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Abstract

We study the reconstruction of smooth surfaces from
point clouds. We use a new squared distance error term in
optimization to fit a subdivision surface to a set of unorga-
nized points, which defines a closed target surface of arbi-
trary topology. The resulting method is based on the frame-
work of squared distance minimization (SDM) proposed by
Pottmann et al. Specifically, with an initial subdivision sur-
face having a coarse control mesh as input, we adjust the
control points by optimizing an objective function through
iterative minimization of a quadratic approximant of the
squared distance function of the target shape. Our exper-
iments show that the new method (SDM) converges much
faster than the commonly used optimization method using
the point distance error function, which is known to have
only linear convergence. This observation is further sup-
ported by our recent result that SDM can be derived from
the Newton method with necessary modifications to make
the Hessian positive definite and the fact that the Newton
method has quadratic convergence.

1. Introduction

1.1. Problem Statement

We propose a method that fits a Loop’s subdivision sur-
face S [22] to a target surface Γ defined by a set of unor-
ganized points. The availability of the connectivity infor-
mation of the target points is not assumed. Although we
use Loop’s surface, the basic framework can be applied to
other linear subdivision schemes as well. We iteratively up-
date the subdivision surface S to make it converge to a tar-
get shape by optimizing an objective error function. Previ-
ous subdivision surface fitting methods use the distance be-
tween a point on the fitting surface and the corresponding
foot point on the target surface for minimizing the objective

function; we will call these methods point distance mini-
mization, or PDM. We use a quadratic approximant of the
squared distance (SD) error function proposed by Pottmann
et al [33], and show that the SD error function leads to better
fitting results than using the conventional point distance er-
ror function. Our method will be called SDM, standing for
squared distance minimization.

Although the Gauss-Newton method is preferred for
solving a general nonlinear least squares problem, PDM
is still the predominant optimization method used for sur-
face fitting in CAD and graphics. By proving that SDM
can be derived directly from the Newton method, we show
that SDM is a more refined optimization technique than the
Gauss-Newton method, which omits the true Hessian of an
objective function. The purpose of this paper is to demon-
strate that SDM is indeed a superior optimization technique
for fitting a subdivision surface than the commonly used
PDM.

1.2. Related Work

The problem of computing a compact surface repre-
sentation of a target shape given by a set of unorganized
data points has many applications in computer graphics,
CAD, and computer vision. A typical formulation of the
problem is computing a piecewise smooth surface, which
can be a B-spline surface (including a NURBS surface)
or a subdivision surface, that approximates a given tar-
get shape within a pre-specified error tolerance. Compared
with the traditional methods based on B-spline surfaces,
the approach using subdivision surfaces has gained in-
creasing attention due to its ability to deal with general
object topology as well as arbitrary connectivity of the
control mesh [45, 46]. Approaches of different categories
were proposed over the past decade. These include lo-
cal fitting approaches [10–12, 25–27, 29, 38], active surface
approaches [4, 6, 7, 18, 20, 24, 28, 34, 40, 41, 43, 44], im-
plicit surface approaches [1, 2, 30, 39] and other approaches
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[13, 14, 16, 17, 21].
Among the previous work, some are more relevant to our

approach. In Hoppe et al’s method [11, 12], an initial dense
mesh is generated from a set of unorganized points and is
then decimated to fit the target shape via optimization of an
energy function. Finally, a smooth subdivision surface is ob-
tained from the mesh again via optimization. In Ma et al’s
method [25–27], base surfaces are built for obtaining the pa-
rameter values of the data points. Then a least squares pro-
cedure is used to fit B-spline surfaces on general quadrilat-
eral topology and Catmull-Clark surfaces on extraordinary
corner patches. In [29], closest point search on Loop’s sur-
face is performed by combining Newton iteration and non-
linear minimization, followed by an optimization with re-
spect to the L2 metric. In these methods, when the geo-
metric error between the fitting surface and the target shape
needs to be measured or minimized, the error function is de-
fined by the summation of the squared distance between a
point on the fitting surface and its closest point on the target
shape. Hence, these methods use PDM (point distance mini-
mization). Such optimization schemes, also called the alter-
nating methods [35], are typically used for solving separa-
ble nonlinear least squares problems, and are known to have
only linear convergence. In this paper, we propose to replace
the conventionally-used geometric error with the SD error
function. The resulting method, called SDM (squared dis-
tance minimization), can be applied to any existing frame-
works in which distance functions are used to define a goal
function.

