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Abstract

This paper presents a new approach to segmenting monoc-
ular videos captured by static or hand-held cameras film-
ing large moving non-rigid foreground objects. The fore-
ground and background objects are modeled using spatial-
color Gaussian mixture models (SCGMM), and segmented
using the graph cut algorithm, which minimizes a Markov
random field energy function containing the SCGMM mod-
els. In view of the existence of a modeling gap between the
available SCGMMs and segmentation task of a new frame,
one major contribution of our paper is the introduction of
a novel foreground/background SCGMM joint tracking al-
gorithm to bridge this space, which greatly improves the
segmentation performance in case of complex or rapid mo-
tion. Specifically, we propose to combine the two SCGMMs
into a generative model of the whole image, and maximize
the joint data likelihood using a constrained Expectation-
Maximization (EM) algorithm. The effectiveness of the pro-
posed algorithm is demonstrated on a variety of sequences.

1 Introduction
Segmenting foreground objects from the background in
videos is of great interest in many applications. In video
conferencing, once the foreground and background are sep-
arated, the background can be replaced by another image,
which then beautifies the video and protects the user pri-
vacy. The extracted foreground objects can be compressed
to facilitate efficient transmission using object-based video
coding. As an advanced video editing tool, segmentation
also allows people to combine multiple objects from differ-
ent videos and create new and artistic results.

In this paper, we study the foreground/background seg-
mentation problem for monocular videos. In particular, we
are interested in videos captured by static or hand-held cam-
eras filming large moving non-rigid foreground objects. For
instance, the foreground can be the head and shoulder of a
talking person, or a dancing character. We relax the static
background restriction, and assumes that the camera can be
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shaking to some extent and there can be other moving ob-
jects in the background. The main challenges in such kind
of sequences are:

• Portions of the foreground and background objects
may share similar color patterns.

• The sizes of foreground objects for such applications
are relatively large, hence substantial occlusions may
frequently occur between the foreground and back-
ground objects.

• The objects being segmented can have non-rigid ap-
pearance. The foreground objects may also demon-
strate complex and rapid motions, which can conse-
quently fail the flow computation step of many existing
approaches.

• The existence of other uninteresting but moving back-
ground objects may also cause additional confusions
to the segmentation algorithm if they are not correctly
modeled.

Compared with the work in [12] that utilizes the depth in-
formation reconstructed from a stereo camera pair, monoc-
ular video foreground/background segmentation is much
less constrained. Additional assumptions are often made
to limit the solution space. For instance, the background
scene can be assumed as static and known a prior, which
converts the segmentation problem into a background mod-
eling and subtraction problem. Existing solutions include
pixel level modeling using Gaussian distributions [24], mix-
ture of Gaussians [19], non-parametric kernel density esti-
mators [7, 15] and three state HMM [16]. A separate region-
level or even object-level model could be added to further
improve the background modeling quality [9, 23, 20]. Nev-
ertheless, video segmentation based on background model-
ing may still be confused by moving background objects or
motionless foreground objects.

Another popular assumption is that the foreground and
background objects have different motion patterns. Re-
search in this vein, termed as layer-based motion segmen-
tation (LBMS), received tremendous interests in the past
decades [1, 22, 10, 25, 13]. The general objective is to
automatically extract the motion coherent regions. Primar-
ily focusing on the general motion segmentation problem,
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existing approaches in LBMS were either computationally
expensive requiring off-line learning and a batch process-
ing of the whole sequences [1, 25, 10, 13], or tended to
generate many over-segmented regions, thus hard to form
semantically meaningful objects [22]. In [5], a discrimi-
native model was learned to efficiently separate the motion
pixels from the stasis using pixel spatio-temporal deriva-
tives. However, such a generic motion classifier may be
challenged when camera is shaking or background objects
are moving.

In this paper, we propose to model both the foreground
and background objects using SCGMM models. These
models are built into a Markov random field (MRF) energy
function that is then efficiently minimized by the graph cut
algorithm [3], leading to a binary segmentation of the video
frames.

