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Abstract. We study an open text mining problem – discovering con-
cept-level event associations from a text stream. We investigate the
importance and challenge of this task and propose a novel solution by
using event sequential patterns. The proposed approach can discover
important event associations implicitly expressed. The discovered event
associations are general and useful as knowledge for applications such as
event prediction.

1 Introduction

People often seek event associations because such knowledge enables them to
predict the future, take certain precautions, or make wise decisions under a
specific circumstance. For example, if one knows landslides often occur after
earthquakes, the risk of damages can be reduced.

Due to the importance of event associations, this paper studies concept-
level event association discovery. In contrast to the previous work studying spe-
cific and context-dependent events (e.g., Jim hit John yesterday), concept-level
events (e.g., earthquake) are context-independent and thus their associations
(e.g., (earthquake-landslide)) are general and useful as knowledge, which has
attracted so much attention that some semantic networks and knowledge bases
(e.g., ConceptNet1) have started to incorporate concept-level event association
knowledge due to its potential ability in knowledge inference and decision mak-
ing. Formally, given two concept-level events ei and ej , we define ei and ej are
associated if ej tends to to be triggered, caused or affected by ei, and ej is not
a part of ei.

Despite extensive studies on event relations [1–5,13,16–19,22] in NLP field,
the task of concept-level event association discovery has not been much explored.
Most work [9–12,20,21,23] related to concept-level event association discovery

1 http://conceptnet5.media.mit.edu/.
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mainly focused on causality extraction based on text clues (e.g., causal verbs
and connectives), which is usually insufficient because event associations are not
limited to causality explicitly expressed. For many associations that are impli-
clitly expressed, it is difficult for text-based approaches to discover. Although
the implicit event associations might be discovered by the methods based on
word co-occurrence (e.g., Point-wise Mutual Information (PMI)), these methods
do not work well for our goal for two reasons. First, computing PMI of arbitrary
event pairs is time-consuming and will introduce many trivial and uninforma-
tive event pairs like (say, sit). Second, event pairs with high PMI may not be
truly associated since events in some pairs are minor events (e.g., donation and
evacuate in Fig. 1) triggered by a major event (e.g., earthquake) and they are
not associated though they always co-occur.

To solve this problem, we study this task from a novel viewpoint – exploiting
Burst Sequential Patterns (BSPs2) of events in a text stream to discover event
associations. Intuitively, if a word describing an event always bursts after or co-
bursts with another event word throughout a text stream, these two events are
probably associated (e.g., the word donation usually bursts after earthquake). By
analyzing such BSPs in a text stream, it is possible to discover event associations
even if they are implicitly expressed. For this goal, we propose to use Burst
Information Networks (BINets) [6–8] as a representation of a text stream, which
can overcome the limitations of traditional PMI-based methods.
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Fig. 1. A BINet example. The numbers in the round brackets denote the burst period
of the node. Due to space limitation, we only show earthquake’s burst period (days
after Jan 1, 1995). Dash lines denote false associations.

In a BINet (Fig. 1), a node is a burst word (including entities and events)
with the time span of one of its burst periods, and an edge between two nodes
indicates how strongly they are related. Since only burst words are in a BINet,
2 We treat co-burst as a special case of BSPs.
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trivial events are naturally excluded. In a BINet, event BSPs (e.g., donation
and earthquake) can be clearly observed. Moreover, nodes in a community in a
BINet are not only topically but also temporally coherent; thus, we can say a
community describes an event’s topic. Based on a community’s structure, it is
easy to distinguish major events and minor events for removing false association
pairs like (donation, evacuate) in Fig. 1.

Experiments show the BINet-based approach can not only discover concept-
level event associations with comparable precision to text clue based approaches
but also discover many important event associations that are not explicitly
expressed, and that the BINet and the text clue based approach can nicely
complement each other, yielding significant improvement of performance.

