
Planning for Crowdsourcing Hierarchical Tasks

Ece Kamar
Microsoft Research

Redmond, WA 98052
eckamar@microsoft.com

Eric Horvitz
Microsoft Research

Redmond, WA 98052
horvitz@microsoft.com

ABSTRACT
We show how machine vision, learning, and planning can be
combined to solve hierarchical consensus tasks. Hierarchi-
cal consensus tasks seek correct answers to a hierarchy of
subtasks, where branching depends on answers at preceding
levels of the hierarchy. We construct a set of hierarchical
classification models that aggregate machine and human ef-
fort on different subtasks and use these inferences in plan-
ning. Optimal solution of hierarchical tasks is intractable
due to the branching of task hierarchy and the long horizon
of these tasks. We study Monte Carlo planning procedures
that can exploit task structure to constrain the policy space
for tractability. We evaluate the procedures on data col-
lected from Galaxy Zoo II in allocating human effort and
show that significant gains can be achieved.

Categories and Subject Descriptors
I.2 [Distributed Artificial Intelligence]: Intelligent agents

General Terms
Design, Algorithms, Economics

Keywords
crowdsourcing; consensus tasks; complementary computing;
MDPs; Monte Carlo planning

1. INTRODUCTION
Research on human computation has explored workflows

for solving tasks that computers cannot solve in the absence
of human input. The efficacy of these workflows depends
on managing the accuracy and cost of scarce human intel-
ligence allocated to tasks. Previous studies have demon-
strated the value of using machine-learning inferential mod-
els coupled with decision-theoretic optimization techniques
for managing hiring decisions. Work spans efforts on fun-
damental task structures and workflows such as consensus
classification tasks [5] and iterative workflows [2], which led
to significant efficiencies in solving crowdsourcing tasks [5,
2]. Interest has been growing in the application of these
techniques to more complex workflows.

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

We focus here on the use of learning and planning to guide
the complementary use of people and machines in hierar-
chical tasks–tasks involving the solution of a branching se-
quence of subtasks. We specifically study the solution of hi-
erarchical consensus tasks (HCTs), where answers at higher
levels gate the relevance of questions at lower levels of the
hierarchy. HCTs pose a control problem where decisions
are not only about hiring a new worker, but also about the
portion of the hierarchy to cover with each worker to maxi-
mize the efficiency with which the larger problem is solved.
HCTs can be used in numerous realms, including commu-
nity sensing applications (e.g., asking drivers about traffic
conditions) and paid crowdsourcing (e.g., detailed product
categorization). Our studies make use of tasks and data
from Galaxy Zoo II (GZ2), a citizen science project aimed at
learning the morphology of celestial objects. Galaxy Zoo II
acts as a canonical example of HCTs; annotations collected
from citizen scientists are guided by a task hierarchy that
seeks increasingly more detailed assessments of morphology
from images. For a given task, the hierarchy determines the
next subtask to show based on the worker’s answer to the
previous subtasks. We gained access to human annotations
collected for Galazy Zoo II tasks as well as image features
generated for each image with machine vision.

We shall describe a general system design that combines
machine learning and decision-theoretic planning to opti-
mize the allocation of human effort in HCTs. The system
uses hierarchical classification to combine evidence acquired
from humans about various subtasks in the hierarchy with
inferences that come via machine perception to predict the
correct answer hierarchy. It also employs discriminatively
trained evidence models to make inferences about future hu-
man inputs. First, we formalize the decision making problem
as a Markov decision process (MDP) with partial observabil-
ity, where models for predicting the correct answer hierarchy
are used for belief updating and models for inferring future
evidence act as the transition model. Then, we demonstrate
that the exact solution of HCTs is intractable due to the
branching of the task hierarchy and the long horizon associ-
ated with these tasks and that even well-known approxima-
tions hit a combinatorial wall. We propose two new approx-
imate planning algorithms that use Monte-Carlo planning
techniques to explore the search space. The algorithms ex-
ploit the structure of HCTs to constrain the policy space to
offer effective and tractable solutions. The first algorithm
reasons about the cumulative value of a worker—the value
associated with asking all applicable questions in the task
hierarchy—to decide whether to hire a worker. The second



algorithm makes decisions at the subtask level by reasoning
about the decoupled value of hiring a worker for a subtask
independently of other subtasks in the hierarchy.

We evaluate the methods by drawing worker responses
from logs of the GZ2 system in different conditions. The
evaluations show that significant reductions in human effort
can be achieved via use of decision-theoretic guidance of
hiring in HCTs. We find that the proposed algorithms can
cut through the complexity of solving HCTs and that other
well-known planning approaches fail to scale.

2. RELATED WORK
Our research is related to previous work on the automated

control of crowdsourcing tasks. Researchers have focused on
tasks that can be decomposed into smaller tasks [15], tasks
with infinite possible answers [12], and iterative workflows
[2]. Other work has proposed decision-making models for
choosing among different workflows [13]. DELUGE is a sys-
tem proposed for optimizing a workflow for taxonomy cre-
ation [1]. In most cases, greedy and limited lookahead algo-
rithms have been used to make hiring decisions. CrowdBud-
get is a system for allocating a fixed budget among crowd-
sourcing tasks using constraint satisfaction [19].

The most relevant prior studies are efforts to optimize
hiring decisions for consensus tasks. While most approaches
have employed heuristic methods or greedy analyses [16], the
CrowdSynth effort has made use of planning procedures for
analyzing comprehensive sequences of actions [5]. CrowdSynth
learns from historical data to jointly predict user behavior
and final answers and couples these inferences in a decision-
theoretic planning procedure. The procedure makes deci-
sions by trading off the costs of hiring workers with the
long-term expected benefit. CrowdExplorer adapts these
techniques for the adaptive control of consensus tasks when
historical data is not available [7]. We build on the earlier
studies to extend decision-theoretic methods to a new class
of crowdsourcing tasks, where decisions are defined over a
hierarchy of consensus tasks.

