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ABSTRACT
Mobile devices are increasingly equipped with hardware and
software services allowing them to determine their locations,
but support for building location-aware applications remains
rudimentary. This paper proposes tracks of location coor-
dinates as a high-level abstraction for a new class of mobile
applications including ride sharing, location-based collabo-
ration, and health monitoring. Each track is a sequence of
entries recording a person’s time, location, and application-
specific data. StarTrack provides applications with a com-
prehensive set of operations for recording, comparing, clus-
tering and querying tracks. StarTrack can efficiently operate
on thousands of tracks.

Categories and Subject Descriptors
C.2 [Computer-Communications Networks]: [Distributed
Systems]

General Terms
Design, Algorithms, Measurement, Performance

Keywords
Tracks, location aware, GPS location

1. INTRODUCTION
Providing rich support for tracks, recorded time-ordered

sequences of visited locations, enables a new class of ap-
plications on mobile devices. Mobile devices that can de-
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termine their own physical location, utilizing GPS for in-
stance, are already becoming commonplace, as are develop-
ment platforms for building location-aware applications like
navigation services, targeted advertisements, and social ren-
dezvous. Current mobile platforms provide application de-
velopers with methods for retrieving the device’s current lo-
cation. The location can be obtained by a number of means,
including GPS hardware, cell tower triangulation, and WiFi
beacons. This paper explores expanding the set of location-
oriented primitives to include the notion of a track as a new,
fundamental abstraction.

Tracks play a prominent role in a variety of emerging mo-
bile applications from trip planning to online games to fit-
ness monitoring. Consider a ride sharing application, for
example. By recording and comparing the tracks of com-
muters driving to and from work, this application suggests
co-workers that can potentially drive together, thereby re-
ducing pollution, gas consumption, and traffic congestion.
Similarly, tracks left by others might help someone new to an
area discover interesting biking trails, determine safe places
to walk, or indirectly share experiences with friends and fam-
ily.

StarTrack is a system that enables extensive operations
on tracks. A track is a discrete and sampled representation
of a continuous route. Mobile devices collect tracks and op-
portunistically upload them to a central server. StarTrack
includes facilities for storing, comparing, clustering, index-
ing and retrieving tracks. It serves as the foundation for
building large-scale track-based services.

Overall this paper makes the following contributions: First,
we present an abstraction of a track that we believe is use-
ful for a large class of interesting applications. Second, we
present efficient algorithms for manipulating tracks includ-
ing comparison and clustering. Third, we demonstrate that
StarTrack shows encouraging results up to 10,000 tracks
across multiple users. Also, since our operations are straight-
forward to partition, we can easily scale to larger numbers
of tracks.

The rest of the paper is organized as follows. Section 2
presents an overview of the StarTrack framework including
the system architecture, programming interface and moti-
vating applications. The fundamental operations supported



 
Figure 1: The StarTrack architecture

on tracks − comparison, clustering and retrieval − are de-
scribed in Section 3. We present the results of our evaluation
in Section 4. We contrast StarTrack with prior work in Sec-
tion 5 and conclude in Section 6.

2. SYSTEM OVERVIEW

2.1 Key Concepts
StarTrack is a system that provides the building blocks

for developing track-based applications. A track is a time-
ordered sequence of location readings, each of which is a track
entry. A track is intended to capture the path taken by a
mobile device or, more importantly, a person in possession
of a mobile tracking device. A captured track may differ
from the actual path taken in two ways. First, the track
contains only a subset of the points along the path since
the device’s location is sampled at some frequency rather
than continuously. Second, the reported location may be an
approximation of the actual location due to characteristics
of the physical device and location estimation techniques.

Tracks are recorded, under control of an application, and
saved in a database along with previously recorded tracks
from various users. Each track is owned by a particular per-
son, and the owner of a track can specify who is allowed to
access that track. Each track entry is a tuple consisting of a
location, time, and optional application-specific metadata in
the form of an XML document with arbitrary contents. For
instance, users may choose to attach photos, sticky notes,
or location based advertising to particular track entries.

2.2 Architecture
The StarTrack system is based on a client-server architec-

ture. Figure 1 depicts a system with a cell phone, desktop
PC, and the StarTrack server. In practice, a system will
contain many mobile devices and any number of stationary
PCs interacting with a (logically) centralized server. This
figure also shows the software components that run on both
mobile and fixed devices as well as on the server.

Each participating mobile device is assumed to have a
means of determining its current location through a local
location manager. The location manager determines the
device’s location using an available localization technology,
such as the Global Positioning System (GPS), GSM localiza-
tion, Wi-Fi hotspots, etc. [26, 12, 31] This allows StarTrack
to work with any localization scheme.

A track recorder running on each mobile device periodi-
cally retrieves its current coordinates from the location man-
ager and saves this location along with the current time as
a new track entry. An application running on the device

determines when new tracks are started and when a track
is completed. This application can choose to either discard
or permanently save a recorded track. Tracks are stored in
the device’s local storage system until they can be uploaded
to the server. StarTrack allows applications considerable
leeway on when and how the tracks are uploaded to the
StarTrack server. For example, applications on devices that
are disconnected from the server, or that wish to wait until a
better connection is available, can locally record their tracks
and upload them in batches at a later time. In this paper
we do not discuss the features of the location manager or
the track recorder any further.

The application programming interface (API) provides
applications with a comprehensive set of operations on tracks.
Operations are implemented through a combination of client
code running on a device and code running on the server
where the tracks are stored. The StarTrack client forwards
local calls to the server so that operations can be performed
close to the data avoiding the overhead of communicating
track-related data to the clients. However, the client could
also cache data locally and perform some local operations,
though we do not support this in our current implementa-
tion.

The StarTrack API is also available to applications that
run on stationary devices, such as a desktop PC. For ex-
ample, in our ride sharing application, tracks are captured
on cell phones while people drive to and from work. How-
ever, the application that suggests commute partners need
not run on the cell phone; this application more expediently
runs on a user’s PC where it can present the user with maps
and other visual information.

