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Abstract

Virtual view synthesis from an array of cameras has been an essential el-

ement of three-dimensional video broadcasting/conferencing. In this paper,

we propose a scheme based on a hybrid camera array consisting of four reg-

ular video cameras and one time-of-flight depth camera. During rendering,

we use the depth image from the depth camera as initialization, and compute

a view-dependent scene geometry using constrained plane sweeping from

the regular cameras. View-dependent texture mapping is then deployed to

render the scene at the desired virtual viewpoint. Experimental results show

that the addition of the time-of-flight depth camera greatly improves the ren-

dering quality compared with an array of regular cameras with similar spar-

sity. In the application of 3D video boardcasting/conferencing, our hybrid

camera system demonstrates great potential in reducing the amount of data

for compression/streaming while maintaining high rendering quality.

1 Introduction

Three-dimensional video broadcasting/conferencing has attracted a lot of inter-

est recently due to the rapid advances in computation power, network bandwidth,

camera array and immersive display technologies. This opens a wide variety of re-

search opportunities including high performance imaging, multi-view video com-

pression and transmission, virtual view synthesis, etc. Take the application of

free viewpoint TV [17, 6] (FTV) as an example. To offer an interactive three-

dimensional depth impression, the system needs to capture live videos from tens
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or hundreds of cameras, compress and stream them to the remote users, and syn-

thesize novel views based on the users’ selection of viewpoint and direction. Such

systems are often very complex to build, and involve huge amount of data to be

processed in real-time.

The number of cameras used in an FTV system is usually a tradeoff between

data amount and rendering quality. The FTV system built by Tanimoto [17] con-

sisted of 100 synchronized high resolution video cameras to capture the scene at

30 frames per second (fps). The main advantage of using so many cameras is that

the rendering becomes relatively easy. Recent advances in image-based render-

ing [25] showed that with a dense set of images, one can accurately synthesize

novel views without much knowledge of the 3D geometry of the captured scene.

Nevertheless, it is very challenging to build a system with so many cameras, and it

is nearly impossible to stream all the captured videos to remote users with today’s

Internet bandwidth. Alternatively, in [10, 15, 14], no more than 10 cameras were

used to capture the scene, and the rendering is conducted by reconstructing the

scene geometry on-the-fly. Unfortunately, with such a sparse set of cameras, the

reconstructed geometry tends to be error-prone, and the rendered virtual views are

often of low quality. Carranza et al. [6] proposed to render novel views from 8

cameras with an analysis-by-synthesis scheme. Although the pre-captured human

3D model helped improve the rendering results dramatically, such an approach is

limited when applied to scenes with generic objects.

One fundamental challenge in geometry reconstruction from traditional cam-

era arrays is the lack of accuracy in low-texture or repeated pattern regions, e.g.,

human faces or clothes. Recently, depth sensing cameras are becoming available

from Canesta [5], Swiss- Ranger [16] and 3DV Systems [1] at commodity prices.

These cameras derive the scene depth based on the time-of-flight principle and are

often robust to such problems. In this paper, we explore the idea of synthesizing

virtual views from a hybrid camera array, namely, a sparse set of video cameras

with a depth sensing camera, as shown in Fig. 1. The adopted ZCam depth camera

from 3DV Systems [1] is capable of returning depth images with 320×240 pixels

resolution at 30 fps. With such a hybrid camera array, we expect to maintain the

low data rate of sparse camera arrays, and be able to render high quality virtual

views with the help of the depth image captured by the depth camera.

Our view synthesis algorithm reconstructs a view-dependent geometry given

the user’s viewpoint and look direction. Because the depth image returned by the

depth camera is often very noisy, we transform the depth image to the current

virtual viewpoint to obtain an initial estimate of the view-dependent geometry.

