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Abstract

In many probabilistic planning scenarios, a system’s behav-
ior needs to not only maximize the expected utility but also
obey certain restrictions. This paper presents Saturated Path-
Constrained Markov Decision Processes (SPC MDPs), a new
MDP type for planning under uncertainty with deterministic
model-checking constraints, e.g., “state s must be visited be-
fore s′”, ”the system must end up in s”, or ”the system must
never enter s”. We present a mathematical analysis of SPC
MDPs, showing that although SPC MDPs generally have no
optimal policies, every instance of this class has an ε-optimal
randomized policy for any ε > 0. We propose a dynamic
programming-based algorithm for finding such policies, and
empirically demonstrate this algorithm to be orders of mag-
nitude faster than its next-best alternative.

Introduction

Markov Decision Processes (MDPs) are some of the most
popular models for optimizing the behavior of stochastic
discrete-time dynamical systems. In many MDP applica-
tions, the system’s behavior, formally called a policy, needs
to not only maximize the expected utility but also obey cer-
tain constraints. For instance, to operate a nuclear power
plant one always wants a policy that keeps the system in
“safe” states, so that even in case of disruptive exogenous
events such as earthquakes it can be shut down with proba-
bility 1. Requirements like these have prompted researchers
to consider a spectrum of MDP types that allow an explicit
specification of various constraint structures. On one end of
the spectrum are models where utility is optimized under a
set of very simple constraints, e.g., goal states in which the
system must end up, as in Stochastic Shortest-Path (SSP)
MDPs (Bertsekas 1995). On the other end are formalisms
from the controller synthesis literature (Baier et al. 2004)
that equip MDPs with languages for expressing sophisti-
cated model-checking constraints, but aim at finding any
constraint-satisfying solution for an MDP and don’t reason
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about solution utility at all. Hardly any model handles both
utility maximization and constraint satisfaction at once.

In this context, we propose a new problem class, Saturated
Path-Constrained Markov Decision Processes (SPC MDPs),
specifically designed to marry decision-theoretic planning to
model-checking. As their name implies, SPC MDPs work
with a variety of deterministic constraints on policy execu-
tion paths, specifically those of the forms “the solution pol-
icy must always visit state s before s′”, “the solution pol-
icy must eventually visit state s”, and “the solution policy
must never visit state s”. Such constraints can describe goal-
oriented scenarios, danger-avoidance objectives, and others.
SPC MDPs’ constraints are stated in a subset of a model-
checking temporal logic. In MDP theory, temporal logics
have been previously used in constrained utility-free con-
troller synthesis (Baier et al. 2004) and control knowledge
formalization (Gretton, Price, and Thiébaux 2004). To our
knowledge, the closest existing class to SPC MDPs is Path-
Constrained MDPs (Teichteil-Konigsbuch 2012). Although
PC MDPs are more general than SPC MDPs (they allow
probabilistic – or non-saturated – constraints of the kind “the
solution policy must visit state s before s′ at least with prob-
ability p”), their expressiveness comes at a cost — the algo-
rithm for solving them is much less efficient than the one we
present for SPC MDPs, as our empirical evaluation shows.

Seemingly, SPC MDPs’ constraint types can be handled
by simple techniques, e.g., pruning actions that lead to for-
bidden states. However, when coupled with the reward max-
imization requirement they give SPC MDPs intricate mathe-
matical properties that require much more sophisticated ap-
proaches. The SPC instance in Figure 1 showcases these
subtleties. It has two states, A and F ; A has a reward-
collecting action a1, with a reward of 1, and an exit action a2
that leads to F . The system starts in A, and we impose the
constraint that the system must eventually go to F . The dis-

A F
a1
+1

a2
0 e

0

Figure 1: An SPC MDP example
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count factor is set to γ = 0.9. Note that in this MDP there is
only one constraint-satisfying Markovian deterministic pol-
icy, the one that chooses action a2 in state A. However,
this policy is not the optimal constraint-satisfying solution
— randomized and history-dependent policies that repeat a1
in A i > 1 times and then take action a2 to go to F are valid
and earn more reward. This contrasts with existing MDP
classes such as infinite-horizon discounted-reward and SSP
MDPs, in which at least one optimal policy is guaranteed to
be deterministic and history-independent. Since algorithms
for these MDP classes are geared towards finding such poli-
cies, they all break down on SPC MDPs. Thus, this paper
makes the following contributions:

• We define a new class of MDPs, the Saturated Path-
Constrained MDPs. We prove that if its set of constraints
is feasible, an SPC MDP always has a (possibly random-
ized) ε-optimal policy for any arbitrarily small ε > 0, even
though an (0-)optimal policy for it may not exist.