3. HIERARCHICAL CONSENSUS TASKS
Consensus tasks center on identifying a single correct an-

swer based on pieces of evidence collected from a population
of workers (e.g., image classification tasks) [5]. Hierarchical
consensus tasks expand consensus tasks by seeking increas-
ingly more detailed answers. HCTs are composed of a hi-
erarchy of subtasks such that the answer of a subtask de-
termines which subtask can be queried from a worker next.
Galaxy Zoo II tasks are examples of HCTs that are designed
to collect volunteers’ input for detailed morphological clas-
sification of celestial objects recorded in the Sloan Digital
Sky Survey (SDSS)1. The task hierarchy for GZ2 tasks is
given in Figure 1 and is composed of 9 subtasks leading to
159 possible answer combinations (sequences).

Formally the hierarchy for an HCT is composed of a set of
subtasks from 1 to n. Let Ai be the set of possible answers
for subtask i. We define the correct answer of a task as a
sequence of answers {ā1, ..., ān}, where āi ∈ Ai. We denote
this sequence as {āi}n1 . The answer of a parent subtask
determines which child subtasks are applicable for a given
task. For example, subtask st2 of the hierarchy, given in
Figure 1, is applicable only if the answer of st1 is a1

1: we can

1http://zoo2.galaxyzoo.org/

Figure 1: GZ2 subtask hierarchy: L2 hierarchy (top
two levels) and L4 hierarchy (complete hierarchy).

only assess how rounded a galaxy is if the galaxy is rounded.
Formally, given that subtask j is applicable only when the

parent subtask i has the answer ai (sti
ai−→ stj), āj =n/a

when āi 6= ai and āj ∈ Aj \ {n/a} when āi = ai.
For each task, the system has access to a population of

workers. After hiring each worker, the system first asks
about the top-level subtask. Conditional on the worker’s
answer, the system determines which subtask is applicable
next based on the subtask hierarchy. Let Li ⊆ Ai be the
set of answers the worker can choose from for subtask i, and

sti
ai−→ stj ; the system may present subtask j to the worker

only if the worker report ai for sti.
We use the Galaxy Zoo II domain as our running example

and employ a dataset released by the GZ2 team for evalua-
tion [20]. The dataset includes 154,640 unique tasks and
around 15 million responses collected for subtasks. The
original Galaxy Zoo II system does not use optimization.
Rather, all applicable subtasks are asked of every hired worker.
The number of workers assigned to each task varies between
20 and 58. The dataset also includes visual attributes (SDSS
features) identified by machine vision for each task.

4. SOLVING HCTS
A system for solving HCTs needs to make decisions about

which set of evidence to collect from workers for inferring the
correct answers of the hierarchy. For a new task, the system
can either hire a new worker or may decide to end the task.
If a decision is made to end the task, a prediction is provided
about the correct answer sequence ({âi}ni=1). If the system
decides to hire a worker, it queries an answer for the top level
subtask (st1 for GZ2) and then deliberates about querying
the worker for the next applicable subtask conditioned on
the answer. For GZ2 tasks, if a worker has responded a1

1 for
subtask st1, the system deliberates next about querying the
worker for subtask st2. The system repeats this delibera-
tion until no more applicable subtasks exist for the current
worker. At that point, the system reasons about hiring a
new worker or terminating the task.

System decisions are guided by the tradeoff between mak-
ing more accurate predictions about the correct answer se-
quence via collecting more evidence from workers (by hiring
more workers and asking about more subtasks) and the costs
of the additional human effort. We employ machine learned
models and a decision-theoretic planner to optimize such de-



cisions. We use two sets of predictive models: answer models
for predicting the correct answer sequence at any point in
the execution, and evidence models for predicting the next
set of evidence collected from workers. The answer models
are used for assessing the system’s confidence in predicting
the correct answer sequence; the evidence models are used
for inferring the next state of the system after taking a hir-
ing action. Both models are constructed with supervised
learning using the pipeline presented in Section 5.

The planner optimizes hiring decisions based on the cur-
rent state of a task. The optimization problem is formalized
as a Markov Decision Process (MDP) with partial observ-
ability as presented in Section 6, where answer models are
used to generate the system’s belief about the correct answer
sequence at any given state and evidence models are used
to build the transition model of the MDP. The MDP model
is able to represent both the system’s partial information
about the correct answer sequence and uncertainty about
future states if the system continues to query answers from
workers. The system decisions are guided by the value of al-
locating a worker to a subtask to maximize the net utility of
the system. The net utility is a combination of the system’s
utility for delivering the predicted answer sequence and cost
for querying answers from workers. Two utility models are
designed to express different preferences in evaluating the
predicted answer sequence of a HTC, and are presented in
Section 5.2.

5. MODELS FOR HCTS

5.1 Learning Pipeline
We built a learning pipeline that uses past data of in-

stances collected for HCTs to make inferences about the
correct answer sequences and evidence collection for future
tasks. For each task, we create a new instance when new
evidence is gathered from a worker for a subtask. Each in-
stance contains two sets of evidence that have been collected
for the task so far: fm, features generated with automated
machine analysis (SDSS features for GZ2 tasks), and {ei}n1 ,
the set of evidences collected from workers for all subtasks.
fm is available from the start of the task and {ei}n1 is up-
dated after each worker response. We convert ei, the set of
evidence collected for each subtask, into a set of features in-
cluding number of total worker reports obtained on the task
so far, number of reports for each answer, ratios of reports
per answer, the count and ratio for the most popular answer
and the difference between the most popular and the second
most popular answers. We use the MART gradient boosting
algorithm to learn an ensemble of regression trees for making
predictions about HCTs [4]. Training, validation and testing
sets include 500k, 250k, 250k GZ2 tasks respectively.

