
Wrangler: Predictable and Faster Jobs using Fewer Resources

Neeraja J. Yadwadkar
University of California, Berkeley
neerajay@eecs.berkeley.edu

Ganesh Ananthanarayanan
Microsoft Research
ga@microsoft.com

Randy Katz
University of California, Berkeley

randy@cs.berkeley.edu

Abstract
Straggler tasks continue to be a major hurdle in achiev-
ing faster completion of data intensive applications running
on modern data-processing frameworks. Existing straggler
mitigation techniques are inefficient due to their reactive
and replicative nature – they rely on a wait-speculate-re-
execute mechanism, thus leading to delayed straggler de-
tection and inefficient resource utilization. Existing proac-
tive techniques also over-utilize resources due to replica-
tion. Existing modeling-based approaches are hard to rely
on for production-level adoption due to modeling errors. We
present Wrangler, a system that proactively avoids situa-
tions that cause stragglers. Wrangler automatically learns to
predict such situations using a statistical learning technique
based on cluster resource utilization counters. Furthermore,
Wrangler introduces a notion of a confidence measure with
these predictions to overcome the modeling error problems;
this confidence measure is then exploited to achieve a re-
liable task scheduling. In particular, by using these predic-
tions to balance delay in task scheduling against the potential
for idling of resources, Wrangler achieves a speed up in the
overall job completion time. For production-level workloads
from Facebook and Cloudera’s customers, Wrangler im-
proves the 99th percentile job completion time by up to 61%
as compared to speculative execution, a widely used strag-
gler mitigation technique. Moreover, Wrangler achieves this
speed-up while significantly improving the resource con-
sumption (by up to 55%).

1. Introduction
Reducing the job completion time for data intensive applica-
tions running atop distributed processing frameworks [1, 2]
has attracted a lot of attention recently [3–6]. A major chal-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3252-1/14/11. . . $15.00.
http://dx.doi.org/10.1145/2670979.2671005

lenge to achieving near-ideal job completion time is the slow
running or straggler tasks – a recent study [6] shows that de-
spite existing mitigation techniques, straggler tasks can be 6-
8× slower than the median task in job on a production clus-
ter. This leads to high job completion time, over-utilization
of resources and increased user costs. Mitigating or even
eliminating stragglers thus remains an important problem.

Existing approaches, whether based on replication or
modeling, aren’t enough to solve this problem. Speculative
execution [1] is a replication-based reactive straggler miti-
gation technique that spawns redundant copies of the slow-
running tasks, hoping a copy will reach completion before
the original. This is the most prominently used technique
today, including production clusters at Facebook and Mi-
crosoft Bing [5]. However, without any additional informa-
tion, such reactive techniques can not differentiate between
nodes that are inherently slow and nodes that are temporar-
ily overloaded [7]. In the latter case, such techniques lead to
unnecessary over-utilization of resources without necessar-
ily improving the job completion times. Though proactive,
Dolly [6] is still a replication-based approach that focusses
only on interactive jobs and incurs extra resources. Being
agnostic to the correlations between stragglers and nodes’
status, replication-based approaches are wasteful.

Another proactive alternative is to model running tasks
statistically to predict stragglers. However, realistic model-
ing of tasks in cluster environments is difficult due to com-
plex and unpredictable interactions of various modules [5–
11]. Black box approaches can learn these interactions au-
tomatically [12, 13]; however, these techniques are opaque
and prone to errors that could lead to inefficient utilization
and longer completion times [6].

To avoid such problems, a straggler mitigation approach
should meet the following requirements:

• It should not wait until the tasks are already straggling.
• It should not waste resources for mitigating stragglers.

To this end, we introduce Wrangler, a system that predicts
stragglers using an interpretable linear modeling technique
based on cluster resource usage counters and uses these pre-
dictions to inform scheduling decisions. This allows it to
avoid waiting until tasks are already running slow. Wran-
gler prevents wastage of resources by removing the need for

replicating tasks. Furthermore, Wrangler introduces a notion
of a confidence measure with these predictions to overcome
the modeling error problems; this confidence measure is then
exploited to achieve a reliable task scheduling. In particular,
by using these predictions to balance delay in task schedul-
ing against the potential for idling of resources, Wrangler
achieves a speed up in the overall job completion time. A
threshold on the confidence measure can be tuned to suit
different workloads to avoid costly incorrect scheduling de-
cisions. A prototype implementation of Wrangler demon-
strates up to 61% improvement in overall job completion
times while reducing the resource consumption by up to 55%
for production-level workloads using a 50 node EC2 cluster.

2. Motivation
Existing approaches to straggler mitigation fall short in mul-
tiple ways: Reactive approaches act after tasks have already
slowed down. Replication-based approaches, whether proac-
tive or reactive, use extra resources. White or gray box ap-
proaches depend on causes that keep changing dynamically
and hence are difficult to enumerate a priori. Finally, black
box approaches are prone to modeling errors. We discuss
each of these in detail below.

Reactive techniques rely on a wait-and-speculate re-
execute mechanism. Speculative execution, a widely used
approach for straggler mitigation, marks slow running tasks
as stragglers and reacts by relaunching multiple copies of
them. This is inefficient because a task is allowed to run for
a significant amount of time before it can be identified as
a straggler. By this time, other tasks of that job have made
considerable progress already, increasing the possibility of
extending the job’s finishing time. SkewTune [14] avoids
replicating tasks but is still a wait-and-speculate mechanism.

Replication-based approaches incur extra resources. For
instance, speculative execution launches multiple redundant
copies of the same task. As soon as one of these copies fin-
ishes execution, the rest are killed. This amounts to wastage
of resources. LATE [4] improves over speculative execu-
tion using a notion of progress scores, but still results in
resource waste. Cloning mechanisms [6], being replication-
based, also incur extra resources.

Though there are no existing mechanisms that proac-
tively avoid stragglers without replication, scheduling or
load-balancing approaches [15–20] indirectly attempt to do
so by reducing resource contention on a cluster. The delay
scheduler [16], for example, focuses on reducing network
bottlenecks. However, we show in Section 4.2.2 that despite
these efforts, stragglers still occur. Being focused on load
balancing in heterogeneous clusters, [18] ignores temporary
overloading that occurs even in homogeneous clusters.

White or gray box approaches, whether reactive [3] or
scheduling-based [15–17], attempt to identify stragglers
based on whether local conditions exceed fixed thresholds
defined over a set of resource usage statistics. However, in

many cases, given resource usage statistic values sometimes
result in a straggler, and other times do not. Further, In Sec-
tion 4.2.2, we illustrate how the contributors of straggler
behavior vary across nodes and over time in the Facebook
and Cloudera real-world production traces. For example, we
observed that two disk-intensive tasks scheduled on a node
with slow disk were found to be straggling. The same tasks
co-located on another node, however executed normally, as
the other node had enough disk bandwidth. But when we
avoided scheduling such tasks simultaneously on the node
with slow disk, the tasks straggled due to other resource
contention patterns, including network and memory. Even if
we could easily distinguish conditions that always result in
stragglers, it is infeasible to exhaust the space of all possi-
ble resource usage statistic settings to classify them as such.
This limits the usefulness of white or gray box approaches.

An alternative is to use black box approaches to automati-
cally learn a node’s behavior. Previous work [12] has shown
that high-quality predictions of stragglers can be made, al-
though it did not attempt to incorporate such predictions
into a scheduler. Incorporating such techniques into a sched-
uler could backfire during real-life deployment on produc-
tion clusters [6]. To make these black box techniques more
transparent, it is critical to be able to assess what the tech-
nique is learning from the data. Further, modeling errors
might render the system’s performance unstable. It is crucial
to be robust against such errors for achieving predictable per-
formance. Since off-the-shelf learning techniques do not in-
clude mechanisms for evaluating the quality of their output,
these are not sufficient to tackle this problem. Despite these
challenges, there is evidence to believe that machine learning
techniques can be successfully incorporated into production
systems: previous work [13, 21] have demonstrated the use
of machine learning for selecting what resources to assign to
a task. However, they did not perform straggler mitigation.

