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Abstract

We present a new model-based bundle adjustment algo-
rithm to recover the 3D model of a scene/object from a se-
quence of images with unknown motions. Instead of repre-
senting scene/object by a collection of isolated 3D features
(usually points), our algorithm uses a surface controlled by
a small set of parameters. Compared with previous model-
based approaches, our approach has the following advan-
tages. First, instead of using the model space as a regular-
izer, we directly use it as our search space, thus resulting in
a more elegant formulation with fewer unknowns and fewer
equations. Second, our algorithm automatically associates
tracked points with their correct locations on the surfaces,
thereby eliminating the need for a prior 2D-to-3D associa-
tion. Third, regarding face modeling, we use a very small
set of face metrics (meaningful deformations) to parame-
terize the face geometry, resulting in a smaller search space
and a better posed system. Experiments with both synthetic
and real data show that this new algorithm is faster, more
accurate and more stable than existing ones.
Keywords: Bundle adjustment, model-based bundle adjustment,
model acquisition, structure from motion, face modeling.

1. Introduction

Bundle adjustment (BA) has been a popular technique
to refine in an optimal way both 3D structures and camera
motions for a given sequence of images. The reader is re-
ferred to [17] for an excellent survey of the theory of BA as
well as many implementation strategies. Conceptually BA
can handle a very wide variety of scenarios. However, pre-
vious work mainly aims at recovering isolated 3D features
(usually points and/or lines) [6, 12, 10], which we will refer
to as classical bundle adjustment (CBA). In this paper, we
describe a new type of BA aiming at directly recovering a
surface model, which we will call model-based bundle ad-
justment (MBA).

1.1. Representation: Point cloud or surface
model?

Whether to use a point cloud or surface model depends
on the complexity of the objects/scenes to be modeled. A
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point cloud is definitely a more general representation, and
can be used in almost all scenarios such as those shown in
Fig. 1. However, in many cases such as indoor scenes and
faces (see Fig. 1), 3D geometric structures exhibit strong
regularities, and it is more compact to use some surface
models.

In structure from motion, image features can only be ex-
tracted with limited precision, and their matching across
images usually contains errors. To deal with these prob-
lems, several techniques exploiting robust statistics were re-
ported in the last few years [18, 16]. Another approach is to
make full use of geometric properties of objects/scenes to
reduce errors in 3D reconstruction and motion estimation.
As we will argue in this paper, surfaces can usually be rep-
resented by a smaller number of parameters than isolated
points, making the overall system better posed. This has
also been noted by other researchers [15, 11].

(a) (b)

Figure 1. Examples of scenes that are difficult in (a)
and possible in (b) to represent by a few parameters

1.2.. Model: regularizer or search space?

Most previous work uses a generic surface model as a
regularizer. Surface properties are formulated as soft con-
straints, and are added to the traditional bundle adjustment
formulation to regularize the motion and structure estima-
tion [3, 7, 15].



Fua [3] used the model-driven bundle adjustment algo-
rithm to compute camera motions. Based on a generic
model, they impose smoothness constraints to ensure that
the resulting model is not too far from the generic model.
This approach improved the algorithm’s robustness. How-
ever, the 3D model obtained with the model-driven bundle
adjustment algorithm is in general inaccurate, and they have
to throw away the model and use an additional step to re-
compute the 3D structure.

Kang et al [7] proposed appearance-based structure from
motion using a linear combination of 3D face models
(scanned from real people) as their model space. The model
space is also used as regularization constraints to ensure that
the resulting model is not too far from the model space. The
coefficients of the 3D face models are added as additional
variables to solve for. Therefore the resulting formulation is
a much larger optimization problem with more unknowns
and more constraints, thus more difficult to achieve conver-
gence. Another difference between their work and ours is
that they know the association between each image track
and the vertex it corresponds to on the face mesh.

Debevec et al [2] used a model-based structure-from-
motion algorithm to recover architecture models. Their al-
gorithm also requires the associations of their feature tracks
to be known: edges marked in the images are projections
of some specific edges in the model. Another work with a
similar requirement is Lowe’s work on tracking deformable
objects [9].