• We propose a dynamic programming algorithm that finds
an ε-optimal policy for any SPC MDP with a feasible con-
straint set and any ε > 0. Its experimental evaluation on a
number of benchmarks shows that it is significantly more
efficient than the next-best alternative — the fastest algo-
rithm known for PC MDPs (Teichteil-Konigsbuch 2012).

Background

Markov Decision Processes. SPC MDPs are formu-
lated by adding constraints to Infinite-Horizon Discounted-
Reward (IHDR) MDPs (Puterman 1994). IHDR MDPs are
tuples 〈S,A,R, T , γ〉, with state set S, action set A, reward
function R(s, a) giving reward for action a in state s, tran-
sition function T (s, a, s′) giving the probability of reach-
ing state s′ when taking action a in s, and discount factor
γ ∈ [0, 1). In this paper, we assume a probabilistic plan-
ning (as opposed to reinforcement learning) setting, where
all MDP components are known.

Optimally solving an IHDR MDP means finding a policy
π (generally, a mapping from execution histories to distri-
butions over actions) with maximum value function V π(s)
— the long-term expected utility of following π starting at
any initial state s. Any utility-maximizing policy π∗ is as-
sociated with the optimal value function V ∗ = maxπ V

π .
For all s ∈ S in an IHDR MDP, V ∗(s) exists, is finite, and
satisfies the Bellman equation:

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈A

T (s, a, s′)V ∗(s′)

}

For IHDR MDP, at least one π∗ is deterministic Marko-
vian, i.e., has the form π : S → A. However, for reasons we
explain shortly, for SPC MDPs we will look for randomized
Markovian policies π : S ×A → [0, 1].

Stochastic Model-Checking. To state SPC MDP policy
constraints, we will use a subset of the Probabilistic Real
Time Computation Tree Logic (PCTL) (Hansson and Jons-
son 1994). PCTL allows specifying logical formulas over
policy transition graphs using logical operators and boolean
functions f : S → {true, false} on the state space. PCTL

constraints are expressed with the probabilistic “strong un-
til” temporal operator fU≤H

�p g, where � stands for a com-
parison operator (<,≤,=,≥, or >), meaning that for a ran-
domly sampled execution path of a given policy, the formula
fU≤Hg must hold with probability at least/most/equal to p.
The formula itself mandates that a given boolean function
f must be true for the execution path’s states until another
boolean function, g, becomes true (f can, but doesn’t have
to, remain true afterwards). Moreover, g must become true
at most H steps after the start of policy execution. If H ,
called the constraint’s horizon, equals infinity, g must be-
come true at some point on the execution path. A few exam-
ples of PCTL constraints in which we are interested in this
paper are (initial state s0 is implicit):

• (true)U∞
=1g: every policy execution path must eventually

visit a state where g holds (mandatory states constraints)
• (true)U∞

=0g : no policy execution path must ever reach a
state where g holds (forbidden states constraints)

• (¬f)U∞
=0g : no policy execution path is allowed to visit

a state where g holds until it visits a state where f holds
(precedence constraints)

Saturated Path-Constrained MDPs

The main contribution of this paper, the Saturated Path-
Constrained MDP class, in essense comprises IHDR prob-
lems with PCTL constraints in which (1) the horizon H in
the “strong until” operator is infinite, i.e. a solution policy
must satisfy the constraints at some point, but by no partic-
ular deadline, and (2) the probability p in the “strong until”
operator equals either 0 or 1, meaning that all constraints are
deterministic. Formally, we define SPC MDPs as follows:

Definition 1 (SPC MDP). A Saturated Path-Constrained
MDP (SPC MDP) is a tuple 〈S,A,R, T , s0, γ, ξ〉, where
S,A,R, T , and γ are as in the definition of infinite-horizon
discounted-reward MDPs, s0 is an initial state, and ξ =
{ξ1, . . . , ξn} is a set of PCTL “strong until” constraints.
For each i ∈ [1, n], ξi = fiU

∞
=pgi, where fi, gi : S →

{true, false} are boolean functions and p = 0 or 1.
An SPC MDP policy π is called valid if it satisfies all

the constraints of that MDP for all execution paths starting
from the MDP’s initial state s0. An optimal solution of an
SPC MDP is a policy π that is valid and satisfies:

∀ valid π′, V π(s0) ≥ V π′
(s0).

The definition of SPC MDPs might raise a question
whether problems with infinite-horizon constraints would be
easier to solve if their horizon was approximated by a large
but finite number. We believe the answer to be “no”, be-
cause all known algorithms for finite-horizon MDPs scale
exponentially in the horizon, making them impractical for
large horizon values. In contrast, algorithms for satisfying
infinite-horizon goal-achievement constraints such as those
in SPC MDPs and SSP MDPs, do not suffer from this issue.

Importantly, although the horizon of SPC MDPs’ con-
straints is infinite, SPC MDPs can nonetheless handle cases
where a goal needs to be attained by a finite deadline. This
can be done by introducing a discrete time variable for that
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goal into the state space and specifying a duration for each
action. The advantage of this approach, as opposed to allow-
ing finite horizons in constraints, is that constraint horizons
express the maximum number of actions to be executed be-
fore reaching a goal, not the amount of real-world time to
do so. Real-world time granularity for achieving different
goals may vary, and handling finite-deadline constraints as
just described allows for modeling this fact.

Next, we explore SPC MDPs’ relationships to existing
MDPs and illustrate their expressiveness with an example.

Related models. PC MDPs (Teichteil-Konigsbuch 2012)
are the closest existing class to SPC MDPs, and serve as
the main point of comparison for the latter in this paper.
PC MDPs differ from SPC MDPs only in allowing arbitrary
probabilities p ∈ [0, 1] in their PCTL constraints. Although
PC MDPs are a superclass of SPC MDPs, their generality
makes them computationally much more demanding. The
most efficient known algorithm for finding a near-optimal
policy for a PC MDP whenever such a policy exists oper-
ates by solving a sequence of linear programs (Teichteil-
Konigsbuch 2012), whose length has no known bound. SPC
MDPs are an attempt to alleviate PC MDPs’ computational
issues while retaining much of PC MDPs’ expressiveness.

Besides the work on PC MDPs, several other pieces of
literature focus on solving MDPs under various kinds of
constraints. In Constrained MDPs (Altman 1999), the con-
straints are imposed on the policy cost. The works of
(Etessami et al. 2007; Baier et al. 2004; Younes and Sim-
mons 2004), and (Younes, Musliner, and Simmons 2003)
are closer in spirit to SPC MDPs: they use temporal log-
ics to impose restrictions on policy execution paths. In the
latter two, the constraints take the form of temporally ex-
tended goals. The key difference of all these frameworks
from ours is that they ignore policy utility optimization and
focus entirely on the constraint satisfaction aspect, whereas
SPC MDPs combine these objectives. Other notable mod-
els that, like SPC MDPs, consider policy optimization un-
der temporal-logic constraints are NMRDP (Gretton, Price,
and Thiébaux 2004; Thiébaux et al. 2006) and work by
Kwiatkowska and Parker (2013). The former uses con-
straints to encode prior control knowledge, but does not
handle goals. The latter uses constraints in probabilistic
LTL, much like PC MDPs, but does not discount utility and
does not handle infinite-reward loops. In the meantime, it is
the ability to respect goals and other constraints during dis-
counted utility optimization that is largely responsible for
SPC MDPs’ mathematical properties.

