b = 0) a proof of R given a hash of x
and the rest of its instance v.

Note that hashes of inputs and the keys of a relation can be computed independently. In particular,
σx can be computed ‘offline’, before generating keys, proving, or verifying instances of relations;
and can be shared between all these operations.

3.1 Adaptive Soundness

We describe our intended security properties for an HP scheme, distinguishing two cases. We first
define adaptive soundness with multiple relations and public verifiability, then describe a variant
with a single relation.

Definition 3.1 (Adaptive Soundness). A multi-relation hash & prove scheme HP is adaptively
sound if every p.p.t. adversary with access to oracle KEYGEN wins the game below with negligible

7



probability.
Adaptive Forgery Game

pp← Setup(1λ)
R, x, v,Π← AKEYGEN(1λ, pp)
A wins if VERIFY(R, x, v,Π) = 1 and ¬∃w.R(x, v ;w)

KEYGEN(R)

if VK(R) exists, return ⊥
EK,VK← KeyGen(pp, R)
VK(R) := VK;
return (EK,VK)

VERIFY(R, x, v,Π)

if VK(R) undefined, return 0
σ ← Hash(pp, x)
return Verify(VK(R), σ, v,Π)

The designated-verifier variant of adaptive soundness is obtained by having KEYGEN return only EK,
and giving A oracle access to VERIFY. The single-relation variant is obtained by requesting that
the adversary calls KEYGEN once.

Informally, adaptive soundness means that an adversary that interacts with a verifier on any
number of chosen instances of relations supported by HP cannot forge any argument. Although
the VERIFY procedure in the experiment always recomputes σx, this hash can of course be shared
between verifications of multiple instances that use the same x.

Unfolding the definition, the single-relation, public verifiability game is defined by

Adaptive Forgery Game (single relation, public verifiability)

pp← Setup(1λ)
R, state← A0(1λ, pp)
EK,VK← KeyGen(pp, R)
x, v,Π← A1(state,EK,VK)

A wins if Verify(VK,Hash(pp, x), v,Π) = 1 and ¬∃w.R(x, v ;w)

This simpler, single-relation game is still adaptive, in the sense that the relation R can be chosen
by A with knowledge of pp, and the instance x, v can depend on EK,VK. Using a standard hybrid
argument, we confirm that adaptive single-relation soundness implies adaptive soundness.

Theorem 3.1 (Security of multi-relation HP). A HP scheme that is ε-secure as per Defini-
tion 3.1 for a single relation is qε-secure for multiple relations, where q bounds the number of
calls to KEYGEN made by the adversary.

The proof is in Appendix D.1.

3.2 Accepting Hashes from the Adversary

In the definition of adaptive soundness, all hash outputs need to be trusted: at some point, the
verifier is given x and honestly computes its hash σx, or (equivalently) receives σx from a trusted
party. However, there are cases where the verifier may be given σx but not x. As an example, a
composite argument that there exists an intermediate x ∈ X such that f(z) = x and g(x) = r may
consist of z, σx, r,Πf ,Πg where Πf and Πg prove the two functional relations above. Passing an
‘opaque’ hash σx may be more efficient than passing x, and may enable the prover to keep x secret.
Similarly, one may see σx as a binding commitment to some x, received from the adversary, then
later used in arguments that disclose some of its contents. Definition 3.1 does not account for such
arguments.
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In order for HP to support arguments on hashes provided by the adversary, we further require
that its Hash algorithm is an extractable collision-resistant hash function. The extractability prop-
erty guarantees that σx was indeed produced by Hash on some input x. The collision-resistance
property guarantees that it is hard to produce two inputs for which Hash produces the same output.

Definition 3.2 (Hash Extractability [11]). A hash function Hash is extractable when, for any p.p.t.
adversary A, there exists a p.p.t. extractor E such that, for a large enough security parameter λ
and ‘benign’ auxiliary input aux ∈ {0, 1}poly(λ), the adversary wins the game below with negligible
probability.

Hash Extraction Game
pp← Setup(1λ)
(σ;xe)← (A‖E) (pp, aux)
A wins if ∃x.Hash(pp, x) = σ ∧ σ 6= Hash(pp, xe)

and there is a p.p.t. algorithm Check(pp, σ) that returns 1 if ∃x.Hash(pp, x) = σ and 0 otherwise.

(In the game above, (A‖E) indicates running both algorithms on the same inputs and random tape,
and assigning their results to σ and to xe, respectively.) In contrast with the original definition of
[11], we require the existence of Check so that our verifiers can check the well-formedness of hashes
received from the adversary.

Adaptive soundness for HP schemes guarantees collision-resistance for Hash as long as, for all
x0 6= x1, there exists a relation R ∈ Rλ and v ∈ VR to separate them, that is, ∃w.R(x1, v;w) ∧
¬∃w.R(x0, v;w). On the other hand, adaptive soundness does not guarantee that σ is unique, nor
does it exclude adversaries able to forge σ that pass verification.

Complementarily, hash extraction enables us to verify arguments that include opaque hashes
provided by the adversary by first extracting their content then applying adaptive soundness. To
formalize this idea, we complete our definitions with a more generally useful notion of soundness,
called adaptive hash soundness.

At a high level, an adaptively hash sound HP scheme allows us to verify a composite argument
whose instances mix plaintext values x ∈ X and opaque hashes σ ∈ Σ, where Σ is a finite set
of hashes; importantly, the same σ can occur in multiple instances. To verify the argument, the
verifier checks each proof using hashes that are either recomputed from x ∈ X (once for each x,
similar to Definition 3.1), or checked for well-formedness.

Our main result for this property is that any scheme HP that is both adaptively sound and hash
extractable is also adaptively hash sound. This result relies on soundness of HP, provided that one
has access to preimages of the hash values σ ∈ Σ; in turn, this requirement is guaranteed by the
hash extractability property.

We provide a formal definition as well as the proof of the result above in Appendix A.

Stronger Security Notions for HP Our security definitions for HP schemes model adaptive
soundness and extractability of hash inputs, but not extractability of witnesses, i.e., an equivalent of
knowledge soundness for HP schemes. While adaptive soundness is sufficient for applications such
as verifiable computation in which the input data is supplied by the verifier, knowledge soundness
can be useful when using HP schemes in larger cryptographic protocols and in applications where
the prover also provides some input. Elaborating such a definition of knowledge soundness for HP
schemes (and proving a construction using it) raises subtleties related to defining an extractor for
an adversary that has adaptive access to the KEYGEN oracle. We believe this is an interesting
direction, which we leave for future work. Another useful security notion that may be considered is
zero-knowledge, which intuitively guarantees that proofs do not reveal any non-trivial information
about the witnesses. A zero-knowledge definition for HP schemes is provided in Appendix B.
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3.3 Hash & Prove Scheme via Inner Encoding

In the introduction, we distinguished between two ways of embedding data representation inside
VC schemes: inner and outer encodings. Here we describe a construction proposed in [11, 26, 5, 16]
which serves as an example of inner encoding. We call this scheme HPinn. The construction is
presented for completeness (to show that it formally adheres our new definitions), and to facilitate
the comparison with our new constructions of Section 4.

The construction uses a keyed, collision-resistant hash scheme with domain X, consisting of two
algorithms k ← keygen(1λ) and σ ← hashk(x), together with a succinct argument VC for a family
of relations R′, defined next.

Intuitively, we check the computation σ = hashk(x) within the proof system: to argue on a
relation R in HPinn, our construction uses VC on a relation R′:

R′(σx, v ;x,w) = R(x, v ;w) ∧ (σx = hashk(x)).

Compared with R, the relation R′ uses σx instead of x in the instance, and takes x as an additional
witness. (Presumably, σx is smaller than x and easier to process in proof verifications.) We define
HPinn as follows:

Setup(1λ) samples k ← keygen(1λ) and returns k as pp;

Hash(pp, x) computes σx ← hashpp(x);

KeyGen(pp, R) generates (EKR,VKR)← VC.KeyGen(1λ, R′);

Prove(EKR, x, v ;w) returns Π← VC.Prove(EKR, v, σx ;x,w) for σx = hashpp(x);

Verify(VKR, σx, v,Π) returns VC.Verify(VKR, σx, v,Π).

Theorem 3.2. If VC is knowledge-sound and hash is collision-resistant, then HPinn is adaptively
sound (Definition 3.1 for multiple relations).

The proof can be found in Appendix D.2.

Hash Extractability. The construction above naturally extends to extractable hashes, by ap-
plying VC to the relation that checks the hash computation, defined by

Rk(σ ;x) = (σ = hashk(x)).

We write HPE for the resulting scheme, obtained from HPinn above by extending the Setup and
Hash algorithms and adding a Check algorithm:

SetupE(1
λ) samples k ← keygen(1λ); generates EKpp,VKpp ← VC.KeyGen(pp, Rk); and returns

pp = (k,EKpp,VKpp);

HashE(pp, x) computes σx ← hashk(x); Π← VC.Prove(EKpp, σx ;x) and returns σ = (σx,Π).

Check(pp, σ) parses σ as (σx,Π) and returns VC.Verify(VKpp, σx, v,Π).

Theorem 3.3. If VC is knowledge-sound, then HPE is hash extractable (Definition 3.2).

The proof of Theorem 3.3 follows from the existence of the VC extractor.
By using a separate VC scheme on a new relation Rk, rather than re-using a VC scheme on one

of the relations R′, we can use knowledge soundness in a completely standard manner, taking only
the key k as ‘benign’ auxiliary input.
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Discussion. The HPinn construction is simple, and can be extended to Merkle trees [16] to provide
logarithmic random access in data structures. Its main practical drawback is that the relation
to be verified now includes a hash computation, which adds tens of thousands of cryptographic
operations to the prover’s workload for each block of input when using standard algorithms such
as SHA2 (Section 6). To lower this considerable cost for the prover, one pragmatically chooses
custom, algebraic hash functions, which in turn increases the cost for the verifier that computes
the digest. In the following sections we present constructions that are efficient for both the prover
and the verifier.

4 Hash & Prove Constructions

In this section we present our main technical contribution: two efficient multi-relation hash & prove
schemes for families of relations Rλ. We let R(x, v ;w) range over these relations.

Our two schemes are obtained via a generic hash & prove construction that relies on two main
building blocks: (i) any SNARK scheme that has offline/online verification algorithms (cf. Sec-
tion 2.1) and where the offline verification consists of a multi-exponentiation in a group G1; (ii)
any HP scheme that allows to prove the correctness of such multi-exponentiations.

Before presenting our generic construction in full detail, we provide some intuition. We start
from the observation that in offline/online SNARKs the verifier already computes an element cx =∏
i Fi

xi . Although cx can be seen as a hash of the input x, such hash is relation-specific because
the elements Fi depend on the relation R that was used in the SNARK’s KeyGen. Our main idea
is to outsource the computation of cx to the prover in order to obtain an HP scheme where x can
be hashed in a relation-independent manner. Then, we ask the prover to show the correctness of cx
using an HP scheme (where hashes are indeed relation-independent) that supports relations of the
form (x, cx) : cx =

∏
i Fi

xi .
Building an HP scheme from another HP scheme may look silly at first, however the key point is

that we require an HP that supports a specific class of relations: only multi-exponentiations. Con-
versely, our method can be seen as a way to bootstrap, via SNARKs, an HP scheme that supports
one specific class of computations into another one that can support arbitrary computations.

