
HyperCBR: Large-Scale Content-Based
Routing in a Multidimensional Space

Stefano Castelli
University of Trento, Italy
castelli.stefano@gmail.com

Paolo Costa
Vrije Universiteit, Amsterdam, The Netherlands

costa@cs.vu.nl

Gian Pietro Picco
University of Trento, Italy

picco@dit.unitn.it

Abstract—Content-based routing (CBR) is becoming increas-
ingly popular as a building block for distributed applications.
CBR differs from classical routing paradigms as messages are
routed based on their content rather than their destination ad-
dress, which fosters decoupling and flexibility in the application’s
distributed architecture. However, most available systems realize
CBR by relying on a tree-shaped overlay network and adopt
a routing strategy based on broadcasting subscription requests,
thus hampering applicability in very large-scale networks.

In this paper, we observe that a fundamental underpinning of
any CBR protocol is for messages and subscriptions to “meet”
at some points in the network. In the approach we propose
here, called HyperCBR1, we enforce this topological property in a
multidimensional space, by routing messages and subscriptions
on different, albeit intersecting, partitions. We derive an ana-
lytical model of HyperCBR, validated through simulation, and
use it to evaluate our approach in two relevant CBR contexts—
content-based searches in peer-to-peer networks, and content-
based publish-subscribe. The results show that our protocol
achieves efficient CBR even in very large scale settings (e.g.,
millions of nodes) while at the same time opening up intriguing
opportunities for deployment-time tuning based on the expected
traffic profiles. The analytical evaluation is complemented by sim-
ulation results relying on a CAN-based implementation, showing
that HyperCBR generates a small forwarding and matching load,
and that it is able to tolerate high churn with low overhead.

I. INTRODUCTION

In content-based routing (CBR), senders do not specify mes-
sage recipients using a unicast or multicast address. Instead,
they simply inject messages in the network, which determines
their routing based on the nodes’ interests. These identify the
relevant classes of messages based on their content, e.g., using
key-value pairs or regular expressions. Therefore, in CBR it is
the receiver that determines message delivery, not the sender.

This implicit, content-based style of communication in-
creases decoupling and fosters flexibility in the resulting
distributed architecture. Indeed, CBR found application in
many contexts, including publish-subscribe [1], distributed
databases [2], file sharing [3], and data collection in wireless
sensor networks [4]. Hereafter, we adopt the terminology
made popular by publish-subscribe, and refer to interests as
subscriptions, to application messages as events, and to filters
enabling content-based matching as patterns.

Protocols for CBR typically rely on a tree overlay intercon-
necting the application-level routers, called brokers. As for
routing, the most common strategy is arguably subscription

1Pronounced HyperCyBeR.

forwarding, used in Siena [5], that establishes the routes
followed by matching events by broadcasting subscription
requests. However, hardware miniaturization and networked
embedded systems, along with peer-to-peer networks and grid
computing, are enabling visions of pervasive large-scale sys-
tems involving millions if not billions of devices. It is unclear
whether the aforementioned mainstream CBR approaches can
keep the pace with these very large-scale systems.

In this paper we illustrate HyperCBR, our proposal to
enable CBR in very large-scale networks. HyperCBR, de-
scribed in Section II, exploits some topological requirements
about the routing of events and subscriptions, and relies
on an application-level routing infrastructure shaped as a
multidimensional grid. Subscription and events are routed
on distinct, albeit intersecting, partitions of a d-dimensional
hyperspace. Besides improving scalability, this enables tuning
of HyperCBR for different traffic profiles by changing the
shape of these partitions, e.g., to optimize the routing of
subscriptions over events, or vice versa. Moreover, HyperCBR
is independent from the format of events and subscriptions.

Given our focus on very large-scale systems, we charac-
terize HyperCBR analytically, to enable its evaluation in net-
works whose size is well beyond what allowed by simulation.
Section III illustrates an analytical model of traffic, validated
in Section IV through simulation in scenarios up to 100,000
nodes. The traffic estimates derived analytically in most cases
come within 1% of the simulated ones, therefore allowing
us to evaluate, in Section V, the effectiveness of our routing
in two CBR application domains—content-based searches in
peer-to-peer file sharing and publish-subscribe—with networks
of millions of nodes. Results show that HyperCBR provides
scalability (orders of magnitude) higher than mainstream CBR
approaches, due to its massive decentralization. The analytical
evaluation of traffic is complemented by simulations showing
that HyperCBR imposes only a limited load on brokers. In
Section VI, we discuss how we rely on CAN [6] for im-
plementing the hyperspace, illustrate our solution for dealing
with dynamic topologies, and show through simulation that
HyperCBR tolerates high levels of churn with small overhead.
The paper is completed by related work in Section VII and
concluding remarks in Section VIII.

II. HYPERCBR: AN OVERVIEW

Rationale. Our approach stems from the observation that a
CBR protocol must guarantee that the routes followed by

castelli.stefano@gmail.com
costa@cs.vu.nl
picco@dit.unitn.it

S1

S2
S3

(a) d = 2. (b) d = 3.

Figure 1. The basic idea behind HyperCBR. Small circles represent nodes. A
circle around a node denotes a subscriber, the star denotes a publisher. Straight
arrows show the routing information established by subscription propagation.
Curvy arrows show the route followed by the event generated by the publisher.

published events and by subscriptions intersect in at least
one node. For example, in subscription forwarding (e.g., [5])
subscriptions are sent to all the brokers, and therefore the pub-
lished event meets subscriptions immediately at the publishing
node. Conversely, in flooding-based peer-to-peer protocols like
Gnutella [7] events (queries) flood the network and meet
subscriptions (files) only at the node hosting them.