While it is well-known that SCGMM has better discrim-
inative power than color-only GMM, integrating it with the
graph cut based video foreground/background segmentation
algorithm is nontrivial. For scenes with complex and rapid
foreground/background motions, the SCGMM learned from
previous frames are not suitable for the segmentation task of
the current frame due to large variations of the spatial com-
ponents. The major contribution of this paper is the intro-
duction of a foreground/background SCGMM joint tracking
algorithm, which can reliably propagate the SCGMM mod-
els over frames. To achieve this, before the segmentation of
the current frame is carried out, we first combine the fore-
ground and background SCGMMs learned from previous
frames into a single generative model to depict the whole
image, then adopt an EM algorithm to update the model for
the new frame under the constraint that the color factors of
the objects remain unchanged. The updated whole image
SCGMM is then split back into two SCGMMs and used for
segmentation. The proposed method can not only handle
complex and rapid motions of the foreground/background
objects, but also help resolve occlusion/deocclusion issues
caused by their motions. The effectiveness of the algorithm
is verified by a variety of challenging sequences.

The proposed method is different from recent ap-
proaches that also make use of spatial and color mod-
els [11, 6, 18]. For example, [6, 18] proposed to model the
object spatial-color features with kernel density estimation.
An assumption they made is that the motions between sub-
sequent frames are small, hence the mixture models in the
previous frame can be directly applied to the segmentation
of the current frame. Our study, however, shows that such
a simplified assumption is not valid for many real world
sequences. It is our main contribution that we explicitly
introduce the foreground/background SCGMM joint track-
ing step to fill in this gap. Our experimental results also
strongly suggested that such a tracking step is necessary for
successful segmentation of the sequences.

The paper is organized as follows. The formula-
tion of the MRF energy function and its minimization
through graph cut is described in Section 2. The fore-
ground/background joint SCGMM tracking algorithm is
presented in Section 3. One possible option of automatic
system initialization for teleconferencing applications is
discussed in Section 4. Experimental results and conclu-
sions are given in Section 5 and 6, respectively.

2 Energy Minimization Formulation
We propose to solve the foreground/background segmen-
tation problem from video using energy minimization. At
any time instant t, let the feature vectors extracted from the
video pixels be zi,t, i = 1, · · · , N , where N is the number
of pixels in each frame. Denote the unknown label of each
pixel as fi,t, i = 1, · · · , N , where fi,t is a binary variable,
i.e., 0 and 1 in our case with fi,t = 1 representing pixel i
labeled as foreground, and fi,t = 0 as background [2]. In
the following discussions, we may ignore subscript t when
it causes no confusion.

An energy-based objective function can be formulated
over the unknown labeling variables of every pixel, fi, i =
1, . . . , N , in the form of a first-order Markov random field
(MRF) energy function:

E(f) = Edata(f) + λEsmooth(f)

=
∑

p∈P
Dp(fp) + λ

∑

{p,q}∈N
Vp,q(fp, fq), (1)

whereN denotes the set of 8-connected pair-wise neighbor-
ing pixels, P is the set of pixels in each image. The role of λ
is to balance the data Dp(fp) and smooth cost Vp,q(fp, fq).
The above energy function can be efficiently minimized by
a two-way graph cut algorithm [3], where the two terminal
nodes represent foreground and background labels respec-
tively.

We model the pair-wise smoothness energy term
Esmooth(f) as:

Esmooth(f) =
∑

{p,q}∈N
Vp,q(fp, fq)

=
∑

{p,q}∈N

1
d(p, q)

e−
(Ip−Iq)2

2σ2 .
(2)

where Ip denotes the intensity of pixel p, σ is the average in-
tensity difference between neighboring pixels in the image,
and d(p, q) is the distance between two pixels p and q. This
smoothness constraint penalizes the labeling discontinuities
of neighboring pixels if they have similar pixel intensities.
It favors the segmentation boundary along regions where
strong edges are detected.

