
Reading and Learning Smartfonts
Danielle Bragg

University of Washington
Seattle, USA

Shiri Azenkot
Cornell Tech

New York, New York

Adam Tauman Kalai
Microsoft Research

Cambridge, MA

ABSTRACT
Reading text on small screens can be difficult because many
people have trouble focusing their eyes on small text. However,
small screens are becoming increasingly pervasive with the
advent of personal computing devices, and small text makes
the best use of screen real estate. We design multiple differ-
ent scripts for displaying English text, legible at small sizes
even when blurry, for small screens such as smartphones and
smartwatches. These “smartfonts” redesign visual character
presentations to improve the reading experience. Like cursive,
Grade 1 English Braille, and ordinary fonts, they preserve or-
thography/spelling. They have the potential to enable people
to read more text comfortably on small screens, e.g., without
wearing their reading glasses. We also consider the difficulty
of learning to read smartfonts fluently and observe a learn-
ability/readability trade-off. We artificially blur images and
evaluate their readability using paid crowdsourcing. For blurry
text, our most learnable font can be read smaller than half
the size of the traditional Latin (i.e. “English”) script, and
can be read at roughly half the speed of regular text after two
thousand sentences.
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INTRODUCTION
More and more people use smartphones and smartwatches for
a variety of activities. Reading text is a primary component
of our interaction with these devices. However, their small
screens can make it difficult to perceive letters and words. Can
we design radical new scripts for these small screens? Or
are the letters Romans inscribed in stone millenia ago, which
we still use today, optimal? These new “smartfonts,” modern
analogs of cursive or (Grade 1) English Braille, could offer
several potential advantages over traditional letters. First, con-
sider presbyopia, the inevitable and irreversible decrease in the
eye’s ability to focus with age, resulting in blurred near vision
for virtually everyone by age 51 [18, 1, 7]. Smartfonts that
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Figure 1: The words message and massage clear (left) and
blurred (right) in our smartfonts: (a) Tricolor (b) Logobet (c)
Polkabet (on black). Words have been sized to have equal
areas.

are robust to blur could be easier to read for presbyopes and
others. Even for someone with 20/20 vision, out-of-focus text
appears blurry, e.g., text on a smartphone navigation system
will appear blurry when one is focusing on the path in front of
them. Second, text that is robust to blur might also be readable
at smaller sizes.

Our smartfonts employ blocks (not merely strokes) of color to
improve visibility at small sizes and with blur. Some smart-
fonts may be displayed perfectly with only six pixels per letter.
Fonts that are easier to read in small sizes can be used either
to display an equal amount of text more clearly, or more text
in the same area with equal legibility. Other potential benefits
include increased privacy (e.g., for obfuscating embarrassing
personal messages that may pop up on smartwatches), reading
speed, aesthetics, personalization, and comfort (e.g., fatigue
and motion-sickness). Because software can render text in
smartfonts as easily as existing fonts, the value of a smartfont
does not hinge on large-scale adoption. For instance, one of
the authors has been wearing a smartwatch with firmware up-
dated to display all text in a smartfont. SMS senders do not
know their messages are read in a smartfont.

For simplicity, in designing our smartfonts we consider only
distinct renderings of the twenty-six letters so the user can read
the text, letter for letter, without changes in orthography. In
particular, we do not consider spelling changes or shortenings
such as reading without vowels, though they could be used
together with smartfonts. We focus on English, but similar
ideas may be applicable to other languages.

Our questions are: (a) what are effective font designs to im-
prove these ancient twenty-six letters for display on small
screens, and (b) how difficult would they be to learn? If the



answers were negative – if optimal scripts require significant
learning and only offered marginal improvements over the
Latin forms – then smartfonts could still serve as important
icons and sources for healthy scholarly debate like the Dvorak
keyboard and Esparanto language.

We use paid crowdsourcing to facilitate the rapid development
and evaluation of smartfonts. Presbyopia is simulated to this
remote crowd by applying a Gaussian blur to the image. Our
data suggests that it is possible to design smartfonts that, com-
pared to the traditional Latin A-Z, are more readable when
blurry or, equivalently, can be displayed at smaller sizes with
equal clarity. In particular, the smartfont in Figure 1b can be
read smaller than half the size of Latin text when blurry, with-
out training, by crowd members. This increased readability
can help people read smartphones or smartwatches at a glance,
even when not wearing reading glasses.

The second key factor we consider is the difficulty learning
to read a smartfont, which is similar to learning cursive after
print. We show that our smartfonts, to varying degrees, can
be read fluently with a reasonable amount of practice. We
also find a learnability/readability trade-off: certain scripts,
especially ones that resemble the Latin alphabet, are easier to
learn but perform worse with blur. Our Tricolor script offers a
reasonable compromise in that it is relatively easy for many
people to learn to read quickly.