The StarTrack server is implemented on top of SQL Server.
Tracks are stored, indexed, and queried using SQL Server
2008’s support for spatial data. Currently, the StarTrack
server runs on a single machine. To provide a more scal-
able infrastructure, the track data could easily be shared,
i.e. replicated and distributed, across multiple servers based
on geographic regions, users, or applications. Our server
code implements higher-level operations on tracks such as
comparing and clustering tracks. The next section describes
the operations on tracks that are provided through the Star-
Track API, and Section 3 goes into more detail about the
algorithms used.

The server enforces conventional access controls on tracks
in order to protect the privacy of users. That is, associated
with each track is a list of people who are allowed to ac-
cess the track (and use it in other StarTrack operations).
However, if all users treat their tracks as private, then ap-
plications such as ride sharing become much less functional.
Moreover, the server itself must be trusted since it has ac-
cess to all tracks. To alleviate this concern, StarTrack could
adopt well-known techniques for cloaking track data [19, 16,
20].

2.3 Programming Interface
The operations in StarTrack’s API fall into five categories:

recording, manipulating, comparing, clustering, and query-
ing tracks. Table 1 lists a simplified set of key operations
in this API. It is intended to provide the flavor of the API
rather than a complete specification.

Although a device’s track recorder could continually cap-
ture tracks and send them to the StarTrack server, this may
not always be desired since computing a device’s location can



Recording Tracks
trk = StartTrack();
EndTrack(trk);
SaveTrackEntryMetadata(trk, metadata);
SaveTrack(trk, metadata);
RemoveTrack(trk);

Manipulating track
trk = ClipTrack(trk, region);
trk = SpliceTracks(trk1, trk2);
entries = ExtractTrack(trk);
entry = GenerateTrackEntry(coords, time, metadata);
trk = GenerateTrack(entries, metadata);

Comparing tracks
similarity = CompareTracks(trk1, trk2, constraints);
boolean = SimilarTracks(trk1, trk2, constraints);

Clustering tracks
trks = ClusterTracks(trks);
trk = RepresentativeTrack(trks);

Querying tracks
trks = QueryTracksByRegion(region);
trks = QueryTracksByOwner(owner);
trks = QueryTracksByMetadata(metadata);
trks = QueryTracksByTime(start, end);
trks = QueryTracksByTrack(query-trk);

Table 1: Operations on tracks

be computationally expensive and consume precious energy.
Moreover, each application may have distinct notions of
what tracks they want captured. Thus, StarTrack lets appli-
cations running on a device indicate when tracking is desired
by calling the StartTrack and EndTrack operations. For ex-
ample, a device’s GPS hardware need not be turned on until
StartTrack is called, saving battery life. Upon calling Save-
Track, the currently recorded track is stored in the device’s
persistent storage, and later is uploaded to the server. The
application can also call SaveTrackEntryMetadata at any
time while a track is being recorded to associate application-
specific metadata with the device’s current location.

A number of operations manipulate tracks in various ways.
For instance, ClipTrack reduces a given track to the segment
that lies in a given geographical region. SpliceTrack connects
the endpoint of one track to the beginning of another, pro-
ducing a new track. Operations exist for extracting entries
from a given track. Synthetic tracks can be generated and
added to the database if so desired.

One of the main operations in StarTrack is CompareTracks,
which returns a measure of the similarity between two tracks.
The returned similarity metric is a real number between 0
and 1. Larger numbers, i.e. metrics closer to 1, indicate
a higher degree of similarity between the two tracks. Con-
ceptually, the comparison returns the fraction of entries in
common between the two tracks. Optionally, constraints can
be specified to indicate that one track should be a subset of
the other, the tracks should have the same starting or ending
point, and so on. A variant of the compare operation, called
SimilarTracks, returns a Boolean value indicating whether
the two tracks are sufficiently similar, that is, have a simi-
larity above some meaningful threshold.

The ClusterTracks operation takes a set of tracks and
groups them such that similar tracks are placed in the same

cluster. It then selects a representative track from each clus-
ter and returns all of these representative tracks. In practice,
people tend to visit the same places regularly and follow the
same path, potentially generating a large number of similar
tracks in the database. Clustering can be used to eliminate
duplicates. The RepresentativeTrack operation is similar to
ClusterTracks except that it returns a single track, the rep-
resentative track from the largest cluster.

Finally, the API includes a number of operations for run-
ning queries against the track database. Each of the queries
shown in Table 1 operates on the complete track database
and returns all of the tracks that match the query. They
allow applications to ask for tracks that cross a certain geo-
graphical region, that belong to a particular user, that con-
tain specific metadata, that were captured in a given time
span, or that are similar to a given track (according to the
CompareTracks operation). Variations on these basic query
operations (not shown in the figure) return database cursors
that can be used to retrieve selected tracks one at a time.
Such cursors also can be passed to other query operations in
order to compose complex queries involving multiple criteria.
Queries can return results in a desired order. For instance,
when querying for tracks that match a given other track, the
application may want the results sorted in decreasing order
of similarity.

2.4 Sample Applications
Location-based applications can be roughly classified into

three categories that are defined by the type of data that
is available to them: a person’s current location, past loca-
tions, or tracks. The last two categories require access to a
database of either past locations that have been visited by
a person or previous routes taken by the person (as studied
in this paper). An additional dimension of applications is
characterized by whether the data made available to the ap-
plication pertains to a single person, the person running the
application, or multiple people, such as a social network.
This yields six main categories of location-based applica-
tions, as depicted in Table 2 with examples of each category.
The most common mobile applications, the first row of this
table, are those that make use of a person’s current loca-
tion. These include applications that recommend nearby
services, provide driving directions, guide tourists [10], or
locate friends [13]. The second row summarizes applications
that present or process information about past locations that
have been visited by a person and his associates. For ex-
ample, recorded locations can be collected into a person’s
digital diary [14]. This paper focuses on support for the
third row of this table, personal and social track-based ap-
plications. To further motivate StarTrack, we present some
specific applications involving tracks; these applications use
a wide variety of StarTrack operations as indicated in the
following discussion.

