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ABSTRACT1 
 
In multi-site distributed education (MSDE), video streams from 
multiple sites are available. To best utilize the limited screen space 
at each site, we develop a customizable, automated display man-
agement system in this paper, i.e., only user-preferred streams will 
be shown as triggered by events and timers. The configuration of 
such user preference, however, is challenging because it has to be 
both human-friendly and machine-friendly. To address this chal-
lenge, we propose a three-layer virtual director model. In the user 
layer, we identify three categories of parameters that can represent 
a wide range of user preferences yet are easy to use. These prefer-
ences are then automatically translated into a machine-friendly 
timed automaton in the execution layer. The automaton is simu-
lated dynamically, which selects a subset of streams to show on the 
screen through a display layer. Evaluation results demonstrate the 
correctness and efficiency of the proposed framework. 
 

1. INTRODUCTION 
 
To accommodate students’ time and/or place conflicts, in the past 
decade, universities started to offer distributed education where 
the lecturer and the students are not required to be in the same 
classroom. A common form of distributed education is what we 
call multi-site distributed education (MSDE). For example, in the 
case of [7], a lecturer and some students are collocated in the same 
classroom (e.g., University of Toronto), while other students attend 
the lecture remotely as a group (e.g., IBM Research Center).  

In MSDE systems, each site can have one or more cameras. 
Many existing systems tile all the videos on the display regardless 
of their relative importance 0[2]. Such systems are not scalable 
when the number of video streams increases. In addition, they do 
not make efficient use of the screen real estate because most video 
streams contain interesting events only at limited times. Recent 
systems such as AutoAuditorium [6] and iCam [8] are able to 
automatically generate a single video output from multiple input 
streams based on events and timers. Take the iCam system as an 
example. There are multiple software modules called virtual cam-
eramen (VC). Each VC controls a camera, automatically tracking a 
lecturer or a talking audience member. The VCs communicate with 
another software module called virtual director (VD), which is 
responsible for selecting the best camera shot given the available 
camera shots from all VCs by using a timed automaton (finite state 
machine with timers) [5]. For example, when a student asks a ques-
tion, the VD will automatically switch to the camera that shows the 
student; when a camera has been on air for a certain period, the 

                                                 
1 Work performed during the first author’s internship at MSR.  

VD will switch to another camera to improve the aestheticity of 
the output. Note that the first example is an event-driven switch 
and the second example is a timer-driven switch.  

In this paper, we extend automated camera management sys-
tems such as iCam to MSDE. Unlike AutoAuditorium or iCam, 
which outputs the same video for all remote audiences, in MSDE it 
is often desirable that each site has its own VD. For example, the 
site that has the lecturer onsite may not need the lecturer video 
because they see the lecturer directly and can save some screen 
real estate for other video streams. The challenge we face is that in 
iCam the VD’s state automaton is written in a machine-friendly 
scripting language, which needs to be edited by a well-trained 
system administrator. This configuration process is tolerable for a 
single site. But it can be cumbersome, inefficient and error-prone if 
it has to be reconfigured to support different numbers and types of 
VCs and produce customized output for different sites. 

We observe that human users are more comfortable with the 
semantics of camera streams and preference among them. Hence 
we propose to divide the VD into three layers. At the user layer, a 
human-friendly graphical interface is designed to allow users to 
specify their preference among the cameras in the form of scores, 
which is an intuitive way of configuring the event-driven and 
timer-driven switches. This user interest model is then automati-
cally translated into a machine-friendly timed automaton that will 
be executed by the VD at the execution layer. Due to the large 
number of possible states when the number of cameras increases, 
we perform such translation dynamically so that the execution 
layer can be run efficiently. Finally, the selected camera streams 
are laid out on the display device through the third layer ─ the 
display layer. The benefit of such a three-layer design is that any 
number of cameras capturing different views can be “compared” in 
a generic way by the VD without understanding their semantic 
differences, and users can easily reconfigure the desired camera 
switching behavior by changing the user interest model parameters, 
at system setup time or, if desired, during a live class session. 

The rest of the paper is organized as follows. Section 2 pre-
sents the architecture of an MSDE system with distributed VCs 
and VDs on each site. Section 3 describes the three-layer VD 
model that is designed to be both user- and machine-friendly. In 
Section 4, we evaluate the proposed approach first by demonstrat-
ing the functional correctness of the automaton, and then by giving 
an example that shows how a VD selects different camera shots 
given the automaton and event triggers.  We conclude the paper in 
Section 5. 