Following the generic HP construction from a hash & prove scheme for multi-exponentiation,
we propose new constructions to instantiate the latter. The first, called XP1, is publicly verifiable,
whereas the second one, called XP2, is in the designated verifier model but enjoys better efficiency.
The two new schemes are significantly more efficient than what could be obtained using known
techniques (e.g., the construction based on inner encoding in Section 3.3).

As a result, the instantiation of our generic construction with state-of-the-art SNARKs and our
new HP for multi-exponentiation yields an HP system that, compared to the solution in Section 3.3,
is at least 1, 400× times faster for the prover and the key generator (cf. Section 6).

The rest of the section is organized as follows. In Section 4.1 we describe the generic con-
struction; in Section 4.2 we give our publicly verifiable HP scheme for multi-exponentiation, and
in Section 4.3 we give the designated verifier one. Finally, in Section 4.4 we outline additional
properties of our constructions, including data updates and extension of HP to accumulators.

4.1 Generic Hash & Prove Scheme (HPgen)

Let VC = (KeyGen,Prove,Verify) be a SNARG scheme that supports a sequence of relations {Rλ}λ
and that has offline/online verification, as described in Section 2.1: we assume that every verifica-
tion key VK of VC includes group elements F1, . . . , Fn ∈ G1 and that Offline(VK, x) =

∏n
i=1 Fi

xi

computes a commitment cx.
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Let XP = (Setup,Hash,KeyGen,Prove,Verify) be an HP scheme that supports relations F ⊂ U×∅
where u is Znp × G1, every F ∈ F is defined by a vector F = (F1, . . . , Fn) ∈ Gn

1 , and a pair
(x, cx) ∈ Znp ×G1 is in F iff

∏n
i=1 Fi

xi = cx.
We use XP and VC to construct a scheme HPgen that supports any combination of relations

R(x, v ;w) supported by VC. The only requirement is that both schemes have compatible (or
identical) public parameters. Namely, they share the same bilinear group setting, and the number
of inputs in x, n, should be the same as in XP.

HPgen is defined as follows:

Setup(1λ) runs XP.Setup(1λ) and returns its public parameters pp.

Hash(pp, x) returns σx := XP.Hash(pp, x).

KeyGen(pp, R) takes a relation R and runs

EK,VK← VC.KeyGen(1λ, R);
Let F := (F1, F2, . . . , Fn) be the ‘offline’ elements in VK;
EKF ,VKF ← XP.KeyGen(pp, F );
return EKR := (EK,VK,EKF ),VKR := (VK,VKF ).

Prove(EKR, x, v ;w) parses EKR as (EK,VK,EKF ) then runs

cx ← VC.Offline(VK, x);
Π← VC.Prove(EK, (x, v) ;w);
Φx ← XP.Prove(EKF , x, cx);
return ΠR := (cx,Π,Φx).

Verify(VKR, σx, v,ΠR) parses VKR as (VK,VKF ) and ΠR as (cx,Π,Φx), and returns

VC.Online(VK, cx, v,Π) ∧ XP.Verify(VKF , σx, cx,Φx).

Hence, proofs ΠR in HPgen carry three representations of x: its portable hash σx; its offline relation-
specific commitment cx; and a multi-exponentiation proof Φx that binds the two. Compared with
VC proofs, and using our instantiations of XP described later in this section, the communication
overhead for HPgen proofs is two group elements (or three if we want hash extractability).

The following theorem states the security of HPgen.

Theorem 4.1. If XP is adaptively sound in the publicly verifiable (resp. designated verifier) setting,
and VC is sound, then the HPgen construction in Section 4.1 is adaptively sound in the publicly
verifiable (resp. designated verifier) setting.

The full proof appears in Appendix D.3.
The idea is rather simple: any adversary which breaks HPgen has to either break the security

of the underlying VC scheme, or cheat on the value of cx, thus breaking the security of XP. Our
proof shows a reduction for each case.

We also give a corollary that essentially says that, by instantiating our generic construction
with a hash extractable XP scheme, we can handle arguments with untrusted hashes. It follows by
construction of HPgen, observing that this scheme uses the hashing algorithm of XP.

Corollary 4.1. If XP is hash extractable, then the HPgen construction in Section 4.1 is also hash
extractable.
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4.2 Our Publicly Verifiable HP Scheme for Multi-Exponentiation (XP1)

We present our second key technical contribution: a hash & prove scheme, called XP1, for the class
of multi-exponentiation relations F described above.

For clarity, we write Φ instead of Π for restricted proofs.

Setup(1λ) samples Hi
$←− G1 for i ∈ [1, n] and returns pp = (Gλ, H) where H = (H1, . . . ,Hn).

Hash(pp, (x1, . . . , xn)) returns σx ←
∏
i∈[1,n]Hi

xi .

KeyGen(pp, F ) samples u, v, w
$←− Z∗p and computes U ← g2

u, V ← g2
v,W ← g2

w; samples Ri
$←− G1

and computes Ti ← Hi
uRi

vFi
w for i ∈ [1, n]; and returns EKF = (F, T,R) and VKF =

(U, V,W ) where R = (R1, . . . , Rn) and T = (T1, . . . , Tn).

Prove(EKF , (x1, . . . , xn), cx) computes Tx ←
∏
i∈[1,n] Ti

xi and Rx ←
∏
i∈[1,n]Ri

xi ; and returns Φx =
(Tx, Rx).

(Implicitly we require that cx =
∏
i∈[1,n] Fi

xi , though the cx part of the instance is not used
in the computation of the proof.)

Verify(VKF , σx, cx,Φx) parses Φx = (Tx, Rx) and returns

e(Tx, g2)
?
= e(σx, U) e(Rx, V ) e(cx,W ).

The following theorem states that XP1 scheme is secure. Correctness follows by inspection.

Theorem 4.2 (Adaptive Soundness of XP1). If the Strong External DDH Assumption holds, then
the XP1 scheme above is adaptively sound (Definition 3.1 for multiple relations).

Proof Outline. The proof works by considering the case of a single relation as the extension to
multiple relations is obtained by applying Theorem 3.1.

Below we provide the outline of the security proof via a sequence of game hops.

Game 0: this is the adaptive soundness game of Definition 3.1 restricted to a single relation.

Game 1: this is a modification of Game 0 as follows. When answering the (single) KEYGEN(F )

oracle query, the challenger sets w = γv + δ for random γ, δ
$←− Zp (instead of sampling

w
$←− Zp). Next, when the adversary returns the proof (x∗, c∗,Φ∗), with Φ∗ = (T ∗, R∗), the

challenger computes T̂ ←
∏
i∈[1,n] Ti

x∗i and ĉ←
∏
i∈[1,n] Fi

x∗i . Then, if (T ∗/T̂ )(ĉ/c∗)δ = 1 the
outcome of the game is changed so that the adversary does not win.

We claim that Game 0 and Game 1 are statistically indistinguishable. The intuition is that
δ is information theoretically hidden from the adversary, which implies that the only event
which changes the game’s outcome happens with negligible probability.

Game 2: this is a modification of Game 1 as follows. When answering the (single) KEYGEN(F )

oracle query, the challenger sets u = αv + β for random α, β
$←− Zp (instead of sampling

u
$←− Zp). Second, the challenger computes Ri ← H−αi F−γi and Ti ← Hβ

i F
δ
i .

This game is essentially changing the distribution of the evaluation keys returned to the
adversary. The distribution in this game however is computationally indistinguishable from
the one in Game 1 under the Strong External DDH (SXDH) assumption. Finally, once
accounted for this game difference it is possible to show that any p.p.t. adversary has negligible
probability of winning in Game 2, under the Flexible co-CDH assumption (which in turn
reduces to SXDH).
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Detailed proofs for the indistinguishability of the three games as well as a reduction from winning
in Game 2 to breaking Flexible co-CDH are in Appendix D.4.

We can make the XP1 construction hash extractable by adding a knowledge component. The re-
sulting scheme, XPE , consists of algorithms KeyGen and Prove from XP1 together with the following
additional algorithms.

SetupE(1
λ,F) samples Hi

$←− G1 for i ∈ [1, n] and ω
$←− Zp and returns pp = (Gλ, gω2 , {Hi,

Hω
i }i∈[1,n]).

HashE(pp, (x1, . . . xn)) computes Ax ←
∏
i∈[1,n]Hi

xi and Bx ←
∏
i∈[1,n](Hi

ω)xi . Returns σx =
(Ax, Bx).

Check(pp, σx) takes g2 and gω2 from pp; parses σx as (Ax, Bx); and checks that e(Ax, g
ω
2 )

?
= e(Bx, g2).

VerifyE(VKF , σx, cx,Φx) returns Check(pp, σx)
?
= 1

∧ e(Tx, g2)
?
= e(Ax, U) e(Rx, V ) e(cx,W ).

Lemma 4.1 (Hash Extractability of XPE). If the Bilinear n-Knowledge of Exponent Assumption
holds, then the XPE scheme above is hash extractable.

Proof. The existence of an extractor for the Bilinear n-Knowledge of Exponent Assumption implies
the existence of an extractor for the XPE construction.

4.3 Our Designated Verifier HP Scheme for Multi-Exponentiation (XP2)

We present another hash & prove scheme for multi-exponentiation, called XP2, which works in the
designated verifier setting. XP2 is similar to XP1 but requires one less element in the proof and one
less multi-exponentiation for the prover.

The XP2 scheme works for the same class of relations F supported by XP1, and the construction
is obtained by adapting a multi-function verifiable computation scheme by Fiore and Gennaro [23],
which works for a similar restricted class of functions, (f1, . . . , fn) ∈ Znp . In Appendix C we define
XP2 more generically based on homomorphic weak pseudorandom functions [23]. For simplicity,
we describe below the instantiation of the scheme based on the SXDH assumption.

The scheme XP2 works as follows:

Setup(1λ) samples Hi
$←− G1 for i ∈ [1, n] and returns pp = (Gλ, H) where H = (H1, . . . ,Hn).

Hash(pp, (x1, . . . , xn)) returns σx ←
∏
i∈[1,n]Hi

xi .

KeyGen(pp, F ) generates δ, k
$←− Z∗p; computes Ti ← Fi

δHi
k for i ∈ [1, n]; and returns EKF =

(F, T ),VKF = (δ, k) where T = (T1, . . . , Tn).

Prove(EKF , (x1, . . . , xn), cx) computes Φx ←
∏
i∈[1,n] Ti

xi ; and returns Φx. (Implicitly we require
that cx =

∏
i∈[1,n] Fi

xi , though the cx part of the instance is not used in the computation of
the proof.)

Verify(VKF , σx, cx,Φx) returns Φx
?
= cx

δ · σxk.
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Theorem 4.3 (Adaptive Soundness of XP2). If the SXDH assumption holds in G1, then the XP2

construction above is adaptively sound (Definition 3.1 for multiple relations and a designated veri-
fier).

We outline the intuition behind the proof of the Theorem. The values (Hk
i )i are pseudorandom

(by SXDH), and thus so are (Ti)i. After making a hybrid step where their distribution is changed
to random, the value of δ becomes information-theoretically hidden from the adversary, making its
probability of cheating negligible.

For more details we refer the reader to the proof of Theorem C.1 in Appendix C since Theo-
rem 4.3 can be seen as its SXDH instantiation.