Evaluating and optimizing unfamiliar smartfonts is challeng-
ing. Even with tutorial and practice, a person’s comfort with
their native character set will be far greater. However, if a
reader can make out an unfamiliar smartfont more clearly than
a familiar font, it is likely that the smartfont is more readable.
The increased familiarity that comes with practice would only
make the smartfont more readable. Thus, our testing method-
ology is to use crowdsourcing to compare the identifiability
of random strings of artificially blurred letters at various sizes
(measured by area) in our smartfonts to that of Latin text.
This methodology enables us to compare and optimize our
designs without having to train someone to read fluently at
each iteration.

The key contributions of this paper include: (a) raising the
theoretical question of how much one might improve over
ancient scripts for display on screens by radically redesign-
ing characters, (b) introducing and demonstrating how one
can design and optimize (based on data) smartfonts for learn-
ability/readability under specific reading conditions, in our
case varied size and blur, and (c) providing a methodology for
evaluating readability before teaching people to read fluently.

RELATED WORK
Related work spans fields such as HCI, psycholinguistics,
design, perception, and economics. Due to space limitations,
we discuss some of the most related work.

A motivating starting point for our study is the work on human
perception by Pelli et al. [19] who compared the “efficiency”
of letter identification across various languages. They also
compared random block patterns of varying sizes, and found
3×2 block patterns, surprisingly, to be three times as efficient
as traditional alphabets. Efficiency was measured by how well

individual letters could be identified in the presence of random
noise, which is different but possibly related to blur. They
also found that a few thousand training examples sufficed to
teach someone to identify unfamiliar letters fluently. This
work motivates our use of 3×2 blocks as the basis of several
scripts and informs our understanding of learning scripts.

Traditional alphabets have several properties of interest. Some
scripts, such as the Korean alphabet Hangul, are featural mean-
ing the shapes of the letters encode phonological features of
the sounds they represent. It has been found that mature scripts,
say those that have been in use for over 350 years, have many
fewer mirror-image letter pairs, such as the lower-case Latin
pair b/d, than younger scripts [22]. Motivated by a variety of
factors, numerous creative scripts have been constructed by
artists and hobbyists,1 though we are unaware of any rigorous
studies of their learnability or readability.

Legge et al. conducted a series of studies exploring various
aspects of reading, including contrast [12] and low-vision [13].

Regarding adoption of new technologies, a notable relevant
example has been the debate about the Dvorak keyboard’s
adoption “failure”: Economists used early studies to claim
that it is 20-40% faster than the QWERTY keyboard, and thus
the low adoption rate of the significantly “superior” Dvorak
keyboard proves how difficult it is to change behaviors [5],
while others used later studies that Dvorak is only 2% faster
[15]. Later input techniques garnered higher adoption on
PDAs and smartphones [9, 24], highly influenced by user
preference. Smartfonts, like virtual keyboards, require no
additional hardware and can be personalized.

Crowdsourcing has been used to understand perception. For
instance, Demiralp et al. explored the use of crowdsourcing
to evaluate the perceptual similarity of different shapes and
colors, and developed perceptual kernels to quantify crowd-
learned similarity. [6] They found crowdsourcing to be an
inexpensive, rapid, and efficient means to gather data on hu-
man perception.

Font design has been shown to strongly impact the reading
experience for people with vision conditions. Prior studies on
color-grapheme synethesia, where people have strong associ-
ations between letters and colors (see, e.g., [4]), have shown
that reading books with colored letters suffices to passively
learn and create strong perceptual associations between let-
ters and colors. In her dissertation, Bessemans explored font
design for children who are low-vision and just learning to
read. [2] Children with visual impairments are at a disadvan-
tage in comparison to their normally sighted peers in learning
to read. Bessemans designed a font especially for low-vision
children, based on her exploration of the effects of font design
parameters on legibility for children.

HCI techniques proposed for improving digital reading dig-
itally include RSVP2 [10], Froggy [23], ClearType [8], and

1A collection of constructed scripts can be found at http://omniglot.
com.
2RSVP has recently received attention due to http://spritzinc.com
and its inclusion on the Microsoft Band smartwatch.
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visual syntactic text formatting [21], among others. These tech-
niques could be combined naturally with smartfonts. Similarly,
to ease learning one could adapt existing teaching techniques
such as software that gradually teaches a user a language by
introducing new words over time [20].

OUR FONTS
We initially designed three smartfonts to be easily readable,
even at small sizes and out of focus. We leveraged three main
techniques: 1) using simple characters characterized by high
contrast and blocks of color; 2) using color to distinguish be-
tween characters; and 3) radically reducing the space between
adjacent characters. Shape and color are primary dimensions
that distinguish two-dimensional shapes. Our fonts Visibraille
and Polkabet each leverages one of these dimensions. Text is
not simply a collection of individual characters; these charac-
ters form words and sentences, and pairs of adjacent characters
require differing amounts of spacing between them. Our font
Logobet drastically reduces space between characters.