We generalize this notion by assuming that the dissemina-
tion of events and subscriptions is performed through different
partitions of the nodes. LetN be the set of nodes in the system.
Subscriptions are disseminated through partitions Si, such that:

∀i, j : Si ⊆ N , Si ∩ Sj = �,
⋃
iSi = N

i.e., they cover without overlapping the whole set of system
nodes. Similar definitions hold for the event partitions Ei. The
two types of partitions are related by the following constraint:

∀i, j : Ei ∩ Sj 6= �

i.e., each event partition must intersect all subscription parti-
tions, and vice versa. When these properties holds, an event
sent to all the nodes in a partition Ei is received by at least
one node in each subscription partition Sj .

Several choices are possible. Here, we focus on partitions
determined by the structure of a d-dimensional space.
HyperCBR: Basic Concepts. Figure 1(a) illustrates our ap-
proach on a bidimensional grid (d = 2) where we route
subscriptions along columns (Sj) and events along rows (Ei).

Subscriptions, and unsubscriptions, are routed similarly to
the subscription forwarding strategy used in Siena [5]. Dif-
ferently from Siena, however, its use is restricted to a single
subscription partition Sj , instead of the whole system. When
a subscription to a new pattern p is issued by a node (e.g.,
S1 in Figure 1(a)), it propagates along the entire column the
node belongs to. If a second subscription to p is issued by
another node on the same column (e.g., S2) this propagates
along it only up to the closest subscriber to p (S1 in our case).
However, if this second subscription is issued on a column
different from the first one (e.g., by S3), the subscription
propagates independently throughout that second column.

As for events, our routing strategy is made of two con-
stituents. First, events are routed through their own partitions,
rows in our case. Our partitioning choice satisfies the con-
straints above: an event disseminated along a row crosses all
the columns containing matching subscriptions, as long as it
is routed along the whole row. Second, when an event hits a
column containing matching subscriptions, it is “captured” by
that column and duplicated along it as shown in Figure 1(a), by
following the path established by subscriptions. In this respect,
HyperCBR behaves exactly like subscription forwarding, and
ensures that the path traveled by an event is the minimal one.

The concept can be extended to an arbitrary number of
dimensions. Figure 1(b) visualizes a configuration with d = 3
dimensions, where subscription partitions are planes slicing
through the cube and parallel to one of the sides, and event
partitions are lines orthogonal to such planes. This example is
used throughout this section for illustration purposes, as it is
easier to reason up to three dimensions. In practice, however,
d may be higher than 3, as discussed in Section V.

Routing in Hyperspace. Multidimensional partitions require
some additional machinery to enable efficient subscription
dissemination and subsequent event routing. As shown in
Figure 2(a), which depicts the bottom subscription plane Sj
of Figure 1(b), in this case a subscription is first propagated
along one dimension of the plane (e.g., a row in the figure).
At each node, the subscription is subsequently propagated
along the other dimension (a column in our case), and so on
along all the dimensions of the partition, until all the nodes
in the partition received the subscription and updated their
routing table accordingly. Effectively, the propagation of the
first subscription sets up a tree rooted at the first subscriber, A
in our case. We call this tree the partition’s subscription tree.
The propagation of other subscriptions for the same pattern
p proceeds as discussed above, by laying only the routes
connecting the new subscriber to the old ones, similar to the
bidimensional case. Figure 2(b) provides an example.

A subscription for a different pattern p′ is instead prop-
agated by “reusing” the subscription tree established by the
first subscriber for p on the same partition. Essentially, the
subscription tree is used as a sort of overlay spanning the
partition. The subscription for the new pattern is first routed to
the root of the subscription tree, leveraging the routes already
in place. From there, the subscription tree is then used to reach
all the nodes in the partition, which insert the new pattern in
their routing tables. This scheme ensures that all the patterns
are disseminated in the same way in Sj , and no loops are
created. Unsubscriptions are handled analogously, as in Siena.

As for events, when they intersect a subscription partition
(a plane in our case) they simply follow the routes present
on it, as depicted in Figure 2(c). As in the bidimensional
case, the strategy used for subscription propagation ensures
that events follow the minimal route. These concepts are easily
generalized to spaces with d > 3.

More dimensions = More Degrees of Freedom. Interestingly,
hyperspaces with d > 2 provide alternatives for system

(a) Propagation of the first subscription
for p from node A.

(b) Propagation of other subscriptions for
p from B and C.

(c) Event propagation. The grid shown in
the figure is the bottom plane of Fig-
ure 1(b).

(d) The shadowed rectangles represent the sub-
trees Tli associated to the nearby links li.

Figure 2. Routing in a d-dimensional hyperspace. Straight arrows denote routes, curvy arrows denote message (subscription or event) propagation.

deployment, by changing the size of subscription and event
partitions. The choice we show in Figure 1(b), for instance,
is likely to minimize the traffic caused by events, at some
additional cost for routing subscriptions. However, the inverse
choice may be beneficial in a system where subscriptions out-
number events. Mainstream CBR approaches do not provide
this flexibility, as they route events and subscriptions on the
same overlay, typically a tree. The advantages and tradeoffs of
our approach are discussed in more detail in Section V, based
on the analytical model of network traffic we introduce next.

III. AN ANALYTICAL MODEL OF TRAFFIC

We consider a system with n nodes, organized in a hyper-
space of d dimensions. We assume that the space is full, i.e.,
there is exactly one node in each point of the hyperspace,
whose side contains exactly λ = n

1
d nodes. Moreover, we

assume that the system topology is static. These assumptions
are motivated by the need to simplify analytical treatment:
their practical impact is discussed and evaluated in Section VI.

We assign 0 ≤ ds ≤ d dimensions to subscriptions, and
0 ≤ de ≤ d to events. According to the properties in Section II,
ds + de ≥ d must hold; to minimize traffic, we require that
ds + de = d. For instance, in Figure 1(b), ds = 2 and de = 1.
We define S = |Si| = n

ds
d and E = |Ei| = n

de
d as the number

of nodes in a subscription and event partition, respectively.