To address each of the issues identified above, Wrangler
provides:

1. Interpretable models that can predict what conditions will
lead to stragglers using readily available performance
counters. These models automatically adapt to the dy-
namically changing resource usage patterns across nodes
and across time. This capability of predicting if a node
could cause a straggler opens up various avenues for
avoiding stragglers.

2. A confidence measure that guards against modeling er-
rors by telling us when the models are sure of their pre-
dictions. Modeling errors fundamentally limit real life
applicability of previously proposed approaches [12, 13].
Wrangler addresses this by providing a configurable con-
fidence measure. We show in Section 7.4 that the use of
the confidence measure is crucial.

3. A task scheduling mechanism that incorporates these
predictions to improve overall job finishing times. This

Model
Builder

Model-informed
Scheduler

Utilization
Counters

Master

Worker	
Nodes	

Scheduling
Decisions

Confident	
enough?	

Yes

Figure 1: Architecture of Wrangler.

reduces resource consumption compared to replication-
based mechanisms.

Although it serves as a straggler avoidance approach on its
own, Wrangler can also be used in conjunction with existing
mitigation approaches.

3. Our Proposal: Wrangler
Given resource utilization metrics of a node, Wrangler pre-
dicts if a newly assigned task on that node will turn out to be
a straggler. It then uses these predictions to make scheduling
decisions that proactively avoid straggler formation.

3.1 Architecture of Wrangler
Figure 1 shows Wrangler’s system architecture, which ex-
tends Hadoop. Job scheduling in Hadoop is handled by a
master, which controls the workers. The master assigns tasks
to the worker nodes in response to the heartbeat message sent
by them every few seconds. The assignments depend upon
the number of available slots as well as locality. Wrangler
has two basic components.

1. Model Builder: Using the job logs and snapshot of re-
source usage counters collected regularly from the worker
nodes using a Ganglia-based [22] node-monitor, we build
a model per node. These models predict if a task will
straggle given its execution environment; they also attach
a confidence measure to each of their predictions. Sec-
tion 4 describes the Model builder in detail.

2. Model-informed Scheduler: Using the predictions from
the models built earlier, a model-informed scheduler then
selectively delays the start of task execution if that node is
predicted to create a straggler. A task is delayed only if the
confidence in the corresponding prediction exceeds the
minimum required confidence. This avoids overloading of
nodes, thus reducing their chances of creating stragglers.
Section 5 details the Model-informed scheduler.

Our main tool is to defer a task’s assignment until a
node, that is likely to finish it in a timely manner, is found.
Figure 2 shows an example job with three mappers and a
reducer. Without Wrangler, Map2 was a straggler, as its
normalized duration, the ratio of its duration to the size
of its input data, was much larger than the other mappers.
When Wrangler predicted it to be a straggler on this node,

Figure 2: Lifetime of an example job observed with and without
Wrangler. Note: there are other jobs (not shown here) executing
simultaneously on the cluster. The careful assignment of Map2 to
a node, that is likely to finish it in a timely manner, accelerates the
job completion despite the delay introduced in its launching.

this assignment was avoided. This decision introduced a
delay in the task’s start until the same node is no longer
overcommitted or a different non-overcommitted node is
found. Due to this assignment, Map2 finished faster than it
did without Wrangler. The reducer then started earlier and
the scheduler achieved a net improvement in job duration.

3.2 Novelty of our Approach
Wrangler takes a radically different approach compared to
previous straggler mitigation strategies by predicting strag-
gler tasks before they are even launched and scheduling them
well to avoid their occurrence in the first place. Wrangler
achieves its goal by collecting extensive information and de-
riving useful correlations automatically. According to our
observations, what causes stragglers varies across nodes and
time. Being a learning-based approach, Wrangler is capa-
ble of adapting to various situations that cause stragglers.
It can figure out for itself what factors are causing tasks
to run slower than usual. Importantly, the straggler predic-
tion models we build are interpretable; meaning that we can
gain insights from what these models learn using the data
(Section 4.2.2). This relieves us from having to explicitly di-
agnose each case manually, which as we argued earlier is
infeasible. Note that even in the presence of more sophisti-
cated schedulers, Wrangler’s ability of adapting to dynami-
cally changing cluster execution environments and changing
resource patterns justifies its applicability. Additionally, the
role of a confidence measure is crucial for handling model-
ing errors. This allows our probabilistic learning-based ap-
proach to be robust. Learning techniques do not compute
confidence measure. Our work is the first to introduce the use
of a confidence measure to ensure stability of straggler pre-
diction models. Further, Wrangler’s model-informed sched-
uler induces delays in launching tasks on nodes that are pre-
dicted to create stragglers. In the worst case, due to possible
prediction errors, our approach could lead to bounded sub-
optimal performance. Our approach however, does not lead
to incorrect execution, termination or replacement of tasks;
thus maintaining liveness and correctness guarantees.

Learning	

Linear Function/
Feature-Weights

<Features, isStraggler>

(a) Learning phase

feature1
feature2
feature3

featureN

.

.

.

w1
w2
w3

wN

.

.

.
Σ

Straggler

Non
Straggler

(b) Prediction phase

Figure 3: Linear modeling techniques for predicting stragglers:
node’s resource usage counters form the features. The Learning
phase (a) learns the weights on features using the ground truth,
i.e., a labeled dataset that consists of (1) features of a task and (2)
whether it was an straggler or not. A linear model then predicts
based on a score obtained by taking a linear combination of fea-
tures with corresponding weights (b).

4. Building Straggler Prediction Models
The aim of Wrangler’s model builder component is to build
straggler prediction models such that they are robust with
respect to possible modeling errors and are interpretable
with respect to what they learn.

4.1 Linear Modeling for Predicting Stragglers
As we mentioned earlier, finding what actually causes strag-
glers is challenging due to complex task-to-node and task-
to-task interactions. To capture these complex interactions,
we collected numerous resource usage counters from the
cluster using Ganglia [22]. Linear modeling techniques [23]
from the machine learning domain are appropriate for prob-
abilistic modeling of a node’s behavior, which can be repre-
sented through the various resource usage counters. These
techniques adapt to dynamically changing resource usage
patterns on a node. This alleviates the pains of manual di-
agnosis of the source of individual straggler appearance. We
learn the behavior of each node individually to be robust to
heterogeneity in today’s clusters.

As shown in Figure 3(a), during the learning phase, these
techniques learn weights on the features using labeled data
that represents the ground truth. In this context this data is
the node’s resource usage counters at the time of submission
of a task and a label (isStraggler), indicating whether it was a
straggler. Using these weights and the node’s resource usage
counters the model calculates a score for predicting if it will
turn out to be a straggler. This prediction phase is depicted
in Figure 3(b). Next, we provide a high-level intuitive un-
derstanding of one such linear modeling technique that we
use, Support Vector Machines (SVM) with linear kernels.
For mathematical details, see [24, 25].1

Support Vector Machines for Predicting Stragglers:
SVM is a statistical tool that learns a linear function separat-
ing a given set of vectors (e.g., node’s resource usage coun-

1 Other classification techniques, such as decision trees could also be used,
as demonstrated in [12]. We found their performance to be similar.

ters) into two classes (e.g., straggler class and non-straggler
class). This linear function is called the separating hyper-
plane; each of the two half spaces defined by this hyperplane
represents a class. In the model building phase, this hyper-
plane is computed such that it separates the vectors of node’s
resource usage counters belonging to one class (stragglers)
from those of the other class (non-stragglers) with maxi-
mum distance (called margin) between them. Later, a new
observed resource usage vector (i.e. a test vector) can be
evaluated to see which side of the separating hyperplane it
lies, along with a score to quantify the confidence in classi-
fication based on the distance from the hyperplane.

Features: We used node-level features spanning multiple
broad categories as follows:
1. CPU utilization: CPU idle time, system and user time and

speed of the CPU, etc.