Szeliski and Torr [15] were probably the first to consider
coplanarity constraints directly in structure from motion, al-
though not implemented in a statistically optimal way. They
interleave structure and motion estimation stages, and the
coplanarity constraints are only imposed in structure esti-
mation.

In this paper, we propose a new model-based bundle ad-
justment algorithm (MBA) that takes as input a set of im-
age tracks without necessarily a prior 2D-to-3D associa-
tion. The algorithm simultaneously recovers motion and
surface model by directly using the model space as our
search space. Robustness is obtained without adding addi-
tional regularization constraints. The resulting formulation
is more concise and has less unknowns and constraints than
previous approaches.

The closest work we found in the literature is that of
McLauchlan et al. [11], where the planarity constraints are
imposed by applying the technique of Lagrange multipliers.
Besides the 3D coordinates of each point, they also estimate
the plane parameters and the corresponding Lagrange mul-
tiplier for each plane. Our formulation can be considered as
the generalization to arbitrary parametric surfaces.

We also propose a technique to reduce considerably the
number of unknowns by eliminating the 3D coordinates of
each point using a first order approximation. Another con-

tribution of our work is that our algorithm automatically as-
sociates tracked points with their correct locations on the
surfaces. Such a feature track is used as a point-on-surface
constraint in our formulation. Our algorithm thereby elimi-
nates the need for a prior 2D-to-3D association, and is thus
suitable for a wide variety of applications. We have applied
this technique to face modeling from images. We use a very
small set of face metrics (meaningful deformations) to pa-
rameterize the face geometry, resulting in a smaller search
space and a better posed system.

The paper is organized as follows. We formulate the
MBA problem in Section 2, and derive a first order approxi-
mation of the MBA formulation that eliminates the position
variables in Section 3. Section 4 describes applications to
face modeling. The experimental results with both com-
puter simulation and real data are shown in Section 5. We
conclude the paper in Section 6.

In addition to those mentioned above, there are numer-
ous works on face modeling from images such as [1, 14].
Due to space limitation, we will not go into the details.

2. Problem Statement and
Model-Based Bundle Adjustment

We are interested in recovering the structure of a 3D
scene/object from multiple images. Instead of represent-
ing the 3D scene/object by a collection of isolated 3D fea-
tures, we consider the situations where the scene/object is a
surface defined by a set of M parameters C = fcmjm =
1; : : : ;Mg, called model parameters. Let us denote the
surface by S(C). Furthermore, we assume there are Q se-
mantically meaningful points (semantic points for short)
fQj jj = 1; : : : ; Qg on the scene/object. If there are no
semantic points available, then Q = 0. The relationship
between the j th semantic point Qj and the scene/object pa-
rameters C is described by

Qj = Q(C; j) : (1)

Obviously, point Qj 2 S(C).
We are given a set of N images/frames, and assume we

have matched a number of points of interest across images
using for example the technique described in [18]. Because
of occlusion, feature detection failure and other reasons, a
scene/object point may be observed and detected in a subset
of images. Let us call the set of image points corresponding
to a single scene/object point a feature track. Let P be the
total number of feature tracks, �k be the set of frame num-
bers of the k th feature track, pi;k (i 2 �k) be the feature
point in the ith frame that belongs to the kth feature track,
and Pk be the corresponding 3D point, which is unknown,
on the scene/object surface. Furthermore, we assume that
the j th semantic point Qj is observed and detected in zero or
more images. Let 
j be the, possibly empty, set of frame



numbers in which Qj are detected, and ql;j (l 2 
j) be the
detected semantic point in the l th frame.

Image i is taken by a camera with unknown pose pa-
rameters Mi which describes the position and orientation of
the camera with respect to the world coordinate system in
which the scene/object is described. Although many cam-
era models exist, we use the standard perspective projection.
The relationship between a 3D point Pk and its image point
pi;k is described by function � such that

pi;k = �(Mi; Pk) : (2)

For simplicity, the internal camera parameters are assumed
to be known, although it is trivial to add them in our for-
mulation; indeed, these parameters are incorporated in our
implementation.