Temporal logics have been extensively used in combi-
nation with MDPs not only to specify constraints but also
to characterize non-Markovian rewards (Gretton, Price, and
Thiébaux 2004; Thiébaux et al. 2006; Bacchus, Boutilier,
and Grove 1997; 1996). While this is a largely orthogo-
nal research direction, its approaches use state space aug-
mentation in ways related to ours. However, due to model
specifics, the details are different in each case.

Finally, the following theorem, which is proved in a
separate note (Sprauel, Kolobov, and Teichteil-Königsbuch

2014), formally clarifies the inclusion relations between
SPC MDPs and several other MDP types.

Theorem 1. 1. The SPC MDP class properly contains the
IHDR MDP class and is properly contained by the PC
MDP class.

2. Consider the set of all SPC MDP instances for which
there exists a finite M > 0 s.t. the value of every pol-
icy at every state is well-defined and bounded by M from
above for γ = 1. The set of such SPC MDPs properly
contains the GSSP (Kolobov et al. 2011), SSP (Bertsekas
1995), and FH MDP (Puterman 1994) classes.

Example SPC MDP Scenario

As an example of a scenario that can be handled by SPC
MDPs, consider designing flight plans for automated drones
that monitor forest fires. The drones must plan their mis-
sions so as to observe a combination of hard and soft con-
straints, e.g., surveying zones with high forest fire inci-
dence rates, reckoning areas of extinguished fire, occasion-
ally checking upon zones of secondary importance, and
avoiding unauthorized regions such as residential areas.

While soft constraints can be modeled by assigning high
rewards, hard constraints present a more serious issue. In-
deed, no existing MDP type admits non-terminal goal states,
dead-end states from which constraints cannot be met, and
arbitrary positive and negative rewards at the same time.

To handle the drone domain with SPC MDPs, we formu-
late it as a grid where the drone can move in four directions
(Figure 2a). We have four possible zone types: (1) high-
risk areas (red) with frequent fires that must be surveyed at
least every x hours, (2) lower-risk areas (orange) where a
fire might start and that we should patrol if possible once in
a while, (3) mandatory objectives (blue) to be visited occa-
sionally such as sites of previous, extinguished fires and (4)
unauthorized zones (black) that must never be entered. We
obtain the probability of fire occurrences from multiple sta-
tistical sources (Preisler et al. 2004). Once a drone surveys a
risky area, the probability of fire there drops to 0 for the next
y hours (since, if the drone detects imminent fire danger, this
danger is dealt with before fire can fully erupt). When a fire
occurs, we assume it is extinguished quickly and another fire
can happen at the same location almost immediately.

While we model constraints related to zone type (2) with
rewards, as in conventional MDPs, and handle constraints
related to zone (1) by augmenting the state space with time
variables, as described in the previous section, SPC MDPs
allow us to enforce requirements for the other zone types
with hard PCTL constraints. For zones of type (3), we use
constraints of the form trueU∞

=1g. They say that eventually,
the drone must visit the states where g(s) = true, the func-
tion g being true only for states in the corresponding zones.
For type-(4) zones, we use the constraints trueU∞

=0g
′, mean-

ing that the drone should never enter states where g′ (the in-
dicator for forbidden zones) holds. Note that there is a criti-
cal difference between constraints for mandatory objectives
in SPC MDPs and goal states in, for example, SSP MDPs
— after achieving an SSP MDP goal, the system earns no
more reward, while after satisfying a constraint in an SPC
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MDP it is free to do so. Note also that we cannot model
constraints on forbidden states by simply assigning −∞ for
visiting them because then IHDR MDP algorithms would
never halt in cases where forbidden states are unavoidable.

Solutions of SPC MDPs

The MDP in Figure 1, described in the Introduction section,
illustrates the difficulties of defining and finding optimal so-
lutions for SPC instances. As a reminder, in this MDP an
agent starts in state A, and the constraint requires that the
agent eventually go to state F . In PCTL, this constraint is
expressed as (true)U∞

=1Is=F (s), where Is=F (s) is an indi-
cator function that has value true iff the current state is F .
This example shows two major distinctions of SPC MDPs
from conventional MDP classes such as IHDR or SSP:

• In SPC MDPs, no deterministic Markovian policy may be
optimal. In fact, in Figure 1, the best (and the only) valid
such policy, πdet, which recommends action a2 in state
A, has the lowest possible reward for this MDP.