A publicly verifiable variant in the generic group. Interestingly, the scheme above can be
modified to become publicly verifiable as follows: we publish (gδ2, g

k
2 ) as part of VKF , and use these

elements with a pairing in the verification algorithm. The resulting scheme has the advantage of
being more efficient than XP1. As a drawback, we can only argue its security in the generic group
model, and leave this analysis for the full version of this work.

Hash Extractability. We note that we can make the construction XP2 hash extractable by
incorporating a knowledge component, in the same way as we show for XP1.

4.4 Additional Properties of Our Instantiation

By plugging XP1 (or XP2) into the generic HPgen construction of Section 4.1 we obtain an efficient
HP scheme that can handle any relation supported by the underlying SNARK system.

A useful property of the hash function of both our constructions XP1 and XP2 is its (additive)
homomorphism, i.e., Hash(x1) ·Hash(x2) = Hash(x1 + x2). This property turns out to have several
applications, which we summarize below.

Incremental hashing for data streaming applications. The hash of our construction can be
computed incrementally as σi ← σi−1 ·Hxi

i (with σ0 = 1). This is particularly useful in applications
where a resource-constrained device outsources a data stream x1, x2, . . . to a remote server while
keeping locally only a small digest σi computed as above. Later, at any point, the client will be
able to verify a computation on the stream x1, . . . , xi by only using σi. Furthermore, when hash
extractability is not needed, the XP1 construction can be modified by letting Hi = RO(i) where RO
is a hash function that in the security proof is modeled as a random oracle (we omit a proof for this
case which is straightforward: simply simulate RO(i) as the Hi in the current proof). This simple
trick allows for constant-size public parameters and, more interestingly, to work with a potentially
unbounded input size n—a feature particularly useful in streaming scenarios.

Efficient hash updates. Another application of the homomorphic property is efficient hash
updates. Given a hash σx =

∏
iHi

xi on a vector x = (x1, . . . , xn), one can easily update the
i-th location from xi to x′i. Instead of recomputing the hash from scratch (which would require
work linear in n), one simply does a constant-time computation σx′ = σx · Hi

x′i−xi . This trick
also generalizes to updating multiple locations in time linear only in the number of locations that
require an update.

Multiple data sources. The homomorphic property also implies that the hash can be computed
in a distributed manner. For instance, one user computes σx,k =

∏
i∈[1,k]H

xi
i , a second user

computes σx,` =
∏
i∈[k+1,`]H

xi
i , and then a verifier who receives σx,k and σx,` can reconstruct the

full digest on (x1, . . . , x`) with a single multiplication. This feature is useful in those applications
where the data is provided by multiple trusted sources, in which case only small digests have to be
communicated. (For example, consider training a machine learning model using different datasets.)
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Randomizing hash values. If one of the xi inputs of the hash is uniformly random in Zp, then
the output of Hash(pp, x) is a uniformly random element in G1. Showing that SNARK systems
randomized in this fashion do not leak anything about their hashed data is less trivial as the same
randomness is reused by σx and the cx values of different relations. This is akin to randomness reuse
in ElGamal encryption, which is permissible. However, in most SNARK systems the group elements
used for commitment randomization have structure, precluding a straightforward reduction to DDH.
A detailed analysis of a multi-relation zero-knowledge property for specific VC schemes is thus an
interesting open problem.

From hashes to accumulators. Accumulators are often used as succinct representations of
sets that enable fast, limited, verifiable processing. For example, one can efficiently prove and
verify arguments on set operations by exploiting the structure of accumulators [38], with better
performance than by relying on a general-purpose VC scheme. To this end, we offer schemes
that allow one to transition between proof systems that operate on hashes and accumulators. In
particular, we introduce Accumulate & Prove scheme which is a variant of HP that operates on
accumulators and builds on HP and XP (to verify that the hash and the accumulator were computed
from same data). We provide the detailed scheme in Appendix E.

5 Outsourcing Hash Computations

In our efficient HP constructions of Section 4, the Hash algorithm computes a succinct digest σx
using one exponentiation for every element of x. Hence, when using instantiations with XP1 or
XP2, an HPgen verifier that wishes to relate computations verified using σx to their actual inputs x
must still perform |x| exponentiations, or trust some data provider that associates σx to x. Though
the same σx could be used to verify many computations that involve x, thereby amortizing the cost
of hash computation, we are looking to further optimize this cost.

Next, we describe a complementary technique to outsource hash computations to an untrusted
party such that the verifier (or its trusted data provider) only needs to perform |x| field multi-
plications and one efficient cryptographic hash on x, say SHA2, typically saving two orders of
magnitude.

We present our construction, called HP∗, as a generic extension of any HP system to which it
adds support for verifiable outsourcing of hash computations. The main benefit of this extension is
that the verifier does not need to run the Hash algorithm: instead, it can upload x to the untrusted
prover; obtain its hash σx together with a proof of hashing Πh, verify them; and finally keep σx.
Intuitively, the verifier can then use σx to refer to x as if it had computed it itself.

5.1 Definition

We define HP∗ as an extension of a given hash & prove scheme HP. In particular, the functionality
of the trusted Hash algorithm is supplemented with a pair of new algorithms, HashProve and
HashVerify, run respectively by the untrusted prover and by the verifier. HashProve computes a
hash of data x and augments it with a proof that the hash is computed correctly (that is, it is
computed according to Hash algorithm). HashVerify then accepts σx as the hash if the proof verifies
correctly.

Formally, HP∗ is a multi-relation hash & prove scheme that supports hash outsourcing and con-
sists of 7 algorithms HP∗ = (Setup,Hash,HashProve,HashVerify,KeyGen,Prove,
Verify). For completeness, we list Setup, Hash, KeyGen, Prove and Verify, however they are de-
fined identically to those in HP (cf. Section 3).
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pp, vp← Setup(1λ) takes the security parameter and generates the public parameter for the scheme;

σx ← Hash(pp, x) produces a hash given some data x ∈ X;

Πh ← HashProve(pp, x, σx) produces a proof of RHash(x, σx) = (σx
?
= Hash(pp, x)) given some data

x ∈ X and hash σx;

bh ← HashVerify(vp, x, σx,Πh) either accepts (bh = 1) or rejects (bh = 0) a proof that σx is a hash
of data x.

EKR,VKR ← KeyGen(pp, R) generates evaluation key EKR and verification key VKR given a relation
R ∈ Rλ;

ΠR ← Prove(EKR, x, v ;w) produces a proof of R(x, v ;w) given an instance and a witness that
satisfy the relation.

b← Verify(VKR, σx, v,ΠR) either accepts (b = 1) or rejects (b = 0) a proof of R given a hash of x
and the rest of its instance v.

In addition to being a Hash & Prove scheme (i.e., satisfying adaptive soundness or adaptive hash
soundness), HP∗ must be secure with regards to outsourcing, as defined below.

Definition 5.1 (Sound Hash Outsourcing). Outsourcing of HP∗ hash computation is secure if every
p.p.t. adversaries wins the game below only with negligible probability.

Outsourced Hash Game
pp, vp← Setup(1λ)
x, σ∗x,Πh ← A(1λ, pp, vp)

A wins if HashVerify(vp, x, σ∗x,Πh) = 1 and σ∗x 6= Hash(pp, x)

This game is similar to the Hash Extraction game, but it does not involve extraction, as the
verifier is given both x and σ∗x. (The designated-verifiability variant is obtained by keeping vp
private and, instead, giving the adversary oracle access to HashVerify.)

Hash outsourcing ensures that, when verifying composite arguments as in adaptive hash sound
schemes (cf. Section 3.2), one can safely replace calls to Hash with calls to HashVerify. In particular,
with HP∗, an argument can be passed to a relation either as data x, as a hash σ or as (x, σ∗). Our

definition can be trivially satisfied by ignoring Πh and setting HashVerify(pp, x, σ,Πh) = (σ
?
=

Hash(pp, x)) but of course we are looking for more efficient constructions.

5.2 Efficient Construction (HP∗)

We build HP∗ out of any hash & prove scheme HP, and two additional tools: an almost universal
hash function h (recalled below) and a regular hash function H (that will be modeled as a random
oracle).

Almost Universal Hash Functions. An ε-almost universal hash function h is such that, for all
x 6= x′ chosen before h is sampled, we have Prh[h(x) = h(x′)] ≤ ε [13]. We will use such functions
from Znp to Zp, instantiated by hα(x) =

∑n
i=1 xiα

i−1 and keyed with a random α ∈ Zp. These
functions can be computed as hα(x) = x1 +α(x2 + . . . α(xn−1 +αxn))) using n additions and n− 1
multiplications by α, which is particularly efficient in verifiable-computation schemes for arithmetic
circuits.

Lemma 5.1. hα is (n− 1)/p-almost universal.
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Proof. Expanding the collision equality, we get
∑n

i=1 xiα
i−1 =

∑n
i=1 x

′
iα
i−1, that is,

∑n
i=1(xi −

x′i)α
i−1 = 0. If x 6= x′, we have a non-zero polynomial in α of degree at most n− 1, with at most

n− 1 roots, so this equality holds with probability at most (n− 1)/p.

Before delving into the details of the construction, let us describe its main ideas. The first idea
is to build HP∗ by extending any HP with algorithms HashProve and HashVerify that allow to prove

and verify the correctness of σx
?
= Hash(x). Notably, HashVerify must be significantly faster than

recomputing Hash(x). To this end, our second idea is to let HashProve compute a (freshly sampled)
universal hash function hα(x) and generate a proof Πh that links hα(x) to the correct σx. Then our
HashVerify simply checks Πh (in constant time) and recomputes the universal hash hα(x), which
is much faster than the multi-exponentiation Hash. The security of universal hash functions relies
on their input being chosen before hα is sampled. To this end, we require that hα depend on the
input x by setting α = H(x, σx) where H is a hash function.

We are now ready to give our HP∗ construction. Let Rh be the relation defined by Rh(x, α, µ) =

(µ
?
= hα(x)), and let H be a hash function. We build HP∗ using any HP that supports relation Rh

and is hash-extractable.

Setup(1λ) runs setup and generates keys for outsourcing h:

pp′ ← HP.Setup(1λ);
EKh,VKh ← HP.KeyGen(pp′, Rh);
return pp = (pp′,EKh) and vp = VKh;

HashProve(pp, x, σx) computes α = H(x, σx); µ = hα(x); Πh ← HP.Prove(EKh, x, (α, µ)) and re-
turns Πh;

HashVerify(vp, x, σx,Πh) computes α = H(x, σx); µ = hα(x) and checks HP.Verify(VKh, σx, (α, µ),Πh).

We omit Hash, KeyGen, Prove and Verify algorithms as they are simply calls to their counterparts
in the HP scheme (for example, HP∗.KeyGen calls HP.KeyGen(pp′, R)).

We stress that, even if asymptotically our new construction is not better than the original one
(the verifier performs Θ(n) operations), in practice, the operations performed by the verifier in
HP∗.HashVerify are orders of magnitude faster than those in HP.Hash.

Discussion. Applying HP∗ to our efficient constructions of Section 4 (either public or designated
verifier), our proofs now carry a fourth representation µ = hα(x) of x in addition to its hash σx,
its commitment cx, and a proof Φx. Note that we rely on extraction only for the witnesses x of the
fixed relation Rh.

To avoid random oracles, we can use an interactive, designated verifier variant of HP∗, whereby
(1) the prover commits to x and σx; (2) the verifier sends a fresh random α; (3) the prover produces
a proof of Rh; (4) the verifier checks the proof against x and σx, as above.