2. Preliminaries

2.1. SDM

Pottmann et al. [31–33] proposed a general paradigm of
shape approximation based on the minimization of a novel
quadratic approximant of the squared distance function. Let
p denote the foot point on the target surface Γ of a sam-
ple point v0 from a fitting surface, i.e. p is the closest point
on Γ to v0. Let d = ‖v0 − p‖2. Let ρ1 and ρ2 be the prin-
cipal curvature radii of the surface Γ at p. Let T1 and T2 be
the unit vectors in the corresponding principal curvature di-
rections. Let N be the unit normal vector, i.e. N = T1×T2.
A quadratic appproximant of the squared distance function
from a variable point v in the neighborhood of v0 to Γ is
given by

F+
d (v) =

d

d + |ρ1| [(v − p)T1]2 (1)

+
d

d + |ρ2| [(v − p)T2]2 + [(v − p)N ]2

This formula is called the squared distance (SD) error func-
tion. Pottmann et al. applied SDM successfully to solve a

series of geometric optimization problems, including the
problem of fitting B-spline curves and surfaces to some
smooth target shapes [32, 33]. Yang et al. [42] studied how
to define initial shapes and adjust the number of control
points when using the SDM for B-spline curve approxima-
tion. The ellipsoid in Figure 1 shows an iso-distance surface
defined by the SD error function for surface fitting.

Figure 1. An iso-surface of the SD error func-
tion, with a local coordinate frame at the point
p.

For comparison, the (squared) point distance (PD) error
function is defined by

F+(v) = ‖v − p‖2
2. (2)

Accordingly, optimization schemes using the PD error func-
tion will be called PDM. Intuitively, unlike the PD error
function, the SD error function takes the local geometry of
the target surface Γ into account. In fact, SDM is a New-
ton method with proper modification of possibly indefinite
Hessian; the proof of this fact is given in the technical re-
port [5]. Hence, we expect better convergence behavior us-
ing SDM than using PDM, which is known to have only lin-
ear convergence.

2.2. Loop’s Surface

Loop [22] proposed a subdivision scheme for triangu-
lated control polyhedra. For one level of subdivision, a tri-
angle is split into four triangles by adding on each edge a
new vertex X given by

X =
3
8
(Xa + Xb) +

1
8
(Xc + Xd),

where Xa, Xb are the two vertices of the edge, and Xc, Xd

are the other vertices of the two triangles that are incident to
the edge XaXb. Then the original vertices are modified by
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the following rule:

X̂ = (1 − kβ)X + β

k∑
i=1

Xi,

where k is the degree of the vertex X and Xi’s are the neigh-
boring points of X , β = 3/16 if k = 3, and

β =
1
k

[
5
8
−

(
3
8

+
1
4

cos2
(

2π

k

))2
]

if k > 3.

3. Main Steps

Our SDM method has the following steps:

1. Normalization of the target shape:
The target shape is normalized by scaling so that all
data points fall in the cube [0, 1]3. This is to make the
values of the energy terms unit-less.

2. Pre-computation of distance and curvature:
To quickly compute foot points for setting up error
functions, the distance field of the target surface Γ and
curvatures of Γ at all data points are computed in a pre-
processing step.

3. Initial mesh specification:
To obtain an initial control mesh, we build an octree for
the target shape and then generate the initial mesh from
the octree cells using the Marching Cubes method [23].
See Section 4.3.

4. Sampling points on the fitting surface:
A set of sample points are generated on the limit sur-
face for setting up the error functions and error evalu-
ation. These sample points are generated using the ap-
proach devised by Stam [36, 37].