• In SPC MDPs, no optimal policy may exist at all. For
the valid deterministic history-dependent policies πi

d.h. in
Figure 1, where policy πi

d.h. repeats action a1 in A i times
and then takes action a2, the higher the i, the higher the
policy reward. Similarly, for randomized Markovian poli-
cies πr.M., policy reward increases as πr.M.(A, a2) → 0.

However, this example also gives us intuitions about the
nature of SPC MDP solutions that we may want to find:

1) The values of some valid policies (Definition 1)
can’t be exceeded by much. In the above example, policies
that loop in state A for a very long time and then go to F
have values approaching 1

1−γ , i.e., are “almost optimal”.
The following definition formalizes this concept:

Definition 2 (Epsilon-optimality). A policy π is an ε-
optimal solution (Puterman 1994) of a SPC MDP if π is valid
and for all other valid policies π′,

V π(s0) ≥ V π′
(s0)− ε

2) The best valid policies for an SPC MDP “resemble”
certain deterministic Markovian ones. In the example in
Figure 1, the best deterministic policy (but invalid) policy
loops in state A for infinitely long, while ε-optimal valid
policies loop in A for very long before transitioning to F .

In the following sections, we prove that these intuitions
are correct for SPC MDPs in general: for every ε > 0, every
SPC MDP has a valid randomized ε-optimal policy that is
similar to a deterministic (but invalid) one for that MDP.

Value Iteration for SPC MDPs

Our algorithm for finding valid ε-optimal SPC MDP poli-
cies is based on the intuitions above. It has two basic
steps: (1) a pruning operation, which compiles away the
constraints from the SPC MDP; crucially, this step yields
an IHDR MDP for which there exist ε-optimal policies that
are valid and ε-optimal for the original SPC MDP too. (2)

a Value Iteration-like procedure, which searches for such
special ε-optimal policies of this IHDR MDP. The correct-
ness of the resulting algorithm relies on several theorems.
Their proofs are provided in a supplemental document
(Sprauel, Kolobov, and Teichteil-Königsbuch 2014).

We first present the second, Value Iteration-based part,
since it is the most important result. As the definitions and
theorems below imply, its properties hold for general IHDR
MDPs, not just those derived from SPC MDPs. We begin by
describing the policies our algorithm will be looking for.

Definition 3 (ω-policies). Let A(s) be a set of actions in
state s of an MDP, |A(s)| ≥ 1. For an ω ∈ [0, 1], an ω-
policy is a randomized Markovian policy that, in each state
s, chooses some action a ∈ A(s) with probability (1 − ω)
(or 1 if a is the only action), and chooses any other action
in A(s) with equal probability ω

|A(s)|−1 (or 0 if a is the only
action).

ω-policies relate to Intuition #2 from the previous section.
Namely, when ω is small, an ω-policy behaves similarly to
a deterministic policy. As Intuition #2 implies and we show
shortly, it makes sense to look for ε-optimal solutions among
ω-policies. Before deriving that result, we demonstrate that
the best ω-policy for a given ω can be found easily:

Definition 4 (Bellman Operator for ω-policies). Let V be
a value function of an IHDR MDP, s — a state, and A(s) —
a set of actions in s, |A(s)| > 1. The ω-Bellman operator is
defined as ωBellA(s)V (s) =

max
a∈A(s)

[
(1− ω)

(
R(s, a) + γ

∑
s′

T (s, a, s′)V (s′)

)

+
∑

a′∈A(s)\{a}

ω
(
R(s, a′) + γ

∑
s′ T (s, a′, s′)V (s′)

)
|A(s)| − 1

⎤
⎦

For states s s.t. |A(s)| = 1, the ω-Bellman operator reduces
to the classical Bellman operator. It can also be shown that:

Theorem 2 (Convergence of the ω-Bellman Operator.).
For any fixed ω ∈ [0, 1], the ω-Bellman Operator applied
an infinite number of times to every state of an IHDR MDP
has a unique fixed point. This fixed point V ω has the highest
value among all ω-policies for that ω.