Interestingly, we observe that a d-dimensional space contains
E distinct subscription partitions Si, and similarly S distinct
Ei partitions. For instance, in our example there are S = n

2
3

vertical lines, (event partitions Ei) and E = n
1
3 horizontal

planes (subscription partitions Si). Finally, note that, as a
consequence, E and S are related by the equation n = S×E.

Any node may act as a publisher and/or subscriber, i.e.,
publishers and subscribers are uniformly spread in the hyper-
space. The traffic depends on parameters characterizing the
application profile. We define Np and Ne as, respectively, the
number of distinct patterns and events observed in the system
during a given time interval. Moreover, we define σ(p) as the
probability of a node of being a subscriber for a pattern p, and
µ(e) as the probability of a node to be a receiver for event
e. (When unambiguous, we drop the indexes for readability.)
The value of µ depends on the number of patterns in the
system matching e, as well as on the number σn of dispatchers
subscribed to them. However, µ cannot be determined simply
as the product of these two parameters, as a dispatcher could
be subscribed to multiple patterns matching e, by virtue of
content-based matching. Clearly, a receiver is also a subscriber
for at least one of the patterns matching e.

In the case of a uniform distribution for patterns, (i.e., each
pattern p occurs with the same probability), σ(p) = kp, where
0 ≤ kp ≤ 1 is some constant. In general, however, different

patterns have a different probability. For instance, in the case
of the commonly used Zipf distribution:

σ(p) = P
c

(pα)
(1)

being P the average number of subscribed patterns per node,
α the exponent of the Zipf distribution, and c a parameter such
that

∑Np
p=1

c
pα = 1. Similar considerations hold for events.

A. Cost of Routing a Single Pattern p

We can estimate the routing cost to disseminate subscrip-
tions for a pattern p by counting the number of routes in Si,
represented by arrows in Figure 1. Each link can be part of
at most two routes, one towards the first subscriber (i.e., the
root of the subscription tree in Si) and one towards the other
subscribers. For instance, in Figure 2(d) link l3 contains two
routes, one towards A (the root) and the other towards C.
Instead, l1 and l2 both contain only one route because they
are used only to reach the root subscriber A.

We denote with ρl(p) and ηl(p) the probability of a link l
to be part of a route towards the root and other subscribers,
respectively. Hereafter, to simplify the model description, we
assume2 that the first subscriber (the root) is always located
in the center of Si. Therefore, the resulting tree is symmetric
along all dimensions, and propagation of the first subscription
always begins from a line’s center. Based on these observa-
tions, the number of routes on a single line can be easily
computed3 as 2

∑λ−1
2

l=1 ρl(p) + ηl(p).
This result allows us to compute the traffic TSi generated in

a single partition Si by considering all lines on all dimensions:

TSi(p) =
ds∑
k=1

(Lk × 2

λ−1
2∑
l=1

(ρl(p) + ηl(p))) (2)

In this expression, the coefficient Lk takes into account that
the total number of available lines varies according to the
dimension k, 1 ≤ k ≤ ds. For instance, consider the tree
in Figure 2(a). Here, the first dimension (rows) contains only
one line, while the second (columns) contains λ = 7 lines. If
we were to set ds = 3, the tree would include the λ2 = 49
lines realizing the third dimension by intersecting the plane.
It is therefore easy to see that Lk = λk−1.

To compute the two probabilities ρl and ηl, we observe that
a link l contains a route between a father u and a child v if
and only if the set Tl of nodes belonging to the sub-tree rooted
at v contains at least one subscriber. Similarly, a route from v
to u exists if and only if the set Si \Tl of nodes not belonging
to the sub-tree rooted at v contains at least one subscriber. For
instance, link l3 in Figure 2(d) has two routes, since there is
a subscriber both in Tl3 and outside of it.

Recall that σ is the probability that a node is a subscriber for
a pattern p, and σ̄ = 1−σ the complementary probability, i.e.,

2This assumption can be easily implemented by defining the underlying
overlay network to be a torus, and having the subscriber propagate its
subscription on the ds dimensions only for λ

2
hops along each direction.

3If λ is even, the number of routes is actually (2
∑λ

2
l=1 ρl(p)+ηl(p))−1.

Hereafter, for the sake of readability we assume that λ is odd.

the probability of not being a subscriber for p. Therefore, σ̄|Tl|

is the probability that no subscriber exists in l’s subtree and
ηl is simply its complementary probability, i.e., the probability
that there exists at least one subscriber in l’s sub-tree:

ηl = 1− σ̄|Tl| (3)

Along the same lines we can derive the expression for ρl as
the probability that at least one subscriber exists outside the
l’s subtree, i.e. among the S − |Tl| nodes outside Tl:

ρl = 1− σ̄S−|Tl| (4)

We observe that |Tl| depends on the dimension k on which l
is located and its position i, 1 ≤ i ≤ λ, inside such dimension.
Consider Figure 2(d), and assume that positions inside lines
are computed starting from the lower left corner of the plane.
On the first dimension (rows), Tl2 contains 14 nodes, i.e., l2’s
position (i = 2) times the size of the second dimension (λ =
7). Instead, |Tl1 | = 7, since the position of l1 is i = 1. Finally,
|Tl3 | = 3 is determined by l3’s position (i = 3) along the
vertical dimension. Generalizing, |Tl| = iλds−k.