The sparse regular cameras are then utilized to refine the geometry through con-

strained plane sweeping. The proposed algorithm with the hybrid camera array

generates rendering results much superior to those produced by a regular sparse

camera array, and it has very low computational complexity.
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Figure 1: Left: Our hybrid camera system is placed on top of a 22′′ monitor with

15 degree bent linear extensions. At the center we have the depth camera and

the intensity cameras are spread on the grid to cover a large area of interest for

a teleconferencing application. Right: On the top, one of the PGR Flea cameras

used to capture intensity and on the bottom the infrared based depth camera.

The rest of the paper is organized as follows: After summarizing the related

work in Section 2 we outline our hybrid system and its calibration in Section 3.

Section 4 presents our algorithm to generate virtual views and finally in Section 5

we present the results of our algorithm.

2 Related Work

Camera array is an effective scheme to capture dynamic scenes for virtual view

synthesis. There have been many camera arrays built in the literature. For in-

stance, Matusik et al. [10] used 4 cameras for rendering using image-based visual

hull (IBVH). Yang et al. [23] built a 5-camera system for real-time rendering with

the help of modern graphics hardware; Schirmacher et al. [14] built a 6-camera

system for on-the-fly processing of generalized Lumigraphs; Naemura et al. [11]

constructed a system of 16 cameras for real-time rendering; Chan et al. [8] built an

8-camera system that involves all the necessary components for 3D video broad-

casting/conferencing including capturing, compression, streaming and rendering.

Several large arrays consisting of tens of cameras have also been built, such as

the Stanford multi-camera array (128 cameras) [20], the MIT distributed light

field camera (64 cameras) [22], the CMU 3D room (49 cameras) [9] and self-
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reconfigurable camera array (48 cameras) [24], and the Nagoya University FTV

system (100 cameras) [17].

Large camera arrays often cover a wide viewpoint range. The cameras are

dense (relatively speaking), hence the rendering algorithm can be simple. On

the other hand, these systems are often constrained by the huge amount of data

to be processed. The Stanford system focused on grabbing synchronized video

sequences onto hard drives. It was demonstrated to be useful for approximating a

conventional camera with various resolution, dynamic range, frame rate, aperture,

etc [21]. The CMU 3D room was able to generate good-quality novel views both

spatially and temporarily [19]. It utilized the scene geometry reconstructed from

a scene flow algorithm that took several minutes to run. The MIT system did

render live views at a high frame rate. Their method assumed constant depth of

the scene, however, and suffered from severe ghosting artifacts due to the lack of

scene geometry.

When the number of captured images for a scene is limited, adding geometric

information can significantly improve the rendering quality [7]. In practice, an

accurate geometric model is often difficult to attain. Recently, there has been in-

creasing interest in on-the-fly geometry reconstruction for virtual view synthesis.

For instance, Schirmacher et al. [14] built a 6-camera system which was composed

of 3 stereo pairs and reconstructed the depth from stereo algorithms. Each stereo

pair needed a dedicated computer for the depth reconstruction, which is expensive

to scale when the number of input cameras increases. Naemura et al. [11] con-

structed a camera array system consisting of 16 cameras. A single depth map was

reconstructed from 9 of the 16 images using a stereo matching PCI board. Such

a depth map is computed with respect to a fixed viewpoint, thus the synthesized

view is sensitive to geometry reconstruction errors. Matusik et al. [10] proposed

image-based visual hull (IBVH), which rendered dynamic scenes in real-time

from 4 cameras. The computational cost of IBVH is low thanks to an efficient

pixel traversing scheme, which can be implemented with software only. To over-

come geometry errors in concave regions, Slabagh et al. [15] later extended IBVH

to image-based photo hull (IBPH). IBPH utilizes the color information of the im-

ages to identify scene geometry, which results in more accurately reconstructed

geometry.