Security. We finally state the security of hash outsourcing:

Theorem 5.1. In the random oracle model for H, if hα is an ε-almost universal hash function,
HP is adaptively sound and hash extractable in publicly verifiable (resp. designated verifier) setting,
then HP∗ is sound for outsourcing of hash computations as per Definition 5.1 in publicly verifiable
(resp. designated verifier) setting.

Proof Outline. Assuming H is a random oracle, the proof proceeds in a sequence of games. Let A
be the adversary in Definition 5.1 and x, σ∗x,Πh be his forgery.
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Game 0: Outsourced Hash Game.

Game 1: Let Aσ be the adversary obtained by taking pp, vp as input, running A, H internally,
and returning σ. Note that Aσ does not take auxiliary input since it takes pp, vp as input and
runs from the beginning of the experiment. Game 1 is the same as Game 0, except that for
every successful adversary we execute the challenger together with the knowledge extractor
Eσ whose existence is guaranteed by hash extractability. The game aborts without A winning
if Eσ fails to extract a value x′ from which we can reconstruct σ.

Game 2: The same as Game 1, except the game aborts if ¬Rh(x′, α, µ) where α ← H(x, σ) and
µ = hα(x).

In Appendix D.5 we show that the three games are indistinguishable as well as that any adversary
has negligible probability of winning in Game 2.

We note that all HP constructions in Section 4 can be made hash extractable (meeting require-
ments of Theorem 5.1) and can be used for secure hash outsourcing.

6 Evaluation

In this section, we analyze and measure the performance of our new HP constructions compared
to previous solutions.

Our evaluation is twofold. First we analyze the efficiency of our scheme HPgen from Section 4
(instantiated with Geppetto [20] and XP1) and we compare it against the inner encoding construc-
tion HPinn of Section 3.3 (also instantiated with Geppetto and various choices of the hash function).
Second, we report on the impact of our hash outsourcing technique of Section 5 in speeding up
hashing and verification time.

6.1 Microbenchmarks

We performed a series of microbenchmarks on a single core of a 2.4 GHz Intel Xeon E5-2620 with
32 GB of RAM. The table below gives the time for individual operations on the fields and elliptic
curves used by Geppetto. The cost of multi-exponentiation and for SHA-256 is reported for each
254-bit word of input.

operation time
field addition 45.2 ns
field multiplication 316.7 ns
multi-exponentiation 231.2 µs
pairing 0.7 ms
SHA-256 193.6 ns

6.2 Inner vs. Outer Encodings

We compare the asymptotic performance of inner and outer encodings and summarize the results
in Figure 1.

In our evaluation, we make a distinction between different types of verifier effort, depending
on whether the verifier’s input to the computation is passed by value or by reference via a hash
(referred to as an opaque hash for HP schemes in §3.2). In the figure, they are denoted as “Verify
I/O” and “Verify Intermediate Commitments”, respectively.
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Verify Verify Verify Prover Proof Size
Generality proof I/O Interm. Commit Effort (group elts.)

HPinn (Ajtai) Yes 12 pairings Ajtai(n) + 1 MultiExp 1 MultiExp O(D logD) 8
Geppetto [20] No 12 pairings 3n MultiExp 5 pairings O(d log d) 8
HPgen Yes 12 pairings n MultiExp 4 pairings O(d log d) + 2n MultiExp 10
HPgen (extract) Yes 12 pairings n MultiExp 6 pairings O(d log d) + 3n MultiExp 11
HP∗ Yes 12 pairings SHA(n) + n MulAdd +

16 pairings + 6 MultiExp
4 pairings O(d log d) + 2n MultiExp

+ UHash(n)
20

Figure 1: Asymptotic Performance. Comparison of our schemes and prior work. For our schemes, we
assume the use of our publicly verifiable XP1 scheme, and HP∗ is instantiated with HPgen. We use n for
the size of the inputs/outputs (I/O), d� n for the degree of the QAP used for the outsourced computation,
and D = d+ 350n. MultiExp is the cost of a multi-exponentiation, and MulAdd is the cost of a simple field
multiplication and addition. Ajtai(x) and SHA(x) is the time needed to compute an Ajtai (resp. SHA-256)
hash on x words of input, and UHash(x) is O(x log x), i.e., the time necessary to compute and prove correct
a universal hash.

When the verifier’s input is passed by value, she (or someone she trusts) must directly handle
each I/O value, so the cost depends on the size, n, of the I/O. Note that for any particular verifier,
such computation is required only once for a given I/O value, as the computed commitment (or
hash) can be reused in subsequent computations.

When a verifier uses I/O values passed by reference, she verifies a proof using a commitment
or hash of the I/O values without handling them directly. Since the commitment/hash values
are constant size, the verification effort is also constant. A verifier may use I/O values passed by
reference when the corresponding hash comes from a trusted source (e.g., the verifier herself), or
when it represents intermediate values in a computation (e.g., between mappers and reducers in
a MapReduce computation) where the verifier merely needs to check the consistency of the I/O,
rather than the values themselves.

HPinn. We consider the construction HPinn given in Section 3.3 instantiated with Geppetto and
either SHA-1, SHA-256, or Ajtai’s [1] hash function. On the positive side, HPinn has the same
number of elements in the proof as Geppetto; its online verification cost is the same as in Geppetto,
while offline verification consists of one hash computation plus a multi-exponentiation on a fixed size
word. On the negative side, to support a relation R, HPinn forces Geppetto to work with a relation
R′ which (on top of encoding R) encodes hash computations. The latter adds significantly to the
evaluation key size and the prover’s work, which scale linearly and quasilinearly respectively in the
number of quadratic equations needed to represent the computation. Concretely, Geppetto includes
libraries for verifiably computing SHA-1 and SHA-256 hashes. For each 254-bit I/O element, these
libraries require approximately 22,400 equations for SHA-1 or 35,000 for SHA-256. Similar libraries
for Ajtai require only 300–400 equations per word of input, but they increase the cost for the verifier
and may not suffice for privacy applications that require stronger randomness properties from the
hash function [16].

Geppetto. Geppetto is an example of an outer encoding scheme which avoids the expenses
incurred by inner encodings. For example, compared with the hundreds or thousands of equations
used for inner encodings, Geppetto only adds one equation per word of input, and hence they
report improving prover performance by two orders of magnitude for processing I/Os [20]. However,
Geppetto’s approach requires the verifier to compute commitments using a multi-exponentiation
(versus a hash in HPinn) that is linear in the I/O size. Furthermore, Geppetto must specify which
computations will be supported at setup time, before data is selected for said computations.

Our HPgen Scheme. Unlike Geppetto, which fixes at setup which computations will be supported
for committed data, our HPgen scheme offers full generality; i.e., data can be hashed completely
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independently of the computations to be performed, and indeed, new and fully general computations
can be verified over previously hashed data.

HPgen’s new generality comes at a modest computational cost relative to Geppetto. In terms of
communication, HPgen proofs include two more elements (three with hash extractability); the eval-
uation key and the verification key of every relation contain, respectively, 2n and 3 extra elements.
In terms of computation, our prover has to perform two additional n-way multi-exponentiations.
The verifier’s online cost is the same as in Geppetto, whereas offline verification requires one
hash computation (i.e., one n-multi-exponentiation) plus four pairings. If we wish to support
hash extractability, then this adds an additional group element to the proof, an additional multi-
exponentiation for the prover, and an additional pairing for the verifier. Overall, the additional
burden (linear in the I/O size n) that HPgen adds relative to Geppetto is quite small, since both
the size of the evaluation key and the prover’s effort are typically dominated by the complexity of
the outsourced computation, which, in most applications, is much larger than n.

Compared with inner encodings like HPinn, however, HPgen saves the prover significant effort.
Concretely, if we instantiate HPinn with Ajtai’s hash, then HPgen is 1, 400× faster per I/O word
(e.g., for n = 1, 000, HPinn takes 10 minutes while HPgen takes half a second), while for SHA-256,
the difference is closer to 140, 000× (e.g., HPinn takes 18 hours).

Our HP∗ Scheme: Outsourcing Hash Computations. Compared with HPgen, HP∗ drastically
improves the verifier’s I/O processing time. For the verifier, whereas HPgen required a multi-
exponentiation linear in the I/O, with HP∗, the linear costs consist of (1) a symmetric, fast SHA-256
hash computation to compute the key α; and (2) for each word, n additions and n−1 multiplications
over Zp. A conservative comparison based on the results from Section 6.1 shows that (2) is 654×
cheaper per I/O word than a multi-exponentiation, and that (1) using SHA-256 is even cheaper
than (2). Overall, compared with its current I/O processing, HP∗ thus reduces the linear costs of
the Geppetto verifier by two orders of magnitude. As a concrete example, with n = 1, 000, 000,
HPgen takes 4 minutes to process the I/O, while HP∗ needs half a second. Compared with Pantry,
(2) takes one multiplication per word, which is also significantly cheaper than computing Ajtai’s
algebraic hash function on each word. An additional benefit of HP∗ is that the verifier’s key becomes
constant size (a few group elements for encoding α and µ) rather than linear in n.

These benefits come at a low cost: HP∗ increases the size of the proof from 11 to 20 elements. For
the prover, the proof cost increases by just 2n field operations and a SHA-256 hash computation,
plus the cost of generating Πh, which only depends on n and is independent of the overall relation
to be proven.

6.3 Application Performance

To evaluate the impact of our schemes at the application level, we evaluated them on two applica-
tions.

Statistics has a data generator commit to n 64-bit words. Later, clients can outsource vari-
ous statistical calculations on that data; for example, we experiment with computing K-bucket
histograms.

DNA matching creates a commitment to a string of n nucleotides, against which a client can
then outsource queries, such as looking for a match for a length K substring.

The performance results for both applications appear in Figure 2. As expected, I/O verification
in HPinn is more efficient compared to the outer encodings schemes. Among outer encodings, our
HP∗ outperforms others as the size of the input grows and n multi-exponentiations start dominating
the cost of verifying hash outsourcing in HP∗. On the other hand, the outer encodings schemes are
more prover-friendly. In particular, the prover’s total effort (I/O plus computation) is 1.02-2.3x
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Verify proof Verify I/O Prover Effort
Statistics (n = 256,K = 8)

HPinn (Ajtai) 17ms 0.070ms 117s
Geppetto [20] 17ms 1380ms 113s
HPgen 17ms 557ms 114s
HP∗ 17ms 31ms 114s

Statistics (n = 1024,K = 8)
HPinn (Ajtai) 17ms 0.3ms 2,100s
Geppetto [20] 17ms 6,267ms 2,084s
HPgen 17ms 2,096ms 2,085s
HP∗ 17ms 30ms 2,092s

DNA Search (n = 600,K = 4)
HPinn (Ajtai) 17ms 0.079ms 13.64s
Geppetto [20] 17ms 1611ms 5.00s
HPgen 17ms 574ms 5.01s
HP∗ 17ms 31ms 6.07s

DNA Search (n = 60, 000,K = 4)
HPinn (Ajtai) 17ms 6.4ms 1,695s
Geppetto [20] 17ms 46,980ms 706s
HPgen 17ms 15,636ms 710s
HP∗ 17ms 104ms 931s

Figure 2: Application Performance. Comparison of our schemes and prior work for two example
applications.

higher for HPinn than for HP∗ (note that even though our schemes significantly reduce the prover’s
burden for I/O, they do not affect the effort for the computation itself, and hence Amdahl’s law
limits the overall impact). Finally, the results for HP∗ show that the additional computation the
scheme imposes on the prover pays off: verification is 18-150x more efficient than for HPgen with
at most a 30% increase in the prover’s efforts.