Finally, to obtain the overall traffic generated by the sub-
scription messages for a single pattern p, we need to multiply
TSi(p) by the number of distinct partitions Si. This, as
observed earlier, is equal to E = |Ej |, since by construction
there is one and only one partition Si per each node in Ej .
Therefore, recalling Equation (2), the expression of the total
traffic generated by subscriptions for a given pattern p is:

T (p) = ETSi(p) = 2E
ds∑
k=1

(λk−1

λ−1
2∑
i=1

(2− σ̄|Tl| − σ̄S−|Tl|))

(5)
where S = |Si| = λds and |Tl| = iλds−k. The equation above
correctly yields T (p) = 2E(S− 1) (i.e., all links in all Si are
bidirectional) when σ = 1 (i.e., all nodes are subscribers).

B. Cost of Routing a Single Event e

Similar to subscriptions, we focus on the dissemination
of a single event. First of all, we observe that the event
traffic is determined by a fixed contribution TEi , given by
the event dissemination inside the partition Ei containing
the publisher, plus all the contributions TSj (e) due to event
forwarding outside Ei based on the routing information in the
Sj subscription partitions crossed by Ei. Therefore:

T (e) = TEi(e) + ETSj (e) (6)

The fixed contribution is simply TEi(e) = |Ei|−1 = E−1.
To estimate the additional traffic TSj we observe that, by
construction, each node in Ei belongs also to a partition Sj .
Therefore, if there is at least a subscriber in Sj , the nodes
lying in the intersection between Ei and Sj can be regarded
as a sort of virtual publisher in Sj . In other words, these
are the nodes that begin the dissemination of the event inside
Sj , according to the routes established by its subscribers.
Figure 2(c) illustrates the concept pictorially.

We observe that a link l is traversed by an event e if and
only if the sub-tree Tl contains at least one receiver and the

virtual publisher of e is not in Tl or, vice versa, the virtual
publisher is in Tl and there is at least one receiver outside Tl.

We define the probability πl = |Tl|
n as the probability that

the virtual publisher lies in Tl, and π̄l = 1 − πl as the
probability that it lies outside Tl. Therefore, the probability
ψl(e) that a link at level l is traversed by an event e is

ψl(e) = πl(1− µ̄S−|Tl|) + π̄l(1− µ̄|Tl|) (7)

recalling that |Tl| = iλds−k and S = λds .
We compute the number of links traversed by e analogously

to Section III-A. Equation (2) can be “reused” by noting that
an event can traverse a link only in one direction, and therefore
ρl and ηl are replaced by the probability ψl(e):

TSj (e) =
ds∑
k=1

(Lk × 2

λ−1
2∑
i=1

ψl(e)) (8)

Recalling Equation (6), the overall traffic generated by e is:

T (e) = E−1+2E
ds∑
k=1

(λk−1

λ−1
2∑
i=1

πl(1−µ̄S−|Tl|)+π̄l(1−µ̄|Tl|))

(9)
The equation above is easily verified for µ = 1 (i.e., all nodes
in the system are receivers), correctly yielding T (e) = n− 1.

C. Total Message Traffic

With a uniform distribution of patterns and events, the
total traffic is simply T = NpT (p) + NeT (e). Non-uniform
distributions, such as the Zipf one in Equation (1) force us to
take into account different values of σ and µ for each pattern
and event. Therefore, in general

T =
Np∑
p=1

T (p) +
Ne∑
e=1

T (e) (10)

IV. VALIDATING THE MODEL

We validated our model using PEERSIM [8], a discrete
event simulator expressly designed for large-scale distributed
systems. We feed both the model and the simulator the
same scenario parameters, whose default values are shown in
Table I, and compute the (percentage) difference between the
traffic derived analytically and through simulation, defined as
%∆T = 100 · (Tmodel − Tsim)/Tsim. In both cases, we use a
full multidimensional space, as this is not only the assumption
we used to derive our model, but also the worst case in terms
of traffic generated, as shown in Section VI-A. Results are
averaged over 50 simulation runs with different seeds.

Table II shows the results w.r.t. an increasing system size
n. In Table II(a) we kept the space dimension fixed to d = 4,
therefore causing a corresponding increase in λ, the side of
the hyperspace. Dually, in Table II(b) we fixed λ = 10 as
we incremented the number of nodes from 100 to 100,000
(the highest scale we could simulate), increasing d accordingly
from 2 to 5. The values of n differ in the two tables, to
maintain a full hyperspace. Also, to avoid a bias due to the
fixed component TEi of event traffic, we set ds = d.

Parameter Default value
n 10000
σ(p) 2%
µ(e) 10%
d 4
ds 4
λ 10

Table I
DEFAULT PARAMETERS USED IN THE VALIDATION.

n=256 n=4096 n=20736 n=65536
(λ = 4) (λ = 8) (λ = 12) (λ = 16)

%∆T (p) 0.82 0.03 0.02 0.02
%∆T (e) 0.37 0.14 0.12 0.19

(a) d constant.

n=100 n=1000 n=10000 n=100000
(d = 2) (d = 3) (d = 4) (d = 5)

%∆T (p) 1.04 0.28 0.39 0.18
%∆T (e) -0.44 1.66 0.91 0.34

(b) λ constant.

Table II
SIMULATED VS. THEORETICAL TRAFFIC W.R.T. THE SYSTEM SIZE n.

ds 1 2 3 4
%∆T (p) 1.74 0.36 0.20 0.39
%∆T (e) 4.26 -0.078 0.93 0.91

Table III
SIMULATED VS. THEORETICAL TRAFFIC W.R.T. ds .

Both experiments demonstrate that our model approximates
very precisely the values generated by the simulator. Indeed,
the highest difference ∆T between theoretical and simulated
traffic is 1.66%. Moreover, as expected the model becomes
more accurate as n increases, since the distribution of sub-
scribers and publishers in space is increasingly approximated
by a uniform one. Also, we note that in almost all cases our
model yields a conservative estimate by excess.