Most of the algorithms described above reconstruct the scene geometry from

a fixed viewpoint. Since the geometry is very error-prone, when the virtual view-

point changes, the rendering results may suffer. A few researchers have explored

the idea of view-dependent geometry [13, 24, 23], which seems to provide better

rendering results in general. In [23], Yang et al. proposed a real-time consensus-

based scene reconstruction method using commodity graphics hardware. Their

algorithm utilized the Register Combiner for color consistency verification (CCV)

with a sum-of-square-difference (SSD) measure, and obtained a per-pixel depth
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map in real-time. In [24], the view-dependent geometry is reconstructed in soft-

ware by a coarse-to-fine subdivided mesh data structure. Their system with 48

cameras is capable of rendering at 4-10 fps with a single computer handing data

collection, decompression, camera calibration and rendering. Our virtual view

synthesis algorithm resembles the method in [24]. However, it makes use of

the additional depth camera information, and integrates a few recent advances

in stereo matching for improving the accuracy of the depth sweeping algorithm,

such as using the DAISY descriptor [18] for feature matching.

As mentioned earlier, geometry reconstruction from traditional camera ar-

rays lacks accuracy in low-texture or repeated pattern regions. In recent publica-

tions [2, 3, 27], researchers have studied the problem of obtaining the scene geom-

etry with the help of depth sensing cameras. In [2], a low-resolution depth sensing

camera is combined with a high resolution video camera to boost the resolution

of the final depth map. In [3], Beder et al. conducted an interesting comparison

between the accuracy of depth maps obtained from depth sensing cameras and

stereo rigs. Their conclusion is that the time-of-flight system outperformed the

stereo system in terms of achievable accuracy for distance measurements, while

the estimation of normal direction is comparable for both systems. The most in-

teresting study is probably by Zhu et al. [27], which combined a depth sensing

camera with a stereo camera, and demonstrated quantitatively that by fusing their

depth maps together, one can achieve much better accuracy than the result from

either source. They showed that the two systems are in many sense complimen-

tary – time-of-flight systems perform better in low texture regions, while stereo

systems perform better in high texture regions. Nevertheless, their scheme is rel-

atively slow and applicable to only static scenes from a fixed viewpoint. In this

paper, we combine a depth sensing camera with 4 regular cameras (Fig. 1), and

explore algorithms to reconstruct view-dependent geometry from both types of

sensors for dynamic scenes.

3 The Hybrid-Camera Array

3.1 System Hardware

Our hybrid camera array shown in Fig. 1 is composed of a single 3D depth camera

in the center and 4 regular intensity cameras in a planar grid around the range of

interest. The depth camera is a USB connected infrared pulse based camera from

3DV Systems[1]. It is capable of returning 320× 240 pixels resolution depth map

at 30 fps or 160 × 120 pixels resolution at 60 fps. The camera emits an infrared

pulse using the infrared emitters around the camera sensor and by shuttering the

reflected pulse returns a depth estimate. Intensity cameras are standard Point Grey
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Figure 2: Poses of 13 frames with respect to the calibration pattern for two differ-

ent cameras. By computing the relative poses of the individual frames in different

cameras, it is possible to estimate the relative poses of the cameras.

Flea [12] cameras with 640 × 480 resolution at 30fps.

The cameras are placed on a roughly arc grid. The depth camera is in the

center and the intensity cameras are placed regularly in a not-so-small baseline

fashion (around 7′′ between the two cameras on the same side) on top of a 22′′

monitor. The intensity cameras are synchronized in between themselves by con-

necting them to a single firewire bus. The depth camera has a USB connection

and no external synchronization input. Therefore it is not possible to synchronize

the system at the hardware level. The overall system is semi-synchronized during

capture by buffering the outputs of the cameras and dumping them once the buffer

is full. Our system is able to capture depth (320 × 240) and intensity (640 × 480)

maps at 20 fps.