7 Related work

Cryptographic proof systems come in a variety of shapes, with inherent trade-offs between the
efficiency of their provers and verifiers and the expressiveness of the statements being proven.
One particularly interesting point in the design space are computationally-sound non-interactive
proof systems, also known as argument systems [15], that can be verified faster than by directly
checking NP witnesses. Starting with the work of Micali [36], there has been much progress [11, 30,
6, 26, 21, 31] leading to succinct non-interactive argument systems often referred to as SNARKs
or SNARGs, depending on whether they establish knowledge rather than just existence of the
NP witness. Significant theoretical improvements have been complemented with nearly-practical
general-purpose implementations [40, 7, 20, 9, 47].

As noted in Section 1 and Section 3.3, some prior work fits our hash & prove model with data
verification embedded via inner and outer encodings. Here we review other solutions that follow
the outer encoding approach.

In commit & prove schemes [33, 17], one can create a commitment to the data, and use it in
multiple proofs. Costello et al. [20] and implicitly Lipmaa [35] use this idea for verifiable computa-
tion to efficiently share data between proofs. However, in this approach all computations have to
be fixed before one creates commitments to data. In other words, one has to know a-priori which
computations will be executed on the data, which may not be the case in applications like MapRe-
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duce. This issue can be mitigated by fixing a universal relation, i.e., a relation which contains all
relations that can be executed within a fixed time bound. However, this generality comes at a
performance cost.

Several works by Ben-Sasson et al. investigate how to efficiently build universal relations for
predicates described as random-access machine algorithms [5, 7, 9]. For instance, they describe
a SNARK scheme [9] supporting bounded-length executions on a universal von Neumann RISC
machine with support for data dependent memory access, but this generality comes at a cost [20].
To achieve full generality, the bound on the execution length can be removed via proof bootstrap-
ping [46]. Despite recent improvements and innovation [8], such bootstrapping is costly.

Memory delegation [19] also models a scenario where one outsources memory and only later
chooses computations (including updates) to be executed on it in a verifiable way. In this model,
after a preprocessing phase whose cost is linear in the memory size, the verifier’s work in the online
verification phase is sublinear in the memory size. In contrast, with HP schemes the verifier also
needs to do linear work once to hash the input, but then the verification cost is constant with
respect to the the input size.

Another possibility to address computation on previously outsourced data is to use homomor-
phic message authenticators [4] or signatures [18, 29]. With the former, data is flexibly authenti-
cated when uploaded and then multiple functions can be executed and proved on it. Homomorphic
authenticators share the limitation of commit & prove schemes: the class of computations has to
be fixed before the data can be authenticated. Moreover, homomorphic authenticator construc-
tions that offer more practical efficiency [4] work only for quite restricted classes of computations
(low degree polynomials). The approach based on leveled homomorphic signatures [29] is more
expressive but still very expensive in practice, as the size of the proof (i.e., evaluated signature) is
polynomial in the depth of the computation’s circuit.

AD-SNARKs [3] provide a functionality similar to homomorphic authenticators, working effi-
ciently for arbitrary computations, but even in their case the set of computations has to be fixed a
priori. As a further restriction, the model of both homomorphic authenticators and AD-SNARKs
requires a secret key for data outsourcing, and it only supports append-only data uploading (i.e., it
does not support changing the uploaded data). In contrast, the hash & prove model considered by
this work supports delegating computation on public data, since hashes are publicly computable.

Finally, TRUESET [34] uses a Merkle hash tree over I/O commitments in a VC scheme to
support computations on a subset of committed inputs (namely, a collection of sets). While this
adds flexibility as to which inputs can be used in the computation, these inputs still have to be
fixed a-priori.
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A Adaptive Hash Soundness

In this section we formally define adaptive hash soundness as mentioned in Section 3.
Hash extraction (Definition 3.2) enables us to use an HP scheme to verify arguments that include

opaque hashes σ provided by the adversary by first extracting their content x ∈ X then applying
adaptive soundness. To formalize this idea, we complete our definitions with a more generally
useful notion of soundness that follows from the composition of the simpler definitions in Section 3.
Indeed, as we show in Theorem A.1 below, any scheme HP that is both adaptively sound and hash
extractable is also adaptively hash sound.

Definition A.1 (Adaptive Hash Soundness). A multi-relation scheme HP is secure if every p.p.t.
adversary with access to oracle KEYGEN has negligible success probability in the game:

Adaptive Hash Forgery Game

pp← Setup(1λ)
(Ri, ρi, vi,Πi)

t
i=1,Σ← AKEYGEN(1λ, pp)

A wins if∧t
i=1 VERIFY(Ri, ρi, vi,Πi) = 1

∧
∧
σ∈Σ Check(pp, σ) = 1

∧ ¬∃x.
∧
i ∃wi.Ri(x(ρi), vi ;wi)

KEYGEN(R)

if VK(R) exists, return ⊥
EK,VK← KeyGen(pp, R)
VK(R) := VK; return EK,VK

VERIFY(R, ρ, v,Π)

if VK(R) undefined, return 0
return Verify(VK(R), h(ρ), v,Π)
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where Σ is a finite set of hashes; ρ ranges over the disjoint union of X]Σ (intuitively, an argument
passed either as data or as a hash); x is a function from X ] Σ to X that maps data x to x and
hashes σ to some data in X. (intuitively, x includes an extractor from hashes to data); and h is a
function from X ] Σ to hashes that maps data x to Hash(pp, x) and hashes σ to σ.

The designated-verifier variant is obtained as in Definition 3.1.

In the definition, the adversary builds a composite argument whose instances mix plaintext
values xi ∈ X and opaque hashes σ ∈ Σ; importantly, the same σ can occur in multiple instances.
To verify the argument, the verifier checks all proofs Πi using hashes that are either recomputed
from x ∈ X or checked for well-formedness. The adversary wins if the hashes in Σ cannot be opened
in a consistent manner to satisfy all the relations of the argument.

Theorem A.1. If HP is adaptively sound and hash extractable, then HP is adaptively hash sound.

Proof Outline. The argument is structured in terms of game hops.

Game 0 is the same as the Adaptive Hash Forgery Game.

Game 1 Let Aj be the adversary that takes pp as input and runs A from Game 0 and the oracles
for KEYGEN (and VERIFY in the designated verifier setting) internally. Finally, Aj outputs
σj and the corresponding hash function extractor Ej returns xj for j ∈ [1,Σ]. Note that Aj
does not take auxiliary input since it takes pp as input and runs from the beginning of the
experiment.

Game 1 is the same as Game 0 except that for every A we run E1, . . . , E|Σ| in parallel to the
challenger and we abort if Check(pp, σj) = 1 but σj 6= Hash(pp, xj).

Let Gi(A) be the output of Game i run with adversary A. We prove the following claims.

Claim A.1. Pr[G0(A) = 1] ≈ Pr[G1(A) = 1].

Ej must exist since Hash is an extractable hash function.

Claim A.2. Pr[G1(A) = 1] ≈ 0.

We can build an adversary AAS that breaks adaptive soundness of the HP scheme using A
as follows. AAS forwards his pp to A. It replies KEYGEN queries using his own oracle. (In the
designated verifier case, on VERIFY(R, ρ, v,Π) he queries his own verify oracle sending x(ρ) instead
of ρ. We note that well-defined x exists in this game.) Once A returns a forgery, AAS chooses i at
random and returns Ri, x(ρi), vi,Πi as his forgery. Since A could have forged on any of the Ri, the
probability of AAS winning is ε/t where ε is the success probability of A winning Game 1.

B Zero-knowledge

Here we provide a notion of zero-knowledge for HP schemes. The notion models zero-knowledge
with respect to the witnesses of the relations, and intuitively says that proofs do not reveal any
information about the witnesses w.

Definition B.1 (Adaptive Zero-knowledge). A multi-relation hash & prove scheme HP is zero-
knowledge if there exists a p.p.t. simulator S = (S1, S2, S3) such that for all λ ∈ N, every adversary
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A wins the following game with an advantage 2 Pr[b′ = b]− 1 that is negligible.

Adaptive Zero-knowledge Game

b← {0, 1}
pp0 ← Setup(1λ);
pp1, stS ← S1(1λ);
b′ ← AKEYGEN,PROVE(1λ, ppb)
A wins if b = b′

KEYGEN(R)

if EK(R) exists, return ⊥
EK0,VK0 ← KeyGen(pp, R)
EK1,VK1, stS ← S2(stS , R)
EK(R) := EKb

return (EKb,VKb)

PROVE(R, u,w)

if EK(R) undefined, return ⊥
Π0 ← Prove(EK(R), u, w)
Π1, stS ← S3(stS , R, u)
return Πb

C Designated Verifier HP Scheme from Weak PRFs (XP2)

In this section we present a more abstract definition of the scheme XP2 given in Section 4.3. We
recall that XP2 supports the class of multi-exponentiation computations and works in the designated
verifier setting.

The main building block of XP2 is a cryptographic primitive, called homomorphic weak pseudo-
random functions, that we recall below.

Homomorphic Weak Pseudo-random Functions. A homomorphic weak pseudorandom func-
tion [23] WPRF consists of algorithms KeyGen and PRF. The key generation KeyGen takes as input
the security parameter 1λ and outputs a secret key k and some public parameters pp that specify
domain X and range Y of the function. On input X ∈ X , PRFk(X) returns Y ∈ Y . Homomorphic
weak pseudorandom function have two properties: weak pseudorandomness and homomorphism.

• WPRF is weakly pseudorandom if, for any p.p.t. adversary A and any polynomial t = t(λ),
we have

Pr[A(1λ, pp, {Xi, Yi}ti=1)]− Pr[A(1λ, pp, {Xi, Zi}ti=1)] ≈ 0

where k, pp← KeyGen(1λ); Xi ∈ X ; Yi = PRFk(Xi); and Zi
$←− Y for i = 1..t.

• WPRF is homomorphic if, for any inputs X1, X2 ∈ X and any integer coefficients c1, c2 ∈ Z,
it holds that PRF(Xc1

1 X
c2
2 ) = PRF(X1)c1PRF(X2)c2 .

We instantiate WPRF for X = Y = G1 as PRFk(h) = hk. This scheme is weakly pseudorandom in
any cyclic prime order group under the DDH assumption.

In presence of asymmetric bilinear groups G1 and G2, this function can be instantiated in G1

and G2 and proven secure under the SXDH assumption [23].

The XP2 construction. XP2 is described in terms of a weak homomorphic PRF as defined above.
The scheme XP2 works as follows:

Setup(1λ) samples Hi
$←− G1 for i ∈ [1, n] and returns pp = (G1, p, g1, H) where H = (H1, . . . ,Hn).

Hash(pp, (x1, . . . , xn)) returns σx ←
∏
i∈[1,n]Hi

xi .
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KeyGen(pp, F ) generates δ, k
$←− Z∗p; computes Ti ← Fi

δPRFk(Hi) for i ∈ [1, n]; and returns EKF =
(F, T ),VKF = (δ, k) where T = (T1, . . . , Tn).

Prove(EKF , (x1, . . . , xn), cx) computes Φx ←
∏
i∈[1,n] Ti

xi ; and returns Φx. (Implicitly we require
that cx =

∏
i∈[1,n] Fi

xi , though the cx part of the instance is not used in the computation of
the proof.)