5.1.1 Learning Answer Models
For a given HCT with evidence set (fm, {ei}n1 ), answer

models make inference about the correct answer sequence
of the task ({āi}n1 ). Labels for training answer models are
ground truth answer sequences assigned to HCTs; they can
either be collected from domain experts or majority opinion
of a large number of workers can be taken as ground truth.
For GZ2 tasks, labels are provided by astronomy experts
and made public in a catalog given in [20].

Since the labels of answer models are organized in a sub-
task hierarchy in the form of a tree, we model the answer

Figure 2: Performance of answer models.

prediction of HCTs as a task of hierarchical classification
[17]. We implement the top-down approach, a popular ap-
proach for hierarchical classification [11] for ease of training
and efficiency in making predictions. We train a classifier
for each subtask of the hierarchy such that only the portion
of the data that satisfies the precondition of the subtask is
included into training the model. For example, only the set
of instances with answer a1

1 for subtask st1 are included into
training a model for subtask st2.

Let MAi(ai, fm, {ei}n1 ) be the likelihood of the answer of
subtask i being ai. For any answer sequence {ai}n1 consis-
tent with the subtask hierarchy, Pr({ai}n1 )|fm, {ei}n1 ), the
likelihood of the correct answer sequence being {ai}n1 , and
{âi}n1 , the predicted answer sequence, are computed as:

Pr({ai}n1 )|fm, {ei}n1 ) =

nY

i=1,ai 6=n/a

MAi(ai, fm, {ei}n1 )

{âi}n1 = max
{ai}n

1

Pr({ai}n1 )|fm, {ei}n1 )

We evaluate the quality of the hierarchical answer models
using the hierarchical F-measure [9]. Given a correct an-
swer sequence {āi}n1 and predicted answer sequence {âi}n1 ,
precision (ppv) and recall (npv) values for this instance are
computed as below, where δ is the Kronecker delta function:

ppv({āi}n1 , {âi}n1 ) =

Pn
i=1,âi 6=n/a δ(āi, âi)Pn
i=1(1− δ(âi, n/a))

npv({āi}n1 , {âi}n1 ) =

Pn
i=1,āi 6=n/a δ(āi, âi)Pn
i=1(1− δ(āi, n/a))

The hierarchical F-measure is computed as 2×hP×hR
hP+hR

, where
hP and hR are average precision and recall values computed
over all instances of the testing set.

Figure 2 shows the hierarchical F-measure for predicting
the correct answer sequence of GZ2 tasks for L2 subtask
hierarchy when (1) models do not have access to machine
generated SDSS features (grey line), (2) each subtask model
Mai has access to SDSS features and the evidence for sub-
task i (yellow line) and (3) each model has access to all
features (orange line). The blue line represents the baseline
predicting the most common answer in the training set for
each subtask. The results show that there is significant ben-
efit from harnessing the SDSS features made available via
machine vision. The quality of predictions improves with
larger number of workers hired for a task. In addition, we
find that providing access to evidence from other subtasks
does not provide significant improvement as answer models
created for different subtasks consistently choose SDSS and
current subtask features as the most informative.



5.1.2 Learning Evidence Models
We create evidence models to infer the evidence that will

be collected should a worker be queried about a particu-
lar subtask. We use the evidence models to predict how
the set of evidence on each task changes as a system makes
hiring decisions. We build an evidence model for each sub-
task. The labels for training evidence models are collected
directly from the execution of HCTs; for each instance, the
evidence collected for the current subtask becomes the la-
bel to train an evidence model for that subtask. We train
evidence models with supervised learning. Our experiments
show the same trends as the answer models; the learned
models provide better predictions than a baseline model that
predicts the most common evidence, and having access to
features of other subtasks does not provide improvements in
predictive performance.

5.2 Utility Models
When the system terminates evidence collection, it deliv-

ers a final inference about the correct answer sequence to
the task owner. Utility models quantify the task owner’s
preferences about obtaining this inference as a function of
its accuracy. Utility models are used in defining the reward
function of the MDP model as described in Section 6.

Utility model, U({āi}n1 , {âi}n1 ), quantifies the utility of
predicting the correct answer sequence as {âi}n1 when the
correct answer sequence is {āi}n1 . Task owners may have
different preferences about the completeness and accuracy
of assessments for HCTs. In our experiments we focus on
two utility models that express different preferences. The
F1 utility model is defined as:

UF1({āi}n
1 , {âi}n

1 ) =
2× ppv({āi}n

1 , {âi}n
1 )× npv({āi}n

1 , {âi}n
1 )

ppv({āi}n
1 , {âi}n

1 ) + npv({āi}n
1 , {âi}n

1 )

The second utility model UEM has value 1 if {āi}n1 and
{âi}n1 are exact matches and has value 0 otherwise. Both
utility models are bounded in [0,1]. UF1 rewards a prediction
proportional to the goodness of match, whereas UEM strictly
rewards perfect matches.