2. Network utilization: Number of bytes sent and received,
statistics of remote read and write, statistics of RPCs, etc.

3. Disk utilization: The local read and write statistics from
the datanodes, amount of free space, etc.

4. Memory utilization: Amount of virtual, physical memory
available, amount of buffer space, cache space, shared
memory space available, etc.

5. System-level features: Number of threads in different
states (waiting, running, terminated, blocked, etc.), mem-
ory statistics at the system level

Confidence Measure: Simply predicting a task to be a
‘straggler’ or a ‘non-straggler’ is not robust to modeling er-
rors. To ensure reliable predictions, we introduce the notion
of confidence measure along with the prediction of these lin-
ear models. We need a confidence measure to help decide if
our predictions are accurate enough for preventing stragglers
by influencing the scheduling decisions. The farther a node-
counter vector is from the separating hyperplane, higher are
the chances of it belonging to the the predicted class. To
obtain a probability estimate of the prediction being correct,
we can convert the distance from the separating hyperplane
to a number in the range [0, 1]. We obtain these probabilities
by fitting logistic regression models to this distance [26].
Next, we explain how to compute a confidence measure.

Snapshot of a node’s resource usage counters represents
the node at a given time instant. We denote this set of fea-
tures as a vector x. The SVM outputs a linear hyperplane of
the form wT x+b, where w is a vector of weights learned by
SVM corresponding to the features. Data points which have
a positive score, i.e., wT x + b > 0 are classified as strag-
glers and points which have a negative score are classified
as non-stragglers. The SVM doesn’t itself output probabil-
ities, but the score (wT x+ b), which is also the distance of
a point to the hyperplane, serves as a measure of the classi-
fier’s confidence. Points far away from the hyperplane (i.e
with high positive scores or highly negative scores) are those

which the classifier is very confident about. We train a logis-
tic regression classifier to convert this score into probabili-
ties. The logistic regressor outputs a probability of the form

1
1+exp(−αs−β) where s is the score and α and β are parame-
ters that are estimated using logistic regression [24].

Imbalance in the dataset: Various modeling techniques are
sensitive to imbalanced datasets. Non-straggler tasks out-
number the stragglers causing an imbalance in the dataset
used for building models. Due to the way underlying opti-
mization problems are formulated, the predictions favor the
class with majority of instances. In this context, every task
is predicted to be a non-straggler. Ideally, the best results
are obtained when each class is represented equally in the
learning dataset. We statistically oversample [27–30] the in-
stances from the minority class (i.e. straggler class) which
is a common technique for dealing with imbalanced datasets.

Interpretability: Our straggler prediction models are inter-
pretable as they allow us to gain insights from what they
learned using the data. These models automatically learn
the contribution of a feature towards creation of a straggler,
called weight of that feature. We bring out the causes behind
stragglers using these weights assigned to the features.

For a given task, our models (SVM with linear kernel [24,
25]) predict based on a linear combination of features with
their corresponding weights. In other words, their predic-
tions are based on a score obtained by multiplying feature-
values with their respective weights and adding these prod-
ucts. We then analyze the resource usage counters of actual
straggler tasks. Given the node’s resource usage counters at
the launch time of such an actually observed straggler task,
we want to find out the set of features that primarily caused
it to be a straggler using the weights learned by our mod-
els. Since it is tedious to capture a holistic picture with over
100 feasible node resource utilization counters involved, we
grouped them into five feature categories; CPU utilization,
network utilization, disk utilization, memory utilization and
other system-level features. We then selected a subset of
these features that makes up at least 75% of the models’
score for the given task. Since this subset of features has
driven the model’s decision to predict it to be a straggler, we
deem this as the cause behind this straggler. We then find
out the fraction of straggler tasks on that node that have the
same cause. In Section 4.2.2, we present this analysis.

Next, we evaluate the prediction accuracy of SVM on
production traces from Facebook and Cloudera. Section 5
describes how we used these predictions with associated
confidence for affecting scheduling decisions to avoid strag-
glers.

4.2 Model-Builder Evaluation
We evaluate the straggler prediction models on real world
production-level workloads from Facebook and Cloudera by
replaying them on a 50 node EC2 cluster as explained below.

Trace #Machines Length Date #Jobs
FB2009 600 6 month 2009 1129193
FB2010 3000 1.5 months 2010 1169184

CC a 100 1 month 2011 5759
CC b 300 9 days 2011 22974
CC d 400-500 2+ months 2011 13283
CC e 100 9 days 2011 10790
Total ≈ 4600 ≈ 11.5 months - 2351183

Table 1: Dataset. FB: Facebook, CC: Cloudera Customer.

A prediction is correct if it matches with the actual label.
We evaluate the models based on (1) how many times they
predicted straggler tasks correctly: percentage true positives
and (2) how many times they mis-predicted a non-straggler
task to be a straggler: percentage false positives. High true
positive and low false positive values indicate a good quality
model.

4.2.1 Experimental set-up
Production-level Workloads: We learn to predict strag-
glers based on production level workload traces from mul-
tiple Hadoop deployments including those at Facebook and
Cloudera’s customers. Our dataset covers a wide set of work-
loads allowing for a better evaluation. Table 1 provides de-
tails about these workloads in terms of the number of ma-
chines, the length and date of data capture, total number of
jobs in those workloads. Chen, et al., explain the data in fur-
ther details in [31]. Together, the dataset consists of traces
from over about 4600 machines captured over almost a year.
For faithfully replaying these real-world production traces
on our 50 node EC2 cluster, we used a statistical workload
replay tool, SWIM [32] that synthesizes a workload with
representative job submission rate and patterns, shuffle/input
data size and output/shuffle data ratios (see [32] for details
of replay methodology). SWIM scales the workload to the
number of nodes in the experimental cluster.
Dataset: For building straggler prediction models, we need a
labeled dataset that consists of a number of {features, label}
pairs. In this context, features are the resource usage coun-
ters of a node at the time of submission of a task; and label
is whether it was a straggler or not. To generate this dataset,
we replayed the production-level traces (see Table 1), us-
ing SWIM [32] on Amazon EC2 cluster of 50 m1.xlarge
instances. Using Ganglia [22] we captured the node’s re-
source usage counters at regular intervals of 15 seconds; this
forms the features in the dataset (see Section 4.1). We label
the dataset by marking straggler tasks based on the follow-
ing definition: Let normalized durations, nd(t) be the ratio
of task execution time to the amount of work done (bytes
read/written) by task t.

Definition A task ti of a job J is called a straggler if

nd(ti)> β ×median
∀t j∈J

{nd(t j)} (1)

0	

20	

40	

60	

80	

100	

120	

FB2009	 FB2010	 CC_a	 CC_b	 CC_d	 CC_e	

Pr
ed

ic
5o

n	
Ac

cu
ra
cy
	 (%

)	 %	 True	 Posi5ve	 %	 False	 Posi5ve	

Figure 4: Classification accuracy of SVM for all workloads.

In Section 4.2.2, we show that our models are agnostic to the
value of β .

4.2.2 Results of Model-evaluation
Figure 4 shows the straggler prediction accuracy on all the
workloads using SVM. We use the tasks executed over ini-
tial 2 hours to build models and test their accuracy on the
tasks submitted over the next hour. Overall, using a linear
kernel SVM with Sequential Minimal Optimization [33], we
obtain about 80% true positive and about 30% false posi-
tive percentages. This means that we predicted 80% of total
stragglers tasks as stragglers and mis-predicted 30% of non-
stragglers to be stragglers. This completes the model build-
ing phase and then we deploy the models so that they provide
hints to Wrangler’s scheduler. In Section 7, for example, we
show that we achieve 61% and 43% improvement in 99th

percentile of overall completion times for FB2009 and CC b
respectively. This confirms that about 80% true positive per-
centage is good enough.

Sensitivity of the models to the definition of stragglers:
Based on the value chosen for β , number of stragglers vary
(see Definition 1). Intuitively, β indicates the extent to which
a task is allowed to slow down before it is called a straggler.
Our mechanism is agnostic to the value of β chosen for all
the workloads. For brevity, we show a representative sensi-
tivity analysis with respect to β for CC b in Figure 5. We
chose β from the range (1,1.7). β = 1 is simply the median
and we did not see enough stragglers for β greater than 1.6
for CC b to be able to oversample and build a model. In our
experiments, we set β = 1.3.