In Table III, we remove the assumption ds = d and show the
results of our comparison for increasing values of ds, therefore
validating our model against different choices of Si and Ei.
Again, our model provides a very precise estimate of the traffic
generated. In general, the difference is below 1%. The only
exception, still below 4.5%, is for ds = 1. The reason lies
again in our assumption about uniform distribution, which in
this case is challenged by the small size of λ.

Finally, Table IV assesses the impact of the distribution of
patterns and events. To enable a fair comparison and remove
bias, we set σ = µ, essentially assuming that all subscriptions
match only one event. This way, we can easily evaluate T (p)
against σ and T (e) against µ. Table IV(a) shows the case of
a uniform distribution of patterns, while Table IV(b) uses a
Zipf distribution. Once more, our model is very precise, with
a difference w.r.t. simulated results below 3%, and in most
cases below 1%. For what concerns Table IV(b), it is worth
noting that the best results are obtained for α ≤ 1, which
represents the values commonly found in literature.

We can conclude that our model provides a very good ap-

σ, µ 0.001 0.01 0.1 0.5 0.8 0.9
%∆T (p) 0.003 0.11 0.68 0.67 0.16 0.02
%∆T (e) 1.87 1.92 2.97 1.50 0.34 0.05

(a) Uniform distribution.

α 2 1 0.5
%∆T (p) -0.67 -0.03 -0.01
%∆T (e) -2.67 -0.72 -0.51

(b) Zipf distribution.

Table IV
SIMULATED VS. THEORETICAL TRAFFIC W.R.T. THE DISTRIBUTION OF

PATTERNS AND EVENTS. WE ASSUME σ(p) = µ(e).

proximation of the results available through simulation, which
is commonly used to evaluate CBR protocols. Moreover, our
results evidence that the precision of our model improves as
the system size increases. We exploit this fact in the next sec-
tion, by comparing HyperCBR against mainstream approaches
in networks whose scale could not be easily simulated.

V. EVALUATION

We exploit the model defined in Section III to evaluate the
performance of routing in HyperCBR. We compare against
Siena [5], since it is probably the best known CBR system,
and is paradigmatic of the design choices of many others.
Siena assumes the existence of an overlay network connecting
all nodes in a single unrooted tree and uses the subscription
forwarding routing strategy mentioned earlier. The comparison
between tree-based subscription forwarding and HyperCBR
relies on a model of the former we recently published [9].

Moreover, we consider also event forwarding where, dually
to subscription forwarding, events are always broadcast to
all brokers and matched locally against subscriptions, which
instead are never propagated. Notably, in HyperCBR 〈de =
0, ds = d〉 yields subscription forwarding (albeit implemented
in a d-dimensional space), while 〈de = d, ds = 0〉 yields event
forwarding. It is fair to say that our approach subsumes the
two above, arguably the most common in the literature.

We evaluate HyperCBR in two scenarios: a file sharing ap-
plication and a publish-subscribe system. These represent two
extremes in terms of traffic, as the former is characterized by
a huge number of subscriptions while the latter is dominated
by events. This shows the flexibility of HyperCBR that, due
to its ability to privilege events or subscriptions, blends well
with many different workloads. Moreover, as we show later in
this section, HyperCBR not only reduces the network traffic
but also achieves a better balancing of the (computational,
network, and memory) load, through higher decentralization.
File Sharing. As suggested in [3], CBR can be used to provide
scalable data search and retrieval in a peer-to-peer network.
Nodes can advertise their shared resources (e.g., MP3 files)
by means of subscriptions and retrieve data from others by
injecting in the network an event (query) containing the pattern
(e.g, a regular expression) to match intended items.

The parameters we used for characterizing this scenario,
shown in Figure 3(a), are derived from traces collected on

(a) File sharing (Np = 8n, Ne = 2.25n, P = 3.2, α = 0.4).

(b) Publish-subscribe (Np = 100, Ne = 20n, P = 0.75, σ = 0.75%,
µ = 10%).

Figure 3. Comparing HyperCBR and subscription forwarding.

an EDonkey server over 24 hours [10]. σ is computed using
Equation (1). We set µ = σ, as in EDonkey downloaded
files are always shared, thus the popularity of downloaded and
shared file is essentially the same. Finally, we set d = 4.

In this scenario, subscriptions are the main traffic con-
tributors. Therefore, to reduce the overall traffic, we chose
ds = 1, i.e., subscriptions are propagated only along a
line. Subscription forwarding, instead, must propagate all the
subscriptions to all nodes, therefore dramatically increasing
traffic. This yields the situation depicted in Figure 3(a) where,
on a scale of n = 107, the subscription traffic of subscription
forwarding is more than two order of magnitude higher than
our approach (note the logarithmic scale on the y-axis).
Event traffic is indeed dwarfed by subscriptions. Moreover,
in this chart we do not consider unsubscriptions: if we did,
our performance would be even better, since unsubscriptions
propagate basically like subscriptions.

As another point of comparison, we plot the performance of
event forwarding, adopted by some file sharing applications,
notably Gnutella [7]. Since no subscriptions are propagated,
the only contribution comes from event (i.e., query) traffic.
However, as the chart shows, the traffic due to events is very
high since each event must reach all nodes in the network.

We note that subscription forwarding has no way to affect

the subscription traffic. Indeed, the only “knob” available in
subscription forwarding is provided by the tree degree, set to
f = 4 in this scenario. Nevertheless, increasing (or decreasing)
f bears no significant effect, since the vast majority of
subscriptions need to be forwarded to all nodes, regardless
of the value of f . Similar arguments hold for event forward-
ing. HyperCBR outperforms both precisely because, besides
changing the degree by varying d, it can also redistribute the
load between subscriptions and events by tuning ds properly.