We can define an ω-policy associated greedily w.r.t. V ω:

Definition 5 (Greedy ω-policy.). Let V ω be the fixed point
of the ω-Bellman operator for a given ω and IHDR MDP.
We call πω a greedy ω-policy if for each state s there is an
action a that maximizes the right-hand-side of ω-Bellman in
s, and πω(s, a) = 1− ω.

Finally, the following result in combination with the pre-
ceding ones explains why we choose to concentrate on ω-
policies in order to find ε-optimal solutions:

Theorem 3 (Choosing an ω with ε-Optimality Guaran-
tee.). For a given IHDR MDP, γ < 1 and any fixed ε > 0,
choosing ω = ε(1−γ)2

Rmax−Rmin
where Rmax and Rmin are the

maximum and minimum of the reward function, guarantees
that any greedy ω-policy is ε-optimal.
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Thus, given an ε, Theorem 3 proves the existence of an ε-
optimal ω-policy, and Theorem 2 allows us to find one. The
resulting Value Iteration procedure is shown in Algorithm 1.

Recall, however, that the theory above lets us compute an
ε-optimal solution for an IHDR problem, not an SPC MDP.
Next, we address this issue by describing a conversion
from any SPC MDP to an IHDR instance whose ε-optimal
solutions are valid and ε-optimal for the original problem.

Compiling Away History-Dependent Policies. The exam-
ple in Figure 1 suggests that taking into account the execu-
tion history in SPC MDPs generally leads to improved be-
havior in the current state. As it turns out, for certain SPC
MDPs, history dependence is unnecessary, and at least one
ε-optimal policy is Markovian for any ε > 0. This hap-
pens whenever all constraints in the SPC MDP are transient
(Teichteil-Konigsbuch 2012):
Definition 6 (Transient Constraints). A constraint en-
coded by a pair of boolean functions f, g : S →
{true, false} is transient if the three sets of states where
(f(s), g(s)) = (true, true), (false, false), (false, true),
respectively, are absorbing.

Fortunately, we can transform problems where some of
the constraints are not transient into SPC MDPs with only
transient constraints.
Theorem 4 (Reduction to Transient Constraints). Let
M = 〈S,A,R, T , s0, γ, ξ〉 be an SPC MDP, for which m
out of n constraints ξ = {ξ1, . . . , ξn} are non-transient.
Then M can be transformed into an SPC MDP M ′ =
〈S ′,A,R′, T ′, s′0, γ, ξ

′〉 with only transient constraints by
augmenting its state space with one three-valued (“val-
idated”, “invalidated”, “unknown”) variable per non-
transient constraint, and replacing each such constraint with
a transient one. M ′ has 3m|S| states.

The first step of our overall algorithm for solving SPC
MDPs, shown below, uses these theorems to eliminate
non-transient constraints and neutralizes the remaining
constraints by deleting states and actions that violate them.
High-Level Algorithm Description. To recapitulate, our
algorithm, called SPC Value Iteration (SPC VI), whose main
loop is presented in Algorithm 1, operates in two stages:

1. The first step starts by compiling away non-transient con-
straint functions (Alg. 1, line 2). Then it identifies the
states of the given SPC MDP that can’t be reached from
s0 without violating at least one constraint (Alg. 2, line
4), the states from which at least one constraint is unsatis-
fiable, and all actions leading to these types of states (Alg.
3, lines 7 and 9). As Algorithm 3 shows, this can be done
with iterative DP. These actions and states aren’t part of
any valid policy and are removed from the MDP (Alg. 3,
line 12), leaving reduced state set Ŝ and action sets A(s)

for each s ∈ Ŝ . These sets form an IHDR MDP with the
property described by the following lemma:
Lemma 1. For an SPC MDP, let ΠA be the set of all
policies on the state set Ŝ as defined above, s.t. each π ∈
ΠA assigns a 0 probability to every a �∈ A(s) in every
s ∈ Ŝ it reaches.