Insights Provided by the Models: We briefly describe the
insights we obtained from the straggler prediction models
about the causes behind them. However, we leave the de-
tailed explanation of the causes for future work. In Section 7,
we show that Wrangler’s model-informed scheduler acceler-
ates job completion by making careful task-to-node assign-
ments; thus avoids such straggler-causing situations.

Figure 6 presents the percentage of stragglers created due
to different causes. Figure 6(a) shows that for FB2010, disk
utilization (I/O) was the primary bottleneck creating tem-
porary hotspots along with interference with simultaneously

0	

20	

40	

60	

80	

100	

120	

β	 =	 1.1	 β	 =	 1.2	 β	 =	 1.3	 β	 =	 1.4	 β	 =	 1.5	 β	 =	 1.6	

Pr
ed

ic
3o

n	
Ac

cu
ra
cy
	 (%

)	 %	 True	 Posi3ve	 %	 False	 Posi3ve	

Figure 5: Sensitivity of classification using SVM with respect to
values of β for CC b. The error bars show the standard deviation
across the percentage accuracy of models built for the 50 nodes in
the cluster. Note: The valid range for β shown is β > 1 (β = 1 is
simply the median) to β < 1.7 (lower enough to ensure minimum
number of stragglers for oversampling and training).

executing tasks’ memory, CPU usage patterns. Figure 6(b)
shows the causes behind stragglers on another node in the
cluster executing the same workload (FB2010). Although
the disk (I/O) usage still dominates, other features also con-
tribute considerably to the creation of stragglers on this node.
On a node executing CC b, as shown in Figure 6(c), memory
contention contributed the most in creating stragglers.

From our analysis of causes behind stragglers indicated
by the models, we note the following:

• Causes behind stragglers vary across nodes – this is true
even for the clusters of the same instance types on Ama-
zon EC2. This justifies our approach of building a strag-
gler prediction model per node. This decision also makes
our approach robust to heterogeneity.

• Causes vary across workloads – we see that for FB2010,
the dominating contributor was disk usage whereas the
tasks of CC b contend over memory. In [31], Chen et
al., explain that FB2010 is I/O intensive, supporting this
insight obtained from our models.

• Network utilization features were not seen to be the prime
contributors in our experiments for any of the workloads
we evaluated on. We believe network utilization was not
the bottleneck as we had enabled the locality-aware de-
lay scheduling mechanism [16]. This indicates that since
none of the existing schedulers are straggler-aware, they
cannot eliminate stragglers.

• Complex task-to-task interactions on an underlying node
tend to create temporary hotspots. Lack of this informa-
tion can cause scheduling decisions to go wrong.

Note that it is hard to know the contributors to the strag-
gling behavior of tasks apriori without the help from the
models. This justifies our use of learning-based models that
automatically adapt to various causes behind stragglers. Us-
ing the straggler prediction models, we can proactively in-
form the schedulers of such straggler causing situations. In
Section 5, we propose such a scheduler that exploits these
predictions to avoid creating stragglers in the first place.

(a) FB2010, Node1 (b) FB2010, Node2 (c) CC b, Node1

Figure 6: Causes behind stragglers

5. Model-informed Scheduling
In this section, we describe our scheduling algorithm that
uses the straggler predictions to selectively delay task as-
signment to nodes. We then explain the significance of tun-
ing parameters of this algorithm and describe how we learn
their values. Finally, we conclude with a theoretical analysis
that bounds the delays our algorithm can introduce.

Algorithm 1 Model-informed scheduling algorithm

Let N={ni : i=1, . . . ,# workers} be the set of worker nodes
Let willStragglei ∈ {yes, no} be the prediction using a snapshot of
resource usage counters of ith worker node using its model
Let p ∈ [0,1] be the minimum acceptable confidence of predictions.

1: /* PREDICT runs every ∆ interval in background */
2: procedure PREDICT
3: for all the workers in N
4: collect a snapshot of node’s resource usage counters
5: willStragglei = prediction if worker ni will create a straggler
6: con f idencei = confidence in the above prediction

7: procedure SCHEDULE
8: for a task chosen as per the preferred scheduling policy
9: when heartbeat is received from a worker indicating free slot(s)

10: if willStragglei == yes with con f idencei > p
11: reject the task from being assigned to ni
12: else
13: proceed as per the configured scheduling policy

5.1 Wrangler’s Scheduling Algorithm
In Hadoop, the master manages job scheduling by assigning
tasks to workers in response to heartbeats sent by them
every few seconds. When the scheduler receives a heartbeat
indicating that a map or reduce slot is free, the configured
scheduling policy, such as Fair-scheduling, selects tasks to
be assigned.

Wrangler’s scheduling algorithm proposes to extend any
of the existing schedulers. Before launching a task, our
model-informed scheduler predicts if a worker will finish
it in a timely manner. If the worker is predicted to create a
straggler at that time, the task is not assigned to it. When we
find a worker that is not predicted to create a straggler, the
task is then assigned to it.

Algorithm 1 details this scheduling policy. The predict
procedure (lines 2-6) is executed in background every ∆ time

interval to predict if the workers will create stragglers. All
the predictions also have a confidence measure (line 6) at-
tached to them. The schedule procedure (lines 7-13) is the
hook we embed in the default scheduler code. We modified
the Fair-scheduler code for our prototype (see Section 6).
When a heartbeat is received, our scheduler delays a tasks’s
assignment to a worker if it is predicted to create a strag-
gler with confidence higher than a configured threshold p in
Algorithm 1. Otherwise, we let the default scheduling policy
make the assignment decision (lines 12-13). Note that Wran-
gler processes the predictions in background and keeps them
ready for the scheduler to use (see Section 6). This allows us
to be off the critical path that makes scheduling decisions.

Note that Wrangler acts as a system that provides hints
to the default/configured scheduler. This means that the de-
cision of which task to launch next is left to the underlying
scheduler. Wrangler only informs the scheduler whether or
not a newly available node is likely to finish a task in timely
manner. Inclusion of task-level features could enable further
improvements in overall job completion times, we left this
extension to future work.

5.2 Learning the Parameters: p and ∆

Algorithm 1 has two tunable parameters: p is the minimum
acceptable confidence in predictions needed for them to in-
fluence the scheduling decisions and ∆, that decides how
frequently a snapshot of node’s resource usage counters is
collected and predictions are computed using it. Next we ex-
plain how we tune these parameters.

5.2.1 Learning p: Threshold on Confidence Measure
Parameter p is the minimum acceptable confidence of pre-
dictions. p takes a value in range [0,1]. If p is too low, many
tasks will get delayed, adversely affecting job completion
and underutilizing resources. On the other hand, if p is too
high, many long running tasks will get scheduled. We must
set it to balance good resource utilization without increasing
the chances of tasks straggling. We observed that the value
of p needed for maximum improvement in overall job com-
pletion times varies from one workload to another.

Our approach is to learn p automatically during the model
building phase so as to avoid the need for manual tuning. As

we explained in Section 4.2.2, we use the data generated by
tasks executed over initial 2 hours to build models and test
their accuracy on the tasks submitted over the next hour. The
set of tasks submitted in this one hour are unseen by the
learning algorithm, referred to as a validation set. To decide
the value of p, we use the confidence (see Section 4.1) on
predictions on tasks in the validation set. For every node, we
extracted a range of confidence values producing the most
accurate predictions. We set p equal to the median of a range
that is agreed upon by a majority of the nodes (forming a
quorum). In Section 7.5, we show the sensitivity of Wrangler
with respect to multiple values of p. In that section, we
present the experimental validatation over the next 10 hours
that the chosen values for p achieve maximum gain in job
completion times for the workloads listed in Table 1. A
different p value per node could also be used if desired (we
do not evaluate this experimentally in this paper).

