
out des t roying the 1D C-R proper ty , it is necessary and
sufficient tha t the same record appea r in two queries.

Thus the m a x i m u m number of t imes a record can be
de le ted and still preserve the 1D C-R p rope r ty is
[(m -- 1)/2]. There are m records ; hence the r edundancy
is

rn(m -- 1) -- m [(m - - 1)/2]
- - 1

in
= (m -- 2) - - [(m -- 1)/21.

W h e n m is odd, then in a 1D C R W R organiza t ion ,
there will be one record at one end of the organiza t ion ,
which canno t be deleted. Thus, the end cor rec t ion to be
a d d e d to the r edundancy is (m - - 2 [m / 2]) / m . Thus, the
r edundancy of the C R W R organ iza t ion is

(m -- 2) -- [(m -- 1)/2] -t- (m - - 2 [m / 2]) / m .

As there are only two records in each query, it is
easy to show tha t such a 1D C R W R organ iza t ion can
be cons t ruc ted with any value of m.

This comple tes the proof .

Received November 1973; revised February 1975

References
1. Ghosh, S.P. On the theory of consecutive storage of relevant
records. J. Inf. Science 16 (1973), 1-9.
2. Ghosh, S.P. File organization: the consecutive retrieval
property. Comm. A C M 15, 9 (1972), 802-808.
3. Ghosh, S.P. File organization: consecutive storage of
relevant records on a drum-type storage. Inf. Control 25, 2 (1974),
145-165.
4. Liu, C.L. Introduction to Combinatorial Mathematics.
McGraw-Hill, New York, 1968.
5. Hall, Jr., M. Combinatorial Theory. Blaisdell Pub. Co.,
Waltham, Mass., 1967.
6. Waksman, A., and Green, M.W. On the consecutive retrieval
property in file organization. IEEE Trans. on Computers C-23
(1974), 173-174.
7. Nakano, Takeo. A characterization of intervals; the
consecutive (one's or retrieval) property. Comment Math. 22, 1
(1973), 49-59.

P r o g r a m m i n g G. M a n a c h e r
Techniques Ed i to r

Multiple Byte
Processing with Full-
Word Instructions
Leslie Lamport
Massachusetts Computer Associates, Inc.

A method is described which allows parallel proc-
essing of packed data items using only ordinary full-
word computer instructions, even though the processing
requires operations whose execution is contingent upon
the value of a datum. It provides a useful technique for
processing small data items such as alphanumeric
characters.

Key Words and Phrases: byte processing, character
processing, packed data

CR Categories: 4.9

Introduction

One often has the p r o b l e m of process ing m a n y
s imilar da t a i tems, each of which is much shor ter t han a
full compute r word. One would l ike to pack several
i tems to a word and process them s imul taneous ly in
o rder to reduce bo th s torage space and process ing t ime.

As a s imple example , suppose the da ta are vectors
of the fo rm a = (a l , . . . , am), where each a~ is a non-
negat ive integer with a smal l range of poss ible values.
We can pack some number k of the e lements al in a
single compute r word, so only a b o u t m / k words of
s torage are needed for each vector. Cer ta in ope ra t ions
on these vectors can be done wi thout u n p a c k i n g them.
F o r example , given ano ther s imilar vector b, we can
fo rm the sum a + b = (al q- b l , . . . , a,, + bin) using

Copyright O 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This research was supported by the Advanced Research Proj-
ects Agency under Contract Number DAHC04-70-C-0023. Author's
address: Massachusetts Computer Associates, Inc., 26 Princess St.,
Wakefield, MA 01880.

471 Communications August 1975
of Volume 18
the ACM Number 8

full-word binary addition on each word of packed ele-
ments. The vector sum is thus computed with only m / k
separate add instructions, so we have saved time as well
as space by packing the data. (The problem of overflow
is considered later.) Other operations such as bit-wise
logical operations and multiplication of a vector by a
scalar can be done in a similar way.

However, not all operations are so easy to do on
packed data. Some involve making decisions on the
basis of the values of individual data elements, as in
computing maximum (a,h) = (maximum (a l ,b l) , . . . ,
maximum (a,,,bm)). It is not obvious how such an
operation can be performed without unpacking the
data.