3.2 System Calibration

The depth camera returns an intensity image together with the depth map, and

these two images are internally aligned. In order to calibrate the depth camera with

the four intensity cameras, we use the depth camera’s intensity image. The camera

calibration toolbox of [4], which implements Zhang’s method [26], is used for

obtaining the internal parameters of the cameras. The pose estimates of the planar

pattern computed during internal calibration are then used to perform external

calibration. As shown in Fig. 2, the relative poses of each of the captured frames

during calibration is provided by the toolbox. We compute the pose of each frame
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Figure 3: Mesh based view generation. Block diagram of our overall algorithm:

We first convert the depth estimate of the depth camera into a mesh and the refine

this mesh. Then it is updated through constrained plane sweeping using the texture

cameras and the finally new view is rendered from the smoothed depth map in a

view dependent fashion.

with respect to the reference camera by using

R
k

i = Rk
i (R

k
f)

T

t
k

i = tki − R
k

i t
k
f

(1)

where R is the rotation matrix, t is the translation vector, lower subscript i is the

camera index, upper subscript k is the frame index and overline represents the

resulting relative quantity with respect to the reference camera f . The final pose

of the camera is found by averaging the relative poses over all frames. Averaging

of the rotation is done by first converting the rotation matrix to its Rodrigues form

in order to retain its rotation properties.

ri = 1

K

∑K

k=1
rk

i , rk
i = Rodrigues(R

k

i )

ti = 1

K

∑K

k=1
tki

(2)

This multi-camera calibration gives us a reasonable calibration quality and re-

quires minimal user interaction.

4 Virtual View Synthesis

In this section, we first briefly outline our overall algorithm to fuse the output of a

depth camera and a multiplicity of intensity cameras for virtual view generation.

Detailed information about each step is given in the following sub-sections.
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Figure 4: Computing 3Dmesh from a depthmap. Every 2×2 pixel square on the

left is transformed into two triangles as in the right figure. After 2D triangulation,

corresponding 3D points for each pixel location is computed by using the depth

map and the 3D triangulated mesh is computed.

The diagram of our system is shown in Fig. 3. The depth map from the depth

camera is first transformed into a 3D mesh. This enables us to work indepen-

dent of the resolution of the depth estimate and that of the desired virtual view.

Depending on the position and internal parameters of the virtual view, new ver-

tices and facets are introduced to the mesh in order to avoid facets to be projected

onto a non-planar region in the virtual view. Afterwards we update the positions

of the vertices using the intensity cameras through constrained plane sweeping.

The vertices are updated independently from each other to reduce computational

requirements. To reduce the noise caused by such independence, we smooth the

mesh and then render the virtual view with view-dependent texture mapping.

4.1 Compute The Initial Mesh

The depth estimate is first transformed into a 3D mesh in order to render disre-

garding the depth camera resolution. This is a straightforward process. As shown

in Fig. 4, the 2D grid of the depth map is first triangulated by defining 2 triangles

for every 2 × 2 square pixels and then the 3D position of each pixel is computed

using the depth estimate. When necessary, mesh simplification can be conducted

to reduce the number of vertices and facets. The final result is a 3D mesh repre-

sentation that is independent of the view-point.

Note the depth estimate may contain holes where no infrared light is reflected

from the scene (e.g., some hair region). We apply a smoothing filter to fill such

holes before the above mesh conversion.
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Depth Camera

Virtual Camera

Figure 5: Resolution. Depending on the relative position of the virtual camera

and the depth camera, the image of a facet on the mesh can occupy different areas

in these images.

Figure 6: Mesh Refinement. Left: The original mesh is noisy, has holes and of

lower resolution. Right: We smooth the mesh and introduce new vertices in order

to reduce the noise level and close the holes.
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Virtual Camera

Figure 7: Vertex Update. Each vertex position is updated by checking the dis-

similarity of the candidate vertex position (red circles) on visible intensity images.

Candidate vertex positions are computed on the ray that combines the virtual cam-

era center with the updated vertex within the search space for that vertex.

In addition, due to perspective projection, some facets of the mesh may project

to an overly large region in the virtual view, as shown in Fig. 5, which may not be

planar. Such facets are subdivided in order to maintain a relatively constant reso-

lution of the mesh with respect to the virtual view point. In practice, a threshold

is set, and facets with projected area larger than the given threshold will be sub-

divided. Fig. 6 demonstrates the effectiveness of smoothing and mesh subdivision

for a typical scene.