5.2.2 Learning ∆: Interval between Predictions
Recall that to be off the critical path of making schedul-
ing decisions, Wrangler keeps the predictions ready for the
scheduler to use (Section 6 provides implementation de-
tails). To ensure that the predictions reflect current state of
a node, Wrangler regularly collects nodes’ resource usage
counters and predicts using their respective models if a node
can create a straggler at the time. Parameter ∆ determines
how frequently this background process should be invoked.
If ∆ is too high, the predictions may not be fresh enough to
reflect dynamic changes in the node’s status. Extracting pre-
dictions out of already built models is of the order of sub-
miliseconds [34]; it is not too expensive. Hence, small ∆ is a
safe choice. We suggest setting ∆ to a smaller value than the
minimum inter-task submission times.

The value we chose for our experimental set up was de-
cided based on the time spent collecting the node resource
usage counters and predicting based on them. With our cur-
rent centralized implementation of Wrangler’s prototype,
where the resource usage counters from all the nodes are col-
lected at the master using Ganglia, ∆ is set to 15 seconds. On
a distributed implementation of Wrangler (see Section 7.8),
it is feasible to have every node collect its resource usage
counters, predict using it and send this prediction to the mas-
ter along with the heartbeat. This implementation makes ∆

independent of the number of nodes in the cluster.

5.3 Bound on Delays Introduced by Wrangler
Since Wrangler delays tasks that may straggle, it is im-
portant to bound such a delay. Wrangler drives the cluster
through the following three states (see Figure 7), with re-
spect to the predictions on the constituent nodes:

• N: No node is predicted to create a straggler
• S: Some nodes are predicted to create stragglers and
• A: All the nodes are predicted to create stragglers.

Figure 7: A simplified State-Machine that captures the behavior of a
cluster executing parallel data intensive workloads.

For this analysis to be tractable, we make a simplifying
assumption that the cluster behavior could be modeled as
an irreducible ergodic Markov chain [35, 36] in which the
cluster’s future state depends on the currently observed state.

Let P be a 3× 3 matrix describing the transition proba-
bilities for the states in Figure 7. Let π be a 3× 1 vector,
[πN ,πS,πA]

T comprising the steady state distributions of the
3 states. To ensure that Wrangler does not delay tasks in-
definitely, we do not want the cluster to end up in state A at
steady state. For this, we need to show that πA is very close
to 0. We do this analysis as follows. When the system at-
tains steady state, the transition matrix P has no effect on
the vector π . Using the elementary properties of stationary
distributions, we have that πP = π (for details, see [35]).
This equation can be solved through eigen-analysis to find
the eigenvector (π) of the transition matrix P corresponding
to the eigenvalue of 1. Using the log of the state transitions of
the cluster executing various workloads, we estimated π and
found that πA was indeed 0 as desired. In Section 7.7 we de-
scribe an empirical analysis of the delays induced by Wran-
gler. Here, we provided a theoretical guarantee that a task,
as seen in real workloads, will never be delayed indefinitely.
One way of bounding delays in case of under-provisioned
systems or workloads with a high rate of job submission
could be to provide a tunable parameter that limits the num-
ber of times a task’s assignment gets rejected. We leave this
for future work.

6. Implementation
We implemented Wrangler (see Figure 1) by embedding it
in the Fair scheduler’s code. It consists of about 200 lines of
code: about 10 lines embedded in Fair scheduler, and the rest
for building models using SVM, capturing nodes’ resource
usage counters and extracting predictions from the models.
We use Weka [37] for building SVM and logistic regression
models. In our prototype, the Hadoop logs, node’s resource
usage counters are collected centrally at the master node for
further processing and building models. However, Wrangler
could be implemented in a distributed manner where all the
worker nodes collect and process their statistics, build and
use their models independently (see Section 7.8).

Wrangler’s Training and Usage Workflow: When a work-
load starts executing on the cluster, Wrangler collects the
job logs and node-level statistics from all the nodes and pro-

cesses them to generate the dataset to build models. It builds
one straggler prediction model for each node in the cluster
taking less then a second per node using Weka [37]. In our
experiments, we captured training data for about 2 hours2.
The jobs do not need to wait until the training period is over
as the default scheduling policy will be in effect during this
time. Once training data was collected, it typically took a few
seconds to build a model per node. Once the models are built,
Wrangler’s background process frequently captures the re-
source usage counters from all worker nodes. It predicts if
a new task might run slower if assigned to a particular node
using that node’s model. Wrangler also reports the confi-
dence it has in its prediction. Time taken by each prediction
was the order of sub-milliseconds. This prediction for every
worker node happens at a regular interval of ∆ and is read by
the scheduler for making assignment decisions. This way,
the prediction process does not come in the critical path of
making scheduling decisions.

Models could be updated or re-built regularly once enough
jobs have finished execution and new data has been col-
lected. This data collection and model building phase could
overlap with job executions. We show the improvements
achieved on the workloads from Facebook and Cloudera’s
customers, by building models only once and testing for the
next 10 hours. We leave analyzing the usefulness of the train-
ing for continuously changing workloads as well as across
different workloads for future work.

7. Evaluation
We demonstrate Wrangler’s effectiveness by answering the
following questions through experimental evaluation:

1. Does Wrangler improve job completion times?

2. Does Wrangler reduce resource consumption?

3. Is Wrangler reliable in presence of modeling errors?

4. How sensitive is Wrangler with respect to parameters?

5. How does Wrangler improve job completion times?

6. What if Wrangler mis-predicts?

7. Does Wrangler scale well?

7.1 Setup
Real world production workloads: We evaluate using
two workloads from Facebook (FB2009 and FB2010) and
two from Cloudera (CC b and CC e). We replay the pro-
duction logs to synthesize representative workloads using
SWIM [32] that faithfully reproduces the job submission
patterns, data sizes, and data ratios on our 50-node cluster of
m1.xlarge instances on Amazon EC2.

Baseline: Although Wrangler serves as a straggler avoid-
ance approach on its own, it can also be used in conjunction

2 We divided the data collected in these 2 hours in 3 parts; we used 2 of
them for training and the remaining part for testing the model’s correctness.

with existing mitigation approaches to accrue further reduc-
tion in job completion times and resources consumed. To
show its effectiveness, we compare Wrangler against spec-
ulative execution, a widely used straggler mitigation tech-
nique in Hadoop production clusters.

Metrics: We look at the % reduction in job completion times
as our primary metric. Let Tw be the job execution time with
Wrangler and T be without Wrangler, then

%Reduction =
T −Tw

T
∗100 (2)

A positive value indicates reduction in job completion times
whereas negative values indicate increase.
Highlights of our results are:

• For Facebook 2009 production Hadoop trace, Wrangler
improves the overall job completion times by 61% at the
99th percentile and by 20% at the 99.9th percentile over
Hadoop’s speculative execution.

• For Cloudera customer’s production Hadoop trace, CC b,
Wrangler improves the overall job completion times by
43% at the 99th percentile and by 22% at the 99.9th per-
centile over speculative execution.

• Being proactive, Wrangler consumed 55% and 40% lesser
resources for Facebook 2009 and CC b respectively com-
pared to the reactive speculative execution mechanism.

7.2 Does Wrangler improve job completion times?
We evaluated the gains on the tasks of previously unseen
jobs arriving after the models are built. Figure 8 shows im-
provement in average, 75th and higher percentile job com-
pletion time statistics for the same set of jobs executed with
Wrangler and without Wrangler (i.e., with speculative exe-
cution). For FB2009, Wrangler achieves an improvement of
61% at the 99th percentile and 57% in the average job com-
pletion times. For CCb, we see the improvements of 43%
at the 99th percentile and 44% in the average job comple-
tion times. Note that, for CC e, Wrangler slowed down the
75th to the 90th percentiles. We found that CC e has a bursty
job-submission pattern. This means that, in a time period
shorter that ∆, many tasks were submitted. However, the re-
source usage counters from all the nodes were collected only
once in this ∆ time interval. The predictions were based on
these resource usage counters and hence most likely were
not timely representative of the load on the nodes. This could
be avoided by setting ∆ to a value smaller than the minimum
inter-task submission times. Figure 8 summarizes the maxi-
mum gains achieved for each workload after tuning for the
right value of p (Section 7.5).