Publish-Subscribe. There is no established and commonly
agreed benchmark scenario for content-based publish-subscri-
be—let apart when the scale is very high as in our case.
Therefore, we borrowed some parameters mentioned in the
literature [11] and set others to reasonable values, as shown in
Figure 3(b). In particular, we set event messages to be 20 times
more frequent than subscriptions. This is an extreme scenario
particularly suitable for subscription forwarding, as this strat-
egy is very effective in optimizing event traffic—albeit with
the side-effect of increasing the number of subscriptions. In
principle, we can set ds = d and achieve essentially the same
performance of subscription forwarding, again reasserting the
versatility of our approach even in unfavorable situations.
Instead, Figure 3(b) shows the results obtained with ds = 2.
Although this choice has not a relevant impact on traffic, it
significantly reduces the load on the nodes, as discussed next.

Node Load. The emphasis of this paper is on network traffic.
Nevertheless, our approach also drastically reduces the load
on the individual nodes—another key aspect of scalability.
Indeed, as an extreme, centralized solutions often ensure
lower traffic than decentralized ones, but at the expense of
concentrating the entire load on one node.

Since we currently do not capture this aspect in our model,
we further investigate it by means of simulation. We use the
aforementioned publish-subscribe scenario with 6,500 nodes,
and evaluate the load in terms of messages dispatched by each
node. As shown in Figure 4(a) and 4(b), in HyperCBR the
load is equally distributed among nodes, while in subscription
forwarding the nodes at the highest levels of tree must handle
most of the messages. This is also evident in Figure 4(b) where
we plot the distribution of events: in subscription forwarding a
subset of nodes “sees” all the events published in the systems
while in multidimensional a node at most forwards 32% of
them. This means that when the scale of the system, and
accordingly the number of events, is increased, subscription
forwarding is likely to experience serious scalability issues as
some nodes become bottlenecks. Conversely, HyperCBR ex-
hibits very good scalability because event propagation involves
each time a different set of nodes according to the partition
Ei of the publisher. Note how these remarkable results are
derived in a scenario where the traffic costs being compared
were similar. In the file sharing scenario HyperCBR works
even better, by reducing also the absolute value of traffic.

Besides reducing the number of messages handled per node,
HyperCBR improves also w.r.t. the memory requirements for
subscription tables and the computational overhead caused by

 1

 10

 100

 1000

 10000

0-9.9
10-19.9

20-29.9

30-39.9

40-49.9

50-59.9

60-69.9

70-79.9

80-89.9

90-99.9

100

N
um

be
r

of
 n

od
es

Load (%)

Subscription Forwarding
HyperCBR

(a) Subscriptions.

 1

 10

 100

 1000

 10000

0-9.9
10-19.9

20-29.9

30-39.9

40-49.9

50-59.9

60-69.9

70-79.9

80-89.9

90-100
N

um
be

r
of

 n
od

es

Load (%)

Subscription Forwarding
HyperCBR

(b) Events.

Figure 4. Distribution of the subscription and events messages dispatched
by each node in the publish-subscribe scenario.

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

N
um

be
r

of
 n

od
es

Subscription table size (%)

SubscriptionForwarding
HyperCBR

Figure 5. Subscription table size.

their inspection during event matching. Indeed, subscription
forwarding requires each subscriber to know about each of the
Np distinct patterns in the system. In our protocol, instead, a
node knows only the patterns in the partition Si it belongs to.
Therefore, the size of its subscription table, and consequently
the computational overhead to inspect it, are sensibly lower.
The difference between the two approaches in terms of mem-
ory requirements can be appreciated in Figure 5, where we
report the distribution of table sizes in the simulated scenario

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

T
ra

ffi
c

re
du

ct
io

n
(%

)

Nodes

T(p)
T(e)

Figure 6. Traffic reduction w.r.t. a full hyperspace.

described above. The chart confirms our expectations, showing
that the subscription tables in HyperCBR are a remarkable
80% smaller than in subscription forwarding.

These results confirm that HyperCBR is well-suited to
the large scale scenarios we target, and a good choice for
supporting CBR in a wide range of application domains.

VI. DEALING WITH SPARSE NETWORKS AND CHURN

In Section III we assumed that the hyperspace is full, i.e.,
each point in space is always taken by a node. In reality,
this is not always the case. More generally, implementing
HyperCBR entails building an overlay network supporting
the multidimensional grid we base our routing upon, and
maintaining it in the face of nodes joining and leaving. In
the following, we discuss and evaluate our current solutions,
which rely on the foundation provided by CAN [6].

A. Sparsely Populated Networks

In CAN, each node is assigned a zone that spans several
points. We use the term point to indicate a position in the
multidimensional space, and node to refer to the real host.
A node is therefore responsible for many points. Moreover, a
node keeps track of the IP address of its neighbors (i.e., of
the owners of adjacent zones) as well as of their “direction”
in space (e.g., whether they are on the same horizontal plane
or on the same vertical line).

HyperCBR selects one of the points assigned to a node
as its identity, i.e. the point which issues subscriptions and
receives matching events on behalf of the node. Routing of
events and subscriptions occurs as described in Section II,
by relying on the topology information above. The only
(significant) difference is that a message exchanged between
two points owned by the same node does not generate any
traffic. For instance, Figure 7(a) shows our reference example
with the addition of the nodes responsible for points, denoted
by boxes. An event published in A is delivered to the three
subscribers based on the existing routes. However, only 4
network messages are exchanged across the nodes involved
instead of the 8 messages that would be required among points:
the remaining hops are “performed” locally to nodes.

Evaluation. Interestingly, in practical cases where the hyper-
space is not full, the model we derived in Section III provides
an upper bound for traffic. In Figure 6, we analyze the traffic
(events and subscriptions) generated by the publish-subscribe
scenario of Section V in a hyperspace of 8,000 points. The
plot shows the percentage traffic reduction generated by a non-
full hyperspace, in comparison with a situation where every
point is associated to a single node. To enable fair comparison,
we maintain the number of subscribers and receivers constant
across the different sizes.