We can now state the problem as follows: GivenP tracks
of feature points fpi;kjk = 1; : : : ; P ; i 2 �kg and Q tracks
of semantic points fql;j jj = 1; : : : ; Q; l 2 
jg, determine
the scene/object model parameters C and the camera pose
parameters M = [MT1 ; : : : ; M

T
N ]

T .

Our objective is to solve this problem in an optimal way.
By optimal we mean to find simultaneously the scene/object
parameters and camera parameters by minimizing some sta-
tistically and/or physically meaningful cost function. As
in the classical point-based bundle adjustment, it is reason-
able to assume that the image points are corrupted by inde-
pendent and identically distributed Gaussian noise because
points are extracted independently from images by the same
algorithm. In that case, the maximum likelihood estimation
is obtained by minimizing the sum of squared errors be-
tween the observed image points and the predicted feature
points. More formally, the problem becomes

min
M;C;fPkg

 
PX
k=1

X
i2�k

kpi;k � �(Mi; Pk)k
2

+

QX
j=1

X
l2
j

kql;j � �(Ml; Qj)k
2

1A
subject to Pk 2 S(C); (3)

where Qj = Q(C; j) as defined in (1). Note that although
the part for the general feature points (the first term) and the
part for the semantic points (the second term) have the same
form, we should treat them differently. Indeed, the latter
provides stronger constraint in bundle adjustment than the
former. We can simply substitute Qj in the second part by
Q(C; j) while Pk must be searched on the surface S(C).

In most practical problems, not all possible values of
parameters C are acceptable, and it is often necessary or
desirable to impose constraints. There are many forms of
constraints: linear or nonlinear, equality or inequality. The
reader is referred to [5] for various techniques to deal with
constrained optimization problems. An important case is
when a parameter cm is subject to bounds: lm � cm � um.

For each such constraint, we add to (3) two penalty terms
for the lower and upper bound. For the lower bound, the
penalty term is defined by

pm =

�
0 if cm � lm;
�(lm � cm)

2 otherwise,

where the non-negative value � is the penalty parameter.

2.1 Comparison Between CBA and MBA

Compared with the classical point-based bundle ad-
justment (CBA), our model-based bundle adjustment (3)
(MBA) has a similar form except that we have model pa-
rameters C and points Pk are constrained. In CBA, there are
no model parameters but points Pk are free. Although it ap-
pears that MBA has more parameters to estimate, the real
number of free parameters is usually smaller because of the
constraint on points Pk. Indeed, the total number of free pa-
rameters in CBA is equal to 6(N � 1) � 1 + 3P (“�1” is
due to the fact that the global scale cannot be determined),
while the total number of free parameters in MBA is equal
to 6(N�1)�1+M+2P because each point on a surface has
two degrees of freedom. As long as P > M (the number of
feature tracks is larger than that of model parameters), the
parameter space for MBA is smaller than for CBA.

Take a simple example of recovering a plane from im-
ages. A plane can be defined in the first camera coordi-
nate system with three parameters. Therefore, the parame-
ter space for MBA is smaller if there are more than 3 point
tracks across images, and we do need at least 4 point tracks
to recover a plane.

In Section 3 we will show how to eliminate Pk in (3) and
derive a much smaller minimization problem.

