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Figure 1: Given a single image (a), our system models the spatially varying reflectance properties and normals with a few strokes specified
by the user (b). The resulting material can be rendered under different lighting and viewing conditions (c).

Abstract

We present AppGen, an interactive system for modeling materi-
als from a single image. Given a texture image of a nearly pla-
nar surface lit with directional lighting, our system models the de-
tailed spatially-varying reflectance properties (diffuse, specular and
roughness) and surface normal variations with minimal user inter-
action. We ask users to indicate global shading and reflectance in-
formation by roughly marking the image with a few user strokes,
while our system assigns reflectance properties and normals to each
pixel. We first interactively decompose the input image into the
product of a diffuse albedo map and a shading map. A two-scale
normal reconstruction algorithm is then introduced to recover the
normal variations from the shading map and preserve the geometric
features at different scales. We finally assign the specular param-
eters to each pixel guided by user strokes and the diffuse albedo.
Our system generates convincing results within minutes of interac-
tion and works well for a variety of material types that exhibit dif-
ferent reflectance and normal variations, including natural surfaces
and man-made ones.
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1 Introduction

Modeling Realistic Materials. The use of realistic materials is
necessary when rendering high-quality images. Measured materi-
als provide the highest quality datasets, but are cumbersome to use
in practice due to complex acquisition setups, lengthy measurement

times and the size of the generated data [Weyrich et al. 2009]. To-
day, the vast majority of applications use materials painstakingly
modeled by artists. Typically, artists start from a single texture
image, and use that to generate spatially-varying diffuse, specular
and roughness coefficients of an analytic reflectance model together
with a bump map to enrich the surface details. For many materials,
this process takes hours to perform, involving the use of image ma-
nipulation programs (e.g. Photoshop), inverse shading tools (e.g.
CrazyBump), and shading networks in 3D software (e.g. Maya).
Not only is this process cumbersome, but it often does not lead to
the highest quality materials since no robust method can be used to
easily derive detailed reflectance and normal maps from the image.
Fig. 3 shows two example materials generated by an experienced
artist in roughly one hour each, using the standard toolset that in-
cludes Photoshop and CrazyBump.

AppGen. In this paper, we present AppGen, an interactive system
for modeling material from a single image. We focus on modeling
spatially-varying reflectance (i.e. diffuse, specular and roughness
parameters) and normal variations from a texture image that is cap-
tured from a nearly planar surface lit by directional lighting. Such
images are easily found in texture collections since they are widely
used by artists when manually modeling materials. Our goal is not
to determine the exact reflectance and normals from such single
images, which is a well-known ill-posed problem. Instead, we are
interested in significantly speeding up the workflow of artists when
modeling such materials. Our key idea is that we can keep user
interaction minimal by asking the user to specify shading or re-
flectance information on a few pixels with sparse strokes, while our
algorithm efficiently infers the reflectance and normal details for
all pixels in the image. Fig. 1 shows one example of a material
modeled using our system with just a few user strokes. Note the
highly detailed, realistic look of the output material. Our experi-
enced artist was able to regenerate the example materials in Fig. 3
in a few minutes using AppGen.

Our system consists of four steps, illustrated in Fig. 2. (1) First,
we remove the highlight and shadow pixels in the input image and
fill them by image inpainting. After that, we are left with an im-
age of only the diffuse contribution. (2) We present an algorithm
for interactively separating the texture image into the product of
shading and diffuse albedo. We assume that in each local region
pixels with the same chroma value belong to the same material and
have the same albedo intensity, while groups of pixels with differ-
ent chroma values share the same global geometry and thus have the
same average shading. Based on these two assumptions, we formu-
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Figure 2: Overview of our system. In the preprocessing step, we remove highlight and shadow pixels. After that, with user assistance, we
decompose the diffuse component into the product of a diffuse albedo map and a diffuse shading map. We then assign specular reflectance
guided by the albedo map and user strokes. Finally, we reconstruct geometry details from the diffuse shading map. A legend of color coded
strokes used in this paper is shown at the bottom.

late the separation as an optimization problem and solve it via an
Expectation-Maximization (EM) like algorithm. We ask the user to
interactively mark regions that violate our assumptions using a few
rough strokes and augment our optimization procedure with these
constraints to further refine the separation results. The result of this
step is a diffuse color map and a shading map caused by normal
variations. (3) We recover the per-pixel normals from the shading
map by representing the underlying geometry as a height field (to
capture the overall shape) with perturbed normals over it (to fit the
remaining fine-scale shading variations). In general, splitting the
shading map into a height field and perturbed normals contribu-
tion is an ill-posed problem. In our case though, since we assume
that the contributions of the perturbed normals are subtle high fre-
quency effects, we remove them from the shading map by smooth-
ing. Based on this observation, we introduce a two-scale normal
reconstruction algorithm. We first compute a height field that best
fits the smoothed shading image, and then solve for a detailed nor-
mal map over the height field that best fits the detailed shading map.
As a result, the geometry features at different scales are well recov-
ered and generate consistent shading results under different lighting
conditions. (4) Finally, we assign the proper specular properties to
each pixel based on the diffuse albedo and the specular properties
of a sparse set of pixels that are assigned by the user with rough
strokes.