Ride Sharing: There is significant need to conserve en-
ergy across different aspects of our lives. Since transporta-
tion is a major energy consuming activity, a system that
automatically suggests potential partners for ride sharing
based on tracks can be very useful. Figure 2 presents the
high-level code for a ride sharing application built using
StarTrack. This code can run on any device that has a net-
work connection to the StarTrack server, such as a user’s PC.
The device-resident code that records tracks is not shown
since it is straight-forward. In particular, it calls StartTrack



Personal Social Network
Current location nearby restaurant recommendations, driving

directions, automated guides
friend finder, rendezvous, social awareness,
urban games

Past locations digital diary, personal travel journal, aug-
mented memory

recommender systems, post-it notes

Tracks advertisements, health monitoring ride sharing, urban sensing, collaboration,
discovery, shared experiences, common inter-
ests

Table 2: A taxonomy of location-based applications

// get a representative track for my own commute

myTracks = QueryTracksByOwner("me");

myMorningTracks = QueryTracksByTime(myTracks, "7:00 am", "9:00 am");

myCommuteTrack = RepresentativeTrack(myMorningTracks);

// find tracks of others with similar commutes

similarTracks = QueryTracksByTrack(myCommuteTrack);

for each track in similarTracks do

person = GetTrackOwner(track);

personTracks = QueryTracksByOwner(person);

personMorningTracks = QueryTracksByTime(personTracks, "7:00 am", "9:00 am");

personCommuteTrack = RepresentativeTrack(personMorningTracks);

if SimilarTracks(myCommuteTrack, personCommuteTrack) then

report person as a potential ride sharing partner

endloop;

Figure 2: Ride sharing application on StarTrack

whenever a person starts driving in the morning and calls
EndTrack followed by SaveTrack when the person arrives at
work; similarly, it creates a new track for the person’s drive
home from work.

The procedure in Figure 2 first determines the commute
track for me, the person who is looking for ride share part-
ners. It does this by first retrieving all my tracks and nar-
rowing this set to morning tracks. It then calls the Rep-
resentativeTrack operation to cluster my tracks and return
the representative track from the largest cluster. This rep-
resentative track indicates my typical commute. To find
others with similar commutes, the QueryTracksByTrack op-
eration is called with my representative track as the param-
eter. Unfortunately, this returns tracks for anyone who has
ever driven a similar path, even if someone does not usually
take that route. To determine suitable commute partners,
tracks for each of the potential partners are retrieved and
clustered to determine their typical commute. Finally, for
each potential partner, the person’s representative track is
compared to mine to ensure that we really do frequently
drive the same route.

Urban sensing: Participatory and location-based sens-
ing in urban settings has received attention particularly by
the research community. The underlying theme in these
projects involves collecting, aggregating and analyzing sen-
sor data using mobile devices [32, 21] or specialized hard-
ware [22] and tagging the data with the current location.
Examples of such data in prior work include traffic conges-
tion [22, 32], particle pollution readings [21], noise levels
and visibility, and signal characteristics of Wi-Fi [22], cellu-
lar and Wi-Max. Since StarTrack facilitates easy analysis,
querying and presentation of location-tagged data it can help
build distributed sensing applications.

Advertisements: Location-based advertisements are be-
ing investigated and deployed with significant interest by
corporations because of their immense economic potential.
One of the popular usage scenarios involves a user being
given a special coupon or discount when they are in the
vicinity of a store (known as proximity marketing). Tracks
provide a richer semantics for advertisers to create customized
incentives for potential customers. For instance, a furniture
store in a mall can offer a customer a 10%-off coupon, when
the customer has visited two of its rivals on the other side
of the mall.

Collaboration: Collaborative applications among mo-
bile devices often require a way for the devices to rendezvous.
For activities like collaborative downloading [11] or multi-
player games [34, 25] among devices in public transit vehi-
cles, it would be beneficial to find peers that are likely to
produce minimal disruption. By comparing past tracks, ap-
plications can predict likely collaborators, which in turn can
be used for planning and scheduling activities.

Discovery: If someone is new to an area, prior tracks
might help them learn something. For example, one of the
questions someone often has when in a new city is whether
it is safe to walk around the streets at night. A person could
answer this question by querying for tracks in the area of his
hotel in which people were walking after 10 pm. Another ex-
ample is looking for good places to ride a bike or safe streets
on which to ride a bike during commute hours. Again, these
could be determined by running queries for sets of “bike”
tracks.

Shared experiences: Imagine a shopping mall in which
teenagers wander around during the weekend. One use of
location based services is to inform a teenager when their
friends are also in the mall at the same time. However, even



if friends go at different times, one might want to see the
tracks that their friends took, e.g., what stores they visited,
so that when they see each other on Monday they can talk
about the cute clothes they saw or the sale at a particular
store.

Common interests: One major benefit of having a track
database is being able to find tracks taken by people with
similar interests or characteristics. A person may not want
to know which tracks where taken by the population at large,
but rather which were taken by friend, colleagues or fellow
hiking enthusiasts. As an example, we have built and used
a trade show application on top of the StarTrack infrastruc-
ture in a conference visited by over five thousand employees
at Microsoft. The application allows visitors to check not
only their tracks (paths of booths that they have previously
visited), but also to identify popular tracks, find people with
similar track histories, and get recommendations on other
booths to visit based on the booths visited by other visitors
with similar tracks.

Health monitoring: Devices that constantly monitor
a person’s bio-stats are becoming popular, especially among
the elderly, as are devices that record activities such as walk-
ing or jogging [3]. Associating readings with time and loca-
tion, i.e., with track entries, can allow health practitioners
to more effectively mine a person’s vital data.