Sequences of similar data items are also encountered
when processing strings of alphanumeric characters. We
would like to pack several characters in a single word
and process them simultaneously. We will consider the
sample problem of comparing two strings of characters
and forming an output string indicating where they
differ. In particular, we will want the output string to
contain a # where the two strings differ, and a blank
where they are the same. For example, given the input
strings X Y Z Z Y X and X Y U Z V X, we want to pro-
duce the output string A A # A # A (where A denotes
the blank character). Once again, it is not obvious how
an entire word full of characters can be processed
simultaneously.

We will describe a general method for doing such
processing of packed data which should prove useful in
many applications. It requires only the following full-
word operations, which are common to most binary
computers: logical and (/k), or (V), and exclusive or
(@); binary addition (q-); and n-bit left or right shift
(~---, or --*,). (Although some of these operations can
be programmed using the others, it would be imprac-
tical to do so.) Binary multiplication (.) and logical
complement (~) are also useful, but not necessary.

The Basic Method

In order to perform different operations on different
items in a single word, we must construct bit masks. We
need a mask word whose ith item consists of all ones if
item i of the data word is to be changed, and all zeros
otherwise. In our character string comparison problem,
if one string has the substring X Y Z stored in a single
computer word, and the other string has the correspond-
ing substring X Y U stored in a single word, then we
want to construct the mask word 0 . . . 0 0 . . . 0 1 . . . 1
containing three mask characters. Given such a mask
(and its complement), the rest is easy. We will describe
how to construct this mask.

Let the data items consist of n-bit fields. We assume
that each item is stored in an (n + 1)-bit byte whose
leftmost bit equals zero. (A method not requiring the
extra bit can often be used. It is described later.)

472

Several bytes are stored in a single computer word. For
convenience, the following description is in terms of
operations on a single byte. However, since the opera-
tions are performed using only the full-word computer
instructions listed above, they can be done simul-
taneously on all the bytes of a word.

The bits of a byte are numbered 0-n from left to
right. The ith bit of byte a is denoted by a~, and aj_n
denotes bits j through n of a, for j _< n. Let 0 n and 1"
denote strings of n zeros and n ones, respectively, so 01 ~
denotes the (n q- 1)-bit quantity 0 1 1 . . . 1.

Let p be a logical function of two data items--i.e, a
relation. We want to define a masking function mp to be
a function whose value is a mask of ones when p is true
and a mask of zeros when p is false. For masking opera-
tions on the (n -b 1)-bit bytes, the value of bit 0 of a
mask byte is usually immaterial. We therefore define a
masking function mp as follows:

mp(a, b)l-n = 1" if p(a,b) = true,
= 0" if p(a,b) = false,

for all (n -b 1)-bit data items a and b with a0 = b0 = 0.
(Recall that bit 0 of a data item is assumed to be zero.)
For a given relation p, we must write a program to
evaluate mp using only full-word instructions.

The basic idea is to compute mp in two steps. In
Step 1, we compute a test function f r which has the
following property:

f~(a, b)0 = 1 if p(a,b) = true,
= 0 if p(a,b) =false ,

for all a, b with a0 = b0 = 0. In Step 2, we construct a
mask byte which depends upon the value o f f , (a , b)0.
Thus, Step 1 puts the value of the relation p into bit 0,
and Step 2 spreads that value into the mask bits.

Step 2
We describe Step 2 first. Given the value offp(a,b),

we can construct the mask mp by the following three
operations:

(1) x := ---~, (fi(a,b)) [shift bit 0 into bit n].
(2) y : = x A 0 "1 [mask out b i t s 0 t o n - - 1].
(3) mp(a,b) := y . 01 ~ [multiply by a mask of l's].

To compute m_p--a masking function for the nega-
tion of p - -we replace operation (3) by

(3') m_p(a,b) := y + 01".

If we do not want to use a multiply instruction to com-
pute rap, we can set mp(a,b) := ,~,m_p(a,b). This can
be done without a complement instruction, since
~-~z = z ~ 1 "+x.