2 Burst Information Networks

2.1 Burst Detection

To build a Burst Information Network mentioned in the above section, we first
need to detect bursts of words. In general, a word’s burst might indicate impor-
tant events or trending topics. For example, as shown in Fig. 1, the word earth-
quake has a burst from the 4880th to the 4918th days because of a strong
earthquake occuring in China on May 12, 2008. For a timestamped document
collection C = {D1,D2, ...,Dt, ...,DT }, we define a word w’s burst sequence
s = (s1, s2, ..., st, ..., sT ) in which st is either 1 or 0 to indicate whether the word
w bursts or not at time t. Based on the idea of [14,24], this burst sequence can
be simply found by searching for the optimal sequence s∗ to minimize the cost
function defined as follows:

Cost(s,p, q(0), q(1)) =

T∑

t=1

| log pt − log q(st)| +
T−1∑

t=1

β ∗ 1(st �= st+1)
(1)

where p = (p1, ..., pt, ..., pT ) in which pt is the probability of the word at t, q(0)

is the base probability of the word and it is often defined as the probability of
the word on the whole data/corpus, q(1) is the probability of the word in the
burst state and it is often defined as q(1) = αq(0) (α > 1).

The first term of Eq. (1) measures the difference between pt and q(st). If a
word bursts (i.e., pt is high), |logpt− logq(1)| will be smaller than |logpt− logq(0)|
and thus in the optimal sequence s∗, st tends to be 1; otherwise, st tends to be
0. The last term of Eq. (1) is for penalizing transition of burst states through
the time to avoid too frequent transition of burst states for smoothing and β is
the parameter controlling this part’s weight.

Specifically, if a word w is in a burst state at every time t during a period,
we call this period as a burst period of w, and w has a burst during this period.
In Fig. 1, earthquake has 3 burst periods (i.e., (3646–3665), (3933–3941), and
(4880–4918)).
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Formally, we define Pi(w) as the ith burst period of the word w. It is a
consecutive time sequence (i.e., time interval) during which w bursts at every
time epoch t:

Pi(w) = [tsi (w), tei (w)]
∀t ∈ Pi(w) st(w) = 1

where tsi (w) and tei (w) denote the starting and ending time of the ith burst
period of w, and st(w) denotes the burst state of w at time t.

2.2 BINet Construction

A “Burst Information Network (BINet)” represents associations between key
facts in a text stream, which has been proven to be effective in multiple knowl-
edge mining tasks [6–8]. The basic component of a BINet is burst elements which
are nodes of the information network:

A Burst Element is a burst of a word. It can be represented by a tuple:
〈w,Pi(w)〉 where w denotes the word and Pi(w) denotes one burst period of w.

A BINet is defined as G = 〈V,E〉. Each node v ∈ V is a burst element and
each edge e ∈ E denotes the association between burst elements. Intuitively, if
two burst elements frequently co-occur, then they should be highly weighted. We
define ωi,j as the global weight of an edge between vi and vj , which is equal to
the number of documents where vi and vj co-occur, and πi,j as the local weight,
which equals to the number of documents in which vi and vj form a bigram (i.e.,
vi and vj are adjacent in context). Since a node in BINet contains both semantic
and temporal information, nodes in a community are topically and temporally
coherent.

3 Event Association Discovery

We first extract events (Sect. 3.1), identify major events for removing false asso-
ciations (Sect. 3.2) from the BINet, and then rank event associations (Sect. 3.3).

3.1 Event Extraction

Since there is no available open-domain event extraction systems despite some
event extractors for limited types of events (e.g., 33 event types in ACE evalua-
tion), we use words in the following list as event trigger words to identify nodes
describing events in the BINet, and call the nodes whose word is in the following
list event nodes:

– Nouns and verbs in frames with time attribute in FrameNet3.
– Trigger word list in ACE evaluation.
– Natural hazards in Wikipedia.
3 https://framenet.icsi.berkeley.edu/fndrupal/.

https://framenet.icsi.berkeley.edu/fndrupal/
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Since one node is a unigram4 (with its burst period), an event node sometimes
may not describe an event well (e.g., “test” is too general to describe an event).
Hence, for an event node vi, we try to find its adjacent node to form a bigram
to represent the event (e.g., for a node whose word is “test”, we may use its
adjacent node “nuclear” to represent the event as “nuclear test”). Specifically,
we first find the set of nodes locally strongly related to vi:

C(vi) = {vj |πi,j > πt}
where πt is a threshold. Then, we find vi’s most globally related node vk from
C(vi):

vk = arg maxvj∈C(vi) ωi,j

Table 1. Designed POS pattern for event bigram phrase extraction. The bold means
it is the head word of the bigram which should be an event node.