Verify(VKF , σx, cx,Φx) returns Φx
?
= cx

δPRFk(σx).

Theorem C.1 (Adaptive Soundness of XP2). Assuming the weak pseudorandomness of PRF, the
XP2 construction above is adaptively sound (Definition 3.1 for multiple relations and a designated
verifier).

We prove that XP2 construction is adaptively sound for a single relation, then apply Theorem 3.1
to extend it to multiple relations. We outline below the games that we use for the proof.

Game 0: This game is the same as the adaptive forgery game.

Game 1: This game is the same as Game 0 except for the following change in the way the verifi-
cation queries are answered by the challenger.

Let (x, cx,Φx) be the query made by the adversary to the VERIFY oracle. Let σx = Hash(pp, x).
Instead of computing PRFk(σx), the challenger computes σ′ as

∏
i∈[1,n] PRFk(Hi)

xi Then, it

verifies by checking if Φx = cδxσ
′ holds.

Game 2: During KeyGen, instead of generating a key k for the weak PRF, the challenger sets each

Ti to Fi
δZi, where Zi

$←− G1, and sets VK = (δ, Z1, . . . , Zn).

Accordingly, for verification queries (σx, cx,Φx), where σx exists in the challenger’s table with
σx = Hash(pp, x), the challenger checks Φx = cx

δ
∏
i∈[1,n] Zi

xi .

Let Gi(A) be the output of Game i run with adversary A. We prove the following claims:

1. Pr[G0(A) = 1] = Pr[G1(A) = 1].

2. Pr[G1(A) = 1] ≈ Pr[G2(A) = 1].

3. Pr[G2 = 1] ≈ 0.

Claim C.1. Pr[G0(A) = 1] = Pr[G1(A) = 1].

Proof. By the homomorphic property of the weak PRF, the computation in the verification oracle
for Game 1 is equivalent to Game 0 and it does not affect the distribution of the outcome of
verification.

Claim C.2. Pr[G1(A) = 1] ≈ Pr[G2(A) = 1].

Proof. The difference between Games 1 and 2 is the substitution of a random element with an

element generated by a weak homomorphic PRF. Since values Hi are chosen as Hi
$←− G1 by a

trusted Setup algorithm, one can write a distinguisher for WPRF given a distinguisher of the two
games in the claim.

29



Claim C.3. Pr[G2(A) = 1] ≤ q/p for a (computationally unbounded) adversary A that makes at
most q queries to the verification oracle.

Proof. We first rewrite Game 2 as follows.

Game 2 :
(F1, . . . , Fn)← A(1λ) where Fi ∈ Gp;

The challenger chooses δ
$←− Zp and computes Ti ← Fi

δgri where ri
$←− Zp;

Define O(Φ, x, cx) to return 1 iff Φ = cδx
∏
i g
rixi ∧ cx 6=

∏
i Fi

xi ;
Given oracle access to O,A(stateA) returns 1 if O returns 1,and 0 otherwise.

Wlog we assume that A never outputs (Φ, (xi)i, cx) such that cx =
∏
i Fi

xi as such outputs do not
help the adversary and can be avoided. Therefore, the probability that the experiment outputs 1
is:

Pr[output is 1] = Pr

⋃
j

Forgeryj

 ≤∑
j

Pr
[
Forgeryj

]
where the event Forgeryj is defined as Φj = cjx

δ∏
i g
rix

j
i ∧ cjx 6=

∏
i Fi

xji and corresponds to the jth
query to O.

Now we will bound the probability inside the sum conditioned on a particular value of F1, . . . , Fn,
T1, . . . , Tn, and show that no matter what these values are, the probability is at most 1/p.

Since the adversary is unbounded, wlog we assume A is deterministic. Now, fix such a value
for Fi’s and Ti’s that happens in the experiment with non-zero probability. Notice that, once the
value of δ is fixed, there is a unique value for r1 that results in the answer T1 for F1. Similarly,
there is a unique value of r2 that makes answer to F2, T2 and so on. In other words, there are
exactly p possible values of δ, r1, r2, . . . , rn that result in these queries and answers, precisely one
for each possible choice of δ.

Wlog we omit superscript j below. Since Φ = cx
δ
∏
i g
rixi ∧ cx 6=

∏
i Fi

xi , we have the following:

Φ∏
i Ti

xi
=

(
cx∏
i Fi

xi

)δ
6= 1

Therefore, δ = logA(B) mod p where A = cx∏
i Fi

xi and B = Φ∏
i Ti

xi . There is exactly one δ that

satisfies this equation. So, out of the p possible settings of δ, r1, . . . , rn, at most one will result in
A’s success. Therefore, we can bound the probability as:

Pr[output is 1] ≤
∑
j

Pr[Forgeryj ] =

∑
j

∑
Fl,Tl

Pr[F1, .., Fn, T1, .., Tn] Pr[Forgeryj | F1, .., Fn, T1, .., Tn] ≤ q/p

Though the distribution over different values of Fl and Tl is not known, the above bound holds for
value of these variables.

D Security Proofs

D.1 Proof of Theorem 3.1

Theorem 3.1. A HP scheme that is ε-secure as per Definition 3.1 for a single relation is qε-secure
for multiple relations, where q bounds the number of calls to KEYGEN made by the adversary.
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Proof. Assume there is an adversary A that can win the adaptive forgery in the multiple relations
case game with non-negligible probability ε against HP . We construct an adversary B that can
break HP while querying key generation only for a single relation. We first consider the designated
verifier option and then show that the proof extends to the public verifiability option as well.
B uses his pp as pp for A and initializes a tape T to store a mapping between R’s queried by

A and EKR,VKR. (T is stored in B’s state.) A makes a forgery on one of the q relations that he
queries KEYGEN for. Since B does not know which one, he chooses an index i ∈ [1, q] at random.
B answers A’s KEYGEN(R) queries as follows. If R is in T, return ⊥. If B chooses R as his

forgery, i.e., R is the ith relation queried by A, he sets R′ to R and sends R′ to his challenger, and
gets EKR′ back. He stores R′ and EKR′ ,⊥ in T and returns EKR′ to A. If A queries for any other R
not in T, B runs HP.KeyGen himself, stores R and corresponding EKR,VKR in T and returns EKR

to A.
B answers A’s VERIFY(R, x, v,Π) queries as follows. If R is not in T, he returns 0. If R′ = R,

B queries his own VERIFY oracle and returns the reply to A. For all other relations, he first
runs σx ← HP.Hash(pp, x), looks up R’s verification key VKR in T and returns the result of
HP.Verify(VKR, σx, v,Π).

Once A outputs a forgery R∗, x∗, v∗,ΠR∗ , B checks if R∗ = R′. If yes, he returns x∗, v∗,ΠR∗ as
his forgery, Otherwise he aborts.

Let q be the number of KeyGen queries A requested. Then, B wins with probability ε/q which
is non-negligible if q is polynomial in the security parameter.

The proof extends to the public verifiability option as follows. During KEYGEN queries, B as
before queries his own challenger on R′ and receives back EKR′ as well as VKR′ . He forwards both
of them to A. Similarly for other R’s he sends both EKR and VKR to A. The VERIFY oracle
disappears as a consequence.

D.2 Proof of Theorem 3.2

Theorem 3.2. If VC is knowledge-sound and hash is collision-resistant, then HPinn is adaptively
sound (Definition 3.1 for multiple relations).

Proof outline. The proof of adaptive soundness proceeds in a sequence of game transformations.

Game 1 This is the original adaptive soundness game.

Game 2 Let AVC be the adversary obtained from A by taking pp and the randomness used by
A and the challenger up to the point where it queries KeyGen as auxiliary input. It receives
EKR,VKR as input and reruns A and the experiment from the beginning to restore the state
of A at the time of the query. It then runs A and returns its proof. We conjecture that the
auxiliary input used by AVC to reproduce the state of A is benign as it consists of a random
hash key and a random tape.

Game 2 is the same as Game 1, except that for each adversary we execute the challenger
together with the knowledge extractor EVC that is guaranteed to exist for every AVC under
the knowledge soundness of VC. The game aborts without A winning if EVC fails to extract
a valid witness (x′, w) for R′.

Game 3 The same as Game 2, except that we abort if the x output by A is different from the x′

extracted by EVC.

In Game 3, the success probability of A is negligible as otherwise we break the collision
resistance property of hash.
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D.3 Proof of Theorem 4.1

Theorem 4.1. If XP is adaptively sound in the publicly verifiable (resp. designated verifier) setting,
and VC is sound, then the HPgen construction in Section 4.1 is adaptively sound in the publicly
verifiable (resp. designated verifier) setting.

To prove Theorem 4.1 we show that if there exists an adversary A that breaks the security
of HPgen, then using A, we can either build an adversary AXP that breaks the security of the XP
scheme or an adversary AVC that breaks the security of VC construction. Our proof considers the
more general case when XP is designated-verifier: public verifiability is a special case where the
VERIFY oracle does not need to be simulated. The proof uses several game hops.

Game 0: This game is the same as the soundness experiment.

Game 1: This game is the same as Game 0 except for the following change. Game 1 aborts without
the adversary A winning if A outputs (R∗, x∗, v∗,ΠR∗) such that Verify(VKR, σx∗ , v

∗,ΠR∗) = 1
and c∗x 6=

∏n
i=1 Fi

xi , where ΠR∗ = (c∗x,Π
∗,Φ∗).

Now we prove the following claims.

1. Pr[G0(A) = 1] ≈ Pr[G1(A) = 1].

2. Pr[G1(A) = 1] ≈ 0.

Claim D.1. Pr[G0(A) = 1] ≈ Pr[G1(A) = 1].

Proof. AXP uses A to create a forgery for his challenger CXP as follows.
AXP receives pp from CXP and forwards it to A. While answering A’s oracle queries, AXP

maintains a tape T initialized to ∅.
AXP answers A’s KEYGEN(R) queries as follows. If R has been queried before (i.e., exists in

T), AXP returns ⊥. Otherwise, AXP runs VC.KeyGen algorithm as in the real scheme to generate
EK and VK himself. Let F = (F1, . . . , Fn) be part of VK. AXP queries CXP on KEYGEN(F ). Let
EKF be the response of CXP. AXP saves EKR := (EK,VK,EKF ) and VKR := (VK, ·) in T and sends
EKR to A.
AXP answers A’s VERIFY(R, x, v,ΠR) queries as follows. If R is not in T, return 0. Else parse

ΠR as (cx,Π,Φx) and compute σx using XP.Hash(pp, x). Then, run VC.Verify(VKR, cx, v,Π) locally
and invoke CXP on VERIFY(F, σx, cx,Φx), where F is part of VK from T. If both verifications pass,
return 1. Else return 0.

Finally A comes up with a forgery (R∗, x∗, v∗,ΠR∗) such that R∗ is in T. AXP parses ΠR∗ as
(c∗x,Π

∗,Φ∗) and checks if c∗x =
∏n
i=1 Fi

xi where F = (F1, . . . , Fn) is part of the VK for relation R∗.
If c∗x 6=

∏n
i=1 Fi

xi , then output (F, x∗, c∗x,Φ
∗) as a forgery to CXP.

Success Probability: Let us say A succeeds with probability εA. Then, AXP breaks the security of XP
scheme with probability εA. Hence if εA is non-negligible, then AXP has non-negligible probability
of success too.