The x-axis shows the number of nodes in the system. The
case n = 8000 corresponds to a full space and no reduction is
possible. At the other extreme, a 100% reduction is observed
when only one node exists, as all points are assigned to it
and no traffic is generated. In intermediate situations, a traffic
reduction is always observed (e.g., about 10% with n = 4000).

B. Churn and Route Reconfiguration

In CAN, a node joins by picking a random point in space,
routing to the zone containing the point, and splitting the zone
with its current owners. A node leaving is dealt with by having
the owner of one of the neighboring zones take over the one
owned by the departing node. However, reconfigurations must
be handled not only w.r.t. the overlay network, but also w.r.t.
routing, by properly reconciling routes with network changes.

Join. When a node Nnew joins the network it become re-
sponsible of a zone Z , previously assigned to another node,
say Nold. In this case, the route reconfiguration process is
rather simple, and consists of Nold forwarding to Nnew all
the information concerning the points in Z . Nnew chooses
one of these points as its identity, and starts disseminating its
subscriptions. In case Nold’s identity is among these points,
Nold selects one of its current points as its new identity and
unsubscribes from the previous one.

Leave. Soft failures can be dealt with analogously to joins.
Before disconnecting, a node can notify the one taking over its
zone and forward the routing tables of its points. Hard failures
are more complex because when a node disconnects abruptly
the routing table of its points are lost. To explain how they are
recovered we refer to the example in Figure 7. In Figure 7(b),
N3 disappears abruptly and its zone, depicted by a shadowed
area, is assigned to N4. However, the routing tables associated
to points B and C are lost and must be recovered.

Routing information is reconciled by having the new zone
owner contact4 the points neighboring along the ds dimensions
with the zone originally associated with the departed node, and
determining whether their subscriptions require the insertion
of a local one. This occurs when the neighboring points hold
subscriptions that point “outwards” w.r.t. the vanished zone
(i.e., B and C). In the example, the points being contacted
are those marked in gray. Point A has only one subscription
pointing towards the vanished zone (specifically, towards B),
therefore no new route is required. Conversely, D holds a

4We use the term contact to indicate both remote (points belonging to
different nodes) and local (points belonging to the same node) interactions.

(a) Initial configuration. (b) N3 disappears. The shadowed rectangle
indicates the zone previously assigned to N3.

(c) B’s and C’s routing tables have been
restored but D’s one is still inconsistent.

(d) Final configuration. C issued an unsub-
scription to update D’s routing table.

Figure 7. Reconfiguration example (ds = 2). Capital letters indicate points while Ni denote nodes. The rectangles represent the set of points assigned to
each node. Subscribers are identified by double circles.

subscription towards E, pointing away from the vanished zone
(i.e., from C). Therefore, a subscription must be added to
reconnect the path followed by events. This subscription is
then propagated in the usual way to the other points in the zone
(only B in the example), leading to the situation in Figure 7(c).

This configuration, however, is still inconsistent because D
has a subscription towards C that is now obsolete. Never-
theless, this situation can be easily detected by scanning all
points, including neighbors, to see whether there are some
subscriptions that enter the vanished zone but never exit. In
our example, the subscription from D to C does not have a
complementary one from B to A and must be removed. This is
accomplished by issuing an unsubscription from C, bringing
the system in the final, correct configuration of Figure 7(d).

Evaluation. To assess the effectiveness of our reconfiguration
solution, we stress HyperCBR by removing nodes from the
network at regular intervals, measuring event delivery (i.e.,
the ratio between the events actually delivered and those
expected) during and after the reconfiguration. We consider
a network with n = 8000 and d = 3 and use the workload
of the publish-subscribe scenario described in Section V. At
regular intervals (rounds) we remove k nodes from the system,
with k varying from a minimum of 8 to a maximum of 600
nodes per round. This yields an overall failure ranging from
1% to 75% of the nodes. Note how nodes are removed also
during the recovery process, possibly creating overlapping

reconfigurations. Figure 8(a) shows the event delivery. As
expected, delivery drops while nodes are being removed, due
to misconfigured routing tables. However, as soon as we stop
removing nodes delivery goes back to 100%, confirming that
the protocol returns to a correct configuration.

Figure 8(b) shows the cost of reconfiguration in terms of
messages exchanged to update the routing tables, for k = 40.
The chart confirms that the reconfiguration traffic is largely
negligible w.r.t. the number of messages exchanged to dis-
seminate subscriptions and events. As the chart shows, it is
even smaller than the reduction caused by the fact that nodes
are removed and the hyperspace becomes emptier, based on
the previous considerations. This low overhead stems from the
locality of the interactions required to reconstruct the routing
tables. As shown in the example, only neighboring nodes are
contacted, therefore generating a low traffic.

VII. RELATED WORK

Mainstream tree-based approaches, as discussed in Sec-
tion V, provide the highest efficiency in event routing but
subscription traffic negatively affects their performance. Re-
cent work in the context of publish-subscribe (e.g., [12], [13])
exploit DHTs to support CBR. Unfortunately, they assume that
events and subscriptions are based on attributes, thus they do
not unleash all the expressive power of arbitrary content-based
matching. Moreover, some of these approaches require the

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

D
el

iv
er

y

Rounds

k=8
k=80

k=200
k=400

k=600

(a) Delivery.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 Subscriptions Events Reconf.

M
es

sa
ge

s

Before reconfiguration
After reconfiguration

890301

3372155

2109384

28324

(b) Overhead.