Contributions. Given an input image, our system can generate
compelling materials within minutes of interaction using only a few
user strokes. We found our system to work well for a variety of
material types, including natural surfaces (metals, woods, rocks,
leathers) and man-made ones (textiles, papers, concrete).

We believe that the main contribution of this paper is the overall
interactive system. To the best of our knowledge, this is the first
system that allows artists to use minimal interactions to model a
wide-variety of material types from just a single texture image. The
main technical contributions of this paper are our interactive diffuse
shading separation algorithm and two-scale normal reconstruction
algorithm. Both of them are specially designed for texture images
that are characterized by detailed and coupled reflectance and nor-
mal variations. Our separation algorithm efficiently decouples re-
flectance and shading in a single image and preserves the details in
both albedo and shading, while our reconstruction algorithm well
recovers the height field and detailed normals from the shading
map. Working together with the specular assignment algorithm,
these two algorithms enable artists to quickly produce compelling
material models.

Our results Results generated by artist

(a)(a) (b)(b)
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Figure 3: Comparisons between the materials modeled by our
method and materials manually modeled by an experienced artist.
The results generated by the two methods are similar. Our system
generates each result within 5 minutes, while the artist takes one
hour to generate each result.

2 Related Work

Image based Material Editing modifies or alters the object ma-
terial in a photograph to achieve different image editing effects.
Fattal et al. [2007] use bilateral filtering of multi-light images into
multiple scale images and enhance the shape and surface details
of an object by manipulating its details in each scale. Fang and
Hart [2004] and Zelinka et al. [2005] decorate an object in a photo-
graph with synthesized texture, in which the object normal recov-
ered via shape from shading is used to guide texture synthesis. Both
methods assume the object geometry is smooth and ignore intensity
variations caused by albedo. Khan et al. [2006] infer the shape and
surrounding lighting of an object in a photograph and render its ap-
pearance with altered material. This method does not recover the
object reflectance and directly maps the smoothed pixel intensity to
depth. Xue et al. [2008] model the reflectance of weathered surface
pixels in a photograph as a manifold and use it for editing the weath-
ering effects in the image. All these methods only recover partial
material information for editing object appearance under the same
view and lighting of the original image. Our method is designed for
modeling both reflectance and normal textures from a single image
so that the results can be rendered under new viewing and lighting
conditions.



Image based Material Modeling interactively recovers the ge-
ometry and reflectance of objects in a single input image. Oh et
al. [2001] developed a set of tools for interactively modelling the
depth layers in a single image. A decoupling filter is presented
to decouple the illumination from uniformly textured areas. Their
method is designed for modeling geometry of a scene or character
but not material with the rich texture and geometric details we are
interested in. Several interactive methods have been developed for
modeling a bump map of structured textures [Dischler et al. 2002],
displacement map of tree barks [Wang et al. 2003], and stochas-
tic/procedural volumetric textures [Gilet and Dischler 2010] from
single image input. All these methods are designed for specific
kinds of textures and cannot easily be extended for modeling other
textures. Our method has few constraints on the underlying geom-
etry and texture distribution of the input image and thus provides
a more general solution. In industry, CrazyBump [2010] is widely
used by artists to generate bump maps from single images. For
most texture inputs, it simply takes the image intensity as the shad-
ing map and ignores the albedo intensity variations of underlying
materials, which leads to lots of manual work for refining results.
Our approach well handles texture images with interweaved albedo
and normal details and generates good results with few user inter-
actions.

Intrinsic Images decomposes images into reflectance and illu-
mination. Without prior knowledge, decomposition of intrinsic
images from a single image cannot be solved due to its inher-
ent ill-posedness [Grosse et al. 2009]. The method proposed by
Horn [1986] assumes the illumination over the surface is smooth,
which is not true for bumpy surfaces. Tappen et al. [2006] use color
information and a pre-trained classifier to classify reflectance and
albedo gradient in the input image. Shen et al. [2008] use detected
textons as a non-local cue for better separation. However the tex-
ture clustering used in their method will lead to banding artifacts in
the resulting shading map. Recently, Bousseau et al. [2009] decou-
pled intrinsic images from a single input image with user assistance.
Their method assumes that the reflectance of pixels in a local win-
dow lies in a plane. Although this assumption is valid for natural
images, it will fail in texture image with rich reflectance details.
All these methods are designed for natural images and cannot work
well for texture images that have rich variations in both albedo and
shading. Our separation algorithm targets texture images. With
few assumptions and sparse user input, our method optimally de-
composes the reflectance from shading and keeps both albedo and
shading details in the result. Xue et al. [2008] present a diffuse
shading separation method for images of weathered surfaces where
the surface reflectance forms a 1D manifold in color space. Our
separation method has no assumption about the distribution of sur-
face reflectance in color space and provides a general solution. We
also introduce an efficient refinement scheme.