Step 1
To describe Step 1, we define test functions for

several common relations. Logical combinations of
these relations are computed in the obvious way. For
example, fpvq(a,b) = fp(a,b) k~ f~(a,b) for any relations
p and q. All of the following definitions only use opera-

Communications August 1975
of Volume 18
the ACM Number 8

tions which can be performed on a full word of bytes
with the aforementioned computer instructions.

(a) Equality. For the equality relation, observe that
a = b if and only if a ~ b = 0 "+1, which is true if and
only if a ~ b ~ 01" = 01". It is then easy to see that if

f_ is defined by

f_(a,b) = (a ~9 b ~) 01") -k 0"1,

thenf=(a,b)o = 1 if and only if a = b. Hence, fffi is a
test function for the equality relation.

(b) Comparison of unsigned integers. Let a < b
mean that a is numerically less than b if a and b are
interpreted as nonnegative (unsigned) binary integers.
T h e n a < b if and only if 2" _< b- l - 2 " - a - 1. But
2" -- a -- 1 is just the n-bit logical complement of a,
which equals a ~ 01", and 2" _< z if and only if z0 = 1.
We can therefore define the test function f< by

f<(a,b) = b + (a ~) 01").

Let _< be the relation < or = . Since a < b if and
only if a < b + 1, we can define the test functions"_< by

f<_(a,b) = b + 0"1 + (a @ 01").

(The sum is always less than 2 "+1 , so overflow out of
bit 0 is impossible.)

(c) Comparison of signed integers. Let a << b mean
that a is numerically less than b when a and b are in-
terpreted as two's complement signed binary integers,
with bit 1 as the sign bit. (Two's complement arithmetic
seems the most natural for byte computations.) Observe
that

(i) If a~ = bl then a << b if and only if a < b.
(ii) If ax ~ bx then a << b if and only if a > b.

It is then easy to see that the test function f<< can be
defined by

f<<(a, b) = f<(a, b) @ ~'-x (a ~) b).

The test function for the relation << (<< or =) is
similarly defined by

f<<(a, b) = f_<(a, b) @ ~---1 (a ~ b).

(d) Overflow. We now consider the problem of over-
flow on an addition operation. (Subtraction presents a
similar problem, and is left to the reader.) When per-
forming vector addition, we usually have to test for
overflow and take some special action if it occurs. Let
us define the overflow relation ov + such that ov+(a,b)
is true if the sum of a and b is outside the range of
representable numbers. The problem is trivial for un-
signed integers, since we can simply letfoo+(a, b) equal
a q- b--i.e, bit 0 of the (n d- 1)-bit byte acts as an over-
flow indicator. For two's complement signed integers,
the following program is one of several ways to compute
bothfo,÷(a, b) and the sum of a and b.

temp := a q- b;
sum(a, b) := t e m p / ~ 01";

fo,+(a, b) := temp ~ ~---x [sum (a, b) ~9 a @ b];

We can usefo~+ to construct the necessary mask to per-
form some special processing for each byte in which
overflow occurred. We could also use it to determine if
overflow occurred in any byte within a word. This is
discussed later.

Programming Techniques

It is a straightforward task to program parallel byte
operations using this mask generation technique. How-
ever, the following observations may prove useful.

(a) No overflow occurs from bit 0 of a byte. Thus,
either one's complement or two's complement full-word
arithmetic operations can be used. However, if bit 0 of
the leftmost byte is the leftmost bit of the word, then an
add instruction can generate an overflow condit ion--bit
0 of both operand words equal to zero and bit 0 of the
result equal to one. Hence, any overflow interrupt must
be inhibited. It may be impossible to use the sign bit of a
computer with sign/magnitude arithmetic, depending
upon what happens when addition of positive numbers
generates an overflow.

(b) On a shift operation, the values of the bits
shifted into the end of the word are immaterial. Hence,
any type of shift or rotate instruction may be used.

(c) It is sometimes necessary to test each byte
against a single value. To do this, the value can be
spread to all the bytes of a word by multiplying it by a
word of 0-1 bytes.