4.2 Vertex Update

Up to this point only the information coming from the depth camera is used. In

this sub-section, the position of the vertices of the mesh are updated through con-

strained plane sweeping using a dissimilarity measure. As shown in Fig. 7, for

a given mesh vertex, we introduce candidate vertices along the ray joining the

camera center of the virtual point and the vertex position. The search space is de-

termined by the uncertainty associated with each vertex. Each candidate position

is tested using a dissimilarity score and the best one is selected as the new ver-

tex position. In our current implementation, we first project the candidate vertex

onto the intensity image. The dissimilarity of the projected positions are measured

through pixel differencing and DAISY [18]. We noted that the DAISY descriptor

performs better in this task and used it in all of our experiments. A comparison

between pixel differencing and DAISY as the dissimilarity measure will be given
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Figure 8: Smoothing the depth map. On the left, the depth map after the vertex

update stage is shown. Since the vertices are updated independently, the resulting

depth map is noisy. On the right, the final depth map after the smoothing is

shown. In both of the images, for visual clarity, we increased the contrast of the

depth maps and colorized them.

in Section 5.

Since the update of the vertices are done independently from each other, the

resulting mesh is very noisy, which can cause artifacts during rendering. In the

current implementation, we project the mesh onto the virtual viewpoint, and sub-

sequently smooth the resultant 2D depth image using median filtering, as shown

in Fig. 8. Note such smoothing can also be done on the 3D mesh directly.

4.3 View Synthesis

Given the refined view-dependent scene geometry, rendering is performed with

view-dependent texture mapping. In this process, we first compute occlusion

maps for each intensity camera, and then render the virtual view through the visi-

ble pixels via alpha blending.

Fig. 9 demonstrates the basic process of occlusion map computation. If a pixel

is occluded for camera Ci, then its depth with respect to Ci computed from the 3D

point Xv using the virtual camera’s depth value will be different from the value

in Ci’s depth map Di. Formulating this observation shapes our occlusion map

estimation algorithm:

oi(y, x) =

{

1 if
|di−df |

df
> 0.01

0 else
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Figure 9: Occlusion Map Computation. In order to find if the black point, x, is

occluded or not with respect to the camera, Ci, the point is back-projected onto the

3D model and then the found 3D point position, Xv, is projected onto that camera.

If the distance, df , between the 3D point and the camera center is different from

the value, di, of the depthmap from the point of view of camera Ci, then we say

that the point x is occluded with respect to camera Ci

.
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Figure 10: Rendering. The intensity of the new image is found by weighting the

intensities of all the visible images inversely proportional to the angle between

the ray coming from the virtual image and the ray of the respective cameras. For

instance in the above example, t2 is the biggest angle and therefore the intensity

in the rightmost image will have the lowest weight.

We allow for the small error(1%) in order to account for numerical errors and the

fact that the depth map, Di, will have pixel resolution whereas the projection of

Xv will be a sub-pixel location.

Once the occlusion maps are found for each input image, we render the virtual

view by weighting the intensities of the visible images inversely proportional to

their incidence angles on the surface of the mesh (Fig. 10). The image intensities

are weighted according to

wi =







exp

(

−
t2i

2σ2

)

if ti < 3σ

0 else

where σ is the maximum allowable ray angle and ti is the angle that the ray coming

from image i makes with the virtual camera’s ray on the surface of the mesh.

The weights are normalized to sum to 1 and the intensity of the rendered view is

computed using alpha blending. The virtual view is rendered by weighting the

Laplacian pyramids of the warped images by their respective weight Gaussian
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Figure 11: Frozen Time. In this example, we turn the virtual viewpoint around

the subject at a frozen instant. The input to the system is shown in the first row

and the remaining images are example renderings at different camera locations

pyramids:

V = LaplacianPyr−1

(

∑

i

LaplacianPyr(T (Ii, M)). ∗ GaussianPyr(Wi)

)

(3)

where Ii is the ith image with weight map Wi, and T (., M) is the warp function

with respect to a mesh, M .