Visibraille
Both theoretical [14] and experimental [19] work suggests that
simple characters, characterized by high contrast and thick
line strokes, are most easily recognizable. Out of a range of
established and made-up alphabets, Pelli et al [19] showed
that 3× 2 grids (a visual analog of Braille) are most easily
recognizable. Our first font, Visibraille, shown in Figure 2,
is based on Pelli et al.’s findings. It maps 26 3× 2 blocks
onto the 26 letters of the English alphabet. We selected the
3×2 blocks to be similar in shape to the English characters
they represent. Because of its simple design and similarity to
Latin characters, we expect this font to be both readable and
learnable.

Figure 2: Visibraille alphabet

Polkabet
Color can also help to distinguish between characters. For
example, if two characters have similar shapes, making one
yellow and the other blue makes them clearly distinguishable.
However, there is a trade-off between the number of colors that
a font uses and the distinguishability of its characters. If many
colors are used, then the colors are pushed closer together in
color space and become hard to differentiate. Blocks of color
are also resilient to blur. When an image is blurry or out of
focus, each pixel appears to be a mixture of nearby pixels.
Solid blocks of color are highly robust to this type of blurring,
because many nearby pixels are likely to have the same color.

Our font Polkabet, shown in Figure 3, leverages color to yield
26 differentiable characters. It uses five colors: red, yellow,
green, blue, purple, and white. These colors were chosen for
readers who are not colorblind, but could readily be tailored
to various color-blindness. We chose to make two characters
rainbows to avoid adding another color. Polkabet is designed

Figure 3: Polkabet alphabet

to be read on a black background, and consequently is uniquely
suited for small, personal devices like the smartwatch.

Figure 4: Mnemonics for Polkabet’s small square characters.

We developed a mnemonic system, shown in Figure 4, to help
people learn this smartfont. If a character uses a small square
of color, the reader can think of the associated item from
Figure 4 to remember which letter it represents. The first letter
of that item is the letter that the character represents. Squares
of color at the top are linked to foods, middle squares link to
animals, and bottom squares are associated with miscellaneous
items. For example, suppose a reader encounters a red square
at the top of the line and does not remember what that means.
He/she would think, “This character uses a red square at the
top. So think of the red food... Tomato! ‘Tomato’ starts with
‘t’, so that’s a ‘t’!”. Characters that are solid blocks of color
represent the first letter of that color (with the exception of X).

Logobet
Logobet is a font that visually resembles a logography, like
Chinese, but is in fact an alphabet that can be sounded out,
somewhat like Korean. Logobet radically reduces the spacing
between letters. Kerning refers to changing the amount of
space between adjacent letters in proportional fonts. A pro-
portional font is one where the space allotted to a character is
proportional to the character size. For example, an “m” will
be allotted more horizontal space than an “l.” However, some-
times it is desirable to reduce the spacing between particular
pairs of characters. For example, a capital “T” allows a short
subsequent letter, like an “m,” to shift left under the “T” ’s
umbrella.

Figure 5: Logobet alphabet



(a) The Logobet alphabet without kerning

(b) The Logobet alphabet with kerning

Figure 6: Example of aggressive kerning with the alphabet.

Our font Logobet, illustrated in Figure 5, has characters that
are designed so that they allow subsequent characters to be
entirely shifted underneath. This means that text is read first
top-to-bottom, then left-to-right. For example, Figure 6 shows
the reduction in space due to kerning in Logobet for the alpha-
bet.

OPTIMIZATIONS
While we designed Visibraille, Polkabet, and Logobet to be
readable at small sizes and out of focus (and to be learnable),
further optimizations can be made. In particular, we present
two optimized fonts: Visibraille 2, which is made of 3×
2 blocks chosen to be minimally confusable; and Tricolor,
which leverages both color and familiar 3×2 character shapes
of Visibraille. Using paid crowdsourcing, we generated a
confusion matrix on 3×2 shapes which is used to optimize
Visibraille 2’s shapes and Tricolor’s use of color.

Visibraille 2
Because of Visibraille’s close resemblance to the English al-
phabet, we hypothesized that it would be easy to learn and
remember. However, its characters are not necessarily the
most distinguishable set of 3×2 blocks. Here we present an
alternate font Visibraille 2, comprised of the least confusable
26 3× 2 blocks.3 Figure 7 shows the 26 selected shapes in
black and the remaining 16 in gray.

We determined the confusability of these 42 characters using
paid crowdsourcing on Amazon’s Mechanical Turk platform.4
Our experimental setup mimicked a Snellen eye chart test, a
familiar test routinely used in eye exams, to the extent pos-
sible. A typical worker was shown a sequence of rows of
decreasing size, one row at a time, with 1-9 characters at the
precise heights indicated in Figure 8. Participants were asked
to transcribe the observed character(s) using a virtual key-
board consisting of 7 shapes. To ensure that the shapes on the
chart appear on keyboard, we first picked 7 random charac-
ters from 42 for the keyboard, and then sampled from those 7
characters with replacement to generate the target sequence of
appropriate length, rendered at the appropriate size.