3. Simplifying the Minimization Problem

We observe that in (3), unknown 3D points fPkg, which
correspond to feature tracks, are not involved at all in the
second term. Furthermore, in the first term, the second sum-
mation only depends on each individual Pk. We can there-
fore rewrite (3) as

min
M;C

 
PX
k=1

min
Pk

X
i2�k

kpi;k � �(Mi; Pk)k
2

+

QX
j=1

X
l2
j

kql;j � �(Ml; Qj)k
2

1A
subject to Pk 2 S(C): (4)

Henceforward, we will consider only the first term and
try to eliminate fPkg in order to simplify the minimiza-
tion problem. Instead of estimating fPkg, it is equivalent
to estimating its projection in each image. We can therefore
rewrite the inner minimization problem with respect to Pk



as the following problem:

min
fbpig

X
i2�k

kpi � bpik2
subject to bpi = 'i(S(C); bpr) for i 2 �0

k, (5)

where pi � pi;k, bpi � bpi;k , fbpi j i 2 �kg is the
set of projected 2D points of a 3D point on surface S(C),
'i(S(C); bpr) is an image transfer function (see below), and
�0
k = �k�frg. Here, we choose image r as reference, andbpr is the projection of the 3D point to be estimated in the

reference image. The image transfer function ' i(S(C); bpr)
finds the intersection bP of a ray from the reference point bpr
with surface S(C) and then projects bP onto the ith image; it
is thus a function of bpr, C, and Mi. Note that at this point
there is no approximation at all. Regardless of which ref-
erence image used, problem (5) is the same as the original
one except that we are estimating a 2D point pr instead of
a 3D point P on a surface.

Defining

�pi = pi � bpi ) bpi = pi ��pi (6)

and substituting (6) into (5), we can combine all the con-
straints as

Fk �
X
i2�0

k

kpi ��pi �'i(S;pr ��pr)k
2 = 0 : (7)

By applying Taylor expansion to ' i at pr and keeping the
first order terms, we have:

'i(S;pr ��pr) = 'i(S;pr)��i;r�pr ; (8)

where �i;r = @'i(S;p)=@p jp=pr is the Jacobian matrix
of 'i(S;p) evaluated at pr. Equation (7) then becomes:

Fk =
X
i2�0

k

kpi ��pi �'i(S;pr) +�i;r�prk
2

�
X
i2�0

k

(2aTi �i;r�pr � 2aTi �pi + a
T
i ai) (9)

where ai = pi � 'i(S;pr), and the second term of (9)
is achieved by keeping only first order terms. Using the
Lagrange multiplier, we can transform (5) into an uncon-
strained minimization problem, and the objective function
is given by

Jk =
X
i2�k

k�pik
2 + �Fk : (10)

To minimize Jk, its first derivatives with respect to �pi
must be equal to 0, that is:

@Jk
@�pr

= 2�pr + 2�
X
i2�0

k

�T
i;rai = 0

@Jk
@�pi

= 2�pi � 2�ai = 0 for i 2 �0
k

The solution is

�pr = ��d (11)
�pi = �ai for i 2 �0

k (12)

where d =
P

i2�0

k
�T
i;rai. Substituting (11) and (12) into

(9) leads to:

Fk =
X
i2�0

k

(�2�aTi �i;rd� 2�aTi ai + a
T
i ai) : (13)

Solving (13) for � gives:

� =

P
i2�0

k
aTi ai

2[
P

i2�0

k
(aTi �i;rd+ aTi ai)]

=

P
i2�0

k
aTi ai

2(dTd+
P

i2�0

k
aTi ai)

: (14)

Substituting �pi and � into (10)gives:

Jk = �pTr �pr +
X
i2�0

k

�pTi �pi

= �2(dTd+
X
i2�0

k

aTi ai)

=

�P
i2�0

k
aTi ai

�2
4
�
dTd+

P
i2�0

k
aTi ai

� : (15)

Therefore, under the first order approximation, the con-
strained minimization problem (4) becomes the following
unconstrained one:

min
M;C

0@ PX
k=1

Jk +

QX
j=1

X
l2
j

kql;j � �(Ml; Qj)k
2

1A : (16)

3.1. How to choose the reference image?

Note that equation (16) is obtained from (4) through the
linearization of the transfer function' i(S;pr). The choice
of the reference image r determines how well the transfer
function can be approximated by the linear function (8).