For FB2010, we achieved lower gains compared to those
achieved for FB2009. The number of stragglers found per
hour in FB2010 is comparable to those in FB2009. How-
ever, [31] notes that Facebook’s workload has changed sig-
nificantly from 2009 to 2010. FB2010 has a higher job sub-

-‐10	
0	

10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

av
g	

75
p	

80
p	

85
p	

90
p	

95
p	

96
p	

97
p	

98
p	

99
p	

99
.9
p	

10
0p

	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	 T
im

e	

FB2009	 (p=0.7)	

-‐10	
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

av
g	

75
p	

80
p	

85
p	

90
p	

95
p	

96
p	

97
p	

98
p	

99
p	

99
.9
p	

10
0p

	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	 T
im

e	

FB2010	 (p=0.7)	

-‐10	
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

av
g	

75
p	

80
p	

85
p	

90
p	

95
p	

96
p	

97
p	

98
p	

99
p	

99
.9
p	

10
0p

	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	 T
im

e	

CC_b	 (p=0.8)	

-‐10	
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

av
g	

75
p	

80
p	

85
p	

90
p	

95
p	

96
p	

97
p	

98
p	

99
p	

99
.9
p	

10
0p

	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	 T
im

e	

CC_e	 (p=0.7)	

Figure 8: Summary of Wrangler’s improvements in job completion times for all the workloads with the tuned vale of p (see Sections 5.2.1
and 7.5): This plot shows that Wrangler successfully reduces the completion time by carefully scheduling potential stragglers.

Workload Total Task-Seconds % Reduction in
w/o Wrangler With Wrangler total task-seconds

FB-2009 903980 405953 55.09
FB-2010 296893 223339 24.77

CC b 201444 120559 40.15
CC e 694564 637319 8.24

Table 2: Resource utilization with and without Wrangler in terms
of total task execution times (in seconds) across all the jobs dur-
ing our replay. Being proactive, Wrangler achieves the improved
completion times while consuming lesser resources compared to
the wait-and-speculate re-execution mechanisms.

-‐4.22	 -‐5.53	 -‐5.39	

11.34	

-‐5.51	

43.59	

58.87	 62.10	

43.13	

22.46	

-‐10	
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

avg	 95p	 97p	 99p	 99.9p	

Pe
rc
en

ta
ge
	 R
ed

uc
;o

n	

Predic;on	 without	 confidence	 measure	
Predic;on	 with	 confidence	 measure	 (p=0.8)	

Figure 9: The confidence measure attached with each of the pre-
dictions is crucial. This plot compares the reduction in overall job
completion time achieved by Wrangler with and without using the
confidence measure attached with its predictions for CC b work-
load.

mission rate, higher I/O rate and is more compute intensive.
This does not affect the prediction accuracy, but the model-
informed scheduling mechanism needs comparatively less-
occupied nodes to achieve faster job completions. Wran-
gler’s key idea is to avoid overloading a few nodes and in-
stead distribute that load evenly. However, if load is consis-
tently high on the cluster, Wrangler’s gains are limited.

7.3 Does Wrangler reduce resource consumption?
We showed that Wrangler significantly improves the job
completion time when used in conjunction with specula-
tive execution. The reactive relaunch-based mechanism of
speculative execution consumes extra resources for the re-
dundantly launched copies of straggler tasks. On the con-

trary, being proactive Wrangler achieves overall faster job
completions by smarter task to node assignments. Table 2
shows that Wrangler consumes lesser resources as compared
to speculative execution resulting in reduced costs by free-
ing up the resources sooner. As we noted earlier, CC e has a
bursty job submission pattern and even in this case, the de-
lay based mechanism of Wrangler speeds up the jobs while
using lesser total resources.

7.4 Is Wrangler reliable in presence of modeling
errors?

Wrangler’s achieves reliability in presence of prediction er-
rors by attaching confidence with the straggler predictions.
We have observed that this confidence measure plays a cru-
cial role in improving the completion times for all the work-
loads by allowing only confident predictions to influence
scheduling decisions. Figure 9 shows the percentage reduc-
tion in job completion times achieved by Wrangler with and
without the confidence measure for CC b as an example. In
the absence of a confidence measure, the modeling errors
drive the scheduling decisions to change too frequently. This
makes the costs incurred by delaying the tasks to weigh more
than the reduction achieved in job completion time. Thus,
Wrangler achieves its goal of being robust to modeling er-
rors by the novel use of a confidence measure.

7.5 How sensitive is Wrangler with respect to p?
We described how to learn a value of p during training in
Section 5.2.1. In this section, we evaluate the sensitivity of
Wrangler with respect to p. We calculated the percentage
reduction in job completion times Wrangler achieves with
different values of p in a range of [0,1]. In Figure 10, we
present a subset of them. Our experimental validation shows
that for both the Facebook workloads (FB2009 and FB2010
in Figure 10 (a) and (b)) a value of 0.7 attains the maxi-
mum gains in terms of improved job completion times and
resource utilization. The right value of p turned out to be 0.8
for CC b and 0.7 for CC e (see Figure 10 (c) and (d) respec-
tively.

From this analysis, we note that choosing the right value
for p is important for improving job completion times.

Figure 11: Load/resource utilization without and with Wrangler
(p=0.7) for FB2010: Even with highly intensive FB2010 workload,
Wrangler speeds up the 99th percentile of job completions by 47%
by avoiding overloading of a few nodes and distributing the load
more evenly (see Section 7.6).

We also note that this value is workload dependent. Small
changes in its value could change the improvements dras-
tically for some workloads (for example, see CC b in Fig-
ure 10 (c)). However, in Section 5.2.1 we described an auto-
matic way to choose a starting value for p during the model
building phase itself without waiting for jobs to execute. Ad-
ditionally, to tune to its right value, we need to observe the
performance of the jobs for relatively small amount of time
(we verified on a window of 30 minutes). Wrangler’s archi-
tecture is flexible and allows changes in value of p on the fly
until it converges to a right value.

7.6 How does Wrangler improve job completion times?
Wrangler avoids stragglers by implicitly doing a better job
of load balancing than the scheduling approaches that use
only statically available information. Figure 11 shows the
load on the cluster executing FB2010 without Wrangler and
with Wrangler (p=0.7). Without Wrangler, a few nodes enter
a heavily loaded state and tend to remain loaded as new
tasks are then assigned to them in addition. For a right
value of p, with Wrangler, we observed that the load is
now distributed evenly and most of the nodes are almost
equally utilized. So even in this limiting case of FB2010,
where the cluster is heavily loaded, Wrangler improves job
completions significantly (47.06% at the 99th percentile, see
Figure 10 (b)).

7.7 What if Wrangler mis-predicts?
The main impact of wrong predictions is on the delay ex-
perienced by tasks. In Section 5.3, we statistically proved
that Wrangler will not delay tasks indefinitely. Also, since
our method only delays potential stragglers, there is no risk
of terminating or replacing them. Thus, Wrangler does not
impact the correctness or liveness properties of the system.

In this section, we analyze empirically observed delays
for the Facebook and Cloudera workloads in our dataset.

0	

20	

40	

60	

80	

100	

120	

True	 Posi0ve	 False	 Posi0ve	

Pe
rc
en

ta
ge
	

Pr
ed

ic0
on

	 A
cc
ur
ac
y	 50	 Nodes	 100	 Nodes	

(a) Prediction Accuracy

0	
10	
20	
30	
40	
50	
60	
70	
80	

avg	 80p	 90p	 95p	 97p	 99p	

Pe
rc
en

ta
ge
	 R
ed

uc
9o

n	
in
	

Jo
b	
Co

m
pl
e9

on
	 Ti
m
e	 50	 Nodes	 100	 Nodes	

(b) Improved Job Completion

Figure 13: Scalability of Wrangler’s centralized prototype: The pre-
diction accuracies shown in (a) and percentage reduction in job
completion times shown in (b) for a larger (100 nodes) cluster are
significant and comparable with those for a 50 nodes cluster.