5. Optimization:
Let vk,0, k = 1, 2, . . . , N , be sample points on the fit-
ting subdivision surface. Let pk be the foot point on Γ
of the sample point vk,0. Denote dk = ‖vk,0 − pk‖2.
Let ρk,1 and ρk,2 be the principal curvature radii of Γ
at pk. Let vk be a variable point in the neighborhood
of vk,0. We call vk a variable sample point associated
with vk0. Then the SDM error function is defined as

F+ =
1
N

N∑
k=1

F+
dk

(vk) + λFs,

and

F+
dk

(vk) =
dk

dk + |ρk,1| [(vk − pk)Tk1]2

+
dk

dk + |ρk,2| [(vk − pk)Tk2]2

+ [(vk − pk)Nk]2,

where F+
dk

(·) is the quadratic approximation for the
squared distance function from a variable point, Tk1

and Tk2 are the unit vectors of the principal curvature
directions, Nk is the unit normal vector of Γ at pk, Fs

is a smoothing term and λ is a constant.
Since the variable sample point vk is a linear com-

bination of the control points Pi, the function F+ is
a quadratic function of the Pi. Thus the updated con-
trol points Pi can be computed by solving a linear sys-
tem of equations. Since each variable sample point vk

is only influenced by a small number of control points,
the matrix for the resulting linear system of equations
is sparse. We use a conjugate gradient (CG) method
that exploits the sparsity of the coefficient matrix to
solve the linear system of equations. The conjugate
gradient solver is terminated if the relative error im-
provement is less than 10−7 or the number of itera-
tions reaches 200.

6. Fitting error evaluation:
After the control points have been updated, the maxi-
mum and average fitting errors are evaluated. The max-
imum approximation error Em is defined by the max-
imum of the distances of all the sample points vk,0 on
the fitting surface S to the target shape Γ, i.e.

Em = max
k

{||pk − vk,0||2}.

The average error Ea, i.e. l2 error , is defined as

Ea =

[
1
N

∑
k

||pk − vk,0||22
] 1

2

.

7 Refinement and termination: The fitting process is
stopped if a pre-specified error threshold is satis-
fied. Otherwise, we repeat steps 4 to 6 until the result
is satisfactory. Whenever the fitting error stops get-
ting improved and stays above the error threshold,
new control points are inserted in regions of large er-
rors to provide greater degree of freedom for better
fitting.

4. Implementation Issues

4.1. Curvature Pre-computation

The curvature information of the target shape can be
pre-computed and stored for later use. There are existing
methods, such as [9], for estimating curvatures from point
clouds. We employ the following simple method for our
purpose. For a given target point Qi, its neighboring points
Qn(i,j) are identified. In our examples, the neighborhood
size is set to be 0.075, which is chosen based on data sam-
pling density of our test examples. Let Oi denote the cen-
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troid of the neighboring points. Then, the principal curva-
ture directions and the normal direction are computed as
the eigenvectors of the covariance matrix CV given by

CV =
∑

j

(Qn(i,j) − Oi)(Qn(i,j) − Oi)T .

After that, we fit a paraboloid z = k1x
2+k2y

2 to the points
Qn(i,j) in the local coordinate system formed with the prin-
cipal curvature directions and the normal direction at Qi.
With the coefficients k1 and k2 determined, the principal
curvatures are simply 2k1 and 2k2.

4.2. Distance Field

To obtain the distance d required by the SD error func-
tion, we compute the distance field of the target shape in
preprocessing using the Fast Marching method [34] in a uni-
form grid with the grid spacing 0.02. During the optimiza-
tion process, the distance for a sample point vk,0 is com-
puted by trilinear interpolation from the stored values in
its neighboring grid points. Similar pre-computation tech-
niques of the distance field have been used in [19, 42].

4.3. Initial Mesh Generation

To start with the surface reconstruction process, we adopt
a simple scheme to generate an initial control mesh, since
the construction of initial mesh is not the focus in this pa-
per. We first construct an octree partition of the point cloud.
Then, a mesh is obtained using the Marching Cubes algo-
rithm [23]. The cell size of the octree is small enough so
that the resulting mesh has the same topology as the tar-
get point cloud. To capture small features of a target shape,
we apply the Marching Cubes algorithm with a sufficiently
small cell size to obtain a dense initial mesh before simpli-
fying the mesh adaptively to reduce the total number of tri-
angles [8].