Shape From Shading tries to recover both albedo (i.e. diffuse
color) and geometry from a single image, which is a well-known ill-
posed problem. Horn and Brooks [1989] recover the normals from
a shading image by regularizing the problem with smoothness con-
straints. The resulting normals are always noisy and biased toward
the lighting direction. Later methods [Zhang et al. 1999; Durou
et al. 2008] assume the underlying surface is integrable and solve
a height field from the shading image. Although these methods
work well for reconstructing the surface geometry, they fail to fit
the shading details and thus cannot reproduce detailed normal varia-
tions over the surface. Our two step normal reconstruction approach
well recovers both surface geometry and detailed normal variations
from a single shading image and generates consistent shading re-
sults under different lighting directions.

Recently, Glencross et al. [2008] hallucinated a surface height field
from an image captured under diffuse ambient lighting. Another
image with flash illumination of the same scene is needed for sepa-
rating the albedo from the input image. Our system uses a single in-
put image under directional lighting for modeling both albedo vari-
ations and normal variations. Moreover, our normal reconstruction
method well recovers detailed normal maps and preserves details in
the shading map.

3 System Overview

Our system takes as input a texture image I of a nearly planar sur-
face with spatially-varying reflectance and normal variations and
lit with a directional light. Since the underlying surface is nearly
planar, we further ignore occlusion and inter-reflections between
geometry details on the surface. Although this lighting model is
not physically accurate, it nevertheless produces plausible results
for many input images, as shown in this paper.

Without losing generality, we model the BRDF ρ(x) at pixel x as the
sum of a Lambertian component, with albedo ρd(x), and a specular
component, with specular coefficient ρs(x) and lobe shape fr(x).
Under directional lighting, the image value I(x) at x can be com-
puted as the sum of the diffuse contribution Id(x) and the specular
highlights Is(x) as

I(x) = Id(x)+ Is(x), (1)
where

Id(x) = ρd(x)Sd(x) = ρd(x)(N(x) ·L) Il (2)
Is(x) = ρs(x)Ss(x) = ρs(x) fr (N(x),L,V )(N(x) ·L) Il . (3)

The diffuse shading Sd(x) is determined by the local normal N(x),
the light direction L and intensity Il , while the specular shading
Ss(x) is also related to the viewing direction V .

Given input image I, the goal of our system is to model spatially-
varying diffuse albedos ρd(x), specular coefficients ρs(x), lobe
shapes fr(x), and normals N(x) with the help of a few user strokes.
Fig. 2 shows an overview of our system that is composed of the
following steps:

• Highlight and shadow removal. We first identify the highlight
Is(x) and shadow pixels Io(x) by thresholding the pixel values
(I(x) > 235 for highlights and I(x) < 25 for shadows for 8-
bit images) and fill these pixels by image inpainting [Bertalmio
et al. 2000]. After that, the image only contains the diffuse com-
ponent Id . Any other shadow removal and specular separation
methods can be used in this step.

• Diffuse Shading Separation (Sect. 4). We decompose Id ob-
tained from the last step into the product of a diffuse albedo map
ρd and a diffuse shading map Sd . We formulate this separation
as an optimization problem and compute the initial shading and
diffuse albedo maps. After that, the user quickly refines the ini-
tial separation results by drawing sparse strokes in regions that
violate our assumptions and thus exhibit artifacts.

• Normal Reconstruction (Sect. 5). We reconstruct a normal map
N from the diffuse shading map Sd with a two-scale normal
reconstruction approach. After the user specifies the lighting
direction, we first compute a height field that fits a smoothed
shading map. We then recover fine geometric variations, by fit-
ting detailed normals over the height field to match the detailed
input shading map Sd .

• Specular Assignment (Sect. 6). We assign the specular behavior
(ρs and fr) of a fixed set of specular basis BRDFs to each pixel,
guided by user strokes that assign the basis BRDFs to just a
few pixels. A material classification algorithm determines the



material type of all pixels, according to the diffuse color and
stroke location, and uses this to assign a specular BRDF to each
pixel.

4 User-Assisted Shading Separation

In this step, we decompose the diffuse components Id into a shading
map Sd and a diffuse albedo map ρd . These two components will
serve as the input of the following steps for normal reconstruction
and specular assignment respectively.