Figure 12 shows the percentage delay with respect to the
task’s original execution time (i.e., without Wrangler) and
the percentage reduction in task completion times achieved
by Wrangler for these workloads. Note that Figure 12
presents speed-up at task-level whereas all the other results
presented earlier are the job-level speed-ups. We see that for
FB2009, the delay introduced by Wrangler is less than 2%
for 75% of the tasks and less than 11% for 90% of the tasks.
Notice that the delays introduced for FB2010 are higher than
FB2009 and the corresponding improvements in task com-
pletion times are also lower. This is due to the high load
on all the nodes of the cluster executing FB2010 as we de-
scribed in Section 7.2. This explains Wrangler’s decision to
delay the tasks more while seeking for situations where the
nodes are not over committed.

7.8 Does Wrangler scale well?
Our current prototype of Wrangler is centralized: the re-
source usage counters from all the nodes are collected, pro-
cessed, node-wise models are built and used centrally from
a location accessible to the scheduler. Most actual users
use cluster size of about 100 nodes [38–40]. We executed
FB2009 on a larger cluster with 100 nodes. Note that in our
experiments, we maintain fixed amount of work per node by
re-scaling the real-life workload appropriately.

Figure 13 (a) shows that we get comparable prediction
accuracies of the models for the small and larger clusters.
Moreover, Figure 13 (b) shows that the percentage reduction
in job completion time achieved by Wrangler’s centrally
implemented prototype is comparable across cluster sizes.

Results from Figures 13 (a) and (b) show that Wrangler
scales well to larger cluster sizes. The central implementa-
tion might stress the master with increase in the size of a
cluster further. We believe that Wrangler could be extended
for even larger clusters by distributing these responsibilities
to individual nodes. This allows for most of the computa-
tions to take place locally, thereby reducing the network traf-
fic. In this scenario, each node would build its own model
using locally collected resource usage counters. At a regu-
lar time interval ∆ (see Section 5.2.2), the straggler predic-
tions would be computed using locally available recent re-

57.37	

72.49	

84.16	 86.39	 83.67	 80.51	

61.09	

20.23	

-‐40	

-‐20	

0	

20	

40	

60	

80	

100	

avg	 75p	 85p	 90p	 95p	 97p	 99p	 99.9p	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	

Ti
m
es
	

p=0.1	 p=0.3	 p=0.5	 p=0.7	 p=0.8	 p=0.9	

(a) FB2009

10.60	

2.21	
5.60	

9.62	

27.51	

39.66	

47.06	

27.78	

-‐30	

-‐20	

-‐10	

0	

10	

20	

30	

40	

50	

avg	 75p	 85p	 90p	 95p	 97p	 99p	 99.9p	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	

Ti
m
e	

p=0.2	 p=0.4	 p=0.6	 p=0.7	 p=0.8	 p=0.9	

(b) FB2010

43.59	 45.22	 50.41	
56.80	 56.05	 58.87	 61.75	 62.10	

72.99	

43.13	

22.46	

-‐80	

-‐60	

-‐40	

-‐20	

0	

20	

40	

60	

80	

100	

avg	 75p	 80p	 85p	 90p	 95p	 96p	 97p	 98p	 99p	 99.9p	

%
	 R
ed

uc
ito

n	
in
	 Jo

b	
Co

m
pl
eA

on
	

Ti
m
e	

p=0.7	 p=0.8	 p=0.9	

(c) CC b

17.72	

-‐2.49	 0.84	 2.17	

15.79	

20.65	

33.42	

-‐10	

-‐5	

0	

5	

10	

15	

20	

25	

30	

35	

40	

avg	 75p	 85p	 95p	 97p	 99p	 99.9p	
	 %
	 R
ed

uc
8o

n	
in
	

Jo
bC

om
pl
e8

on
	 T
im

e	

p=0.3	 p=0.4	 p=0.5	 p=0.6	 p=0.7	 p=0.8	 p=0.9	

(d) CC e

Figure 10: Reduction in job completion times achieved by Wrangler with various values of p for all the workloads. Data labels are shown for
the p value that achieves the highest gain in completion times for each of the four workloads.

0.22	 2.03	 3.31	 5.99	
11.21	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 D
el
ay
	

1.69	 3.68	 4.57	
8.12	

21.84	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 D
el
ay
	

1.21	 2.90	 3.87	
7.16	

16.04	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 D
el
ay
	

0.98	 4.42	 6.72	
12.84	

19.97	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 D
el
ay
	

8.37	

65.25	

82.09	
90.53	 94.91	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 R
ed

uc
4o

n	
in
	 T
as
k	

Du
ra
4o

ns
	

(a) FB2009

1.02	
15.30	 19.57	

24.85	
31.39	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 R
ed

uc
4o

n	
in
	 T
as
k	

Du
ra
4o

ns
	

(b) FB2010

16.52	

46.75	 50.58	
55.50	

61.22	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 R
ed

uc
3o

n	
in
	 T
as
k	

Du
ra
3o

ns
	

(c) CC b

2.13	
15.25	 19.40	

26.66	
36.62	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 R
ed

uc
4o

n	
in
	 T
as
k	

Du
ra
4o

ns
	

(d) CC e

Figure 12: Empirical analysis of the amount of delay introduced by Wrangler and the speed up achieved in task completions: With marginal
delays, Wrangler achieves significant reduction in task durations. FB2010 being a resource intensive workload [31], Wrangler induces
slightly higher delays seeking for nodes that are not over-committed. This results in reduced improvements since the cluster is mostly loaded.
Since CC e contains lesser number of stragglers, Wrangler has limited opportunity to improve task completions (see Section 7.7).

source usage counters and model at each node. These model
predictions would then be piggybacked with the heartbeat
messages sent to the master by each node. Finally, the mas-
ter would use these predictions to influence scheduling deci-
sions as described in our current workflow. We leave this as
an avenue for future research.

8. Conclusion
Wrangler proactively avoids stragglers to achieve faster job
completions while using fewer resources. Rather than allow-
ing tasks to execute and detecting them as stragglers when
they run slow, Wrangler predicts stragglers before they are

launched. Wrangler’s notion of a confidence measure allows
it to overcome modeling errors. Further, Wrangler leverages
this confidence measure to achieve a reliable task schedul-
ing; thus eliminating the need for replicating them. Prototype
on Hadoop using an EC2 cluster of 50 nodes showed that
Wrangler speeds up the 99th percentile job execution times
by up to 61% and consumes up to 55% lesser resources as
compared to the speculative execution for production work-
loads at Facebook and Cloudera’s customers. Although it
serves as a straggler avoidance approach on its own, Wran-
gler can also be used in conjunction with existing mitigation
approaches. In the future, we aim to speed up the training
process by (1) reducing the time spent for capturing training
data per node in a cluster and (2) training straggler prediction
models across workloads.

9. Acknowledgments
We are indebted to Vivek Chawda, Tathagata Das, Bharath
Hariharan, John Kubiatowicz, Anthony Joseph and Ion Sto-
ica for helpful discussions regarding the project; Chiranjib
Bhattacharyya, Aurojit Panda, Sara Alspaugh, Yanpei Chen,
Rachit Agarwal, Anurag Khandelwal, Joseph Gonzalez and
other members of the AMPLab for their insightful comments
on various drafts of this paper. We thank the anonymous
reviewers of HotCloud 2013, OSDI 2014 and SoCC 2014
for help in improving this work with their extremely helpful
comments. We also thank our shepherd, Fred Douglis, for
help in shaping the final version of the paper.

This research is supported in part by NSF CISE Ex-
peditions Award CCF-1139158, LBNL Award 7076018,
and DARPA XData Award FA8750-12-2-0331, and gifts
from Amazon Web Services, Google, SAP, The Thomas
and Stacey Siebel Foundation, Adobe, Apple, Inc., Bosch,
C3Energy, Cisco, Cloudera, EMC, Ericsson, Facebook,
GameOnTalis, Guavus, HP, Huawei, Intel, Microsoft, Ne-
tApp, Pivotal, Splunk, Virdata, VMware, and Yahoo!.