3. FUNDAMENTAL OPERATIONS
Recall from Section 2 that a track is a time-ordered se-

quence of location readings. StarTrack represents locations
as latitude/longitude coordinates, though we have also con-
sidered accommodating cell-tower and Wi-Fi access point
fingerprints. StarTrack supports several operations on the
tracks as outlined in Section 2. In this section we describe
three key functions that StarTrack provides: track compar-
ison, track clustering, and track retrieval.

3.1 Track Comparison
The track comparison function enables an application writer

to determine if two paths represented by their track entries
are “similar” to each other. In its simplest form, the track
comparison operation compares the location fields in the
track entries of two tracks and returns a value between 0 and
1, which quantifies the similarity between the paths that the
tracks represent.

Spatial comparisons alone may not be sufficient for some
applications. For instance, for a user to provide a ride to an-
other, there must be a temporal match in addition to a spa-
tial match (i.e., the users must be traveling to approximately
the same destination at approximately the same time). Star-
Track performs both spatial and temporal matching in se-
quence: It inputs the set of tracks matched with one criterion
to the second criterion. The actual order is not significant.
We support simple bounds on the time differences between
track entries in temporal comparisons (e.g., find two tracks
that are within 30 minutes apart of each other). In the re-
mainder of the section, due to space restrictions, we focus
on the details of the spatial comparison and do not discuss
temporal comparisons.

Track comparison is a harder problem than is apparent
at first blush because it is not just a matter of matching
two sets of track entries to see if the paths are similar. Re-
call that a track is a sampling of a path and is therefore
only an approximation of it. Multiple factors including the

Figure 3: Track comparison is hard due to sampling
differences and detours. The“home” icon represents
the start of each track

sampling frequency of track entries and errors in location
determination can lead to dissimilar sets of track entries for
two identical paths.

(a) Sampling Variability: The points sampled in a
track are a function of the sampling frequency and the speed
at which the mobile device is traveling.

The sampling frequency can change over time because
GPS receivers are known to be power-hungry [32] and an ap-
plication may prefer a lower sampling rate when the mobile
device’s battery is low. Lower sampling frequencies result in
a sparser set of track entries than otherwise.

Differences in the speed of motion (e.g., walking at 3 mph
or cycling at 15 mph or driving at 40 mph) also cause varia-
tions in the track entries. Furthermore, terrain (e.g., a steep
hill) or traffic congestion can also cause noticeable speed
variation. Thus even with a fixed sampling frequency, we
can end up with dissimilar track entries for a path. This is
illustrated in Figure 3.

(b) Minor Detours: Minor detours from a path get re-
flected in the resultant tracks (see Figure 3). For example,
detours can easily occur due to unexpected traffic congestion
or because the user is running a small errand. We would
like our track comparison algorithms to be not overly sensi-
tive to these detours because some applications require that
the comparison algorithms be sufficiently robust against this
type of user behavior.

(c) Subsets: One complication in track comparison arises
due to sub-matches, i.e., when the path represented by one
track is included as a subset in the path represented by an-
other track. Figure 4 illustrates this scenario. The track
marked by open circles is a subset of the track denoted by
solid points. Consider the applications of ride-sharing and
urban sensing. Clearly, the person in the track with solid
points can give a ride to the person in the other track. Like-
wise, urban sensing data collected by the person in the track
with open circles can be used to alert the person in the other
track. This consideration leads us to design our comparison
algorithm to be asymmetric, i.e., for two tracks Ta and Tb,
Similarity(Ta, Tb) 6= Similarity(Tb, Ta).

(d) Intersecting Segments: As shown in Figure 4,
tracks that have no similarity in their start and end points
could still have intersecting segments. A comparison algo-
rithm biased in favor of start and end track entries is likely
to output a low similarity score for such tracks. Many ap-
plications, particularly ones that depend on ad-hoc collabo-
ration, are likely to care about the presence of a sufficiently
long common segment without necessarily caring about the



Figure 4: Track comparison is hard due to sub-
matches and intersecting segments. The “home”
icon represents the start of each track. Notice that
in the second case, the tracks have a very long com-
mon segment that can be used by collaborating ap-
plications

start or the end of the paths, and may not benefit from an
algorithm that favors the start/end points.

The observations cited above lead us to track comparison
algorithms that respect the following criteria:

• approximate or fuzzy matching of track entries

• comparison over all track entries with equal weight

• asymmetry

Note that applications can modify these properties accord-
ing to their requirements using the constraints argument in
CompareTracks.

Our algorithms are based on the location field in the track
entries. Our comparison algorithms define an area around
one track and find the fraction of points in the other track
that fall inside this area. This fraction is the similarity value.
We have explored comparison schemes where the shape of
the area chosen is a circle or a strip whose dimensions vary
depending on the relative positions of the points that make
up the track. Readers familiar with statistical filtering tech-
niques (e.g., Kalman filters [24]) will notice that our scheme
is a degenerate case of applying statistical filtering to two
tracks, which can be treated as sampled observations of
a trajectory in 2-dimensions. Also, a simple probabilistic
model on which to base the statistical approach is readily
available depending on the shape of the area selected.

We recognize that similarity is often an application spe-
cific concept and intend to make provisions to accommodate
user-defined similarity functions. For now we discuss two
predefined similarity functions implemented in the system.
In the rest of this section we denote the candidate tracks to
be compared as Ta and Tb.

3.1.1 Circle-based Algorithm
We define a circle of a certain radius, r, around each of

the points in Ta and find the fraction of points in Tb that
fall inside any of the circles (see Figure 5).

Since the track entries are time-ordered we use this infor-
mation to ensure the direction of the tracks is the same. If
a track entry in Tb falls within the circle for some entry in
Ta, then other entries in Tb with later timestamps should
fall within the same circle or circles corresponding to later
entries in Ta (or else lie outside of any circles). We call this

Figure 5: Circle-based track comparison algorithm

Figure 6: Variable estimation of circle radius and
strip width for track comparison

the time monotonicity property. We do not place strict re-
quirements on the monotonicity to account for measurement
errors associated with GPS readings; a small percentage of
points in Tb are allowed to violate the monotonicity require-
ment.