Bigram POS pattern

vi,vk JJ,NN | NN,NN | NN,VB | VB,NN

If part-of-speech (POS) tags of vi and vk match the patterns in Table 1, then
vi and vk form a valid event bigram. If we cannot find a vk making vi and vk form
an event bigram, vi is considered as an independent event unigram. Note that if
a bigram contains a named entity, we use the type of the entity to replace the
entity string for generalization. For example, Tohoku earthquake will be replaced
with LOCATION earthquake.

3.2 Major Event Identification

To identify major events, we first need to detect topics in the text stream and
then identify the major event of every topic. As mentioned before, nodes in
a community in a BINet describe an event’s topic. Therefore, we model topic
detection as a community discovery problem.

We first compute PageRank value of nodes in a BINet and rank them by
their PageRank values. Note that the weights for PageRank computation are
the global weights (ω) of the BINet. Then, we repeatedly choose the node that
has the highest PageRank value but does not belong to any community, with its
closely related nodes to form a new community E . The algorithm is summarized
in Algorithm 1 where L is the ranking list of nodes by their PageRank values,
V ′ ⊂ V is the set of nodes that does not belong to any communities, ω̂v,u is
the normalized weight of the edge between v and u, and σ is the threshold for
selecting closely related nodes. The algorithm discovers communities greedily
and thus is fast.

After topics in a text stream are detected, we identify major events for each
topic. Intuitively, a major event must be most frequently mentioned and it should
4 Here, a named entity is considered as a unigram even if it is composed of multiple
words such as Hong Kong.
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be strongly related to other nodes in its community; thus, its PageRank value
should be at the top in the community. Hence, we select the event phrase (uni-
gram or bigram) whose PageRank value is the highest among all event phrases
in a community as the major event, as shown in Table 2. Note that a bigram’s
PageRank value is the average of its words.

Table 2. An example of communities (topics) discovered by our approach. Major
events (the bold words) usually have the top PageRank value.

Topic Key phrases

1 Iraq war, Iraqi, US-led, Baghdad

2 Attack, terrorist, New York, Washington, Afghanistan

3 Earthquake, quake, Wenchuan, Sichuan, quake-hit

4 Hong Kong return, motherland, handover, hk

5 Deng Xiaoping, Deng, death, condolence, mourn

Algorithm 1. Topic detection
1: Input: L, G = 〈V, E〉;
2: Output: A list of communities: C = [E1, E2, ..., Ek]
3: V ′ ← V
4: while ‖L‖ > 0 do
5: v ← L[0] (the first element in L)
6: E ← {v} ∪ {u|u ∈ V ′ ∧ ω̂v,u > σ}
7: C.add(E); L ← L − E ; V ′ ← V ′ − E
8: end while

3.3 Event Association Pair Ranking

We select all event pairs in which two events are adjacent in the BINet as candi-
dates and remove (minor event, minor event) pairs which account for most false
association cases.

Moreover, we exclude the pairs in which the semantic similarity5 of two events
is higher than a threshold τ because they usually refer to the same event (e.g.,
quake and earthquake).

For the remaining pairs, we rank event association pairs (e1, e2) using the
following metric inspired by Pointwise Mutual Information (PMI):

M(e1, e2) =
ne1,e2

ne1 × ne2

(logne1,e2 + α) (2)

where e is an event uni- or bi-gram in Sect. 3.1, ne is the count of e, ne1,e2 is
the count of cases where e1 is adjacent to e2 in a BINet (e.g., nearthquake =

5 Cosine similarity computed based on word embeddings trained on English Gigaword
corpus.
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nearthquake,donation = 4 for the BINet in Fig. 1), and the factor (log ne1,e2 +α) is
for promoting event pairs with high support where α is a smoothing parameter
for avoiding (2) being 0 if ne1,e2 = 1.

4 Experiments and Evaluations

4.1 Data

We evaluate our approach on 1995–2010 Xinhua news in English Gigaword6

which contains 1,482,560 news articles.
We used Stanford CoreNLP toolkit to perform POS tagging, lemmatization,

named entity recognition, and apply our Burst Information Network (BINet)
construction algorithm on this dataset. We remove edges whose global weights
are less than a threshold ωt for reducing noise. The resulting BINet includes
414,944 nodes and 3,699,537 edges.

4.2 End-to-end Evaluation

We discover event associations in an end-to-end fashion. Hyper-parameters (σ =
0.0005, τ = 0.7, πt = 5, ωt = 5, α = 0.01) are tuned on a development set.
Totally, we mined 6,084 event association pairs.