6. OPTIMIZING WORKER ALLOCATION

6.1 Problem Formalization
We model HCTs with an MDP, where the reward is un-

certain; it depends on its belief about the correct answer
sequence. An HCT is formalized as a tuple < l, S,A, T, R >:
• l, the horizon of a task, is the maximum number of

workers to be hired for a task.
• s ∈ S, a state of an HCT, is < fm, {ei}n1 , j >, where

fm is the set of features generated with automated task
analysis, ei is the set of evidence collected for subtask i,
and j is the current subtask under deliberation (current
subtask as short). ST ⊂ S is the set of termination
states, which includes states at the horizon.
• The set of actions are A = {H,¬H} for assigning the

current subtask to a worker and not doing so respec-
tively. No more hiring action can be taken at a termi-
nation state. If the current subtask is top level (e.g.,
st1 for GZ2 tasks) and ¬H action is taken, no further
actions can be taken.
• T (s, α, s′) is the transition probability from state s

to s′ after taking action α. The transition function
is composed of models representing the execution of

HCTs: Evidence model for subtask j is used to pre-
dict Pr({e′j}|fm, {ei}n1 ), the likelihood of evidence set
for subtask j to be updated to {e′j} when the current
subtask is j and action H is taken. The subtask hi-
erarchy is used to determine the next subtask to be
considered, if any.
• R(s, α) is the reward associated with taking action α

at state s. The reward for taking H action is equal
to the cost of hiring for the current subtask. If tak-
ing action ¬H leads to terminating evidence collection
and delivering the predicted answer sequence, the as-
sociated reward is uncertain, depends on the quality
of the prediction, and is estimated by querying the an-
swer and utility models. b is the system’s belief about
the correct answer sequence, which is a probability dis-
tribution over {Ai}n1 , the set of all answer sequences.
At any state s, b({ai}n1 , s) is the likelihood of the cor-
rect answer sequence being {ai}n1 ∈ {Ai}n1 , and {âi}n1
is the highest likelihood answer sequence as predicted
by answer models based on the evidence in s. The re-
ward for terminating evidence collection is calculated
as
P
{āi}n

1
b({āi}n1 )× U({āi}n1 , {âi}n1 ).

A policy π specifies the action that the system chooses at
any state s. An optimal policy π∗ satisfies the following:

V π∗(s) =

8
<
:

R(s,¬H) if s ∈ ST

maxα∈A
`
R(s, α)+P

s′ T (s, α, s′) V π∗(s′) otherwise

A planner for solving HCTs faces the challenge of solving
these tasks under the runtime limitations of a live platform
such as GZ2. The state of an HCT includes a large number
of machine generated features, some of which are defined
on the continuous space. As a result, an HCT may have
infinitely many possible initial states which makes offline
policy computation infeasible. Thus, we focus on online so-
lution algorithms that can incorporate any new evidence in
real time to compute a decision for an HCT task. Another
challenge for solving HCTs is the exponentially growing size
of the action sequences in the horizon. HCTs differ signifi-
cantly from consensus tasks in that taking ¬H action does
not necessarily end the task, leading to an exponential ex-
pansion of the space of possible policies. In addition, solving
an HCT requires exploring a state space that may grow ex-
ponentially in the horizon and in the depth of the subtask
hierarchy. For GZ2 tasks with L4 hierarchy, the number of
the unique states is 38 thousand for a horizon of 2 and is 1.4
million for a horizon of 3.

When the system’s initial belief is strong about the cor-
rect answer sequence (based on machine vision features for
GZ2), long sequences of evidence may be needed to change
the system’s prediction about the correct answer sequence.
GZ2 logs show that, on average, tasks employ 28 workers,
and that the number of contributors can be as large as 58.
Such a large horizon makes optimal approaches for solving
these tasks intractable. Myopic and limited-lookahead ap-
proaches cannot explore deeper regions of the search space
and consequently may fail to realize the value in longer-term
evidence collection.

6.2 Solving HCTs Efficiently
Monte Carlo planning offers a way to address the chal-

lenges in solving HCTs; it is an online planning approach
that can efficiently explore the search space of a large MDP.



Monte Carlo planning uses sampling to explore the search
space and then builds a partial search tree to optimize deci-
sions [8, 10, 18]. Despite theoretical results demonstrating
the convergence of some Monte Carlo algorithms to optimal
policies under infinitely many samples [10], in practice these
general algorithms may fail to make effective decisions under
runtime limitations. In particular, general Monte Carlo al-
gorithms (e.g., UCT) hit a combinatorial challenge in solving
problems with long horizons [6]. The number of samples for
exploring state-action outcomes grows exponentially in the
horizon. For problems where some actions may lead to early
termination (e.g., taking ¬H actions when current subtask
is top level), these algorithms explore the part of the state
space that is closer to the initial state and require immense
number of samples to explore longer horizons.

Previous work on solving consensus tasks has shown that
the sampling method in Monte Carlo planning can be cus-
tomized to explore long horizons of these tasks [6]. When all
¬H actions lead to terminating evidence collection, the MC-
VOI algorithm can eliminate the action selection problem in
sampling. For each sample, it can evaluate the utilities of
hiring and not hiring simultaneously at each encountered
state, which reduces the number of samples required to ex-
plore consensus tasks with long horizons.

We present two approximate algorithms that constrain the
policy space in solving HCTs such that the sampling and
evaluation techniques given in the MC-VOI algorithm can
be used to make effective decisions for HCTs. The algo-
rithms sample evidence paths to explore how evidence col-
lection may proceed until termination. They differ in the
way that they construct partial search trees and optimize
decisions. The MC-VOW algorithm reasons about the cu-
mulative value of a worker—the value associated with hiring
a new worker and asking all applicable subtasks. It makes
decisions about whether to hire a new worker. The MC-VOT
algorithm reasons about the decoupled value of a subtask—
the value associated with asking a worker about the current
subtask independent of other subtasks in the task hierarchy.
The decisions of this algorithm are on the subtask level.