Estimating the radius: The radius of the circle, r, de-
termines the accuracy of the estimation of similarity. A
larger radius may result in higher similarity values while a
smaller radius may lead to lower similarities. Thus, a poorly
chosen radius can result in false-positives or false-negatives
from an application’s perspective.

The objective of the circles is to account for the variations
at the points at which the track entries are sampled. Hence,
they should ideally cover the area between the track entries,
thereby re-constructing the underlying path. As an alterna-
tive to using circles with fixed radius, we use also consider
varying values for r depending on the distance between con-
secutive points. For a given point Pi whose adjacent points
are Pi−1 and Pi+1 (in the time-ordered sequence), the value
of r is half of the maximum of the distances between its
adjacent points as shown in Figure 6.

3.1.2 Strip
This scheme constructs a strip or band around track Ta of

width w and calculates the fraction of track entries in track
Tb that fall inside this strip (see Figure 7). For each pair of
consecutive points we construct the strip by using rectangles



Figure 7: Strip-based track comparison algorithm

of width w, and length equal to the distance between the
consecutive track entries.

For the same value of 2r and w, the strip-based com-
parison scheme is expected to be more accurate than the
circle-based scheme, which can miss points that are close
but just outside the circles. On the other hand, the strip-
based algorithm involves more computation and is slightly
more inefficient. As with the circle-based scheme, the strip-
based comparison roughly enforces the time monotonicity
property.

Estimating strip width: The width of the strip w im-
pacts the similarity value returned by the comparison algo-
rithm. Therefore, choosing a fixed width may not be ideal.

The width may be varied to capture the maximum possi-
ble curvature of the path between consecutive points. If we
assume that such maximum possible curvature of the path
subtends at least a right-angle, we end up with a rectangle
between consecutive points where the width of the strip is
set to the distance between the points. This is illustrated in
Figure 6.

Given that there are tradeoffs associated with the use
of different comparison algorithms, the StarTrack API pro-
vides flexibility when choosing between the circle or strip
approaches, and between using fixed or variable parameters.
We allow applications to specify minimum and maximum
circle radii/strip widths in accordance with each applica-
tion’s semantics. A fixed circle radius or strip width may be
imposed by setting these minimum and maximum values to
be the same desired value.

3.2 Track Clustering
Users typically visit a small set of places via predictable

routes as part of their daily routine (e.g., they travel between
home and work, they go grocery shopping, etc.). This re-
sults in the StarTrack server storing multiple tracks of what
is essentially the same path. Through track clustering, Star-
Track allows applications to eliminate near duplicate tracks
and group tracks into a smaller set of representative tracks.
Track comparisons, as described in the previous section, can
then be done against these representative tracks. This saves
on computation costs as well as track retrieval times. Ap-
plications such as the ride sharing application, may choose
to cluster the tracks belonging to individual users.

There are well-known techniques for clustering or group-
ing data items, two of which are k-means [18, 33] and k-
medians [15]. Both of these techniques partition a group of
n points into k groups, such that the distance (or the dissim-
ilarity) between points in a group and a designated “cluster
center” in the group is minimized. To use the k-means al-
gorithm, it is necessary to assume that the points belong
to Rd, an assumption that is problematic in our case be-
cause our“points”are tracks, rather than points in euclidean
space. Instead we use the k-medians approach, which is
more tractable. In both algorithms, k is an input parame-
ter: i.e., some external agent decides a-priori the number of
clusters the algorithm is going to yield.

Our choice of k-medians has two potential pitfalls. The
first issue is that k, the number of clusters need to be cho-
sen before the algorithm can be run, and this is inherently
difficult. StarTrack side-steps this issue by allowing appli-
cation writers to input a suitable value of k, but it is still
a potential shortcoming. There are algorithms related to
k-medians that can determine the approximate value of k
and cluster the n points into k clusters. We are considering
implementing one such algorithm called x-means [17].

A second issue is that these clustering algorithms are not
incremental, i.e., the entire input set must be available to
the algorithm. This issue affects scaling. The ride sharing
application, for example, deals with this by batching the k-
median calculation into epochs. Each new track added for
a user during any given epoch is simply assigned to one of
the existing clusters that is most similar to it. Periodically,
when a sufficient number of new tracks have been added,
or when a certain amount of time has elapsed since the last
epoch, the application triggers a new epoch by recalculating
k-medians for all the tracks for that user.

3.3 Track Retrieval
Our current implementation of StarTrack utilizes SQL

Server 2008 as its backend datastore. SQL Server supports
spatial datatypes [5] and provides efficient querying via mech-
anisms such as multi-granularity spatial indices [4]. Spatial
indices partition a given region into a set of grids, and the
database keeps track of the association of rows in a table to
each of the grids. Having multiple levels of granularity for
such a spatial indexing system can help narrow down the set
of candidate grids, and allows for faster retrievals.

Tracks are stored in SQL Server in a straightforward man-
ner. A track corresponds to a single row in a table, and has
a track identifier, XML metadata, track entry locations, and
track entry timestamps. We store the locations and times-
tamps separately as it simplifies how we write queries.

The StarTrack API supports multiple ways to query tracks
(such as by region, time or metadata). With one exception,
the API calls are directly translated into SQL statements,
and run against the database. The exception is an API
call that provides querying by track. The semantics of this
function are to return all tracks that are similar to the target
track. We implement this by first finding a set of regions
that surround the target track, retrieving all tracks that go
through any of these regions, and then ordering the retrieved
tracks based on the CompareTracks API function. The API
also allows constraints to be placed on the result set, such
as requiring proximity to the start and/or end point of the
target track, or requiring a minimum overlap with the target
track.