Another approach is to model small details by adding a
displacement map over a smooth surface [15]. The visual
output from this approach is impressive but it does not meet
our goal of computing a complete surface representation for
a point cloud.

4.4. Energy Term

We use an energy term Fs to increase the smoothness of
the surface and discourage self-intersection. Following [24],
the energy term is defined by

Fs =
1
n

n∑
i=1

V (Pi)T V (Pi),

where Pi, i = 1, 2, . . . , n, are the control points and V (·) is
a discretized version of Laplacian.

The coefficient λ for Fs needs to be determined care-
fully. If λ is too small, the term will have little influence
and self-intersection may occur. On the other hand, if λ is
too large, the fitting result may not be acceptable since the
fitting surface will be too rigid to give small fitting errors.
In our experiments, the initial value for λ is set to be 0.001.
As the optimization proceeds, λ is reduced gradually at dif-
ferent rates for different target shapes.

4.5. Local Subdivision

When the result of the approximation is not as good as
expected due to the lack of the degree of freedom provided
by the current control points, new control points need to be
inserted. Instead of applying the subdivision rule to all the
triangles, we perform subdivisions only to the triangles that
have large errors. This is referred to as local subdivision.

During the fitting process, the error between the subdi-
vision surface and the target shape is measured so that re-
gions with relatively large fitting errors are identified. The
faces in these regions are then subdivided in a 1-to-4 manner
(see Figure 2). To avoid undesirable T-vertices, the neigh-
boring triangles are split, following the Red-Green Splitting
scheme [3].

Figure 2. A triangle is split into four triangles.
Neighboring triangles are also split.

After local subdivision, if the fitting error in most other
regions are already acceptable, only the newly added points
and their neighboring vertices are treated as variables and
optimized. This saves computation time by avoiding solv-
ing a much larger linear system of equations.
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4.6. Local Modification for the Connectivity of the
Control Points

The connectivity of the control points can affect the fit-
ting result. Since there are a large number of combinations
of connectivity for the same set of control points and it is
impractical to enumerate and test all the combinations, we
conduct an edge flip test to edges in the regions that have
large errors (see Figure 3). An edge flip is accepted if it re-
sults in a reduced error, following the strategy in [11].

Figure 3. An edge flip of a control mesh and
its effect on the limit surface.

5. Results

In this section, we present experimental results to com-
pare the convergence behaviors of SDM and PDM, and give
time and error statistics on some examples computed by
SDM. All experiments were conducted on a PC with In-
tel Xeon 2.66 GHz CPU and 2.00 GB RAM. The models
are scaled into the unit cube before surface fitting.

5.1. Comparisons of SDM and PDM

We use two data sets, the ellipsoid in Figure 5 and the
ball joint in Figure 8, for comparing SDM and PDM. The
code of PDM is adapted from that of SDM by replacing the
SD error function (1) by the PD error function (2). Note that
the distance field pre-computation is still needed for PDM,
but the curvature pre-computation is not. The same initial
control mesh is used by SDM and PDM for each of the two
data sets. Figures 4 and 6 show the error curves of SDM and
PDM for the two examples. Clearly, SDM takes far fewer it-
erations to attain an acceptable local minimum than PDM
does. For the ellipsoid example, SDM converges quickly
close to the minimum in less than 10 iterations while PDM
converges to a similar value using about 150 iterations. Fig-
ure 5 shows the ellipsoid data, the initial mesh, and the op-
timized mesh computed by SDM; the optimized mesh com-
puted by PDM is similar and so is not shown.

Regarding the computational efficiency, SDM needs
much longer time than PDM on pre-computation, since cur-
vature pre-computation required by SDM is unnecessary for
PDM. Our experiments show that the time used by SDM on
iterative optimization is about 30% to 50% more than PDM
because SDM needs extra time to set up the more com-
plex SDM error function.