 
2. SYSTEM ARCHITECTURE 

 
Our system is built on top of the ConferenceXP platform [2], 
which supports real-time high quality video conferencing (based 



on Internet2 IP Multicast) at 30 frames per second as well as text 
chat, shared presentation, and shared whiteboard. Our goal is to 
add automated camera management to ConferenceXP while lever-
aging its existing functionalities.  

Figure 1 shows an example setup for a two-site distributed 
class between Microsoft Research (MSR) and University of Wash-
ington (UW). The MSR site has two VCs: “MSR Lecturer VC” 
and “MSR Audience VC”; the UW site has a single “UW Audi-
ence VC”. All VCs send their videos via the RTP channel over 
Internet2.  Each VC is capable of producing multiple types of 
views. For instance, the lecture VC automatically tracks the lec-
turer and produces three view types: “global view” of the front 
stage of the room, “close-up view” of the lecturer’s head and 
shoulder, and “zooming view” indicating the mechanical zooming 
operation of the camera. Similarly, the audience VCs can produce 
“global view” of the audience area, “close-up view” of a talking 
audience member, and the “zooming view”.  

At each site, there is a VD which decodes all the videos, and 
selectively places them on the screen based on the user’s prefer-
ence. The VDs talk to all the VCs through a simple protocol: 
whenever a VC changes its view, e.g., the MSR Audience VC 
identifies a student asking a question and changes to a “close-up 
view”, it will send a message to the local VD to update its state. 
The local VD will then broadcast this message to all other VDs. 
On the other hand, all VDs can broadcast their requests for any VC 
to perform a task such as creating a panning view. The local VD 
has the responsibility to operate the local VCs to implement the 
task. The commands from the VDs are processed at each VC in a 
first-come-first-serve manner, with a timer which prohibits two 
commands being executed in less than 3 seconds. 

Some of the above architecture resembles that of our previous 
iCam system [8], but the VDs are now distributed. The focus of 
this paper is how to allow users to easily setup VDs at each site. 
Our solution is to have a three-layer VD model to help the configu-
ration and customization process, which will be described below.  
 

3. THE THREE-LAYER VD MODEL 
 
We have chosen a three-layer design for the VD, as shown in Fig-
ure 2. The user layer maintains a user interest model that learns 
user preference among all the view types of all the cameras; the 
execution layer is responsible of selecting the camera streams to be 
displayed on the screen; the display layer shows the selected 
streams on the screen in a customizable way. We will describe 
these three layers in details next. 

3.1. User Layer  
We have chosen three categories of parameters that represent a 
wide range of user preference patterns yet are easily configurable 
by the user, namely preference scores, timing constraints and tran-
sition idioms. Figure 3 (next page) shows an example graphic in-
terface for the user to setup his/her preference. Note that these 
preference parameters can be setup as a configuration file before a 
class begins, or dynamically changed during a live class session.  

Preference Scores: As illustrated in Figure 3(a), the user can as-
sign a preference score to each view type of a camera as “must 
show”, “show in rotation” or “do not show”, which represent the 
relative “interestingness” of a camera view compared to other cam-
eras. Since each camera will be in one of the view types at any 
given time, we define a camera’s score as the score of its current 
view type. If a camera is in a view type that is scored “must show”, 
it must be selected by the VD to show on the display; if the view 
type is scored “show in rotation”, it will be shown one by one in 
rotation if there is no “must show” camera; if the view type is 
scored “do not show”, it shall not be selected unless no other cam-
eras can be selected. We find that such a three-level preference 
model is intuitive and allows users to easily compare cameras cap-
turing very different contents.  