(d) Common subexpressions can often be found
when several test functions must be evaluated. This is
aided by the fact that the @ operation is associative and
commutative.

(e) One must sometimes determine if the relation
p(a, b) holds for any or for all pairs of data items a, b.
For example, we may want to generate an error message
if overflow occurred in any of the sums of a vector
addition operation. Testing for a zero word after opera-
tion (2) of Step 2 provides a for any test. A for all test is
done with a for any test of ~-~p. It may pay to make a
for any test in order to skip a calculation if no bytes in
the word are to be modified.

An Example Programmed

Let us now consider an actual program to solve our
character string comparison problem. Assume a simple
computer with one accumulator, an index register,
single address instructions, and the following branching
instructions: increment index and branch (IXB) which
increments the index register and branches if its value is
not zero, branch i f accumulator is zero (agz), and un-
conditional branch (aR). The following is a typical pro-
gram for our problem when one character is stored per
word. (We assume that the index register is properly
initialized.)

473 Communications August 1975
of Volume 18
the ACM Number 8

a: LOAD a, indexed
EXC .OR b, indexed
BR Z /~
LOAD " # "
STORE c, indexed
IXB a
BR

/3: LOAD " A "
STORE e, indexed
IXB a

3," . . .

This program executes six instructions per character.
Multiple character per word processing can be done

with the following program. The bracketed expressions
indicate the contents of one byte of the accumulator
after executing the instruction, and {z} denotes a word
each byte of which equals z.

a: LOAD a, indexed
EXC.OR b, indexed [a @ b]
EXC.OR "{01"}" [a @ b @ 01 n]
ADD "{0'q }" [f= (a, b)]
R .SHIFT n
AND "{0hi}"
ADD "{01"}" [ms(a, b)]
STORE temp
AND "{#}"
STORE c, indexed
LOAD temp
C O M P L E M E N T [m=(a,b)]
AND " { A } "
OR c, indexed
STORE c, indexed
IXB a

This program executes 16 instructions per full word of
characters.

Given any problem, multiple byte processing will be
faster than single item per word processing if enough
bytes can be put into a single word. For a given problem
and a given computer, let the break-even number be the
number of bytes per word which makes the two proc-
essing times equal. If we assume that all instructions
take the same amount of time to execute, then the
break-even number for our example is 16/6 ~ 2.7.
Multiple byte processing is thus faster if three or more
bytes fit in a single word.

General Observations

Having found the break-even number for one prob-
lem and one computer, we now make some general ob-
servations about how it should vary when the problem
or the computer is changed.

(a) Most large computers have several registers in-
stead of a single accumulator. Using two registers, we
can remove one instruction from each of the above
programs, increasing the break-even number to 15/5 =

3. However, if the constants are initially placed in regis-
ters, then the extra instructions required for multiple
byte processing become register to register operations.
These are usually faster than operations which refer-
ence memory. This will tend to lower the break-even
number.

(b) It is difficult to make any general statement
about the effect of a larger instruction set. However,
observe that if there is a m a s k e d store instruction on a
multiple register computer, then four more instructions
can be eliminated from the multiple byte processing
loop, reducing the break-even number to 2.2 (assuming
enough characters in a string so initialization times can
be ignored).

(c) Conditional branches slow down execution on a
high-speed pipelined computer like the CDC 7600. Since
multiple byte processing does not require conditional
branching to test individual characters, this will lower
the break-even number for such a computer.

(d) On an array computer like the Illiac-IV, testing
must be done by masking (i.e. disabling individual
processors) even for one item per word processing.
Multiple byte processing will usually be faster on such
a computer if there are more data items than processors.

(e) When only one of several operations is to be per-
formed on each data item, multiple byte processing may
perform all the operations for each word, while single
item per word processing does just one operation for
each item. Increasing the number of different operations
will tend to increase the break-even number.