Track Name Description Distance (miles)
T-Stanford* Drive around Stanford University 4.1

T-SF* Drive from San Francisco to Mountain View 37.2
T-CT-1 Train from San Francisco to Mountain View 38.2
T-CT-2 Train from San Francisco to Redwood City 19.1
T-101 Drive from San Carlos to Mountain View on 101 18.1
T-280 Drive from San Carlos to Mountain View on 280 25.2
T-Rnd Random track 2.5

(* − Two tracks of this type)

Table 3: Details of real tracks collected by volunteers

During our evaluation, we observed good performance for
the various track retrieval functions (detailed in the eval-
uation section). While we utilized SQL Server’s indexing
system, we did not attempt to optimize the layout of data
in the database. As such, further performance gains may be
possible. Additional scale can be obtained by well-known
database techniques such as partitioning and replication.
StarTrack’s datastore can be partitioned in a straightfor-
ward manner by using geography.

4. EVALUATION
In this section, we evaluate the set of operations provided

by StarTrack, focusing on track comparison, track clustering
and track retrieval operations. All our experiments were per-
formed on a 32-bit Windows Vista PC, with an Intel Core2
Duo CPU 3.00 GHz with 4.00GB of RAM. Our experiments
are based on two sets of tracks, as described below.

Real Tracks: We collected nine real tracks from volun-
teers driving or commuting with GPS devices in the San
Francisco Bay Area, each consisting of location entries col-
lected within 30 second intervals. The collected set of tracks
contains representative similar and disjoint paths, as well
as sub-matches and super-matches. Table 3 describes the
tracks and their notations.

Synthetic Tracks: With the goal of performing a large-
scale evaluation of StarTrack, we used a realistic model to
synthetically generate thousands of tracks in the Bay Area.
Our track generation algorithm uses the set of road intersec-
tions in the Bay Area, and simulates differences in sampling
frequencies and measurement errors.

We rely on an implementation of the shortest path algo-
rithm proposed by Goldberg et al. [9], which computes the
shortest path between any two points in the Bay Area and
returns the set of traffic intersections falling in the path.
Given the set of intersections, we assume that the path be-
tween two points is composed by the straight lines connect-
ing consecutive intersections. Our track generation algo-
rithm randomly picks points on or around one such hypo-
thetical path, and uses them as track entries for a synthetic
track.

We vary two parameters when choosing random points
along a path, with the purpose of simulating variable sam-
pling frequencies and measurement errors. These parame-
ters allow us to compare and explore the tradeoffs among
the different comparison algorithms. Hop distance is the
distance between two consecutive entries in a track and ac-
counts for variability in the axis parallel to the path. In our
experiments, we vary the hop distance between predefined
lower and upper bounds. The second parameter is the mea-
surement error, which is the variation of the location read-

 Hop Distance Measurement Error Hypothetical Path Track Entry Intersection 
Figure 8: Synthetic track generation

Tracks Ground Truth
Similarity

Circle Strip
T-Stanford Match 0.95 0.93

T-SF Match 0.9 0.96
T-CT-1, T-CT-2 Sub-match 0.82 0.92

T-101, T-SF Sub-match 0.83 0.93
T-SF, T-101 Super-match 0.44 0.38

T-Rnd, T-Stanford No Match 0.09 0.03
T-280, T-SF No Match 0.11 0.02

Table 4: Track comparison results on real tracks

ing in the axis perpendicular to the road. The measurement
error for each track entry was randomly chosen between 0
and 100 meters. Figure 8 illustrates these parameters on a
sample track.

4.1 Track Comparison
For an initial validation of the circle and strip-based ap-

proaches for track comparison, we evaluated their behavior
when computing similarity between pairs of our set of real
tracks. Table 4 shows the results of our experiments. Our
ground truth was based on visual inspection of the tracks in
a map. We observe high values of similarity values between
tracks that visually overlap and very low similarity values
between dissimilar tracks. We also note the asymmetry of
our comparison schemes when comparing T-101 and T-SF:
the similarity metric reflects that T-101 is a sub-match of
T-SF (while T-SF is a super-match of T-101).

4.1.1 Parameter Selection: Fixed vs. Variable
We performed more systematic detailed experiments on a

set of synthetic tracks to evaluate the performance of the
circle and strip comparison approaches when we use fixed
versus variable diameters/widths. The choice between these
two approaches is left to application writers.
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Figure 9: Track t (the thin black line) and four sets of tracks used in experiments

We first picked a single track t starting from an address in
Cupertino, CA, to an address in Mountain View, CA, and
compared it to four sets of tracks in the Bay Area (Figure 9).
The choice of t was aleatory and we do not expect our general
results to vary for different choices of t.

Each of the four sets contains 1000 tracks between partic-
ular start and end point regions. Differences between tracks
within each group are due to slight differences in the start
and end points, and mainly due to our artificially inserted
sampling and measurement errors. Our goal with this set of
experiments was to evaluate the effect of such errors on the
computed similarities.

One of the advantages of using an artificially generated
set of tracks is that it allows us to automatically compute
the ground truth information about track similarity. We
computed the expected similarity between two tracks based
on the distances between intersections in the original paths
used to create the tracks, which allows us to compute the
length of common sub-paths as well as the total length of
the paths. Table 5 presents the expected similarity between
t and each of the four sets of tracks.

Set ID Path
Expected
Similarity

Set-1 Identical to t 1.0
Set-2 Cupertino to Mountain View 0.687
Set-3 Campbell to Los Altos 0.312
Set-4 Sunnyvale to Los Altos 0

Table 5: Details of synthetic tracks

We first fixed the diameter of circles and the width of
strips used in the similarity computations to 200 meters
each. In this experiment we set the average hop distance
of all tracks to 100 meters. Figure 10 shows that the com-
puted similarities were close to the expected values when
using both the fixed circle and the fixed strip approaches
(The error bars show the minimum and maximum varia-
tion). The strip approach performs better than the circle
approach, given it has a better ability to extrapolate paths
within track entries.