5 Results

In this section we present results of our algorithm with different sequences. The

first example, Fig. 11, is the rendering of a subject in a frozen time where we

render the scene at different positions and look directions of the virtual viewpoint.

For each view a separate depth map is computed (thus view-dependent geometry)

as outlined in the previous sections. The background of the scene are removed

during rending using the depth map given by the depth camera. It can be seen that

the rendering quality is in general very good.

In Fig. 12, we present the results of our algorithm for a number of challenging
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sequences. In this figure, the first four 2×2 frames are the input intensity images.

The rendering results are presented in the middle column. The last column shows

the depth maps we computed in the process. Note even for scenes with complex

geometry such as the first 3 rows, the rendering quality is still very good. This

is very encouraging considering the sparsity of our camera array compared with

previous approaches.

We also compared our results with the results of using the depth camera’s

depth estimate directly in Fig. 13 in order to show that using only the depth cam-

era is not enough most of the time and that we also need texture cameras to correct

the noise, misalignment and registration errors of the depth camera. The first col-

umn of Fig. 13 shows the results of our algorithm where the second column is the

results when we use the depth camera’s depth estimate directly. Our algorithm

clearly renders much better results. In addition, we also compare the performance

of pixel differencing (third column) and DAISY [18] (first column) as the dissimi-

larity measure for geometry refinement. In a sparse camera arrangement like ours,

we notice that although pixel differencing sometimes works as good as DAISY, in

many cases it can cause more artifacts due to incidental intensity matching.

In Fig. 14, we show two failure cases to demonstrate the limitation of our

algorithm. One problem we need to address in the future work is the heavy de-

pendence on the depth map provided by the depth camera. For example, in cases

where the depth camera fails to return a depth estimate due to the lack of infrared

light reflection, our current algorithm does not have a good way to correct it. One

potential solution is to increase the depth search range during vertex update, which

could be risky if no constraints of the resultant depth is provided. Also, shiny ob-

jects tend to cause halo’s in the depth estimate and this translates to artifacts in

our rendering results.

6 Conclusion

Virtual view synthesis is a hard problem and even more so when it is applied to 3D

video broadcasting/conferencing where the purpose of the rendering is generally a

human face which is sensitive to distortions or artifacts. In this paper, we propose

a new view synthesis algorithm which uses a hybrid system, a depth camera and

four regular cameras, for this hard problem. To our best knowledge, our hybrid

system is the first of its kind and it shows promising results in merging the depth

cameras which became recently available with regular camera arrays. This has the

advantage of reducing the total number of necessary cameras and still achieving

high rendering quality, which will reduce the system cost and bandwidth require-

ments needed for boardcasting/conferencing.
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Figure 12: Some Renderings. Here we show the results of our algorithm for

some example frames. Within the rows, first 2 × 2 image shows the input of the

cameras, middle column is our result and last column is the computed depth map.

We see that even for some challenging cases, like the first 3 rows, our algorithm

produces decent results.
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Figure 13: Comparison. In this figure we compare our results with two different

approaches. Left column shows our results, in the middle column we display

the results when the depth camera’s depth estimate is directly used to render the

virtual view and in the right column, we show the results of our algorithm but with

pixel differencing as a dissimilarity measure. Direct rendering results in artifacts

caused by registration errors and misalignments. Using pixel differencing, on the

other hand, sometimes results in good renderings ( third row ) whereas in other

cases it causes artifacts ( first and second rows ).
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Figure 14: Failed Renderings: Some frames where our rendering algorithm

failed. Left figure shows that at the places where the depth camera failed to return

a depth estimate, we could not render the scene. Also, the right figure shows an

example where we fail to correctly estimate the sharp boundary of the shiny cup

and thereby causing a distortion of the texture around the cup in the rendering.
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