In total, we collected 4022 evaluations over 548 people. Each
character was shown between 379 and 500 times, with an
average of 442.1. Each character appeared with each other
3Of the 26 = 64 possible 3× 2 configurations of black and white
squares, we considered a subset of 42 characters to reduce labor. In
particular, two configurations were considered to have the same shape
and likely to be confused if the black patterns were translations of
one another.
4http://www.mturk.com

Figure 7: The 26 selected shapes (black) of the 42 considered.
Edges denote highly confusable shapes. Although the confus-
ability matrix appears to be high-dimensional (as measured
by eigenvalues), the two-dimensional graph generated using
D3’s force-directed graph layout [3] is able to display many
confusable pairs near one another.

character as a transcription choice at least 33 times, with an
average of 64.7. Since experiments were conducted remotely
through web browsers, we did not control for display condi-
tions or factors such as retinal angle. However, this enables us
to assess the relative confusability of different shape pairs “in
the wild,” across a wide variety of display types and people.
To avoid pixelation artifacts, participants were instructed to
keep their web browsers at the default 100% zoom.

Figure 8: Our confusion matrix was generated by testing a
series of rows of random characters, like a Snellen chart.

To compute the confusability matrix C, for each pair of shapes
i and j, the confusability score ci j is the number of times shape
j was transcribed when i was shown, divided by the number

http://www.mturk.com


of times that j was available as a transcription choice when i
was shown as a target. The confusability of a shape with itself
cii is similarly defined to be the fraction of times that i was
transcribed when i was shown. The confusability values are
plotted in Figure 9.

Figure 9: 3×2 block confusability matrix.

From this matrix, finding the set of 26 most distinct (least
“confusible”) characters was modeled as choosing the set S
of size 26 so as to minimize ∑i, j∈S,i, j ci j. This problem is
NP-hard, but a branch-and-bound search was used to quickly
find the exact optimum among the

(42
26

)
≈ 1011 possible so-

lutions. The set S found by our branch-and-bound algorithm
are visualized in Figure 7. The 26 selected letters, shown in
black, minimize the sum of edge weights between nodes in
the selected letters.

We then mapped these 26 shapes to a-z, as illustrated in Figure
10. The permutation was chosen so as to ease learning5 by
heuristically mapping the shapes to the Latin shapes that we
felt they most closely resembled (upper- or lower-case).

Figure 10: Visibraille 2 alphabet

Tricolor
Since large blocks of colors were expected to be robust to blur,
and since 3×2 shapes were shown to be highly “efficient” to
identify [19], we tried a colored version of 3×2 shapes called
Tricolor, shown in Figure 12. As a compromise between learn-
ability and resilience, we followed the easily-learned shapes of
Visibraille and assigned colors to maximally distinguish easily
confused pairs of letters. We chose to use 3 colors. Here,
5Since evaluation was performed on random letter sequence, and
since participants were not asked to learn this mapping, the selected
mapping is of no consequence to the numerical results.

we re-used our confusion matrix, C, to solve the following
problem: partition the set of letters into three disjoint sets
S = S1 ∪ S2 ∪ S3 so as to minimize ∑

3
k=1 ∑i, j∈Sk,i, j ci j. This

NP-hard search over ≈ 4×1011 partitions succumbed easily
to exact optimization again using branch-and-bound search.
The alphabet is shown in Figure 12. The selection, visualized
in Figure 11, minimizes the sum of inter-color edge weights.
The two-dimensional layout aims to reflect, as well as possible,
this high-dimensional data set.

Consistent with prior work [22], the data indicates that pairs of
“mirror image” symbols were confusable, and the optimization
assigned different colors to each such pair. For example, “a”
and “n” are mirror images of one another and are colored black
and blue respectively. Other highly confusable pairs, such as
“l” and “n,” are also colored differently.

Figure 11: A force-directed layout, generated by D3 [3], of the
Tricolor smartfont, attempts to locate similar pairs of letters
near one another and also illustrates the colors chosen by our
optimization algorithm.

Figure 12: Tricolor alphabet

Because the characters of this font closely resemble the char-
acters of the English alphabet, we hypothesized that it would
be easy to learn and remember. Because it uses both shape
and color to distinguish between characters, we hypothesize
that it will also be highly readable at small sizes and blurry.

READABILITY
As we shift to using smaller screens on personal devices like
smartwatches and health bands, readability at small sizes be-
comes increasingly important. Being able to read text that is
blurry, or out of focus, is also important for both young people
with certain vision problems and the aging population.

Evaluating the readability of new smartfonts is difficult be-
cause nobody currently knows how to read them. Evaluating



smartfont readability in comparison to Latin is further compli-
cated by the fact that the test population are highly experienced
at reading and identifying Latin characters. Even with training,
we cannot reasonably expect our test population to accumulate
a comparable amount of experience with a new smartfont over
the course of a study. Our evaluation method does not require
training people to read smartfonts.