We compare the following approaches:
PMI-E: Ranking association pairs by PMI computed over all event words based
on their co-occurrence in documents.
PMI-S: PMI of event words are computed based on co-occurrence in sentences.
BINet-E: BINet-based approach without removing false association pairs.
BINet-E+: BINet-based approach where false association are removed.
Text-E: This model extracts causality of event trigger words based on the most
commonly used unambiguous causal verbs and connectives, as [20] did, and ranks
by frequency. The details of the implementation of this baseline is introduced in
the Appendix Section.
Combine: we re-rank the results of BINet-E+ by combining the results of
Text-E:

M̂(e1, e2) = M(e1, e2) + log nt(e1, e2)

where nt(e1, e2) is the count of cases where causality of e1 and e2 is explicitly
expressed by causal verbs and connectives.

In baseline methods, event words include the event bigrams in Sect. 3.1 for fair
comparison. We do not compare to [11,12] because their supervised approaches
require annotated data that is not publicly available, and do not make a com-
parison to [23] due to their limited focus on deverbal nouns. [9,10,21] are not
compared either because their focus is not mining event associations.

Event association discovery is an open text mining problem and there is no
closed gold standard for this task though some knowledge resources (e.g., Con-
ceptNet) can be used as references but they are far from complete. Alternatively,
6 https://catalog.ldc.upenn.edu/LDC2011T07.

https://catalog.ldc.upenn.edu/LDC2011T07
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Table 3. Precision of top 500 discovered event association pairs in end-to-end
evaluation.

Model Precision@500

Pmi-E 1.6%

Pmi-S 4.4%

BINet-E 17.2%

BINet-E+ 35.6%

Text-E 36.2%

Combine 43.0%

we manually evaluate the quality of discovered event associations and use Preci-
sion of top K (500) pairs to measure the performance. We do not evaluate recall
since it is impractical to find all event associations. We pooled the top K pairs
outputted by each system evaluated in this paper for annotation. The annota-
tion7 is done by 2 annotators who are asked to tell if words/phrases in a pair are
associated events by considering whether a word/phrase pair satisfy the event
association definition and the association is informative and self-interpretable.

The annotations have fairly good agreement (84.4% overlapping). The dif-
ference in the annotators’ background knowledge accounts for most annotation
disagreement cases. During evaluation, we consider an event association pair as
correct if both of the annotators annotate it as correct.

As shown in Table 3, Pmi-E and Pmi-S yield poor performance because many
event pairs are either about trivial events or are not associated. Introducing
BINets improves PMI-based methods because large numbers of trivial events
are excluded. When we remove false association pairs based on the network
structure, the performance (BINet-E+) gets significant boost (18.4% gain) and
achieves comparable performance to Text-E. When we re-rank the results of
BINet-E+ with text clue information, the performance is markedly improved
(7.4% and 6.8% gain over BINet-E+ and Text-E respectively), demonstrating
these two approaches can well complement each other.

Moreover, we show the performance of models with various Ks in Fig. 2.
Text-clue based approach can accurately mine event associations if K is small
while its performance drops drastically with K increasing because the number of
explicitly expressed event associations is limited. In contrast, the BINet-based
approach is more stable, which outperforms the text-based model when K is
large. As the results in Table 3, the combination of these approaches improves
both of them.

We analyze error cases of the discovered event pairs. The event extraction
mistakes are the main source of errors because event extraction is a challeng-
ing task, especially for open domains, which affects event association discovery

7 The annotators mainly used ConceptNet and Wikipedia as references to help with
the annotation.
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Fig. 2. Precision curves of various models.

results. Another type of errors is that some events are over-generalized because
unigram and bigram event representations sometimes are insufficient to describe
a complicated event. For example, in the association pair (financial crisis, impact),
the event impact is too general to be informative. In addition, events in some pairs
do not satisfy the definition of association (e.g., one event is a part of the other
event in a pair like (match,goal)).

Table 4. Examples of discovered event association pairs. Of these 32 event association
pairs, only 14 (bold) are explicitly expressed by textual clues.