We describe the building blocks that are common in both
algorithms. The SampleEvidencePath function samples one
possible pathway that evidence collection may take while
taking H actions until termination. The SampleEvidence
function makes queries to the evidence models to sample
future evidence to be collected at a given state. The Sam-
pleNextState function samples a next state from the tran-
sition model. Recursive calls to the SampleEvidencePath
function provides a complete path from the initial state to a
termination state. When a termination state is reached, the
SampleCorrectAnswer function samples a correct answer se-
quence using the hierarchical answer models based on the
evidence stored in the state. This sampled answer sequence
is used to evaluate the utilities of all sampled states on the
pathway simultaneously for hiring and not hiring actions.

The UpdateSearchTree function applies the evaluation tech-
nique introduced in [6] for building a partial search tree of
visited states and for evaluating the values for taking differ-
ent actions at these states. For each state s in the search
tree, the algorithm keeps visitation counts, and estimates
values for H action (s.V H) and ¬H action (s.V ¬H). For a
given state s and a sampled correct answer sequence {āi}n1 ,
the value estimates are updated by the UpdateSearchTree
function as follows: s.V H is computed as the weighted av-

erage of the V values of all states s has transitions to in the
search tree. s.V ¬H is updated with U({āi}n1 , {âi}n1 ), where
{âi}n1 is predicted based on s, minus the cost of acquired
evidence. s.V is the maximum of s.V H and s.V ¬H .

6.2.1 Decisions based on Cumulative Value of a Worker
The MC-VOW algorithm constrains the policy space such

that, once a new worker is hired, all applicable subtasks
are queried from the worker. Doing so eliminates decision-
making at the subtask level and reduces the complexity of
making decisions. The algorithm makes decisions only at
states in which the current subtask is at the top of the
subtask hierarchy (i.e., TopLevel(s) is true). The decisions
are guided by the estimated cumulative value of a worker
(V OW ), which quantifies the value for asking all applica-
ble subtasks to a worker until reaching the bottom of the
subtask hierarchy. For any state s0, if V OW is estimated
to be non-positive, the system ends the task and outputs
the predicted answer sequence. Otherwise, the system col-
lects evidence from the worker for all applicable subtasks
in the hierarchy and updates s0 accordingly. The reason-
ing is repeated for the updated state to decide whether to
hire another worker. In computing V OW , the only actions
available are for the top level of the hierarchy, whether to
hire a worker or not, which allows for applying the sampling
procedure suggested by the MC-VOI algorithm. V OW for
a given state s0 is computed as:

V OW (s0) = R(s0, H) +
X

s′
T (s0, H, s′) V π∗

w (s′)

−R(s0,¬H), where

V π∗
w (s) =

8
>>>><
>>>>:

R(s,¬H) if s ∈ ST

maxα∈A
`
R(s, α)+P

s′ T (s, α, s′) V π∗
w (s′) if TopLevel(s)

R(s, H)+P
s′ T (s, H, s′) V π∗

w (s′) otherwise

The details of an algorithm for computing V OW for s0 is
given in Algorithm 1. Each sampled evidence path contains
evidence from all applicable subtasks. However, a state is
added to the partial search tree only if the current subtask
is the top level subtask or if the state is a termination state.

V OW quantifies the expected value of hiring a worker and
asking the worker all applicable subtasks. This value takes
into account that asking the top level subtask may lead to
asking about other subtasks and gathering additional evi-
dence. The shortcoming of this algorithm is that it cannot
analyze the individual improvement that a subtask can pro-
vide for predicting the correct answer, and thus cannot op-
timize the subset of subtasks to ask to a worker to maximize
utility. For a GZ2 task, this algorithm would never deliber-
ately stop evidence collection after asking about subtask st1
even if other subtasks do not help with answer prediction.

6.2.2 Decisions based on Decoupled Subtask Value
Given the intractability of solving the large MDP asso-

ciated with solving an HCT, we seek to decouple it into
smaller, subtask specific MDPs. The idea of decomposing
large MDPs into smaller problems has been studied in pre-
vious work for offline planning [3, 14]. We present an online
planning algorithm that uses the special structure of HCTs
to decompose it into individual consensus tasks.



CalculateVOW(s0:initial state)
begin

repeat
SampleEvidencePath(s0)

until Timeout

V OW ← s0.V H − s0.V ¬H

return VOW
end

SampleEvidencePath(s:state)
begin

if ¬IsTerminationState(s) then
e← SampleEvidence(s)
s′ ← SampleNextState(s, e)
{āi}n1 ← SampleEvidencePath(s′)

else
{āi}n1 ← SampleCorrectAnswer(s)

end
if TopLevel(s) or IsTerminationState(s) then

UpdateSearchTree(s, {āi}n1 )
end
return {āi}n1

end
Algorithm 1: MC-VOW algorithm

We first describe the construction of a decoupled MDP
for a subtask of an HCT. We show how solving these decou-
pled models still requires reasoning about the global task
structure due to the subtask dependencies in the transition
model. We define state equivalence between the decoupled
model and the global model so that paths sampled over the
global model can be used to make decisions about hiring a
worker for a subtask. We outline the steps of this computa-
tion by presenting a Monte Carlo algorithm.