Experimental Setup
Our readability experiments consist of showing participants
a target string, and asking them to select the matching string
from a list of strings. The targets were random strings of
length five, roughly the average word length for English. Each
question came with four possible answer choices. One of the
answer choices was the same five-letter string as the target.
The other three answer choices matched the target in four out
of five characters, with one random replacement.

Because we are particularly interested in readability at small
sizes and with blur, we simulated reading conditions that var-
ied in terms of size and blurriness. Instead of screening with
complex vision tests and asking people with specific blurry
vision conditions to read normally printed text, we blurred text
and asked people with any type of vision to read it. Whether
the blurring occurs on the screen or in the visual system, the
perceptual effect is similar.

Size was manipulated by rendering strings of characters at
different sizes. Determining a metric for font size applicable
to a diverse set of fonts is challenging. When evaluating text
size, vision scientists typically use visual angle, which refers
to the angle formed by the bottom of the text, the viewer’s eye,
and the top of the text. Typographers prefer to use the physical
print size of characters. [11] Quantifying size is further com-
plicated by variance in both height and width of characters
within fonts. Because we are comparing radically different
fonts, we use text area to measure text size. Text area includes
the white space between and around characters that is required
to render the text and cannot be occupied by surrounding text.

Blurriness was manipulated by applying a Gaussian blur filter,
which replaces each pixel with a weighted average of nearby
pixels. A large radius creates highly distorted images and
mimics severe presbyopia for normally-sighted people, while
a small radius leaves images largely intact.

Figure 13: Sample readability task with font Visibraille.

We used a within-subject design with each participant answer-
ing matching questions for a single smartfont and for Latin.
The target image was presented at decreasing sizes, with three
questions at each size for both fonts. The blur radius was fixed
throughout each experiment.

We recruited participants through Amazon’s Mechanical Turk
platform.6 We ran two main experiments. Our first experiment
compares all five smartfonts at a fixed blur of 3.5. We had 154
participants: 69 female, 81 male, and 4 other. Ages ranged 18-
72, with an average of 35. 32 evaluated Polkabet; 30 evaluated
Visibraille 2; 31 evaluated Visibraille; 33 evaluated Tricolor;
and 28 evaluated Logobet. 69 were wearing glasses during the
study, and 85 were not.

Our second experiment compares Tricolor at three different
blurs. It involved 104 participants: 37 female, 64 male, and 3
other. Ages ranged 20-69, with an mean of 36 years old. Of
these, 36 saw a blur of 2.5; 33 saw a blur of 3.5; and 35 saw a
blur of 4.5. 41 participants were wearing glasses during the
study, and 63 were not.

Results
It is not obvious how to compare the readability of smartfonts,
especially since experiments were performed “in the wild”
with users with varied screens and software. To address this,
we compare, for each participant, the smallest sizes they can
read the Latin font and the smartfont which was being eval-
uated. Since each experiment involved the Latin font and a
single smartfont, this enabled us to compare, on an individual-
by-individual basis, the Latin letters to those of the smartfont
under the same conditions.

Since participants have years of experience reading Latin text
and no experience reading our smartfonts, we can conclude
little if they can read the Latin text better than the smartfonts.
However, if, for some reason, they can read the smartfonts
better, this strongly suggests that with practice the smartfonts
would be even more readable than Latin text. We also caution
that this data offers little value in comparing two different
smartfonts, since again one of them might benefit significantly
more from training than the other.

We define a Minimal Reading Area (MRA) for font f , MRA f ,
which is specific to the participant (and blur). Note that in our
experiment we asked three questions for each font at each size.
As we decrease the size, the first size for which a participant
makes a majority of errors (2 out of 3), we say that they failed
to read at that size and define the MRA to be just-larger area
used in the three questions prior to that size. Although par-
ticipants were asked to continue attempting to read at smaller
sizes, this further data was not used in any way in the analy-
sis because it typically reflected random guessing. We also
exclude the data from participants who failed to read at the
largest size, since it is likely they did not understand the in-
structions or were guessing. It will be convenient to consider
the log-MRA since a constant difference in log-MRA reflects
a constant factor change in size. The Empirical Distribution
Function of the log-MRA is shown in Figure 14.

6http://www.mturk.com

http://www.mturk.com


Figure 14: The (smoothed) Empirical Distribution Function of
log Minimum Reading Area (at blur of radius 3.5 pixels) for
the fonts: y is the fraction of participants whose log Minimum
Reading Area (in that font) was larger than x.

It is hard to interpret the meaning of an area due to the wide
variation in parameters. Nonetheless, to get some intuition,
a Facebook post on a Chrome desktop7 web browser today
appears in a font whose full ascender-to-descender height is 13
pixels, which corresponds to a log area 8.75 (see the vertical
line in Figure 14) in our experiments. With the interpolation
in Figure 14, this suggests that only 8% of participants could
read this size text, at our blur, in the Latin font while over 60%
of the participants could read Polkabet and Tricolor fonts.