The data energy term Edata(f) evaluates the likelihood
of each pixel belonging to the foreground or background.
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(a) (b) (c)

Figure 1: Color distribution of the scene JM. (a) First frame of JM. (b) Foreground/Background color confusions in 3-
dimensional RGB space, where the red points depict the foreground pixels and the blue points show the background pixels.
There are significant overlaps between foreground/background pixels. (c) The spatial-color GMM model of the image.
Each ellipse represent a Gaussian component. The green ellipses are the foreground components; the red ellipses are the
background components. They are spatially apart so there is much less confusion.

In previous approaches for image segmentation [2, 17, 12,
20, 5], this term is often computed using Gaussian mixture
models (GMM) in the RGB color space. Figure 1(b) shows
the color distributions of foreground/background objects for
the first frame of the test sequence JM. It can be seen that
the foreground and background pixels have significant over-
lap in the RGB space, which consequently leads to severe
confusion for the data energy term. In this paper, we resort
to a SCGMM model to overcome this problem.

We take a five dimensional feature vector to describe
each pixel, i.e., zi = (x, y, r, g, b), representing the pixel’s
spatial information, (x, y) coordinates, and color informa-
tion, (r, g, b) color values. A five dimensional SCGMM
model is obtained for each video frame (details in Sec-
tion 3). The likelihood of a pixel belonging to the fore-
ground or background can be written as:

p(z|l) =
Kl∑

k=1

pl,kG(z; µl,k,Σl,k) (3)

where l ∈ {fg, bg}, representing foreground or back-
ground; pl,k is the prior of the kth Gaussian component in
the mixture model, and G(z; µl,k,Σl,k) is the kth Gaussian
component as:

G(z; µl,k,Σl,k) =
1

(2π)
d
2 |Σl,k| 12

e−
(z−µl,k)T Σ

−1
l,k

(z−µl,k)

2 ,

(4)
where d = 5 is the dimension of the GMM models.

We further assume that the spatial and color components
of the GMM models are decoupled, i.e., the covariance ma-
trix of each Gaussian component takes the block diagonal

form, Σl,k =
(

Σl,k,s 0
0 Σl,k,c

)
, where s and c stand for

the spatial and color features respectively. With such de-
composition, each GMM Gaussian component has the fol-
lowing factorized form:

G(z; µl,k,Σl,k) = G(zs; µl,k,s,Σl,k,s)G(zc; µl,k,c,Σl,k,c).
(5)

The SCGMM models for the first frame of JM is shown in
Figure 1(c). Each ellipse represents a Gaussian component
of the foreground (green) or background (red). The thick-
ness of each ellipse indicates the component weight pl,k.
It is clear that the foreground and background SCGMMs
are spatially apart from each other, thus rendering more dis-
criminative power than the color-only GMMs.

Given the SCGMM models, the data cost Edata(f) is
defined as:

Edata(f) =
∑

p∈P
Dp(fp) =

∑

p∈P
− log p(zp|fp), (6)

where p(zp|fp) is computed using Equation 3.
The above SCGMM model can be extended to more so-

phisticated models. For example, we can form a global-
local mixture distribution for the background model by
combining the existing spatial-color components with a lo-
calized per-pixel background model [12, 20]. This may
be more suitable to represent the multi-modality nature of
background pixels in outdoor surveillance video. However,
since the primary use of our system is for indoor office en-
vironment, we chose not to explore further along this direc-
tion.

As we acknowledged previously, recent approaches also
employ the idea of spatial augmented GMM models for
video segmentation [24, 11, 6, 18]. However, most existing
approaches hold a small object motion assumption, hence
conclude that the mixture models in the previous frame can
be directly applied to the segmentation of the current frame.
Our comprehensive study shows that this assumption is not
valid for many real world sequences. As we observed, when
the objects of interest undergo large motions, the spatial-
color mixture models obtained only from previous frame
can bring a significant bias towards the segmentation and
dramatically degrade the performance. Hence, we propose
to address this problem using a SCGMM joint tracking al-
gorithm in the next section, which can successfully fill in
such gap between model and data.
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3 SCGMM Joint Tracking
3.1 Problem Statement
Suppose two SCGMM models are learned during the sys-
tem initialization period (see Section 4) using the popular
EM algorithm, which maximizes the data likelihood of each
segment:

θ∗l,0
def= {p∗l,k,0, µ

∗
l,k,0,Σ

∗
l,k,0}

= arg max
p∗l,k,0,µ∗l,k,0,Σ∗l,k,0

∏

zl∈I0

[ Kl∑

k=1

pl,kG(zl; µl,k,Σl,k)
]

(7)

where l ∈ {fg, bg}; zl are the features of the pixels hav-
ing label l; I0 denotes the initialization frame. The problem
with video segmentation is how to propagate these SCGMM
models over the rest of the sequence, since both the fore-
ground and background objects can be constantly moving.

We consider the following general problem. Suppose
at time instant t − 1, the parameters of the foreground
and background SCGMM models have been learned as
θl,t−1 = (pl,k,t−1, µl,k,t−1,Σl,k,t−1), k = 1, · · · ,Kl.
Given a newly coming frame It, the goal is to obtain
a foreground/background segmentation for It, and update
the SCGMM models θl,t = (pl,k,t, µl,k,t,Σl,k,t), k =
1, · · · ,Kl. At the first glance, this problem appears to be
a deadlock, because in order to obtain a good segmenta-
tion, we need an accurate SCGMM model for the current
frame; and in order to get an accurate SCGMM model for
the current frame, we need a good foreground/background
segmentation. Below we present a SCGMM joint tracking
algorithm to break this deadlock.

3.2 SCGMM Joint Tracking
We look for ways to obtain an approximate SCGMM model
for the current frame before the graph cut segmentation. In-
spired by color-based object trackers such as [4], we assume
that from time t − 1 to t, the colors of the foreground and
background objects do not change. Hence, the color parts
of the SCGMM models remain identical:

G(zc,t; µl,k,c,t,Σl,k,c,t) = G(zc,t−1; µl,k,c,t−1,Σl,k,c,t−1),
(8)

where c denotes the color dimension and k = 1, · · · ,Kl.
The problem then becomes how to formulate an updating
scheme for the spatial parts G(zs,t; µl,k,s,t,Σl,k,s,t) given
the new input image It.

Since we do not have a foreground/background segmen-
tation on It at this moment, we first form a global SCGMM
model of the whole image by combining the foreground and
background SCGMM models of the previous frame, with
the corresponding weights equal to the relative coverage

sizes of foreground and background regions in the previous
frame, i.e., we define:

θ0
I,t

def= {θfg,t−1, θbg,t−1, γfg,t−1, γbg,t−1}, (9)

where superscript 0 indicates that the parameter set is serv-
ing as the initialization value for the later update. γfg,t−1

and γbg,t−1 represent the weights or coverage areas of the
foreground and background regions in the previous seg-
mented frame, and they satisfy γfg,t−1 + γbg,t−1 = 1.

Denote KI = Kfg + Kbg as the number of Gaussian
components in the combined image level SCGMM model,
where we assume the first Kfg Gaussian components are
from the foreground SCGMM, and the last Kbg Gaussian
components are from the background SCGMM. The image
SCGMM model can be written as:

p(zt|θ0
I,t) = γfg,t−1p(zt|θfg,t−1) + γbg,t−1p(zt|θbg,t−1)

=
KI∑

k=1

p0
k,tG(zs,t; µ0

k,s,t,Σ
0
k,s,t)G(zc,t;µk,c,t,Σk,c,t).

(10)

Note the second Gaussian term over the color dimension
is defined in Equation 8 and remains fixed at this moment.
The Gaussian component weights p0

k,t, k = 1, . . . , KI are
different from their original values in their individual fore-
ground or background SCGMMs due to the multiplications
of γfg,t−1, γbg,t−1.