Algorithm 1: SPC MDP Value Iteration
1 Input: SPC MDP with constraints ξ1, . . . , ξn, ε > 0, θ > 0;

2 Compile away the SPC MDP’s non-transient constraints
(Theorem 4), if necessary;

3 Initialize the set Ŝ := {s0} of explored states;
4 Initialize the set T ip := {s0}, a subset of Ŝ;

5 explore(Ŝ, T ip) ;

6 for i : 1 . . . n do updateReachability(Ŝ, ξi, θ) ;

7 for s ∈ S do A(s) :=
{
a | ∀s′, T (s, a, s′) > 0 ⇒ s′ ∈ Ŝ

}
;

8 Initialize ω := ε(1−γ)2

Rmax−Rmin
;

9 Compute V ω by Value Iteration with ωBell operator;
10 Return π ω-policy greedy w.r.t V ω

Algorithm 2: explore(Ŝ, T ip) function
1 repeat
2 Pick s ∈ T ip ;
3 if there is a constraint ξi = fiU

∞
=pi

gi s. t.
((pi = 1 & !fi(s) & !gi(s)) or (pi = 0 & gi(s)))
then

4 Remove s from T ip and Ŝ ;
5 else
6 for a and s′ with T (s, a, s′) > 0 do

7 if s′ not already in set Ŝ then

8 Add s′ to T ip and Ŝ
9 until T ip = ∅;

Algorithm 3: updateReachability(Ŝ, ξi, θ) function
1 Initialize validity value functions X , X ′ to 0;
2 for s ∈ Ŝ do X(s) := gi(s) s.t. ξi = fiU

∞
=pigi ;

3 repeat

4 X ′ := X;
5 for s ∈ Ŝ do
6 if pi = 1 then
7 if !fi(s) then X(s) := 0 else

X(s) := max
a

[∑
s′

T (s, a, s′)X(s′)
]

;

8 if pi = 0 then
9 if gi(s) then X(s) := 1 else

X(s) := min
a

[∑
s′

T (s, a, s′)X(s′)
]

;

10 until | X −X ′ |max< θ;
11 for s ∈ Ŝ do
12 if ((pi = 1)&X(s) < 1− θ) or ((pi = 0)&X(s) > θ)

then Remove s from Ŝ and discard actions leading to it ;

(a) ΠA contains all valid policies.
(b) Every ω-policy with ω > 0 in ΠA is valid.

Thus, the first step outputs pruned sets of the SPC MDP’s
states and actions to construct any valid policy, including
every valid ω-policy. I.e., if there is a valid ε-optimal ω-
policy, we must be able to build it from this “kit”.

2. The second step (Alg. 1, lines 8-10) begins by determin-
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ε N t (s) V (discounted)

10
1 0.045 -19.6931
2 5.95 -39.1865
3 54.6 -60.1082

1
1 0.048 -19.1382
2 5.82 -38.616
3 53.8 -59.8614

0.1
1 0.041 -19.0826
2 5.89 -38.5589
3 54.5 -59.8367

(c) System update domain

Figure 2: Benchmark results

ing an ω (line 8) for which all ω-policies over the remain-
ing states and actions are ε-optimal via Theorem 3, and
runs the ω-Bellman operator (line 9) to find the greedy
ω-policy that is ε-optimal for the pruned MDP, and hence,
by construction, for the original SPC MDP. By Lemma 1,
that policy is also valid, yielding the following result:

Theorem 5 (Existence of ε-Optimal ω-Policies.). For
any SPC MDP with satisfiable constraints, there exists a
valid ε-optimal policy, and SPC VI can find it. The solu-
tion is randomized and Markovian in the augmented state
space, but history-dependent in the original one.