To quantify performance by a meaningful number, bounded
by a confidence interval, we define the log-score (LS), for
each experiment to be the logarithm of the ratio of the MRA
for Latin to the MRA for the smartfont f in question, or
equivalently,

LSLatin, f = lg
MRALatin

MRA f
= lg(MRALatin)− lg(MRA f ),

where lg denotes base 2 logarithm. A log-score of 0 means that
the participant read Latin and the smartfont at the same size, a
log-score of 2 would correspond to the participant being able
to read the smartfont at 1/4 the size of Latin. Note that our
experiment is inherently one-sided: upper bounds on log-score
do not bound the readability of the smartfont after training.

For the Tricolor font, 26 of the 33 participants (79%) had
positive log-scores, meaning that they read the smartfont at a
smaller size than Latin, and 18 of the 33 (55%) had log-scores
greater than 1, meaning they read the smartfont at least twice
as small as Latin. The sample mean log-score was 1.28. A
histogram of the log-scores is displayed in Figure 15. The
wide variance in this histogram means that some users might
benefit significantly more than others from adoption.

7Most of our mechanical turk participants were using desktop, not
mobile, browsers. See http://facebook.com and http://google.
com/chrome.

Font CI lower-bound Mean log-score
Polkabet 0.78 1.30
Tricolor 0.62 1.28
Visibraille -0.23 0.14
Visibraille 2 -0.32 0.14
Logobet -0.56 -1.03

Table 1: Mean and 95% simultaneous (one-sided) confidence
interval lower-bounds. A log-score of 1 corresponds to read-
ability at half the size of Latin.

For simultaneous 95% post-hoc confidence intervals for 5
fonts, we choose what would normally be 99% confidence
intervals bounding each (the union bound on the 1% failure
probability of each estimate then implies 95% confidence).
Since our test are inherently one-sided, as mentioned, we use
simultaneous one-sided confidence intervals, based on mean
and standard deviation. The results are displayed in Table 1.
Only the confidence intervals for Tricolor and Polkabet are
entirely positive.

Figure 15: Histogram of log-scores for the Tricolor at blur of
radius 3.5 pixels. A log-score of 3, for instance, indicates that
Tricolor was readable 8 times smaller than the Latin font, for
that participant.

To see how performance would vary as we change the blur
parameter, we compared Tricolor versus Latin at three differ-
ent blur radii. The results at radii 2.5 pixels, 3.5 pixels, and
4.5 pixels, were all greater than 0 with statistical significance,
though the differences were not statistically significant. The
mean log-scores of 1.17, 1.28, and 1.41, respectively, suggest
a possible increasing trend.

LEARNABILITY
In order for our smartfonts to be usable, they must be learn-
able. To evaluate their learnability, we designed an online
learning system and tracked partcipants’ progress learning our
fonts. The results showed that after reading a couple thousand

http://facebook.com
http://google.com/chrome
http://google.com/chrome


sentences, our fonts are read at speeds that are the same order
of magnitude as that of Latin.

Learning Site Design
Our online learning tool provides a tutorial about the font,
flashcards for drilling the meaning of individual characters,
and simple yes/no questions in the font.

Tutorial
We provided a brief tutorial explaining each font. The tutorial
presented 1) the mapping of characters from the new font
to Latin (i.e. “English”) characters, 2) a description of the
organization of the new font’s characters, and 3) examples of
words in the new font with their Latin equivalents.

The tutorial was presented in the main menu of our learning
site. The main menu welcomed participants each time they
visited the site, first introducing them to the font and refresh-
ing their memory each time they logged back in. Participants
could return to the main menu at any point to view the descrip-
tion. The main page also provided a chart of the participant’s
performance for over time for self-tracking.

Yes/No Questions
Our site provided short yes/no questions to help participants
practice and learn their new font. These questions were gen-
erated via crowdsourcing, including questions from Mind-
Pixel[17] augmented with questions we gathered from Ama-
zon Mechanical Turk workers. We screened the questions
for inappropriate content before releasing them. In total, we
had 2739 questions: 1245 with a positive answer and 1494
with a negative one. The questions were generally fun and
entertaining. Examples include “Is the moon out at night?”
and “Are you a celery?”.

Figure 16: Sample yes/no question for font Logobet.

The learning site asked the yes/no questions in the new smart-
font, as demonstrated in Figure 16. After receiving an answer,
the site showed the question in both the smartfont and plain
English so that they could verify their reading of the question.
It also gave feedback on correctness.