Given the pixels in the current frame It, our objective
is to obtain an updated parameter set {p∗k,t, µ

∗
k,s,t,Σ

∗
k,s,t}

over the spatial domain, which maximizes the joint data
likelihood of the whole image, i.e.,

{p∗k,t, µ
∗
k,s,t,Σ

∗
k,s,t} = arg max

p∗k,t,µ
∗
k,s,t,Σ

∗
k,s,t

∏

zt∈It

p(zt|θI,t)

(11)
for all k = 1, . . . , KI . The EM algorithm is adopted here
to iteratively update the model parameters from their initial
values θ0

I,t. However, as can be seen in Eq. 11, unlike the
traditional EM algorithm, where all model parameters are
simultaneously updated, we choose to only update the spa-
tial parameters of the SCGMM models in this phase, and
keep the color parameters unchanged. This can be imple-
mented by constraining the color mean and variance to be
fixed to their corresponding values in the previous frame
(Equation 8).

Such a restricted EM algorithm is shown in Figure 2.
In the E-step, we calculate the posteriori of the pixels be-
longing to each Gaussian component, and in the M-step, the
mean and variance of each Gaussian component in spatial
domain are refined based on the updated posteriori prob-
ability of pixel assignment from E-step. In the statistics
literature, such a variant of EM algorithm aiming to max-
imizing the conditional data likelihood (over spatial vari-
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At each time instant t, we perform the following EM al-
gorithm:

1. E-step, calculate the Gaussian component assign-
ment probability for each pixel z :

p(i)(k|z) =
p
(i)
k G(zs;µ

(i)
k,s,Σ

(i)
k,s)G(zc;µk,c,Σk,c)PKI

k=1 p
(i)
k G(zs;µ

(i)
k,s,Σ

(i)
k,s)G(zc;µk,c,Σk,c)

.

2. M-step, update the spatial mean and variance, and
the weight of each Gaussian component as:

µ
(i+1)
k,s =

P
z∈It

p(i)(k|z)zsP
z∈It

p(i)(k|z) .

Σ(i+1)
k,s =

P
z∈It

p(i)(k|z)(zs−µ
(i+1)
k,s )(zs−µ

(i+1)
k,s )T

P
z∈It

p(i)(k|z)

p
(i+1)
k =

P
z∈It

p(i)(k|z)
PKI

k=1

P
z∈It

p(i)(k|z)

Figure 2: The EM algorithm for foreground/background
joint tracking. Subscript t is ignored in the above equations.

1 1

2 2

Figure 3: Foreground/background joint SCGMM tracking
via EM. Ellipses in green are foreground components, and
ellipses in red are background components. Note the ex-
pansion of background component 1 and the compression
of component 2 while the foreground person rotates.

ables) is called an Expectation Conditional Maximization
algorithm [14].

The above algorithm shares many common character-
istics with the gradient-based color tracking algorithms in
literature such as mean-shift [4], hence we name it as
SCGMM joint tracking. For instance, the spatial part of the
SCGMM resembles the spatial kernel used in mean-shift.
Both approaches are gradient-based, which moves the com-
ponent/object bounding box towards directions where there
is more color similarity. Tao et al. also proposed an EM
based object tracking algorithm in [21], though each object
layer was modeled using a single Gaussian. Compared with
the existing methods, the proposed SCGMM joint tracking
has a number of unique features:

1. Unlike many existing algorithms that only focus on
tracking the foreground objects, the proposed algo-

rithm combines the foreground and background SCG-
MMs into a unified model and tracks both simultane-
ously. The tracking is performed through maximizing
the overall data likelihood of the whole image. Hence
the foreground and background SCGMMs can collab-
orate with each other and adapt better to the change of
the whole image.

2. Since in the E-step of Figure 2, the pixels are assigned
to different Gaussian components based on their likeli-
hoods, the foreground and background Gaussian com-
ponents are actually also competing with each other
to grab similar pixels. This partially solves the occlu-
sion/deocclusion problem in video segmentation. As
shown in Figure 3, when the foreground object rotates
and moves to the right, the background component 1
on the left is expanded, and the background compo-
nent 2 on the right is compressed.