Each decoupled MDP optimizes hiring decisions for a sub-
task independently of other subtasks. This approach decom-
poses the decision-making of GZ2 tasks into 9 individual
MDPs. It guides hiring decisions based on the decoupled
value of hiring for the current subtask (V OT ). This de-
coupled value is the value of asking the current worker and
future workers only about the current subtask. It isolates
the value for the current subtask, and does not capture the
utility that can be generated by asking other subtasks as a
follow-up to the current subtask. For a GZ2 task where the
current subtask is st1, V OT captures the value in asking
users about subtask st1, but does not capture the potential
value in asking about st2. For a given state, this approach
queries the MDP corresponding to the current subtask to
estimate V OT . If V OT is estimated to be positive, the al-
gorithm queries the worker about the current subtask and
repeats the calculation for the updated state.

To formalize the computation of V OT for an initial state
s0 with current subtask i, we define a decoupled MDP, called
MDPi, that only models the decoupled decision process of
asking workers about the subtask i. Si is the set of states
for MDPi. si ∈ Si is composed of the initial state s0, and
evidence collected for subtask i following the initial state
{ei}. ST

i is the set of termination states where future evi-
dence collection is not possible. The set of actions include
H, hiring for the current subtask, and ¬H for not hiring.
From the point of view of the decoupled MDPi, choosing
action ¬H at any state si indicates that no positive value
is associated with hiring a worker for the current subtask,

leading to terminating evidence collection for that subtask.
This structure allows us to use the sampling strategy used in
the MC-VOI and MC-VOW algorithms to evaluate the val-
ues of each visited si for both actions simultaneously. The
reward for hiring is equal to the cost of querying a worker
for subtask i. The reward for not hiring is computed based
on the belief about the correct answer sequence, as given in
Section 6.1. V OT for initial state s0 is computed as:

V OT (s0) = Ri(s
0, H) +

X

s′i∈Si

Ti(s
0, H, s′i) V π∗

i (s′i)

−Ri(s
0,¬H), where

V π∗
i (si) =

8
<
:

Ri(si,¬H) if si ∈ ST
i

maxα∈A
`
Ri(si, α)+P

s′i
Ti(si, α, s′i) V π∗

i (s′i) otherwise

States, actions, and the reward function of MDPi can be
easily decoupled from the general MDP. However, the tran-
sition model of MDPi for taking action H cannot be com-
pletely decoupled from other subtasks. The model includes
inferences from evidence models for subtask i, which can
be queried based on the decoupled state si. However, the
model should also predict the likelihood that there is going
to be another opportunity of evidence collection for subtask i
should evidence collection for higher level subtasks continue
until termination. Since asking a worker about a subtask
may be conditioned on the answers collected from a worker
on other subtasks, this prediction should be performed on
the general MDP modeling the complete HCT. For example
in the GZ2 hierarchy, the evidence-collection opportunities
for subtask st9 is low since it can be queried only when a
worker answers subtask st1 as a2

1, st3 as a2
3 and st6 as a1

6.
Assessing this likelihood for st9 subtask requires reasoning
about the likelihood of a worker answering subtasks st1, st3
and st6 in this particular way.

To describe the construction of the decoupled transition
model from the global MDP model, we define a subtask
equivalence between a global state s and subtask state si

as follows: s and si are equivalent for subtask i (s ∼= si)
if (1) s and si share the same start state s0, (2) the set of
evidences for subtask i are identical in s and si, (3) s and si

have the same termination flag and (4) the current subtask
of s is i or s ∈ ST . The first three conditions ensure that
s and si have the same set of evidence with respect to the
execution of subtask i. Given our observation from Section
5.1.2 showing that the likelihood of evidence for a subtask is
independent of the evidence collected for other subtasks, the
evidence model for subtask i produce identical predictions
when queried with s and si. The fourth condition identifies
the states of the general MDP deliberating about collect-
ing evidence for subtask i or leading to the termination of
MDPi. Using the state equivalence definition, we can com-
pute the transition probability of MDPi using the general
MDP model:

Ti(si, H, s′i) =

P
s∼=si,s′∼=s′i

Pr(s)Pr(s′|s)
P

s∼=si
Pr(s)

where s′i is updated from si with a single evidence for sub-
task i or with termination. Pr(s), the likelihood of being
in state s and Pr(s′|s), the likelihood of arriving to state s′

from s by taking H actions can be computed by iteratively
applying the transition model of the global MDP from s0.



This derivation shows that evidence paths sampled over the
global task model lead to valid samples and consequently a
valid search tree for MDPi.

CalculateVOT(s0:initial state with current subtask i)
begin

repeat
SampleEvidencePath(s0, s0, i)

until Timeout

V OT ← s0.V H − s0.V ¬H

return VOT
end

SampleEvidencePath(s:state, si:subtask state,
i:subtask for which V OT is computed)
begin

j ← CurrentSubTask(s)
if ¬IsTerminationState(s) then

e← SampleEvidence(s)
s′ ← SampleNextState(s, e)
if i = j or IsTerminationState(s) then

s′i ← UpdateSubTaskState(si, e)
else

s′i ← si

end
{āi}n1 ← SampleEvidencePath(s′, s′i, i)

else
{āi}n1 ← SampleCorrectAnswer(s)

end
if i = j or IsTerminationState(s) then

UpdateSearchTree(si, {āi}n1 )
end
return {āi}n1

end
Algorithm 2: MC-VOT algorithm

Algorithm 2 presents the details of an algorithm that es-
timates V OT by sampling execution paths from the global
MDP model. Sampling execution paths eliminates the need
to compute Ti and consequently Pr(s) and Pr(s′|s). As
the algorithm generates the path, it keeps track of the cor-
responding state (si) of the decoupled MDP. si is updated
when new evidence is gathered for subtask i or when task
terminates. The partial search tree constructed by the Up-
dateSearchTree function is composed of the states of the
decoupled MDP. The values estimated for the nodes of the
tree capture the value of obtaining evidence for subtask i on
predicting the answer sequence.