We provided a “cheatsheet” that participants could use while
answering the yes/no questions. The cheatsheet showed the
mapping of the new font’s characters to standard Latin charac-
ters. The Polkabet cheatsheet also provided mnemonics. To
view the cheatsheet, a participant could click on a link above
the question. The cheatsheet overlayed the yes/no question
page, so that the participant could not continue answering
questions while viewing the cheatsheet. This design forced
participants to rely on their memory for answering questions
with prompting from the cheatsheet, rather than visually “look-
ing up” each character with the cheatsheet.

Flashcards
To further help participants memorize their smartfont, we
provided flashcards of the font’s characters. The flashcards
present a single encoded character at a time, and prompt the
participant for the Latin character equivalent. Mistaken charac-
ters are repeated until the participant is no longer making any
mistakes. Participants were free to make use of the flashcards
at any point during the study.

Experimental Setup
To evaluate our smartfonts’ learnability, we recruited people to
use our site to learn smartfonts through Amazon’s Mechanical
Turk platform.8 We had 23 participants in total. Each partici-
pant was assigned randomly to a single font: 8 to Polkabet, 6
to Tricolor, and 9 to Logobet. Varying numbers for each font
are due to participant dropout during the study. Participants
chose how long they spent on our site. They typically 2-3
hours per day on our site over the course of about a week, and
were compensated for the practice questions they answered.

When participants first visited the site, they set up an account
so that they could return to use the site at any time. The
site was in operation for about one week. Participants were
compensated for the yes/no questions that they answered, but
were free to make use of the flashcards, cheatsheet, or main
menu at any time. One in every 10 yes/no questions was
displayed in Latin characters for comparison. We recorded
the time it took participants to answer the yes/no questions in
both their smartfont and in Latin characters. We also recorded
their use of the cheatsheet and flashcards throughout the study.
Participants were free to provide open-ended feedback through
a form on the site at any point during the study.

Results
To evaluate a participant’s speed reading a smartfont, we cal-
culated the ratio of the time it took them to answer each yes/no
question in the smartfont to the average time it took them to
answer our control questions in the Latin font. A value of 1
means that it takes the person the same amount of time to an-
swer questions in the encoding as it does with Latin characters,
a value of 2 means it takes them twice as long, and so on. All
participants held over 95% accuracy in answering the encoded
questions, i.e., they were not guessing.

Trends Across Fonts
Figure 17 shows the general trends across our smartfonts.
Tricolor exhibits the easiest learning curve, followed by Lo-
gobet and then Polkabet. After 2,000 questions, participants
learning Tricolor were reading a median of 2.1 times slower
than they did in Latin; participants learning Logobet were
5.2 times slower; and participants learning Polkabet were 6.7
times slower. We ran an unpaired t-test to determine whether
the differences in response time across fonts was significant
after 2000 questions. We found a statistically significant
difference between each pair of fonts: Polkabet and Logo-
bet (t(8498) = 10.6623, p < 0.0001), Polkabet and Tricolor
(t(7998) = 4.0640, p < 0.0001), and Logobet and Tricolor
(t(8498) = 2.6588, p < 0.008).

8http://www.mturk.com

http://www.mturk.com


Figure 17: Response times to yes/no questions over time,
normalized by each person’s average response time in Latin
characters. Each point is the median of a sliding window of
averages across all participants to remove outliers.

Individual Learning Curves
There was some variation in learning curves between partic-
ipants learning the same smartfont, as hown in Figure 18.
Notable outliers are P3 for Tricolor and P6 for Logobet.
These two participants learned their respective fonts extremely
quickly–they became as quick at reading the smartfont as they
were at Latin after only around 1,000 questions. Their quick
learning curves suggest the benefit of personalization–some
may prefer to learn smartfonts that would challenge others,
and these preferences may be individual.

Learning colors
Tricolor could be read ignoring the colors. The redundant
coloring, however, may be helpful when text is out of focus.
Since the characters resembled the Latin alphabet, one might
be concerned that people learn to read ignoring colors and
then when faced with blurry text, will not remember the colors.
This did not seem to be the case. Consistent with prior work
on training color-grapheme synesthesia by reading books with
colored letters [4], we find that participants remembered the
colors of common words. In a post-test administered to seven
readers of Tricolor three days after the system was shut down,
we asked them to correctly identify the coloring of five com-
mon words (like “the”) each on a multiple-choice question
with four choices (three random colorings of the same shaped
letters). The aggregate accuracy was 28/35 (80%) over these
four questions, strongly indicating that they had remembered
at least some of the colors.

Learning Resources
Participants used both the flashcard and cheatsheet as they
learned our smartfonts. Participants learning Tricolor made
more use of the learning resources than participants learning
Polkabet or Logobet. It is possible that participants learning
Tricolor relied more on the learning resources because their
font tutorial did not include additional information beyond

(a) Normalized learning progress for Tricolor participants.

(b) Normalized learning progress for Polkabet participants.

(c) Normalized learning progress for Logobet participants.