3. Objects with very complex colors or shapes can be
tracked, thanks to the descriptive capability of the
SCGMM. The handset sequence in Section 5 was
tracked using multiple collaborative kernel tracking
in [8], which requires the knowledge of the structure
of the handset before hand. It is successfully tracked
and segmented with our technique without any special
treatment.

4. The SCGMM can track highly deformable non-rigid
objects. The Ballet sequence in Section 5 shows the
tracking and segmentation of a human dancer. Al-
though the foreground SCGMM does not describe
each semantic body part very accurately, the part-
based nature of the SCGMM model renders the pro-
posed algorithm capable of tracking and segmenting
such highly articulated objects.

3.3 Segmentation and Post-Updating
After the SCGMM joint tracking, the image SCGMM
model is split back into two models, one describing the fore-
ground, the other describing the background. Components
belonging to the foreground before tracking are placed in
the foreground SCGMM, and components belonging to the
background before tracking are placed in the background
SCGMM. The two SCGMM models are then used to per-
form graph cut segmentation, as described in Section 2.

The segmentation results can be used for a post-updating
of the SCGMM models, because now we can train the fore-
ground and background SCGMMs separately with the seg-
mented pixels, which often provides better discriminative
power for segmenting future frames. The process is simi-
lar to what we did for the model initialization (Equation 7),
except that we will use the tracked SCGMM models as the
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t

t → t+1

t

Figure 4: The Iterative Circle of Foreground/Background
Segmentation for One Frame.

initialization for the optimization process, which often re-
sults in a faster convergence.

The segmentation results are not always perfect. If we
believe that the foreground and background colors stay the
same across the sequence, we can perform a constrained
update on the two models. That is, we use Equation 11 on
the foreground or background region to update the SCGMM
models, forcing the color means and variances to be con-
stant. Our experiments show that this approach will often
help the whole application to recover from segmentation er-
rors. We also tried to update both the spatial and color com-
ponents after segmentation. We found it a risky approach
because it is very volunable to error propagation when there
are segmentation errors in a certain frame.

To summarize, we iterate the tracking-segmentation-
updating process as shown in Figure 4. In principle, for
each frame the circle can be run several times until conver-
gence. In practice we found one iteration is sufficient for all
the sequences we tested.

4 Automatic Foreground Extraction
for Video Conferencing

There are many options for our system to obtain a model ini-
tialization for the foreground/background objects. In partic-
ular, for real-time applications such as video conferencing,
one possibility is to initialize with motion information, as
the foreground user can be asked to present large motions
during the system initialization period. Here we briefly de-
scribe another automatic initialization approach by assum-
ing we know that the to-be-segmented foreground is the
head and shoulder of a person.

The first step is to apply a face detector [26] on the video
frame, as shown in Figure 5(a). Based on the detection re-
sults, we assume certain regions to be definite foreground
(shown in white in Figure 5(b)) and background (shown in
black). These play a similar role to the strokes drawn by
the users in interactive image segmentation [2, 17]. For in-
stance, the middle of the detected face rectangle are guar-

(a) (b) (c)

Figure 5: Automatic initialization of the segmentation in the
first frame. (a) Face detection results. (b) We assume certain
regions to be definite foreground and background. White in-
dicates foreground, black indicates background. (c) Image
segmentation result using graph cut.

anteed to be foreground; the shoulders are likely to be a
slightly expanded region below the detected face. Similarly,
the areas to the left, right and above all expanded face rect-
angles are assumed to be background (the black areas in
Figure 5(b)). We train two SCGMM models from the pixels
covered by the definite foreground and background regions,
and perform a graph cut segmentation. This gives us Fig-
ure 5(c). The segmentation is not perfect, however they are
sufficient to initialize the models for the whole sequence. In
Section 5 we will show the segmentation results of the two
sequences in Figure 5 with automatic initialization.

5 Experimental Results
The proposed video foreground/background segmentation
algorithm is applied to a variety of sequences to verify the
performance. In the following, we describe the challenges
in each sequence, and demonstrate the effectiveness of our
algorithm as shown in Figure 6.