Figure 8. Dealing with churn in the publish-subscribe scenario (n = 8000).
At each round, k nodes are removed from the system.

existence of a so-called rendez-vous node where subscriptions
meet events. In HyperCBR, every node can act as a rendez-
vous point, therefore enabling higher scalability through a
more decentralized scheme and minimizing bottlenecks. Fi-
nally, none of the aforementioned approaches offers mech-
anisms to tune the system towards to different subscription
and event workloads, and therefore they cannot be applied
in different contexts (e.g., peer-to-peer networks). The only
exceptions to this respect are represented by [14], [15], which
split the event space on different nodes to redistribute the
effort. Compared to HyperCBR, these works achieve flexibility
in a more coarse-grained fashion. Also, they rely only on
simulation, while our analytical model provides a powerful
tool to investigate the tradeoffs involved in very large-scale
scenarios that cannot be analyzed through simulation.

In the related field of peer-to-peer networks, several efforts
tackled scalable search services. Early solutions exploit either
a centralized approach [16], [17] or a flooding-based one [7],
[18]. More recent ones (e.g., [19]) exploit DHTs to implement
keyword search. Although these protocols are routinely used
in most file sharing application, the quality of the search is
very poor when compared against content-based systems.

Finally, recently the database community focused on imple-
menting distributed DBMSes in a peer-to-peer fashion, under

the name of semantic overlay networks [20], [21]. Neverthe-
less, these approaches suffer from the same issues evidenced
above for peer-to-peer and publish-subscribe systems, since
they do not support the full power of pattern-based search
(e.g., through regular expression) and fields are mapped onto
single nodes, thus easily creating bottlenecks.

VIII. CONCLUSIONS

In this paper we proposed HyperCBR, a new CBR approach
expressly targeting very large-scale scenarios. HyperCBR re-
lies on a multidimensional space where subscriptions and
events are routed along distinct, albeit intersecting, partitions.
Our routing technique leads to higher scalability: we pro-
vided evidence for this claim through simulation and through
an analytical model of traffic. Interestingly, we evaluated
our approach in paradigmatic scenarios with very different
characteristics: indeed, increased flexibility in deployment is
another distinctive trait of HyperCBR. Finally, we showed how
HyperCBR can be realized on top of CAN, and how it can
tolerate high levels of churn with low overhead.

REFERENCES

[1] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” Computing Surveys, vol. 2, no. 35, 2003.

[2] A. Bulut, A. K. Singh, and R. Vitenberg, “Distributed data streams
indexing using content-based routing paradigm,” in Proc. of 19th IEEE
Int. Parallel and Distributed Processing Symposium (IPDPS), 2005.

[3] D. Heimbigner, “Adapting Publish/Subscribe Middleware to Achieve
Gnutella-like Functionality,” in Proc. of SAC, 2001.

[4] C. Intanagonwiwat et al., “Directed diffusion for wireless sensor net-
working,” IEEE/ACM Trans. Networking, vol. 11, no. 1, 2003.

[5] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and Evaluation
of a Wide-Area Event Notification Service,” ACM Trans. on Computer
Systems, vol. 19, no. 3, pp. 332–383, 2001.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content addressable network,” in Proc. of SIGCOMM, 2001.

[7] http://www.the-gdf.org.
[8] http://peersim.sourceforge.net.
[9] S. Castelli, P. Costa, and G. Picco, “Modeling the Communication Costs

of Content-based Routing: The Case of Subscription Forwarding,” in
Proc. of the 1st Int. Conf. on Distributed Event-Based Systems, 2007.

[10] S. Le-Blond, J.-L. Guillaume, and M. Latapy, “Clustering in P2P
Exchanges and Consequences on Performances.” in Proc. of the 4th
Int. Wkshp. on Peer-to-Peer Systems, 2005.

[11] A. Carzaniga, M. Rutherford, and A. Wolf, “A routing scheme for
content-based networking,” in Proc. of INFOCOM, 2004.

[12] P. Pietzuch and J. Bacon, “Hermes: A Distributed Event-Based Mid-
dleware Architecture,” in Proc. of the 2nd Int. Wkshp. on Distributed
Event-Based Systems, 2002.

[13] A. Gupta et al., “Meghdoot: content-based publish/subscribe over P2P
networks,” in Proc. of the 5th Int. Conf. on Middleware, 2004.

[14] Y. Wang et al., “Subscription partitioning and routing in content-based
publish/subscribe systems,” in Proc. of the 16th Symp. on Distributed
Computing, 2002.

[15] F. Cao and J. Singh, “Efficient event routing in content-based pub-
lish/subscribe service network.” in Proc. of the 23rd INFOCOM, 2004.

[16] http://www.napster.com.
[17] http://www.edonkey2000.com.
[18] http://www.kazaa.com.
[19] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Informa-

tion System Based on the XOR Metric,” in Proc. of the 1st Int. Wkshp.
on Peer-to-Peer Systems, 2002.

[20] M. Cai and M. Frank, “RDFPeers: a scalable distributed RDF repository
based on a structured peer-to-peer network,” in Proc. of the 13th Int.
Conf. on World Wide Web, 2004.

[21] M. Harren et al., “Complex Queries in DHT-based Peer-to-Peer Net-
works,” in Proc. of the 1th Int. Wkshp on Peer-to-Peer Systems, 2002.

http://www.the-gdf.org
http://peersim.sourceforge.net
http://www.napster.com
http://www.edonkey2000.com
http://www.kazaa.com

	Introduction
	HyperCBR: An Overview
	An Analytical Model of Traffic
	Cost of Routing a Single Pattern p
	Cost of Routing a Single Event e
	Total Message Traffic

	Validating the Model
	Evaluation
	Dealing with Sparse Networks and Churn
	Sparsely Populated Networks
	Churn and Route Reconfiguration

	Related Work
	Conclusions
	References