The previous experiment did not consider the effect of
variable hop distances in tracks, which make it difficult to
choose a fixed diameter/width. To deal with tracks with
variable hop distances, StarTrack uses variable sized circles
and strips, where the diameter/width is proportional to the
distance between consecutive track entries in a track, as pre-
viously shown in Figure 6.

00.20.40.60.81
Set-1 Set-2 Set-3 Set-4Similarity 

CircleStripExpected
Figure 10: Track comparison results on synthetic
tracks

In our next experiment, we compared the similarities com-
puted using circles with a fixed diameter, and strips with a
fixed width, circles with variable diameters and strips with
variable widths. Figures 11(a) and 11(b) show the expected
and average computed similarities for Set-1 (identical tracks)
and Set-2 (partial match) when the average hop distance of
the tracks is varied between 100 and 1000 meters, in incre-
ments of 100 meters. Observe that as data becomes sparser,
fixed circles and strips (shown by the lines annotated with
Circle and Strip) tend to progressively underestimate the
similarity of tracks. Using variable parameters better ac-
counts for data sparsity, providing similarity values closer to
expected (lines annotated with Var Circle and Var Strip).

4.1.2 Evaluation with a Large, Diverse Set of Tracks
We also considered a larger set of random tracks contain-

ing ten thousand synthetic tracks around the South Bay
Area. Our goal with this experiment was to evaluate the
efficacy of the variable circle and strip approaches under
more diverse settings. Again, we compared one fixed track
t against every other track and computed the expected sim-
ilarities. Most tracks in the set are disjoint from t, but
the set was chosen so that there was a good number of
partially matching tracks including some almost identical
tracks. This can be observed in Figure 12, where we present
the distribution of the expected similarity values.

Since the expected similarities now range anywhere be-
tween 0.0 to 1.0, instead of directly presenting the computed
similarity values, we present the error of the computed val-
ues. The error is defined as the absolute difference between
the expected similarity and the computed similarity of each
generated track. We present the average errors, with error
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Figure 11: Track comparison results when varying
average hop distance of tracks

bars showing the minimum and maximum variations of the
error.

One important detail to observe when using variable di-
ameters/widths is that small distances between entries in
a track can lead to excessively small circles and strips, un-
fairly lowering the similarity of tracks. This can be observed
in our previous experiment, where Variable Circle and Vari-
able Strip do not perform well for tracks with small hop
distance values. To avoid this problem, an application may
define a minimum value for the diameter of circles or width
of strips based on the application’s semantics.

Figures 13(a) and 13(b) show the similarity errors when
comparing t to all other tracks. The two curves in each graph
show the results when we use variable diameters/widths
without enforcing a minimum value (Without Minimum Di-
ameter/Width), and when we use variable diameters/widths
but enforce a minimum value of 200 meters (With Mini-
mum Diameter/Width). As expected, the enforcement of
minimum diameters and widths improves results when the
average hop distance is smaller.

4.1.3 Computational Time
The computational costs of comparing tracks should also

be considered when deciding between the proposed approaches.
Figure 14 presents the average times for computing the sim-
ilarity of pairs of tracks when we increase the number of lo-
cation entries per track. Considering that in the worst case
both the circle and strip approaches roughly require com-
parisons between every pair of entries of the two compared
tracks, the computational time is expected to grow quadrat-
ically as the number of entries in the compared tracks in-
creases. The graph also shows that using variable diam-
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Figure 12: Distribution of expected similarity val-
ues between a fixed track t and other ten thousand
generated tracks

eters/widths does not incur any significant computational
costs, compared to the fixed approaches.

4.2 Track Clustering
We now evaluate the performance and suitability of using

a k-medians algorithm for grouping tracks into clusters and
returning a set of k representative tracks, one from each
cluster. As described in Section 3.2, our main goal with
clustering is to eliminate near-duplicates.

Clustering requires a metric for qualifying the choice of a
set of tracks, rep tracks, as the representative tracks for the
larger group of tracks all tracks. In this case, we define the
aggregate similarity as the sum of the similarities between
each track in all tracks and its closest track in rep tracks.
For clustering, the best set of representative tracks is the
one that yields the highest aggregate similarity.

A näıve implementation of the k-medians algorithm con-
siders all possible combinations of k representative tracks
and computes the aggregate similarity for each in order
to choose the best combination. Given that the number
of combinations to be considered grows exponentially with
the number of tracks, this clustering algorithm quickly be-
comes computationally unfeasible. Considering that an av-
erage comparison between two tracks requires 20 millisec-
onds, clustering 100 tracks would take over 17 days to exe-
cute.

Instead of considering all possible combinations, we used
a version of the k-medians algorithm which uses an itera-
tive refinement heuristic and provides an approximation of
the best set of representative tracks and clusters. In each
iteration it starts with randomly chosen combinations of k
representative tracks until it either finds one that yields an
aggregate similarity higher than a particular threshold or a
predetermined number of combinations has been considered.
Once a combination is chosen, the algorithm then proceeds
to replace individual representative tracks locally, that is,
tracks most similar to the ones in the current combination
are chosen as substitutes until the aggregate similarity can-
not be further improved.

We further optimized the performance of our clustering
algorithm by observing that the choice of combinations (of
representative tracks) to be explored could be pruned. By
picking random combinations in the first phase of each iter-
ation, there is a risk of considering combinations containing
very similar tracks, which are obvious bad choices. The cost
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Figure 13: Error between computed and expected
similarities (between a track t and ten thousand ran-
dom tracks when using variable sized circles/strips)

of computing the aggregate similarities is considerable, and
as such, pruning trivially bad combinations of representa-
tive tracks yields improvements in the performance of the
algorithm. We considered one such simple approach: we try
to only choose combinations where no two tracks have sim-
ilarity equal or higher than 0.9. Another approach could be
to randomly generate a fixed number of combinations of k
tracks, and choose the one in which the k tracks are most
dissimilar.