Claim D.2. Pr[G1(A) = 1] ≈ 0.
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Proof. AVC will use a VC challenger on one of the relations queried by A since he does not know
which relation A will forge on. Let R′ be the relation that AVC will choose from q relations that
AVC queries to the KEYGEN oracle.2 AVC begins by generating pp himself and forwarding it to A.
While answering oracle queries of A, he maintains a tape T initialized to ∅.
AVC answers A’s KEYGEN(R) queries as follows. If R is in T, return ⊥. Otherwise, if R is

the relation that AVC chooses for his forgery (i.e., set R′ to R), he sends R to his own challenger
CVC. AVC receives (EK,VK) back, runs XP.KeyGen(pp, F ) where F is part of VK, saves EKR =
(EK,VK,EKF ) and VKR = (VK,VKF ) to T and sends EKR to A. Finally, if R has not been queried
before and AVC does not choose it as his forgery, he runs HP.KeyGen, saves EKR and VKR in T and
sends EKR to A.
AVC answers A’s VERIFY(R, x, v,ΠR) queries as follows. If R is not in T return 0. Otherwise,

AVC invokes HP.Verify and returns its result. Note that he can run the verification for R′ as well
since the VC scheme is publicly verifiable.

Finally A comes up with a forgery (R∗, x∗, v∗,ΠR∗) such that R∗ is in T. AVC parses ΠR∗ as
(c∗x,Π

∗,Φ∗) and checks if R∗ = R′. If not, it aborts. Otherwise, AXP outputs (x∗, v∗,Π∗) as a
forgery for VC.
Success Probability: Let us say A succeeds with probability εA. Then, AVC breaks the security of
the VC scheme with probability εA/q. Hence, if A has non-negligible probability of success then
εA/q is non-negligible too.

D.4 Proof of Theorem 4.2

Theorem 4.2. If the Strong External DDH Assumption holds, then the XP1 scheme above is
adaptively sound (Definition 3.1 for multiple relations).

We prove that the XP1 construction is adaptively sound for a single relation, then one can apply
Theorem 3.1 to extend it to multiple relations.

To prove the theorem we define the following chain of hybrid games, and we denote by Gi(A)
the output of Game i run with adversary A.

Recall the games defined in Section 4.2 for Theorem 4.2.

Game 0: this is the adaptive soundness game of Definition 3.1 restricted to a single relation.

Game 1: this is a modification of Game 0 as follows. When answering the (single) KEYGEN(F )

oracle query, the challenger sets w = γv + δ for random γ, δ
$←− Zp (instead of sampling

w
$←− Zp). Next, when the adversary returns the proof (x∗, c∗,Φ∗), with Φ∗ = (T ∗, R∗), the

challenger computes T̂ ←
∏
i∈[1,n] Ti

x∗i and ĉ←
∏
i∈[1,n] Fi

x∗i . Then, if (T ∗/T̂ )(ĉ/c∗)δ = 1 the
outcome of the game is changed so that the adversary does not win.

As we show in Claim 1, Game 0 and Game 1 are statistically indistinguishable. The intuition
is that δ is information theoretically hidden from the adversary, which implies that the only
event which changes the game’s outcome happens with negligible probability.

Game 2: this is a modification of Game 1 as follows. When answering the (single) KEYGEN(F )

oracle query, the challenger sets u = αv + β for random α, β
$←− Zp (instead of sampling

u
$←− Zp). Second, the challenger computes Ri ← H−αi F−γi and Ti ← Hβ

i F
δ
i .

2Precisely, AVC only needs to guess the index of the query in which R′ will be asked.
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In Claim 2 we show that Game 2 is computationally indistinguishable from Game 1 under the
Strong External DDH assumption. Finally, in Claim 3 we show that any p.p.t. adversary has
negligible probability of winning in Game 2, under the Flexible co-CDH assumption (which
in turn reduces to Strong External DDH).

In what follows we prove the claims bounding the difference between the games and the prob-
ability of the adversary winning in Game 2.

Claim 1. |Pr[G0(A) = 1]− Pr[G1(A) = 1]| ≤ 1/p.

Proof. The proof is rather easy and follows by observing that the only noticeable difference in the
outcome of Game 0 and Game 1 occurs when A would win in Game 0 but it does not in Game 1.
Notice that such event is the one where ĉ 6= c∗ (this holds by the winning condition in Game 0)
and the equation (T ∗/T̂ )(ĉ/c∗)δ = 1 is satisfied. We claim that this event happens with probability
at most 1/p over the random choice of δ ∈ Zp. This follows immediately by the fact that δ is
information theoretically hidden to A.

Claim 2. If the Strong External DDH Assumption holds, then Pr[G1(A) = 1] ≈ Pr[G2(A) = 1].

Proof. To prove the claim we actually use the assumption that for any p.p.t. adversary D (which
receives also full bilinear groups parameters), it holds

Pr[D(g~η1 , g
~ρ
1) = 1] ≈ Pr[D(g~η1 , g

α~η
1 ) = 1]

where α
$←− Zp, ~η, ~ρ

$←− Znp , n is any integer of size bounded by poly(λ), and g~η1 is a shorthand for
(gη11 , . . . , g

ηn
1 ) ∈ Gn

1 .
By using a simple hybrid argument, it is not hard to see that the above assumption can be

reduced to the DDH assumption in G1 with a 1/n loss factor.
Therefore, we proceed by showing that any adversary A for which |Pr[G1(A) = 1]−Pr[G2(A) =

1]| > ε can be used to build an adversary D that distinguishes the above distributions with the
same probability ε (and thus can break DDH with probability ε/n).

D receives the bilinear groups parameters (e,G1,G2,GT , p, g1, g2) and a pair of vectors (g~η1 , g
~ρ
1) ∈

Gn
1 ×Gn

1 , where ~ρ is either α · ~η, or random and independent.

First of all, D sets H = g~η1 and gives pp = (e,G1,G2,GT , p, g1, g2, H) to A.
Next, on input the key generation query F from A, D simulates EKF = (F, T,R),VKF =

(U, V,W ) as follows. D samples u, v, γ, δ
$←− Zp, sets U ← gu2 , V ← gv2 ,W ← V γgδ2. For i ∈ [1, n], it

computes Ri ← g−ρi1 F−γi and Ti ← Hu
i R

v
i F

w
i . Finally, if A wins, D outputs 1.

Note that the elements U, V,W ∈ G2 are all uniformly random distributed as is the case in both
Game 1 and Game 2. If every ρi is random and independent so is every Ri, and thus D simulates
Game 1 to A, i.e., Pr[D(g~η1 , g

~ρ
1) = 1] = Pr[G1(A) = 1]. Otherwise, if ρi = α · ηi, one can see that,

by letting u = αv + β,3

Ri = g−αηi1 F−γi = H−αi F−γi ,

Ti = Hu
i R

v
i F

w
i = Hαv+β

i (H−αi F−γi )vF γv+δ
i = Hβ

i F
δ
i

which follow exactly the distribution of Game 2, and thus Pr[D(g~η1 , g
α~η
1 ) = 1] = Pr[G2(A) = 1].

Therefore, we have that Pr[D(g~η1 , g
~ρ
1) = 1] − Pr[D(g~η1 , g

α~η
1 ) = 1] > ε, which concludes the proof of

the claim.
3Such a β uniquely exists, although it is not explicitly known to D.
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Claim 3. If the Flexible co-CDH Assumption holds, then Pr[G2(A) = 1] ≈ 0.

Proof. We prove the claim by contradiction, by showing that for every p.p.t.A such that Pr[G2(A) =
1] > ε is non-negligible, there is a p.p.t. A′ that breaks the co-CDH assumption.
A′ receives the bilinear groups parameters (e,G1,G2,GT , p, g1, g2) and an element gv2 . We recall

that the goal of A′ is to return a pair (Z,Z ′) ∈ G2
1 such that Z 6= 1 and Z ′ = Zv. A′ works as

follows.
First of all, A′ samples ηi

$←− Zp, sets Hi ← gηi1 for i ∈ [1, n], and gives pp = (e,G1,G2,
GT , p, g1, g2, H) to A, where H = (H1, . . . ,Hn).

Next, on input the key generation query F from A, A′ simulates EKF = (F, T,R),VKF =

(U, V,W ) in the following way. A′ samples α, β, γ, δ
$←− Zp, sets V ← gv2 , U ← V αgβ2 ,W ← V γgδ2.

For i ∈ [1, n], it computes Ri ← g−αηi1 F−γi and Ti ← gβηi1 F δi . At this point let us observe that the
view of A in the simulation provided by A′ is identical to the one in Game 2.

Let (x∗, c∗,Φ∗), with Φ∗ = (T ∗, R∗), be the proof returned by A. If A is successful, its proof
must verify and c∗ 6= ĉ =

∏
i∈[1,n] Fi

x∗i . Recall that the successful verification of (x∗, c∗,Φ∗) means

e(T ∗, g2) = e(
∏
i∈[1,n]

H
x∗i
i , U) e(R∗, V ) e(c∗,W ).

Next, A′ computes T̂ ←
∏
i∈[1,n] Ti

x∗i and R̂←
∏
i∈[1,n]Ri

x∗i . By correctness of the XP1 scheme we
have that

e(T̂ , g2) = e(
∏
i∈[1,n]

H
x∗i
i , U) e(R̂, V ) e(ĉ,W )

holds. Dividing the two equations above one can see that it holds

T ∗/T̂ (ĉ/c∗)δ = [(R∗/R̂)(c∗/ĉ)γ ]v

with the guarantee that the element on the left hand side of the equation is not 1 (by the win-
ning condition introduced in Game 1). Therefore, A′ computes Z ← R∗/R̂(c∗/ĉ)γ and Z ′ ←
T ∗/T̂ (ĉ/c∗)δ, and returns (Z,Z ′) ∈ G2

1 as a solution for the Flexible co-CDH assumption. One can
see that, as long as A wins in Game 2, the solution will be valid, as Z ′ = Zv and Z ′ 6= 1.

By putting together the above claims we have that any p.p.t.A has at most negligible probability
of winning in Game 0.

D.5 Proof of Theorem 5.1

Theorem 5.1. In the random oracle model for H, if hα is an ε-almost universal hash function,
HP is adaptively sound and hash extractable in publicly verifiable (resp. designated verifier) setting,
then HP∗ is sound for outsourcing of hash computations as per Definition 5.1 in publicly verifiable
(resp. designated verifier) setting.

Proof. Assuming H is a random oracle, the proof proceeds in a sequence of games. Let A be the
adversary in Definition 5.1 and x, σ∗x,Πh be his forgery.

Game 0: Outsourced Hash Game.

Game 1: Let Aσ be the adversary obtained by taking pp, vp as input, running A, H internally,
and returning σ. Note that Aσ does not take auxiliary input since it takes pp, vp as input
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and runs from the beginning of the experiment. (In the designated-verifiability variant, Aσ
runs HashVerify internally as he is not given vp.)

Game 1 is the same as Game 0, except that for every successful adversary we execute the
challenger together with the knowledge extractor Eσ whose existence is guaranteed by hash
extractability. The game aborts without A winning if Eσ fails to extract a value x′ from which
we can reconstruct σ.

Game 2: The same as Game 1, except the game aborts if ¬Rh(x′, α, µ) where α ← H(x, σ) and
µ = hα(x).

Now we prove the following claims.