5.2. More Examples

We now present three more examples to give the tim-
ing and error statistics of SDM. Figures 8, 7 and 9 show
the data sets for a head, a ball joint, and an Armadrillo
(data source: http://www.cyberware.com). The figures show
the unorganized point data rendered using a point rendering
technique, the initial meshes, the optimized control meshes,
and the final subdivision surfaces with color error coding.
Blue, green, yellow and red represent errors in the ranges
[0, 0.005), [0.005, 0.01), [0.01, 0.015) and [0.015,∞), re-
spectively.

head ball joint Armadrillo

# of data points 134345 137062 172974
curvature 303.33s 361.05s 550.27s

distance field 1.29s 0.71s 1.42s

Table 1. Time statistics for computing the cur-
vature and the distance field. Time is mea-
sured in seconds.

head ball joint Armadrillo

maximum error 0.0111 0.0090 0.0212
average error 0.0023 0.0024 0.0020
# of iterations 12 22 12

# of control points 4767 489 9602
total time 259.98s 30.19s 623.56s

Table 2. Time and error statistics for the ex-
amples. Time is measured in seconds. # of
control points refers to the number of vertices
in the final optimized control mesh. The to-
tal time does not include the time on pre-
computation.

Table 1 gives the timing data for the preprocessing steps.
Table 2 shows time and error statistics of SDM in comput-
ing the three examples. Table 3 shows the breakdown of the
time used in the optimization step. We see in Table 3 that the
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setting up solving error
equations equations evaluation

head 207.20s 23.48s 29.30s
ball joint 14.89s 5.75s 9.55s

Armadrillo 506.56s 51.75s 65.25s

Table 3. Time distribution for different tasks.
Time is measured in seconds.

time for generating entries of the matrix of the linear equa-
tions is substantial when compared with other parts. Note
that the number of data points affects only the time used for
the preprocessing steps, but does not affect the time used
in the optimization step, which is mainly determined by the
number of control points.

6. Conclusion

We have presented the SDM method for fitting a subdi-
vision surface to unorganized data points. Our experiments
show that SDM converges much faster than PDM. Theoret-
ically, we have proved that SDM is derived from the stan-
dard Newton method with necessary modifications to make
the Hessian positive definite [5]. Since the Newton method
has quadratic convergence, this result explains the superior
convergence behavior of SDM over PDM, which is known
to have linear convergence.

A number of problems call for further research. First, a
more effective method needs to be devised to determine the
coefficient λ of the smoothness term. Second, features like
edges and corners in data sets need to be detected in order
to make the subdivision surfaces preserve the detected fea-
tures. Third, we would like to apply the SDM approach to
fitting surfaces to noisy point clouds, for which it is diffi-
cult to have accurate curvature estimation required by the
method presented here. Finally, the SDM method presented
here, like PDM, is still a local optimization technique, and
therefore needs the provision of a good initial fitting sur-
face. In this regard, there is a need to design an active subdi-
vision scheme that allows the fitting surface to evolve from
a simple initial shape to converge in a global manner to
a given target surface, as done in other active contour ap-
proaches, such as the snake method [4,18] and the level-set
method [28, 34, 40, 43, 44].
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Figure 4. Error curves for SDM and PDM (El-
lipsoid). No. of control points: 14.
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Figure 5. Ellipsoid: (a) Target point cloud. (b)
Initial mesh. (c) Optimized mesh. (d) Opti-
mized subdivision surface.
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Figure 6. Error curves for SDM and PDM (Ball
joint). No. of control points: 336.
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Figure 7. Head: (a) Unorganized point data.
(b) Initial mesh. (c) Initial error. (d) Optimized
mesh. (e) Subdivision surface. (f) Final er-
ror. No. of data points: 134345. No. of control
points in the optimized mesh: 4767.
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Figure 8. Ball joint: (a) Unorganized point
data. (b) Initial mesh. (c) Initial error. (d) Opti-
mized mesh. (e) Subdivision surface. (f) Final
error. No. of data points: 137062. No. of con-
trol points in the optimized mesh: 489.
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Figure 9. Armadrillo: (a) Unorganized point
data. (b) Initial mesh. (c) Initial error. (d) Opti-
mized mesh. (e) Subdivision surface. (f) Final
error. No. of data points: 172974. No. of con-
trol points in the optimized mesh: 9602.
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