(f) The above example is perhaps unrealistically
simple. A more complicated example is provided by a
problem taken from an actual compiler optimization
algorithm. For each i, we must perform the following
calculation:

if a[i] = 0
then a[i] := b[i]
else i f a[i] ~ x and a[i] ~ b[i]

then begin
a[i] := x;
i f y then flag := true

end,

For the simple computer described above, packing the
arrays a and b gives a break-even number which varies
from 2.9 to 4.4, depending upon the relative execution
frequencies of the different conditional clauses. Reason-
able values for these give a break-even number of
about 4.

(g) The two examples we have given just require se-
lecting the value of a data i tem--no real processing of
the items is done. This is typical of problems involving
small data items. The way in which the break-even
number will vary with the amount of processing depends
upon the efficiency of doing the operations on a full
word of bytes and the probability that an operation will
be performed on any single item. It is hard to make any
general statements about this. However, we would ex-

4"/4 Communications August 1975
of Volume 18
the ACM Number 8

pect that if the operations are easily performed simul-
taneously on all bytes of a word, then the break-even
number for our simple computer should be in the 3 to 4
range for most real problems.

(h) Storage space restrictions may require that data
items be packed several to a word. In this case, the cost
of single item per word processing must include the
unpacking and repacking operations. This will dramati-
cally lower the break-even number unless a great deal of
processing must be done for each item.

Even on a multiple register computer, this requires
about three times as many instructions as the computa-
tion o f f < .

Note that if arithmetic operations are to be per-
formed on the bytes, then the extra bit is probably
needed anyway to prevent overflow out of one byte
f rom propagating to the next byte.

Conclusion

Eliminating the Extra Bit

I t may be desirable to eliminate the (n -t- 1)-th bit
(bit 0) for either of two reasons: (i) to allow more
bytes per word, or (ii) because other factors make it
awkward to obtain the extra bit? We now show how to
eliminate the extra bit if testing only requires the =
or ~ relations.

Using (n + 1)-bit bytes, the computat ion off=(a, b)
is performed as follows:

x : = a @ b @ 01L
f=(a,b) := x -b 0"1.

Since x0 = 0, f=(a, b)o will equal 1 if and only if there
is a carry out of bit 1 in forming the sum xx-n + 1. But
this will happen if and only if bit 1 of x2_, + 1 and bit
1 of x both equal 1. This suggests that we define the
function g= by the following operations on n-bit bytes.

x : = a @ b @ 1" [= (H a) @ b]
y := x A 01 "-1 [= x2_,]
g=(a, b) := (y -b 0"-11) f x

Then g=(a, b)l = 1 if and only if a = b, so g= can be
used as a test function, with the obvious modification of
Step 2.

The computat ion of g= is more complicated than
that of f = . On our single accumulator computer, it
requires three extra operations. For the original sample
problem, this adds about 20 percent to the computing
time, and raises the break-even number to about 3.2.
For a computer with multiple registers, only two extra
operations are needed.

This should be a practical method of testing for
equality despite the extra computation. Testing for
inequality is, of course, done with ~ g = .

A similar trick can be used for the relations < , < ,
<< and <_<. However, it is more complicated, and
requires so much more computat ion that it seems im-
practical to test for these relations without using the
extra bit. For example, computing the analogous func-
tion g< would involve the following operations:

x := (H a f 01 "-1) @ (b f 01 "-1)
g<(a,b) := (x f - ~ a) V (x f b) V (~ - ~ a f b) .

1 Conversely, these other factors sometimes provide the extra
bit. For example, if ASCII characters must be stores in 8-bit bytes,
then the parity bit position can be used as bit 0.

Parallel processing of packed data items with ordinary
full-word computer instructions is possible even if the
computation includes operations contingent upon the
value of an item. It will be at least as fast as one item
per word processing if enough items can be packed into
a word, allowing one extra bit per item. (If the tests
just require the relations = and ~ , then the extra bit is
not necessary.) The required minimum number of
items per word depends upon the problem and the
choice of computer, but three or four items per word is
probably sufficient in many cases. The technique should
therefore be useful for a large number of problems in-
volving small data items like alphanumeric characters.

Acknowledgment. The method of eliminating the
extra bit was suggested by Donald Knuth.

475 Communications August 1975
of Volume 18
the ACM Number 8