Earthquake Flood Financial crisis Protest

Donation Divert floodwater Shrink Election

Landslide Mine accident Financial reform Declaration

Humanitarian aid Dike breach Stimulate economic Violence

Mourn Remain trapped Loan Nuclear test

Search Evacuation Rate cut War

Death Rehabilitation Slump Conflict

Evacuation Flood control Plunge Invasion

Medical treatment Damage Unemployment Arrest

As a qualitative evaluation, we present examples of event associations discov-
ered by BINet-E+ in Table 4. The event associations are general and useful as
knowledge. Moreover, we analyze these 32 event pairs and find only 14 (43.75%)
of them are explicitly expressed by the textual clues used in Text-E, showing
the limitation of the textual clue based approach and the importance of studying
BSP-based approaches for this task.
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4.3 Future Event Prediction with Association Knowledge

Moreover, we evaluate if the discovered event association knowledge could help
us predict future events. We collect 36,129,066 news articles from February to
December 2015 on the web. For each event association pair discovered by our
approach, we verify if an event in this pair happened after the other. Specifically,
if the events in an association pair occurred (burst) one after another within 7
days during this period, we consider this pair helps event prediction.

Table 5 lists the number of association pairs useful for event prediction.
Among the top 5,000 event association pairs discovered by our approach, approx-
imately 20% of them help predict events during the period. Specially, we also
test those 32 event association pairs in Table 4 which are considered correct. 15
(46.9%) of them help event prediction.

It is notable that the news articles in the corpus are mainly from Ameri-
can and European news agencies and many of them are about events in USA
and European countries while news articles in the corpus we used for discover-
ing event associations are from Chinese news agency and they tend to report
Chinese local events. Even so, the discovered event associations are still success-
fully used for prediction, showing that the event association knowledge is general
and location-independent.

Table 5. The number of association pairs helpful for future event prediction

Top 500 1000 2000 5000

Predicted 111 197 382 848

5 Related Work

Most work [9–12,20,21,23] related to concept-level event association discovery
mainly study extracting causality based on text clues (e.g., causal verbs and
connectives). Among them, [9,10] studied mining textual patterns that describe
causal relations, [23] derived event associations by focusing on deverbal nouns
within a discourse, [20] proposed to extract event causality and use it to predict
future events based on explicit discourse connectives, [21] focused on estima-
tion of the probability that an event occurring after the other given a query
event pair, [11,12] used supervised models to extract event causality, and [15]
utilized hierarchical topic structure to capture event associations. In contrast,
our approach is unsupervised, efficient, and does not rely on explicit discourse
connectives but can nicely complement the textual-based approach. The discov-
ered association knowledge is general and related to important events and thus
useful for applications like event prediction and event-centric knowledge base
construction.

Another research branch related to this paper is event relation extraction
[3–5,22]. Different from our task that discovers concept-level event associations
that can be used as general knowledge, these studies focus on extracting relations
between events in a local context (a sentence or a document).
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6 Conclusion

We study an open text mining problem – concept-level event association dis-
covery based on burst sequential pattern mining by using a novel graph-based
text stream representation, which makes it possible to discover massive implicit
event associations and presents chances for event knowledge discovery and event
prediction from big data.
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Appendix

We introduce how we implement the TEXT-E approach mentioned in Sect. 4.
As [20] did, we use the most commonly used unambiguous causal verbs and
connectives in Table 6 to extract causality as event associations. We did not use
as and after because as is ambiguous, and after cannot guarantee that events
connected by it are associated according to definition in our paper.

Table 6. Patterns for extracting causality. Note that for because, because of and due
to, both of a and b should have a direct path to the causal markers.

Causal marker Dependency pattern Instance(a,b)

Because advcl(a,b) They killed him because he divulged the secret

Because of prep because of(a,b) The election is postponed because of the out-
break of plague

Due to prep due to(a,b) The province has suffered heavy losses of arable
land due to water erosion for the past several
years

Cause nsubj(cause,a);
dobj(cause,b)

The earthquake caused severe damages in
Japan

vmod(a, cause);
agent(cause, b)

The move is aimed at increasing investment in
key sectors and reducing the burden caused by
inefficient public enterprises on the economy

Affect nsubj(affect,a);
dobj(affect,b)

Same with cause

vmod(a, affect);
agent(affect, b)

Same with cause

Lead to nsubj(lead, a);
prep to(lead, b)

In fact, such activities not only harm reforms,
national economic development and social stabil-
ity but lead to high production and construction
costs for the local economies
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