With the above preference scheme, the camera selection deci-
sion can be made as follows. If there are one or multiple cameras 
in view types of “must show”, all of these cameras will be selected 
to show in a split-screen or picture-in-picture layout (Section 3.3); 
otherwise, if there are one or multiple “show in rotation” cameras, 
show them one by one in rotation; otherwise, randomly select one 
camera to show on screen. Note that such randomness may not be 
wanted and can be avoided if the user sets some camera views as 
“must show” or “show in rotation”. 
Timing Constraints: There are two types of timing constraints: 
minimum show time and maximum show time, which represents the 
minimum and maximum amount of time a certain view should be 
shown. A camera should not change view type if the minimum 
show time was not reached. The maximum show time applies to 
view types that are “show in rotation”, and determines the length 
of selection before rotating to the next camera.   
Transition Idioms: The preference scores and timing constraints 
are generally expressive enough to produce satisfactory results, but 
there are cases when some advanced transitions are desired. For 
instance, the user may want to always start the class video by 
showing the lecturer for 10 seconds, or, he/she may want to always 
show the audience view at site 2 after showing the audience view 
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Figure 2. Overview of the VD Model.  
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Figure 1. Example Setup for a Two-site Distributed Class between Micro-

soft Research and University of Washington. 



at site 1. Transition idioms are designed to fulfill such tasks. They 
will override the score-based camera switching behavior.  

As shown in Figure 3(b), each transition idiom takes one of the 
following two formats:  

• If the time since the beginning of the class equals T1 seconds 
 select camera Ci for T2 seconds.  

• If the camera view Vj has been selected for display for T1 sec-
onds  select camera Cj for T2 seconds  
In the above example, the user may specify the following two 

idioms: “if the time since the beginning of the class equals 0 sec-
onds  select lecturer camera for display for 10 seconds”; “if the 
audience global view at site 1 has been selected for 5 seconds  
select the audience camera at site 2 for 5 seconds”.  
3.2. Execution Layer  
The goal of the execution layer is to select camera streams accord-
ing to the user’s preference. Similar to existing solutions [6][8], we 
rely on a timed automaton to make camera selection decisions at 
runtime. The timed automaton is a finite state machine with timer 
translated from the input parameters at the user layer: the states 
represent the current view types of all cameras, the selected cam-
eras and the status of the screen output (e.g., how long the selected 
cameras have been displayed on screen); the transitions represent 
state changes triggered by camera view type change, timer events 
or user specified transition idioms. If there are N cameras, and 
each camera could be in one of M view types, the total number of 
possible states of the automaton is O(MN). Note that in MSDE, 
each site can have multiple streams selected and displayed. This is 
in contrast to our previous work iCam [8], where at any instance 
there is only one camera on air.  

Due to the large number of possible states, generating a full 
automaton will incur exponentially increasing computation cost 
with respect to the number of cameras, which is unnecessary. We 
propose to simulate the timed automaton dynamically during a 
lecture. That is, the VD will only keep a partial automaton, which 
covers the current state of the automaton and the potential transi-
tions that may occur at this state.  

Figure 4 shows the flow chart of the algorithm for camera se-
lection based on user preference parameters. It uses four modes to 

represent the concrete states of the timed automaton: “must show 
mode” represents those states with at least one “must show” cam-
eras; “rotation mode” represents those states with no “must show” 
cameras but one or more “show in rotation” cameras; “on hold 
mode” represents those states resulting from view type changes 
occurring within the minimum time for camera switching; “idiom 
mode” represents those states resulting from a matching idiom. On 
each transitional event (“view type change”, “min timer expira-
tion”, “max timer expiration” and “idiom match/return”), the VD 
first decides the new mode to switch to, and then calculates the 
new state of the timed automaton and updates camera selection 
output. We will present a detailed walk through example in Sec-
tion 4 to demonstrate this camera selection process.  

3.3. Display Layer  
The display layer manages the screen display given the camera 
streams selected at the execution layer. The user initializes the 
display layer by specifying a rendering region (RR) on the desktop 
screen to be used for video rendering. If only one stream is se-
lected, it will occupy the whole RR. In case multiple cameras are 
selected, they share the RR with a screen layout choice specified 
by the user. Currently two screen layout modes have been imple-
mented. With split screen layout, the RR will be equally allocated 
for all selected camera streams; with picture-in-picture layout, one 
randomly chosen camera stream occupies the whole RR while 
others are shown as overlay windows. We are working on support-
ing more layout modes, e.g., showing “must show” videos with 
large windows and “show in rotation” videos with small windows.  
 