Let’s examine the image transfer function ' i(S;pr).
Denote the relative motion (rotation and translation) from
image r to image i by (Rr

i ; t
r
i ). Let P be the point on sur-

face S corresponding to pr. In the neighborhood around P,
surface S can be approximated by its tangent plane �. Let
� be represented in the camera coordinate system of image
r by a unit normal vector n and the distance d from the ori-
gin to the plane. It can be easily shown that p i is related to
pr through a homographyHr

i , i.e.,

epi = �Hr
i epr with Hr

i = Rr
i +

1

d
trin

T ; (17)

where ep = [pT ; 1]T and � is a non-zero scalar.
If Hr

i is an affine matrix (i.e., the first two elements of
the third row are equal to 0), then p i and pr are related by
a linear function, and the linear approximation error of the
transfer function is 0. This happens if the following two
conditions are satisfied:

1. the rotation axis is parallel to z-axis;
2. there is no translation in z (i.e., tz = 0) or the plane is

parallel to image plane r (i.e., nx = ny = 0).



We therefore should choose r such that the above two con-
ditions can be satisfied as close as possible for all i 2 �0

k.
In our implementation, we choose the central frame of a
feature track as the reference image for the following two
reasons. First, the central frame usually corresponds to the
best viewpoint for that feature, i.e., with smallest value in
nx and ny. This is because the first and last frames usu-
ally exhibit strong distortion, making the tracking broken.
Second, the nonlinear effect of the transfer function due to
rotation around axis not parallel to the z-axis is smaller if
the central frame is chosen as the reference.

4. MBA for Face Modeling

In this section, we show how to apply MBA to the re-
construction of 3D face models from image sequences. We
represent a face as a linear combination of a neutral face
mesh and a certain number of face metrics. A metric is
a vector that linearly deforms a face in certain way, such
as to make the head wider, make the nose bigger, etc.
To be more precise, let us denote the neutral face mesh
as S0 = (v01

T
; : : : ;v0n

T
)T , where v0i (i = 1; :::; n) are

the vertices of the mesh. Denote the metrics as Mj =
(Ævj

1

T
; : : : ; Ævjn

T
)T , j = 1; :::;m. For each vectorCcoef =

(c1; c2; :::; cm)
T , its corresponding face mesh is

S�(Ccoef ) = S0 +
mX
j=1

cjM
j : (18)

The cj’s are called metric coefficients.
Notice that Equation (18) evaluates the vertices in the

coordinate system where the neutral mesh and metrics were
designed. We use Mp to denote the transformation ma-
trix from this original face mesh coordinate system to the
camera coordinate system. Then S(C) = Mp(S

�(Ccoef ))
is the face mesh in the camera coordinate system. There-
fore, including the 6 parameters for Mp, the total number
of model parameters M = m+ 6.

In our implementation, the neutral face and all the met-
rics are designed by an artist. The neutral face contains 194
vertices and 360 triangles (Figure 5). There are 65 met-
rics (i.e., m = 65). Each metric is associated with a valid
range [lj ; uj ] with lj � cj � uj . We use a penalty func-
tion to handle these inequality constraints as described in
Section 2.

All the vertices on the face mesh have meanings, and
the user is allowed to add zero or more semantic point con-
straints. One way to specify semantic point constraints is
to mark some face features (such as eye corners) on some
of the images. The vertices corresponding to these features
will be constrained so that they project to these markers (the
second term of equation (16)).

To obtain a reasonable initial guess, we use the results
from the face modeling system as reported in [8] as the ini-

tial guess of our MBA algorithm. Their system takes as
input a sequence of images and five manual markers (in-
ner eye corners, nose tip, and mouth corners) on two frontal
views (i.e., Q = 5 in equation (16)). It computes the face
geometry from the two frontal views, and then uses the
computed face model to track the rest of the images. Finally
it combines these images into a single cylindrical texture
map. Notice that in their system, the geometry is computed
from only two frontal views, so the results are in general not
very accurate. On the other hand, the system is fast, robust,
and the resulting face models and the camera motions are
reasonable.