Experimental Evaluation

The objectives of our experiments are two-fold: (1) to com-
pare SPC VI with the algorithm for PC MDPs, PC MDP-ILP
(Teichteil-Konigsbuch 2012), in terms of efficiency, and (2)
to validate SPC MDPs as an efficient modeling tool. The
experiments were run with 5.8 GB of RAM on a 2.80GHz
CPU. In the experiments, we used two benchmark domains
in the PPDDL language, extended to express PCTL con-
straints. In all experiments, the SPC MDP discount factor
was γ = 0.9. The domains are:

Fire Surveillance Drone Domain. The domain is described
in the Example SPC MDP Scenario section. We randomly
generated instances with different grid dimensions (between
10x10 and 100x100, with a total number of states between
200 and 160 000), time parameter values, and numbers of
zones of each type (between 1 and 5 per type). For ε-
optimality we set ε = 0.1, with a corresponding ω = 0.001,
since we fixed the penalty of a fire occurrence to -1.

System Update Domain. The domain involves deploying
an important but non-time-critical update on all nodes in a
cluster — every node must receive the update eventually.
Each node can be updated independently, at a different time.
Each node has two power modes, s1 (low) and s2 (high).
Every hour a node spends in s1 costs r1 = −10 cents/node,
and every hour spent in s2 costs r2 = −20 cents. Each
node can switch between power states once an hour, but each
switch costs 30 cents in energy. The update takes 7 hours,
during all of which the node must be in the high-power state.

At any point, each node is either in use or not. Every

hour a node is not in use, with probability p a user starts
utilizing it. If this happens, the node stays busy for the next
4 hours, during which no other users can use it. Crucially,
the probability p of a new user appearing changes every 12
hours between 1/4 during daytime and 1/8 during nighttime.

Users pay 50 cents/hour for a node in a high-power state
(however, 20 of these go to pay for energy costs) and 10
cents/hour for a node in a low-power state. When a node
is getting updated while in use, administrators have to com-
pensate its users with 50 cents/hour for the disruption (in ad-
dition to paying for the system being in a high-power state).

To summarize, for every hour (time step) there are three
actions per node: (1) update, (2) switch its power state, (3)
do nothing. The constraint is that every node must get up-
dated eventually and must be running in a high-power state
for the update’s duration. Since the reward function ranges
from -50 to 50, we chose a parameter ε ≤ 10 for the ε-
optimality; the corresponding ω parameter is 0.001. We
tested instances having from 1 computer (1246 states) to 3
computers (1 014 013 states).

We used the Drone domain to compare SPC VI against
PC MDP-ILP (Teichteil-Konigsbuch 2012); they both pro-
duce the same type of solutions (randomized, ε-optimal poli-
cies, Markovian if all functions are transient). An impor-
tant motivation for our work has been to formulate an MDP
model with constraints that would be more efficient to solve
than PC MDPs, with little loss in expressiveness. As Fig-
ure 2 shows, SPC MDPs meet this criterion. While the do-
main can be formulated as either of these MDP types, SPC
VI is much faster than PC MDP-ILP across all the domain
instances we experimented with (the dots corresponding to
different instances are all below the diagonal in the (b) plot).

For the Update domain, we aimed to study the influence of
ε. As Table 2c shows, there is no obvious effect of choosing
a lower ε on the total solving time spent. This can mainly
be explained by noting that the ε in SPC VI is not used for
termination (as in VI for IHDR MDP’s or indirectly in PC
MDP-ILP), so has little influence on SPC VI’s runtime.

We also assessed the obtained policies qualitatively, and
it turned out that they tended to install the update at night,
right after the last “day user” stopped using the node in high-
power mode. This is very intuitive: at night, the risk of
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costly user interference with the update is lower. In addition,
by installing the update right after a user quit, when the node
is still in a high-power state, the system avoided wasting re-
sources switching to a low-power state and back in order to
satisfy the energy requirements of update installation later.

Conclusion

This paper introduced Saturated Path-Constrained MDPs, an
MDP model that enables designers to express natural hard
constraints on the desired policies, and an algorithm for
provably finding ε-optimal policies for them. SPC MDPs
are strictly more expressive than several existing MDP types,
e.g., stochastic shortest-path and discounted-reward formu-
lations. It strikes a good balance between these models and
PC MDPs — although the latter are somewhat more expres-
sive, they are significantly harder to solve.

As the next step, we plan to develop even more efficient
techniques for solving SPC MDPs, in an effort to bring this
framework closer to complex industrial applications.
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