Figure 3 demonstrates how the algorithm generates a sin-
gle execution path for a GZ2 task (L2 hierarchy) when the
current subtask is st2. The upper portion shows a path
sampled over the general model, the bottom portion shows
the corresponding states of the decoupled model (dashed cir-
cles). States s0, s1

st2 and s2
st2 are added to the partial search

tree as a result of sampling this path.

7. EXPERIMENTS
We evaluate the ability of the proposed system to guide

hiring decisions for HCTs on a subset of the testset sampled
from the GZ dataset. The testset contains 1000 randomly
selected tasks, which overall hired 28131 workers and col-
lected 70359 responses cumulatively for all subtasks given
in the GZ2 subtask hierarchy. 55195 of these responses are

Figure 3: Execution path generated by the MC-
VOT algorithm.

for the subtasks in the top two levels of the hierarchy. In
our experiments, the system is given access to answer mod-
els trained with all features, and evidence models trained
with SDSS features and current subtask features.

Each GZ2 task in our dataset has answers from a limited
number of workers, which vary between 20 and 58. While
simulating our system with this data, evidence gathering
may abruptly stop due to running out of data. To model
this stochastic event, we expand the transition model of our
MDP with a probabilistic termination model, which predicts
the likelihood of running out of worker answers conditioned
on the number of workers reported.

We compare the performance of the system when using
different baselines and decision-theoretic algorithms to guide
hiring decisions in addition to the MC-VOW and MC-VOT
algorithms. The no hire baseline collects no responses from
workers and delivers the predicted answer sequence based
on the SDSS features only. The hire all baseline delivers a
prediction based on SDSS features and all worker responses
available in the dataset. We implement a limited-lookahead
approach which forms a search tree up to a limited horizon
to optimize decisions. The limited lookahead algorithm be-
comes too expensive to experiment with for lookahead sizes
larger than 5 and 1 for the L2 and L4 hierarchies, respec-
tively. We also implement the UCT algorithm, a popular
Monte Carlo algorithm which uses regret analysis for ac-
tion selection in its sampling. We experiment with different
constants for the UCT algorithm and report the results for
the best performing constant. All algorithms are given ac-
cess to the same set of answer, evidence and termination
models. MC-VOW, MC-VOT, and UCT algorithms can be
stopped anytime to produce a result. In our experiments,
we provide the same running time to all Monte-Carlo algo-
rithms for a fair comparison. All algorithms are tested on a
machine with 2.50GHz CPU and 64 GB RAM.

To understand the performance of these algorithms in
varying conditions, we experiment with two different util-
ity functions, UF1 and UEM ; we consider two different sizes
for the subtask hierarchy, L2 and L4; we vary the cost of
asking a subtask to a worker. In our experiments, this cost
is kept constant for all subtasks.

Figure 4 summarizes the net utilities (i.e., utility of an-
swer predictions minus the cost of hiring) obtained from dif-
ferent algorithms in varying conditions averaged over mul-
tiple runs. The bars in the figure represent the maximum
and minimum utilities achieved through the different runs
of the algorithms. In these experiments, 1.6 seconds are
used in each run of the Monte Carlo algorithms, but simi-
lar trends are observed when larger running times are pro-
vided (up to 13 secs per decision). The running time of the
limited-lookahead algorithms are 2.5 and 8.8 seconds for hi-
erarchy sizes of L2 and L4 respectively. The results show
that the MC-VOW algorithm performs better or as well as



Figure 4: Each plot shows the performance of different algorithms for varying subtask costs. Plots on the top
and bottom are for UF1 and UEM utility models respectively. Plots on the left and on the right are created
for different sizes of subtask hierarchies.

all other algorithms when the cost per subtask is low, since
it can successfully identify when the combinatorial evidence
collected from all subtasks can improve the system’s predic-
tions. However, not being able to optimize worker allocation
for individual subtasks negatively affects its performance as
the cost of a subtask grows. On the other hand, the MC-
VOT algorithm performs better than the MC-VOW algo-
rithm and better or equal to all other algorithms and base-
lines when the cost of a subtask is higher, since it can opti-
mize worker allocation for subtasks and can identify which
subtasks help to make better predictions for HCTs. The
difference between MC-VOW and MC-VOT for larger costs
grows when the subtask hierarchy is larger, since it becomes
more costly to hire a worker for all subtasks and there are
more opportunities for optimizing access to individual sub-
tasks. The results also show that average utilities gained by
all decision-theoretic algorithms are lower when the utility
function is UEM , as this utility function is less forgiving to
the mistakes made by approximate optimization. When the
cost of a subtask is not very high, both MC-VOW and MC-
VOT algorithms outperform UCT and limited-lookahead al-
gorithms. In most cases, UCT and limited-lookahead algo-
rithms fail to efficiently explore the large horizon of HCTs
and fail to identify when collecting more evidence can help
with solving HCTs. Even larger running times are insuffi-
cient for UCT to explore action sequences that do not stop
evidence collection prematurely.