Mother and Daughter: This scene is relatively simple,
as there is no significant movement in the foreground or
background. We initialize the segmentation in the first
frame using Figure 5(c). The algorithm works very well
across the whole sequence.
Foreman: Foreman is captured with a hand-held camera.
Hence there are consistent motions for both foreground and
background, which may cause trouble for both pixel-wise
background subtraction and layer-based motion segmenta-
tion approaches. Our tracking algorithm is not affected by
such motions. One difficulty we face in this sequence is that
from frame #95 to #108, the left shoulder of the person is
completely out of the field of view of the camera. This can-
not be immediately recovered, as shown in Figure 6, frame
#135. The SCGMM joint tracking in this case plays an im-
portant role to expand the coverage of the foreground region
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Frame#1 Frame#4 Frame#30 Frame#125 Frame#200Mother and Daughter

Frame#1 Frame#50 Frame#135 Frame#170 Frame#220Foreman

Frame#1 Frame#10 Frame#50 Frame#57 Frame#220JM

Frame#1 Frame#6 Frame#20 Frame#40 Frame#56Handset

Frame#1 Frame#10 Frame#15 Frame#24 Frame#60Ballet

Figure 6: Segmentation results with the proposed algorithm.

Frame#135 Frame#170 Frame#220 Frame#50 Frame#57 Frame#220

Frame#6 Frame#20 Frame#40 Frame#10 Frame#24 Frame#60

Figure 7: Segmentation results without joint SCGMM tracking. We do perform post-updating as described in Section 3.3.
This way of applying SCGMM is similar to many existing algorithms [24, 6].

(frame #170). In contrast, as shown in Figure 7, segmenta-
tion without this intermediate tracking step was not able to
recover the missing part even in frame #220.
JM: JM is a very typical video conferencing sequence.
We initialize the first frame automatically using the method
introduced in Section 4. The main challenge of this se-

quence is between frame #42 and #61, where the person
makes some dramatic movements. The proposed method
handles this period very well. On the contrary, segmentation
without tracking produces unacceptable results (Figure 7).
Handset: This is a challenging sequence due to the fast
rotation of the handset. The video was heavily compressed,
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thus the segmentation boundaries are noisy. Compared with
the no-tracking segmentation results in Figure 7, which is a
complete failure, the outputs of the proposed algorithm are
very satisfactory.
Ballet: Ballet is probably the most difficult sequence we
tested due to the fast motion of the arms and legs of the
dancer. The results generated by the proposed algorithm is
surprisingly good, in particular in the level of details of the
dancer’s hands. Though we do have a failure around frame
#24, where one foot is missing due to the complete occlu-
sion of this foot in frame #15, such a failure is also success-
fully recovered in later frames. Figure 7 shows the segmen-
tation results without the proposed tracking step, and the
performance is very poor.

6 Conclusions
We have proposed a novel joint tracking algorithm
for spatial-color Gaussian mixture models (SCGMM)
in monocular video foreground/background segmentation.
The basic idea is to combine the foreground and background
SCGMM models into a generative model of the whole im-
age, and use a variant of EM algorithm to update the model
under the equality constraint that the color factors of the
model do not change. We show that this algorithm improves
the segmentation results significantly on a number of chal-
lenging sequences.

References
[1] E. H. Adelson and J. Y. A. Wang. Representing moving images with

layers. In IEEE Trans. on Image Processing, 1994.

[2] Y. Boykov and M. Jolly. Interactive graph cuts for optimal boundary
& region segmentation of objects in n-d images. In Proc. IEEE Int’l
Conf. on Computer Vision (ICCV), volume I, pages 105–112, 2001.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy min-
imization via graph cuts. In IEEE Trans. Pattern Analysis and Ma-
chine Intelligence (PAMI), 23(11):1222–1239, 2001.

[4] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-
rigid objects using mean shift. In Proc. IEEE Int’l Conf. on Computer
Vision and Pattern Recognition (CVPR), volume 2, pages 142–149,
2000.