1. Pr[G0(A) = 1] ≈ Pr[G1(A) = 1].

2. Pr[G1(A) = 1] ≈ Pr[G2(A) = 1].

3. Pr[G2(A)] ≈ 0.

Claim D.3. Pr[G0(A) = 1] ≈ Pr[G1(A) = 1].

Let Aσ be the adversary obtained from A, the challenger, and the random oracle simulation
that takes pp, vp as input, runs these three entities internally, and returns σ. Eσ is guaranteed to
exist for every Aσ by hash extractability of the HP scheme.

Claim D.4. Pr[G1(A) = 1] ≈ Pr[G2(A) = 1].

We can build an adversary AHP to break adaptive soundness of HP scheme for a single relation
using A as follows.
AHP receives pph from his challenger CHP. He fixes Rh as the relation he will forge on, sends

it to CHP and receives back EKh,VKh. He forwards pp = (pph,EKh) and vp = VKh to A. (In the
designated verifier setting AHP receives only pph and EKh from CHP and forwards them to A. He
then replies oracle verify queries of A on x, σ∗x,Πh by computing α and µ himself and querying
CHP.)

Let x, σ∗x,Πh be A’s forgery. Let α = H(x, σ∗x) and µ = hα(x), AHP sends x′, α, µ,Πh as his
forgery against CHP.

Claim D.5. Pr[G2(A)] ≈ 0.

Since Rh(x′, α, µ) holds for α ← H(x, σ) µ = hα(x) it must be the case that hα(x) = hα(x′).
Since H is a random oracle, A can determine hα only after he chooses x and x′ to compute σ.
Hence, the probability of the adversary finding such x and x′ is ε since h is ε-almost universal hash
function.

We note that all HPE constructions in Section 4 meet the requirements of Theorem 5.1 and can
be used for secure hash outsourcing.

E Accumulate & Prove

In this section, we present a variant of our hash & prove model (and construction) in which the
data is encoded by using an accumulator instead of a hash function. We call schemes following this
approach Accumulate & Prove schemes. The benefit of adopting an accumulator representation
is that the latter enables fast verifiable processing of certain, limited, classes of functions. For
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example, one can efficiently prove and verify arguments on set operations by exploiting the structure
of accumulator [38], with better performance than by relying on a general-purpose VC scheme.

An Accumulate & Prove scheme (that we refer to as HPacc) is defined identically to an HP
scheme except that the hash algorithm computes an accumulator.

In what follows we provide an HPacc construction that works for data encoded using the popular
bilinear accumulator of [37, 38]. The construction is built out of any HP scheme HP and another
HP scheme for multi-exponentiations XP (such as our XP1 and XP2).

Accumulators. Accumulators hold finite subsets {x1, . . . , xn} of Zp with at most n elements. We
consider Bilinear accumulators [37, 38] that are of the form acc(x) = g

∏n
i=1(s−xi), where s is usually

kept secret. After replacing s with a formal polynomial variable x, the exponent in acc(x) can be
developed into

n∏
i=1

(x− xi) =

n∑
i=1

zi(x)xi−1 + xn (1)

for some coefficients associated to the roots x. Let z be the vector of these coefficients. By definition,
we can compute acc without knowing s as a multi-exponentiation

n∏
i=1

(Fi−1)zi(x)Fn

where Fi = g(si). We use acc(Facc, x) to denote this computation where Facc = (g, gs, . . . , gs
n
).

(Note that Polynomial commitments [32] also fit our approach as they commit to a polynomial
described by coefficients z.)

Techniques for verifiably computing accumulators. In this section, we assume that X = Znp
but that relations R(x, v ;w) treat x as a set, i.e., they are closed under permutation of the xi in
x. Given a relation R(x, v ;w), our construction composes of two verification mechanisms:

1. A mechanism to verify the computation of Ax = acc(Facc, x) from the vector of coefficients
z mentioned above, given its hash σz. This is done by using our HP scheme XP for multi-
exponentiations on the function acc(Facc, x) defined by Facc = (g(si−1))i=1..n+1. So, the compu-
tation of Ax can be proven (and verified) by letting the prover compute Φacc ← XP.Prove(EKF ,
z, Ax), and the verifier check that

XP.Verify(VKF , σz, Ax,Φacc) = 1.

2. A mechanism to verify that the vector of coefficients z used to compute the hash σz is exactly
the one corresponding to the n-degree polynomial with roots x1, . . . , xn.

Recalling that the goal is to prove validity of R(x, v ;w), this second verification mechanism
is obtained by extending the relation R into a relation

R′(x, . . . ) = R(z, . . . ) ∧ Coeff(x, z)

where Coeff ensures that x is a set of n elements and z = (z1, . . . , zn) are indeed the coefficients
for the roots x. We propose two ways of encoding Coeff using arithmetic circuits in Zp:

• We can test the polynomial equation (1) above at n+1 distinct points such as x = 0, ..., n
using the relation

R′(z, v ;x,w) = R(x, v ;w) ∧
∧n
j=0(eqn (1) with x = j). (2)

This relation R′ can be expressed using n2 − 1 quadratic equations.
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• Alternatively, we can test equation (1) probabilistically at a random point α ∈ Zp. In
order to select this random point, we can use the same idea as for hash outsourcing (see
hα in Section 5), i.e., to rely on a random oracle, H, to achieve public verifiability with
an arithmetic circuit, setting α = H(σz, Ax) and using the relation

R′′(z, v, α ;x,w) = R(x, v ;w) ∧ (eqn (1) with x = α). (3)

This second relation R′′ can be expressed using 2n− 1 quadratic equations.

Our Accumulate & Prove Construction. We are now ready to describe our accumulate &
prove construction HPacc. Recall, this is defined as HP with the difference that Hash algorithm
computes an accumulator. Viewed as an accumulator the values x ∈ X now represent sets of
cardinality n.

As mentioned before, we make use of an HP scheme HP and another HP scheme XP for multi-
exponentiation computations. These two HP schemes are assumed to share the same set of param-
eters pp as well as the same hashing algorithm, i.e., HP.Hash(pp, ·) = XP.Hash(pp, ·).4

Our HPacc is instantiated as follows.

Setup(1λ) generates ppacc consisting of the pp shared between HP and XP together with a vector
of elements Facc = (g, gs, . . . , gs

n
) for computing accumulators from coefficients z.

Hash(ppacc, x) returns Ax = acc(Facc, x).

KeyGen(ppacc, R) let R′ be defined as in Equation (2) then

EKR′ ,VKR′ ← HP.KeyGen(pp, R′);
EKF ,VKF ← XP.KeyGen(pp, Facc);
return EKR = (EKR′ ,EKF ) and VKR = (VKR′ ,VKF );

(In the random oracle variant one builds keys for the relation R′′ instead of R′.)

Prove(EKR, x, v ;w) computes the coefficients z of the polynomial with roots x, and its hash σz;
the accumulator Ax; and the proofs Π and ΦA:

Ax ← acc(Facc, x);
σz ← HP.Hash(pp, z);
Π← HP.Prove(EKR′ , z, v ;x,w);
ΦA ← XP.Prove(EKF , z, Ax);
return Πacc = (σz,Π,ΦA);

(Note that in the verification both HP and XP use σz ← HP.Hash(pp, z). In the random
oracle construction it computes α = RO(σz, Ax) and proves relations defined by (3) as Π ←
HP.Prove(EKR′′ , z, v, α ;x,w).)

Verify(VKR, Ax, v,Πacc) parses Πacc as (σz,Π,Φacc) and returns 1 if

HP.Verify(VKR′ , σz, v,Π) = 1 ∧ XP.Verify(VKF , σz, Ax,Φacc) = 1

and returns 0 otherwise.
4We note that such a property is indeed achieved by our HPgen construction, which uses the hashing algorithm

of XP.
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(In the random oracle construction it computes α = RO(σz, Ax) and verifies relation defined
by (3) as

HP.Verify(VKR′′ , σz, v, α,Π) = 1.)

We note that Ax in HPacc represents σx when using HP notation.

Security proof. We recall the n-Strong Diffie-Hellman assumption and prove security of HPacc.

Assumption 4 (n-Strong Diffie-Hellman [14] (n-SDH)). Let G1,G2,GT be cyclic groups of prime
order p generated by g1 and g2 respectively. Given a (n + 3)-tuple of elements (g1, g1

s, g1
s2 , . . . ,

g1
sn , g2, g2

s) ∈ Gn+1
1 ×G2

2, for a p.p.t. adversary it is hard to output a tuple (c, g1
(1/s+c)) ∈ Zp×G1

for a freely chosen c ∈ Zp \ {−s}.

Theorem E.1. If both HP and XP are adaptively sound and hash extractable, and the n-SDH
assumption holds in G1 then HPacc is adaptively sound and hash extractable.

Proof Outline. The argument is structured in terms of game hops.

Game 0 is the same as Adaptive Forgery Game.

Game 1 Let Az be an adversary that takes pp as input and Facc as auxiliary input. It runs A
from Game 0 and the oracles for KEYGEN and VERIFY internally. Finally, Az outputs σz
and Ez returns z. Note that the auxiliary input of Az is of a very specific form and we thus
conjecture that it is ‘benign’.

Game 1 is the same as Game 0 except that for every A we run Ez in parallel to the challenger
and we abort if Check(pp, σz) = 1 but σz 6= Hash(pp, z).

Game 2 is the same as Game 1 except that A aborts if Ax 6= Facc(z).

Game 3 is the same as Game 2 except that A aborts if ¬∃x,w.R′(z, v ;x,w).

Let Gi(A) be the output of Game i run with adversary A. We prove the following claims.

Claim E.1. Pr[G0(A) = 1] ≈ Pr[G1(A) = 1].

Ez must exist since Hash is an extractable hash function.

Claim E.2. Pr[G1(A) = 1] ≈ Pr[G2(A) = 1].

We can build an adversary AXP that breaks adaptive soundness of XP scheme using A as
follows. AXP forwards his pp to A. AXP simulates HP as in the construction, but obtains EKF in
KEYGEN queries using his own oracle. (In the designated verifier case, he uses his own VERIFY
oracle to answer A’s queries to VERIFY.) to simulate XP.Verify. Once A returns a forgery, AXP

returns Facc, z, Ax, Φacc as its forgery. The probability of AXP winning is the same as the difference
between the success probabilities in the two games.

Claim E.3. Pr[G2(A) = 1] ≈ Pr[G3(A) = 1].

We can build an adversary AHP that breaks adaptive soundness of HP scheme using A as
follows. AHP forwards his pp to A. AHP simulates XP as in the construction, but obtains EKR′

in KEYGEN queries using his own oracle. (In the designated verifier case, he uses VERIFY oracle
to reply VERIFY queries.) Once A returns a forgery, AHP returns R′, z, v,Π as its forgery. The
probability of AHP winning is the same as the difference between the success probabilities in the
two games.
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Claim E.4. Pr[G3(A) = 1] ≈ 0.

As the two relations R′ and Facc(·) hold one can now efficiently compute x′ as the roots of the
polynomial defined by z such that Ax = acc(Facc, x

′). As we already know from the definition of
HPacc.Hash, that Ax = acc(Facc, x), either x and x′ define the same set, or we found an accumulator
collision. The reduction to the accumulator collision resistance is straight-forward. Given Facc

simulate both proof systems and return x′, x, Ax as the collision. Accumulator collision resistance
in turn can be reduced to the n-SDH assumption in G1 [14].
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