Comparison of MC-VOW and MC-VOT algorithms with
the hire all baseline shows that decision theoretic optimiza-
tion offer benefits for solving HCTs. The algorithms can
adapt their hiring policies to different cost values, task hier-
archies, and utility functions. Figure 5 shows how the two
algorithms allocate worker resources to subtasks when the
cost of a subtask is 1.0 and 0.1 cents. When the cost is low,
the MC-VOW algorithm is able to capture 99.6% of the raw
utility captured by the hire all baseline by only hiring 40% of
available workers. The MC-VOT algorithm achieves 97.5%
of the raw utility by hiring 30% of workers and asking 17%
of available subtasks, since it can dynamically select which

Figure 5: Hiring behaviors of MC-VOW and MC-
VOT algorithms for UF1 utility model and L4 hier-
archy.

subtasks to query. The algorithms adapt to higher costs by
reducing the amount of evidence they collect from workers.

8. CONCLUSION AND FUTURE WORK
We presented our efforts to develop a methodology for

making principled decisions for solving hierarchical consen-
sus tasks. We studied a workflow where every worker an-
swers a task by starting from the top-level subtask. How-
ever, other workflows are possible, including sequences where
effort is saved via workers starting from an intermediate sub-
task in the hierarchy. To start from an intermediate subtask,
the system and the worker would need to reach an agreement
on the answers for the higher-level subtasks. Without such
an agreement, conflicts could occur. Such an experience
would require a new interaction design for HCTs, and is an
interesting future direction for this work. We are explor-
ing these and other task structures in crowdsourcing that
can benefit from the techniques presented in this work. We
are also investigating new Monte Carlo planning algorithms
that can combine the strengths of MC-VOW and MC-VOT
algorithms while preserving computationally efficiency.



REFERENCES
[1] J. Bragg, Mausam, and D. Weld. Crowdsourcing

multi-label classification for taxonomy creation. In
First AAAI Conference on Human Computation and
Crowdsourcing, 2013.

[2] P. Dai, C. Lin, Mausam, and D. Weld. POMDP-based
control of workflows for crowdsourcing. In Artificial
Intelligence, 2013.

[3] T. Dean and S.-H. Lin. Decomposition techniques for
planning in stochastic domains. In Proceedings of the
14th international joint conference on Artificial
intelligence-Volume 2, pages 1121–1127. Morgan
Kaufmann Publishers Inc., 1995.

[4] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics, pages
1189–1232, 2001.

[5] E. Kamar, S. Hacker, and E. Horvitz. Combining
human and machine intelligence in large-scale
crowdsourcing. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 1, pages 467–474.
International Foundation for Autonomous Agents and
Multiagent Systems, 2012.

[6] E. Kamar and E. Horvitz. Light at the end of the
tunnel: A Monte Carlo approach to computing value
of information. In Proceedings of the 2013
international conference on Autonomous agents and
multi-agent systems, pages 571–578. International
Foundation for Autonomous Agents and Multiagent
Systems, 2013.

[7] E. Kamar, A. Kapoor, and E. Horvitz. Lifelong
learning for acquiring the wisdom of the crowd. In
Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pages 2313–2320.
AAAI Press, 2013.

[8] M. Kearns, Y. Mansour, and A. Ng. A sparse
sampling algorithm for near-optimal planning in large
Markov decision processes. In Proceedings of the 16th
international joint conference on Artificial
intelligence-Volume 2, pages 1324–1331. Morgan
Kaufmann Publishers Inc., 1999.

[9] S. Kiritchenko, S. Matwin, and A. F. Famili.
Functional annotation of genes using hierarchical text
categorization. In in Proc. of the BioLINK SIG:
Linking Literature, Information and Knowledge for
Biology (held at ISMB-05. Citeseer, 2005.

[10] L. Kocsis and C. Szepesvári. Bandit based
Monte-Carlo planning. Machine Learning: ECML
2006, pages 282–293, 2006.

[11] D. Koller and M. Sahami. Hierarchically classifying
documents using very few words. In Proceedings of the
Fourteenth International Conference on Machine
Learning, pages 170–178. Morgan Kaufmann
Publishers Inc., 1997.

[12] C. Lin, M. Mausam, and D. Weld. Crowdsourcing
control: Moving beyond multiple choice. In Workshops
at the Twenty-Sixth AAAI Conference on Artificial
Intelligence, 2012.

[13] C. Lin, M. Mausam, and D. Weld. Dynamically
switching between synergistic workflows for
crowdsourcing. In Twenty-Sixth AAAI Conference on
Artificial Intelligence, 2012.

[14] R. Parr. Flexible decomposition algorithms for weakly
coupled Markov decision problems. In Proceedings of
the Fourteenth conference on Uncertainty in artificial
intelligence, pages 422–430. Morgan Kaufmann
Publishers Inc., 1998.

[15] D. Shahaf and E. Horvitz. Generalized task markets
for human and machine computation. In
Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[16] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? Improving data quality and data
mining using multiple, noisy labelers. In Proceedings of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 614–622.
ACM, 2008.

[17] C. N. Silla Jr and A. A. Freitas. A survey of
hierarchical classification across different application
domains. Data Mining and Knowledge Discovery,
22(1-2):31–72, 2011.

[18] D. Silver and J. Veness. Monte-Carlo planning in large
POMDPs. Advances in Neural Information Processing
Systems (NIPS), 2010.

[19] L. Tran-Thanh, M. Venanzi, A. Rogers, and N. R.
Jennings. Efficient budget allocation with accuracy
guarantees for crowdsourcing classification tasks. In
Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems, pages
901–908. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[20] K. W. Willett, C. J. Lintott, S. P. Bamford, K. L.
Masters, B. D. Simmons, K. R. Casteels, E. M.
Edmondson, L. F. Fortson, S. Kaviraj, W. C. Keel,
et al. Galaxy zoo 2: Detailed morphological
classifications for 304 122 galaxies from the Sloan
Digital Sky Survey. Monthly Notices of the Royal
Astronomical Society, 435(4):2835–2860, 2013.