4.  DEPLOYMENT AND EXPERIMENTS 
 
We built an MSDE system on top of the ConferenceXP platform, 
and it is currently being used for CSE Professional Masters Pro-
gram classes between MSR and UW [3]. Figure 5 shows a screen 
shot of the system during a test class. Since there was a conversa-
tion going on between the lecturer and the student, both the MSR 
lecture VC and the MSR audience VC were in “close-up” view, 
which was configured with “must show” score. Therefore, both 
VCs were selected by the VD. The two windows are shown in the 
split screen mode, although other modes are possible depending on 
the user preference.  

The VDs are very easy to configure. Setting up the VD usually 
takes less than 5 minutes by a regular user, in contrast to about an 
hour by a well-trained system administrator without the three-layer 
model, e.g., in [8]. Next we evaluate the proposed approach first 
by demonstrating the functional correctness of the automaton, and 

(a) Specifying preference scores and timing constraints. 

 
(b) Specifying transition idioms.  

Figure 3. Screen Shot of User Layer Interface 
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Figure 4. Flow Chat of Camera Selection Algorithm 



then by giving an example that shows how a VD selects different 
camera shots given the automaton and event triggers. 

4.1. VD’s Functional Correctness 

We adopted the UPPAAL verification tool [4] to study the timed-
automaton-based camera selection algorithm and analyze its func-
tional correctness in terms of liveness and reachability. Specifi-
cally, for each case of K (2 <= K <= 6) cameras and M (2 <= M <= 
4) view types per camera with randomly assigned preference 
scores, we have generated a timed automaton. Each state in the 
automaton represents a combination of view types of all the K 
cameras, as well as the timing constraints and camera selection 
output. Each transition represents a change in camera view type, a 
timer event, or an idiom-based transition. The automata are gener-
ated as XML files in the UPPAAL automaton description format. 
We then use the UPPAAL verifier to test the following properties:  

Liveness: transitions in a timed automaton are constrained by 
clock values, and there is possibility of deadlock (no outgoing 
transition exists). In our system deadlock is not possible because 
we allow multiple video streams to be shown on the screen, which 
reduces the dependency between VCs. In the experiment we veri-
fied the liveness of all the randomly generated automata against 
the query “A [] not deadlock” using the UPPAAL verifier, where 
“A” represents the target automaton and “[]” means “invariantly”. 
All automata we generated for different K and M values have 
passed the test.  

Reachability: The other expected property of VD is that all the 
states in the timed automaton should be reachable from the initial 
state within limited number of transitions, as the VD is supposed to 
be able to support any camera view combinations and make the 
right camera selection decision. We verified the reachability of 5 
randomly chosen states in each automaton with the following 
query “E <> selected_state”, where “E <>” means “possibly”. All 
selected states are verified as reachable by the UPPAAL verifier. 

We have also tested VD’s functional correctness empirically 
by running VD for long periods of time with different numbers of 
cameras, sites and random user preference parameters. Since the 
system was deployed, we have not seen any unexpected camera 
selections. In addition, because of the dynamic partial automaton, 
the run time execution of camera selection is very lightweight, and 
on average takes less than 1.0 millisecond on a regular PC. The 
camera switching introduces negligible overhead since only re-
arranging of camera output windows on the desktop is required. 

4.2. Example VD Walkthrough 

We take the two-site class between MSR and UW as the example. 
Table 1 shows a set of preferences set by the system administrator 

at UW. Note that the audience VC at UW is set to be “do not 
show” for all the view types, because the students can see what 
happens locally.  Initially, the MSR lecture (Lec) VC is shooting a 
global view, and the audience (Aud) VCs at both sites are shooting 
a preset view. Due to the idiom in Table 1, the initial view is MSR 
Lec. Then at 10th sec, the idiom expires, and the MSR Lec VC 
starts to zoom in. The selected view is hence MSR Aud which has 
preference “show in rotation”. Once the Lec VC changes to a 
close-up view, it is “must show” and the selected camera becomes 
MSR Lec again. The remaining steps can be interpreted similarly. 

 
5.  CONCLUSION 

 
In this paper, we presented a three-layer VD model that automati-
cally controls which camera streams are presented in each class-
room in MSDE. The system automatically chooses the right cam-
eras based on a timed automaton that is dynamically translated 
from a user-friendly interest model. This design makes deploying 
an MSDE system practical. 
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Figure 5. A Screen Shot of the System in Split Screen Layout.  
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Table 1. Example User Preference Setup 
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Table 2. Example Scenario Walkthrough  