[5] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bilayer seg-
mentation of live video. In Proc. IEEE Int’l Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), 2006.

[6] A. Elgammal and L. S. Davis. Probabilistic framework for segment-
ing people under occlusion. In Proc. IEEE Int’l Conf. on Computer
Vision (ICCV), Vancouver, Canada, July 2001.

[7] A. Elgammal, D. Harwood, and L. S. Davis. Non-parametric model
for background subtraction. In Proc. European Conf. on Computer
Vision (ECCV), Dublin, Ireland, June 2000.

[8] Z. Fan and Y. Wu. Multiple collaborative kernel tracking. In
Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition
(CVPR), San Diego, CA, 2005.

[9] M. Harville. A framework for high-level feedback to adaptive per-
pixel, mixture-of-gaussian background models. In Proc. European
Conf. on Computer Vision (ECCV), 2002.

[10] N. Jojic and B. Frey. Learning flexible sprites in video layers. In
Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition
(CVPR), Hawaii, 2001.

[11] S. Khan and M. Shah. Object based segmentation of video using
color, motion and spatial information. In Proc. IEEE Int’l Conf. on
Computer Vision and Pattern Recognition (CVPR), 2001.

[12] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother. Bi-
layer segmentation of binocular stereo video. In Proc. IEEE Int’l
Conf. on Computer Vision and Pattern Recognition (CVPR), vol-
ume I, San Diego, CA, 2005.

[13] P. Kumar, P. Torr, and A. Zisserman. Learning layered motion seg-
mentations of video. In Proc. IEEE Int’l Conf. on Computer Vision
(ICCV), Beijing, China, Oct. 2005.

[14] X. Meng and D. Rubin. Maximum likelihood estimation via the ecm
algorithm: A general framework. In Biometrika, 80(2), 1993.

[15] A. Mittal and N. Paragios. Motion-based background subtraction
using adaptive kernel density estimation. In Proc. IEEE Int’l Conf.
on Computer Vision and Pattern Recognition (CVPR), Washington,
D. C., June 2004.

[16] J. Rittscher, J. Kato, S. Joga, and A. Blake. A probabilistic back-
ground model for tracking. In Proc. European Conf. on Computer
Vision (ECCV), 2000.

[17] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - interactive fore-
ground extraction using iterated graph cuts. In Proc. Siggraph, 2004.

[18] Y. Sheikh and M. Shah. Bayesian object detection in dynamic scenes.
In Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), San Diego, CA, June 2005.

[19] C. Stauffer and W. E. L. Grimson. Adaptive background mixture
models for real-time tracking. In Proc. IEEE Int’l Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 246–252, 1999.

[20] J. Sun, W. Zhang, X. Tang, and H. Y. Shum. Background cut. In Proc.
Europ. Conf. on Computer Vision (ECCV), Graz, Austria, 2006.

[21] H. Tao, H. Sawhney, and R. Kumar. Object tracking with bayesian
estimation of dynamic layer representations. In IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 24:75–89, 2002.

[22] P. H. S. Torr, R. Szeliski, and P. Anandan. An integrated bayesian
approach to layer extraction from image sequences. In IEEE Trans.
on Pattern Analysis and Machine Intelligence, 2001.

[23] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower :
Principles and practice of background maintenance. In Proc. Int’l
Conf. on Computer Vision (ICCV), 1999.

[24] C. Wren, A. Azarbayejani, T. Darrel, and A. Pentland. Pfinder: Real
time tracking of the human body. In IEEE Trans. on Pattern Analysis
and Machine Intelligence, 1997.

[25] J. J. Xiao and M. Shah. Motion layer extraction in the presence of
occlusion using graph cut. In Proc. IEEE Int’l Conf. on Computer
Vision and Pattern Recognition (CVPR), Washington, D. C., June
2004.

[26] Z. Zhang, M. Li, S. Li, and H. Zhang. Multi-view face detection with
floatboost. In Proc. IEEE Workshop on Applications of Computer
Vision, 2002.

8