Figure 18: Learning curves for individual participants, sepa-
rated by font.



its mapping to Latin characters. We provided mnemonics
for Polkabet, which likely helped Polkabet participants re-
call more characters independently, if slowly. Similarly, we
provided a lengthy tutorial for Logobetdetailing the charac-
ter organization, that likely helped participants remember the
character representations. Because of its relative simplicity,
Tricolor had no mnemonics or details about font organization.

Qualitative Feedback
We gave participants the opportunity to provide open-ended
feedback. Their responses indicated that they largely enjoyed
learning and reading our fonts. The majority remarked that
their experience was “fun.” Several participants compared the
process of decoding and answering questions to solving puz-
zles. One participant explained, “I thought this was extremely
fun and interesting because I love puzzles, especially ones
that deal with words.” Another wrote, “someone should find
a way to turn this into an Android game. .” At the end of the
experiment, one participant contacted us, asking if they could
continue using our site to practice their font. The positive
experience that our participants describe suggests that people
would enjoy continuing to learn, read, and use smartfonts.

Participants also indicated that they felt they were learning.
One participant explained, “It was a lot to take in at first,
but I felt my responses becoming more intuitive.” Another
explained, “I thought this was super hard in the beginning but
on the last couple I actually was reading them as though I
was seeing the letters.” Coupled with our learning curves, this
qualitative feedback suggests that at least some people can
learn to read smartfonts fluently.

DISCUSSION AND FUTURE WORK
There are several limitations to the current work. First, we
were unable to control for screen type, screen resolution and
distance from the viewer to the screen. This was done because
crowdsourcing enabled us to rapidly experiment with a number
of different fonts. Hence, it would be beneficial to reproduce
these results in a laboratory setting with users with presbyopia.
Second, we do not currently offer users who learn a smartfont
the ability to use it in any meaningful way. This could be
crucial to adoption.

Privacy is an additional benefit of smartfonts. “Substitution
ciphers” which encrypt text by replacing each letter with a sym-
bol, have been used by da Vinci in mirror-writing [], by Union
prisoners in the Civil War, and by children using Captain Mag-
neto encoder rings and other creative encodings of their own
design. Privacy can be especially valuable on smartwatches,
where potentially embarassing personal communications may
pop up without warning, visible to anyone sufficiently close.

Costs and durability may also be affected by font. For instance,
the seven-segment display of digits, common among digital
alarm clocks and other electronics, is less expensive and has
fewer pieces that may fail than a high-resolution screen. Aes-
thetics are, of course, a major consideration which we leave to
future work since they are difficult to design.

In the future, smartfonts could be tailored to an individual’s
eyesight or display screen. Each person is unique, and a wide
variety of vision conditions exist. We imagine a system that

evaluates a person’s vision and generates optimized smartfonts
on-the-fly. Such a system would require learning a model of
how vision relates to font readability. Just as many South-
east Asian scripts have rounded letters because straight lines
would tear the palm leaves on which they were written [16],
smartfonts could also tailor to the screens that display them.

Smartfonts could also be generalized to other character sys-
tems besides Latin. For example, we can develop smartfonts
for the Hebrew alphabet or Chinese characters. Many East
Asian scripts are read top-to-bottom, so any smartfont in-
volving kerning would need to support combining adjacent
characters vertically. The size of character sets can also vary
enormously. For example, there are over 50,000 Chinese char-
acters. A smartfont for such a large character set would likely
need to take advantage of language or character structure.

CONCLUSION
In this work, we introduce smartfonts, scripts that completely
redesign the written alphabet with the purpose of improving
the reading experience. We do not claim to have created the
best smartfonts or even optimal smartfonts for reading blurry
text, but we have hopefully demonstrated that there is room
for improvement over the millenia-old letters in use today.

Smartfonts have many potential benefits: improved readability
for various reading conditions, increased privacy, heightened
aesthetics, and a “cooler” reading experience. Allowing in-
terested users to opt-in, smartfonts do not require alphabet
reform. They also do not require new hardware or software,
but are deployable on existing platforms. As our experiments
showed, it is possible to learn to read them with a reasonable
amount of practice.

We developed a set of smartfonts to be readable at small sizes
and with blur. As we move into an age of personalized elec-
tronics, screen sizes shrink and enabling people to read on
small screens becomes increasingly important. Similarly, mak-
ing it possible for people to read text that looks blurry is also
important. As people age, their eyes lose the ability to focus,
and glasses are not always convenient or available. Similarly, a
variety of low-vision conditions exist and cannot be corrected
with glasses. Our readability experiments provide evidence
that our smartfonts are indeed more readable for a range of
small sizes and with varying amounts of blur.

We also presented experimental designs for evaluating 1) the
learnability and 2) the readability of smartfonts under various
reading conditions. We evaluated learnability by teaching
smartfonts through an online system that provided a tutorial,
encoded yes/no questions with a cheatsheet, and flashcards,
and tracking yes/no question response times. We evaluated
readability through a novel experimental setup that allowed
us to evaluate readability under various reading conditions
without training people to read the smartfont.
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