To evaluate the performance of this heuristic clustering
algorithm, we chose 10 paths, which were used to generate
various numbers of similar tracks. Out of these 10 paths, 5
paths are contained within larger paths (we refer to these as
sub-paths). If we run the clustering algorithm with k = 5,
the tracks generated from the sub-paths should be placed in
the same clusters as the tracks generated from their encom-
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Figure 14: Computational cost of track comparison
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Figure 15: Performance of k-medians heuristic for
clustering 100 tracks
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Figure 16: Computational cost of k-medians heuris-
tic

passing paths. For example, we had a path from point A
to B, another from point B to C, and a third from point A
to C going through B; tracks from A to B and from B to C
should be clustered together with those from A to C, which
is a super-path of the two previous ones.

We used the aggregate similarity as a metric for quality
in our evaluation. Given that all 10 paths used to generate
the synthetic tracks were equal or entirely contained within
5 of the paths, we know there exists a clustering assignment
for which the aggregate similarity is close or equal to 1.

We ran clustering on 100 tracks (ten tracks generated from
each of the 10 paths) and computed the average, as well as
the 10th and 90th percentiles of the aggregate similarity
across 100 runs of our clustering implementation. Figure 15
shows how the aggregate similarity improves as the number
of iterations increases.

Figure 16 shows the computational times (in logarithmic
scale) required by the algorithm (stopping after 5 iterations)
for clustering 100, 1000, 10,000 and 100,000 tracks. Unlike
the näıve approach, for which time would grow exponen-
tially, computational costs for our clustering implementation
grow linearly.

Clustering tracks is undoubtedly an expensive operation,
which for more than a few dozen tracks would lead to un-
acceptable response times. When clustering of larger track
sets is desirable, it may be performed offline and incremen-
tally, as tracks are inserted into the system. Pre-specified
clustering may be performed periodically for a given user,
for predefined time intervals, or for particular regions. Our
clustering algorithm can also be easily parallelized, which
can provide a linear reduction in processing times.
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Figure 17: Time taken by time, region and
metadata-based queries for various table sizes

4.3 Querying
We now illustrate the performance of StarTrack for vari-

ous types of track retrieval queries. Our performance bench-
marks were performed on a 32-bit Windows Vista PC, with
an Intel Core2 Duo CPU 3.00 GHz and 4.00GB of RAM.
Prior to each query, the database was restarted, and warmed
up by performing a select-all query and an unrelated query
of the same type.

Figure 17 shows the time taken for track retrievals done
by time, by a rectangular region, and by an XML metadata
value for three different table sizes (100, 1000, and 10,000
tracks). The selectivity of each query is approximately 5%
of the size of the table. We see that all queries execute
in less than 1.3 seconds for even the largest table size we
consider. We thus conclude that SQL ServerŠs performance
adequately meets our need for fast track retrieval.

Figure 18 shows the performance of the QueryTracksBy-
Track retrieval function. We place a constraint that the
resulting tracks must be close to both the start and end
points of the target track. Our results provide a break-
down between the time taken to retrieve tracks from the
database and that required to perform comparisons. We
can see from the figure that retrieval is efficient even when
we place constraints. We also see that the performance ben-
efit of circle-based comparison versus strip-based compari-
son becomes more significant as the number of comparisons
grow. Of course, the time required for track comparison
grows with the number of tracks that we need to compare
against, but in practice, the application writer can prune the
set of tracks that need to be compared by using appropriate
pruning functions described previously.

5. RELATED WORK
There is an extensive body of work on building platforms

for mobile applications, such as Android [1], Windows Mo-
bile .NET Compact Framework [7], iPhone SDK [2] and
Symbian OS [6]. These systems primarily focus on providing
location (single-point) information on a mobile device. Our
work is focused at a slightly higher level of abstraction and
enhances the utility of these location service providers by
(a) treating tracks as first class objects that can be manipu-
lated in a variety of ways and (b) including services on both
the device and the service as part of the same infrastructure
enabling large-scale applications to be built easily.

Systems such as Cyberguide [10], the Context Toolkit [8],
and the work by Schilt et al. [35] pioneered the use of context-
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Figure 18: Time taken by QueryTracksByTrack for var-
ious table sizes

awareness in applications. StarTrack can be thought of as
an extension of some of these systems in that it includes
tracks as part of the context.

CarTel’s use of tracks and its grid-based operations on
them [22] is similar in spirit to our work. In addition to grids,
StarTrack allows a wider variety of operations on tracks
based on time and user-specified metadata.

As previously mentioned in Section 2.4 a rich set of ap-
plications can be built using the facilities in StarTrack. Dis-
tributed sensor-net applications [21], traffic monitoring [32],
route prediction [23, 28, 30, 29], and peer-to-peer collabo-
rative applications [11, 27] are some examples of existing
systems that can exploit StarTrack.

6. CONCLUSION
A track, a time-ordered sequence of locations, is a fun-

damental new abstraction in support of track-based appli-
cations like ride-sharing and location-based collaboration.
StarTrack is a framework that provides a rich set of opera-
tions to ease the development and deployment of track-based
applications. The StarTrack API helps applications in the
recording, uploading, comparing, clustering and retrieval of
tracks. Experimental results show that our algorithms are
accurate as well as efficient and scalable up to 10,000 tracks.

As part of future work, we plan a full-fledged develop-
ment and deployment of a number of StarTrak applications.
We also intend to explore cleaning of location data to elim-
inate incorrect readings as well as automatically breaking
sequence of locations into tracks. This process may also in-
clude matching tracks to paths using available blueprints
of an area, which could lead to more efficient and accu-
rate posterior operations. We also aim to incorporate new
location-based technologies to the StarTrack framework, in-
cluding better use of available network connections, more
fault-tolerant services, and possibly more sophisticated com-
parison and clustering schemes. Finally, privacy in the con-
text of tracks of locations presents challenges that require
further exploration.
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