Equation (16) is solved using the Levenberg-Marquardt
algorithm [13] with the gradients computed numerically.

5. Experiments

In this section, we provide experimental results of our
MBA algorithm with both synthetic (Sect. 5.1) and real
(Sect. 5.2) data for face modeling.

5.1. Synthesized data

With synthetic data, we compare MBA with CBA be-
cause we know the ground truth. We choose to use the struc-
ture error as the error metric for comparison since MBA re-
sults in a 3D face model and the structure error directly af-
fects the visual quality of the 3D reconstruction. For CBA,
we add a 3D geometrical fitting stage to fit a face model to
the 3D point clouds reconstructed by CBA. From the five
markers (see Section 4), we compute their 3D positions and
use them to initialize the pose of the face model. The fit-
ting process then searches for both the pose of the face and
the metric coefficients to minimize the distances from the
reconstructed 3D points (including the markers) to the face
mesh. We use an iterative closest point approach to solve
this problem (See [4, 8] for details).

The structure error is computed as follows. For each
sampled point (corresponding to a track) on the ground
truth face model, compute the corresponding point (with the
same semantic meaning) on the estimated face model. Then
we compute a similarity transformation (scale, rotation, and
translation) from the point set on the estimated face model
to that on the ground truth model. The remaining distance
from the transformed point set to that on the ground truth
model is defined as the structure error. The reason to com-
pute a similarity transformation between the two point sets
is due to the obvious fact that structure from motion can
only be determined up to a similarity transformation. Notice
that in all the experiments below, we normalize the ground
truth mesh so that its bounding box size is 1.

The ground truth data was synthesized in such a way that
the distribution of the tracks are similar to a real situation
example where a person turns his head in front of a static



camera with corner matching algorithm being used to com-
pute pair-wise image matches. There are 4 views and 232
tracks.

Sensitivity to initial guess and data noise. In the first
experiment, the ground truth data was perturbed in the fol-
lowing way. First, noise with a given percentage (referred
to as initial guess perturbation hereafter) is added to both
the camera motions and face parameters to simulate inac-
curate initial guesses. Second, zero-mean Gaussian noise
with a given value of standard deviation (referred to as im-
age noise level hereafter) is added to the image features. For
each different initial guess, 30 independent random trials of
experiments are conducted, and the mean of the errors as
well as the mean of the used CPU time are recorded. Fig-
ure 2 plots the error (vertical axis) vs. the image noise level
(horizontal axis). Notice that since the size of the ground
truth mesh is 1, the vertical axis is actually the amount of
error relative to the size of the face. Each curve corresponds
to a different initial guess. The numbers inside the legend
box denote the initial guess perturbation percentage (for ex-
ample, MBA10 means 10 percent perturbation). We can
see that the curves for MBA corresponding to the three ini-
tial guesses almost coincide; the same holds for CBA. We
see clearly that MBA is significantly better than CBA. For
example, when the image noise level is 1 pixel, the error for
MBA is about 0.75% of the head size, and is 3% for CBA.

Computational time. Figure 3 is the plot of the mean
of the used CPU time in seconds. We can see that the
MBA method is in general faster than the CBA method.
We should point out that we have taken advantage of the
sparseness property in our CBA implementation to speed
up computation but not in the MBA method (there are some
sparseness properties in MBA formulation, though not as
much as in CBA, but we are not taking advantage of it in our
current implementation); thus, the computational gain with
MBA is potentially even higher. Another interesting point
is that the computation time of the MBA varies much less
than CBA as the initial guess changes or the image noise
level changes. This indicates that MBA is more stable than
CBA.

Figure 2. Model validation.

Figure 3. Time duration.

Sensitivity to outliers. The second experiment tests the
robustness of the algorithm in the presence of outliers. We
use the same synthesized data as in the first experiment. The
initial guess perturbation is set to 10% and the image noise
level is set to 0:5 pixels. We increase the percentage of the
outlier from 5% to 30%, while the total number of tracks
is kept fixed. The outliers are sampled from a Gaussian
distribution with much larger standard deviation, 3 pixels in
this case. Fig.4 shows the results. We can see that, as the
outlier percentage increases, the error with MBA increases
more slowly than that with CBA.