References
[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified

data processing on large clusters. In Proceedings of the 6th
Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley,
CA, USA, 2004. USENIX Association.

[2] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and
Dennis Fetterly. Dryad: Distributed data-parallel programs
from sequential building blocks. In Proceedings of the 2Nd
ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, EuroSys ’07, pages 59–72, New York, NY,
USA, 2007. ACM.

[3] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Green-
berg, Ion Stoica, Yi Lu, Bikas Saha, and Edward Harris. Rein-
ing in the outliers in map-reduce clusters using mantri. In Pro-
ceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI’10, pages 1–16, Berkeley,
CA, USA, 2010. USENIX Association.

[4] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy H. Katz, and Ion Stoica. Improving mapreduce per-
formance in heterogeneous environments. In OSDI, 2008.

[5] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xi-
aoqi Ren, Ion Stoica, Adam Wierman, and Minlan Yu. Grass:
Trimming stragglers in approximation analytics. In 11th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI’14), pages 289–302, Seattle, WA, April
2014. USENIX Association.

[6] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and
Ion Stoica. Effective straggler mitigation: Attack of the
clones. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, NSDI’13,
pages 185–198, Berkeley, CA, USA, 2013. USENIX Asso-
ciation.

[7] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, February 2013.

[8] Barroso L. Dean, Jeff. Achieving Rapid
Response Times in Large Online Services.
http://research.google.com/people/jeff/latency.html, 2012.

[9] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky,
and Dan Werthimer. Seti@home: an experiment in public-
resource computing. Commun. ACM, 45(11):56–61, Novem-
ber 2002.

[10] Gaurav D. Ghare and Scott T. Leutenegger. Improving
speedup and response times by replicating parallel programs
on a snow. In Proceedings of the 10th International Con-
ference on Job Scheduling Strategies for Parallel Process-
ing, JSSPP’04, pages 264–287, Berlin, Heidelberg, 2005.
Springer-Verlag.

[11] Walfredo Cirne, Francisco Brasileiro, Daniel Paranhos, Luı́s
Fabrı́cio W. Góes, and William Voorsluys. On the efficacy,
efficiency and emergent behavior of task replication in large
distributed systems. Parallel Comput., 33(3), April 2007.

[12] Edward Bortnikov, Ari Frank, Eshcar Hillel, and Sriram Rao.
Predicting execution bottlenecks in map-reduce clusters. In
Proceedings of the 4th USENIX Conference on Hot Topics
in Cloud Ccomputing, HotCloud’12, pages 18–18, Berkeley,
CA, USA, 2012. USENIX Association.

[13] Shekhar Gupta, Christian Fritz, Bob Price, Roger Hoover,
Johan Dekleer, and Cees Witteveen. Throughputscheduler:
Learning to schedule on heterogeneous hadoop clusters. In
Proceedings of the 10th International Conference on Auto-
nomic Computing (ICAC’13), pages 159–165, San Jose, CA,
2013. USENIX.

[14] YongChul Kwon, Magdalena Balazinska, Bill Howe, and
Jerome Rolia. Skewtune: Mitigating skew in mapreduce ap-
plications. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’12,
pages 25–36, New York, NY, USA, 2012. ACM.

[15] Matei Zaharia. The Hadoop Fair Scheduler.
http://developer.yahoo.net/blogs /hadoop/FairSharePres.ppt.

[16] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: a simple technique for achieving locality and fair-

ness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems, EuroSys ’10, 2010.

[17] Hadoop’s Capacity Scheduler. http://hadoop.apache
.org/core/docs/current/capacity scheduler.html.

[18] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan,
and T. N. Vijaykumar. Tarazu: Optimizing mapreduce on het-
erogeneous clusters. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XVII,
pages 61–74, New York, NY, USA, 2012. ACM.

[19] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder,
Kunal Talwar, and Andrew Goldberg. Quincy: Fair scheduling
for distributed computing clusters. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles,
SOSP ’09, pages 261–276, New York, NY, USA, 2009. ACM.

[20] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang,
Dhruba Borthakur, Srikanth Kandula, Scott Shenker, and Ion
Stoica. Pacman: Coordinated memory caching for parallel
jobs. In Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’12, pages
20–20, Berkeley, CA, USA, 2012. USENIX Association.

[21] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management. In
Proceedings of the 19th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, pages 127–144, New York, NY, USA,
2014. ACM.

[22] Matthew L. Massie, Brent N. Chun, and David E. Culler. The
ganglia distributed monitoring system: Design, implementa-
tion and experience. Parallel Computing, 30:2004, 2003.

[23] Nello Cristianini and John Shawe-Taylor. An Introduction to
Support Vector Machines: And Other Kernel-based Learning
Methods. Cambridge University Press, New York, NY, USA,
2000.

[24] Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[25] Christopher J. C. Burges. A tutorial on support vector ma-
chines for pattern recognition. Data Min. Knowl. Discov.,
2(2):121–167, June 1998.

[26] John C. Platt. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods. In
ADVANCES IN LARGE MARGIN CLASSIFIERS, pages 61–
74. MIT Press, 1999.

[27] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall,
and W. Philip Kegelmeyer. Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence Re-
search, 16:321–357, 2002.

[28] Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz.
Editorial: Special issue on learning from imbalanced data sets.
SIGKDD Explor. Newsl., 6(1):1–6, June 2004.

[29] Yanmin Sun, Mohamed S. Kamel, Andrew K. C. Wong, and
Yang Wang. Cost-sensitive boosting for classification of im-
balanced data. Pattern Recogn., 40(12):3358–3378, Decem-
ber 2007.

[30] Zhi-Hua Zhou and Xu-Ying Liu. Training cost-sensitive neu-
ral networks with methods addressing the class imbalance
problem. IEEE Trans. on Knowl. and Data Eng., 18(1):63–
77, January 2006.

[31] Yanpei Chen, Sara Alspaugh, and Randy H. Katz. Interactive
analytical processing in big data systems: A cross-industry
study of mapreduce workloads. PVLDB, 5(12):1802–1813,
2012.

[32] Yanpei Chen, Archana Ganapathi, Rean Griffith, and
Randy Katz. The case for evaluating mapreduce
performance using workload suites. In Proceedings
of the 2011 IEEE 19th Annual International Sympo-
sium on Modelling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, MASCOTS ’11,
Washington, DC, USA, 2011. IEEE Computer Society,
https://github.com/SWIMProjectUCB/SWIM/wiki/.

[33] John C. Platt. Fast training of support vector machines using
sequential minimal optimization. In Bernhard Schölkopf,
Christopher J. C. Burges, and Alexander J. Smola, editors,
Advances in Kernel Methods, pages 185–208. MIT Press,
Cambridge, MA, USA, 1999.

[34] Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bot-
tou. Fast kernel classifiers with online and active learning. J.
Mach. Learn. Res., 6:1579–1619, December 2005.

[35] Paul G. Hoel, Sidney C. Port, and Charles J. Stone. Intro-
duction to Stochastic Processes. Houghton Mifflin Company,
Boston, MA, 1972.

[36] Sheldon M. Ross. Introduction to Probability Models, Eighth
Edition. Academic Press, 8 edition, January 2003.

[37] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. The weka
data mining software: an update. SIGKDD Explor. Newsl.,
11(1), November 2009.

[38] Gunho Lee, Niraj Tolia, Parthasarathy Ranganathan, and
Randy H. Katz. Topology-aware resource allocation for data-
intensive workloads. SIGCOMM Comput. Commun. Rev.,
41(1):120–124, January 2011.

[39] Timothy Prickett Morgan. Clus-
ter sizes reveal hadoop maturity curve.
http://www.enterprisetech.com/2013/11/08/cluster-sizes-
reveal-hadoop-maturity-curve/.

[40] Amazon redshift. http://aws.amazon.com/redshift/faqs/.