Figure 4. Robust test.

Visual comparison. Figure 5 shows visual comparison
of the face meshs from the two methods with initial guess
perturbation 10% and image noise level 0.25 pixels. The
top are the front views and the bottom are the side views.
On each row, the one in the middle is the ground truth, on
the left is the result from CBA, and the result from MBA
is on the right. By a close look, we can see that the MBA
result is much closer to the ground truth mesh.

Sensitivity to interframe motion. The data in this ex-
periment are synthesized differently. For each view, we
randomly sample a set of 3D points from an existing face
model (these points must be visible from this viewpoint).
Each sampled point is then projected onto this view plus its
two neighboring views (so the track length is 3). The num-
ber of tracks is 262. The cameras are assumed to be on a
circle with center at the centroid of the face model. Fig-
ure 6 shows how the error varies as the camera rotation an-



Figure 5. Face mesh comparison. Left: CBA; Mid-
dle: Ground truth; Right: MBA.

gle changes. As the camera motion decreases (from right to
left), the errors grow for both methods as expected, but the
error with MBA grows much more slowly than with CBA.

Figure 6. Change of the rotation angle.
Sensitivity to the number of feature tracks. In this ex-
periment, there are 4 views, and the track length is 3. The
rotation angle between every two neighboring views is 3
degrees. Figure 7 is the plot of the error vs. the number
of tracks. As the number of tracks decreases (looking from
right to left), the error with CBA grows much faster than
with MBA.

5.2. Real data

In this section, we show some results of face modeling
from a sequence of images. The image sequences are ob-
tained by asking people turning their heads in front of a
static camera. We first run the rapid face modeling sys-
tem [8] and use the results as the initial guess of the MBA
algorithm. The final result is a face mesh with a cylindrical
texture map. For each example, we show both the initial

Figure 7. Change of the number of sample points.

guesses (results from the rapid face modeling system) and
the final results from the MBA algorithm. Each sequence
contains 23 to 26 images of resolution 640x480. The num-
ber of feaure tracks ranges from 1500 to 2400. There are
50 to 150 image matches between each pair of neighbor-
ing views. For each sequence, the total running time of the
MBA algorithm is about 6 to 8 minutes on a 850MHz Pen-
tiumIII machine.

The first example is shown in Fig. 8. The left column
is the initial guess. The right column is the result from the
MBA algorithm. The images in the middle are the acquired
images. We can see that the face of the initial guess is too
narrow compared to the actual face, and there is a clear im-
provement with the result from the MBA algorithm.

The second example is shown in Fig. 9. Again, the left
column is the initial guess and the right column is the result
from MBA. We can see that the upper portion of the face
(above the eyes) is too wide for the initial guess while the
result from MBA looks more like the actual person.

The third example is shown in Fig. 10. We can see that
the profile of the inital guess is quite different from the ac-
tual person. With MBA, the profile closely matches the pro-
file of the actual person.

6. Conclusion and future directions

We have proposed model-based bundle adjustment as a
general formulation to incorporate model knowledge into
traditional bundle adjustment, and have derived a minimiza-
tion problem that eliminates all the 3D point position vari-
ables, thus resulting in a much smaller optimization prob-
lem. We have implemented this approach for face modeling.
Our experiment results have shown that, compared with the
traditional bundle adjustment, the model-based bundle ad-
justment algorithm not only is more robust just like other
model based approaches, but also is faster and more accu-
rate.

The major computation cost of our current implementa-
tion is the gradient computation. We are planning to use the
sparseness in the MBA formulation to speed up its compu-
tation. We would like to apply model-based bundle adjust-
ment to other objects such as human body, arms, etc.



Figure 8. First textured face model. Left: initial
guess; Middle: original images; Right: MBA.

Figure 9. Second textured face model.
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