For this purpose, we represent the image value Id = (Ir
d ,I

g
d ,I

b
d)

by its intensity Ii
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d). We assume the light is white
Il = (1.0,1.0,1.0) so that the image chroma comes from the chroma
of the diffuse albedo ρc

d(x) = Ic
d(x), while the image intensity is the

product of shading and albedo brightness
Ic

d(x) = ρ
c
d(x), Ii

d(x) = ρ
i
d(x)S

i
d(x). (4)

Our goal is to decompose the diffuse intensity Ii
d into an albedo

intensity map ρ i
d and a shading intensity map Si

d . To this end,
we formulate the separation as an optimization problem and solve
the initial albedo map and shading map by an EM (Expectation-
Maximization) like algorithm. After that, we refine the results with
the constraints specified by sparse strokes.

4.1 Separation as Optimization

We first assume that in each local region Ω, pixels with the same
chroma value Ic

d(x) = ρc
d(x) = c belong to one material and thus

have the same albedo intensity ic. Based on this local albedo as-
sumption, we have

ρ
i
d(x) = ic x ∈Ωc, (5)

where Ωc refers to the set of pixels that are in Ω and have the same
chroma value c. For shadings caused by the geometric details in Ω,
our key observation is that although the spatial patterns and ampli-
tudes of the geometric details of each material (i.e. pixels in each
Ωc) may be different from one another, the large scale geometry in
Ω is almost flat. As a result, the average normals of the geometric
details of all materials in Ω are almost the same and the shading
estimation of each material is equivalent to the shading estimation
of all pixels in Ω. Based on this local shading assumption, we have

E(Si
d(x)|x ∈Ωc) = E(Si

d(x
′)|x′ ∈Ω). (6)

Given Equation 5 and Equation 6, the intensity estimation of pixels
in Ωc can be computed as

E(Ii
d(x)|x ∈Ωc) =

∑x∈Ωc
(ρ i

d(x)S
i
d(x))

NΩc

=
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d(x
′)|x′ ∈Ω), (7)

where NΩc is the number of pixels in Ωc. So the albedo intensity
ρ i

d(x) of a pixel x in region Ωc should satisfy

ρ
i
d(x) =

E(Ii
d(x
′)|x′ ∈Ωc)

E(Si
d(x

′′
)|x′′ ∈Ω)

x ∈Ωc. (8)

Since the shading intensity is Si
d(x) = Ii

d(x)/ρ i
d(x), we can rewrite

the right side of the equation as a function of image intensities and
albedo intensities of pixels in Ω as

E0(Ω,c,Ii
d ,ρ

i
d) =

E(Ii
d(x
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E(Si
d(x
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1
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. (9)

Based on this local constraint, we formulate the separation as an
optimization problem by minimizing the following energy function
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Figure 4: Interactive refinement. Given the initial shading map (b)
and albedo map (c) separated from the input image, the user draws
sparse strokes in regions that violate our assumptions to refine the
results. The top row shows the effect of Albedo correction stroke,
and the bottom row shows the effect of Shading correction strokes.
Artifacts in the initial results (b) and (c) are fixed in (d) and (e) after
refinement.

of ρ i
d(x):

F0(ρ
i
d(x)) = ∑

Ω∈Ω†

||ρ i
d(x)−E0(Ω,ρc

d(x),I
i
d ,ρ

i
d)||

2, (10)

where Ω† is the collection of all fixed sized local regions that con-
tain x. In practice, we define Ω as a W ×W window and solve
this optimization using an iterative algorithm similar to Expecta-
tion Maximization. In the E-step, given the E0(Ω,ρc

d(x),I
i
d ,ρ

i
d)

computed from the current albedo intensity map, we update ρ i
d(x)

by solving the linear equations that result from the differentiations
of F0(ρ

i
d(x)) with respect to ρ i

d(x). Then in the M-step, we up-
date the E0(Ω,c,Ii

d ,ρ
i
d) for each window and each chroma value

from the new albedo intensity map according to Equation 9. We
repeat these two steps iteratively until convergence. After obtain-
ing the albedo intensity ρ i

d(x), we compute the shading intensity
Si

d(x) = Ii
d(x)/ρ i

d(x). Fig. 4.b and 4.c illustrate the shading inten-
sity map and albedo intensity map separated by our optimization
algorithm.

In practice, we set the region size to W = 20 and initialize the opti-
mization by setting the albedo intensity to the image intensity (i.e.
the shading intensity is 1.0 everywhere). To determine whether two
pixels have the same chroma value, we uniformly subdivide the
first two channels of chroma vectors into 20 slots and quantize each
pixel’s chroma value to one of 400 quantized chroma values.

4.2 Interactive Refinement

Although our method generates reasonable results in most image re-
gions, it will fail and generate artifacts in regions that violate our as-
sumptions. Specifically, in regions that violate the local albedo as-
sumption, pixels with the same chroma value have different albedo
intensities. In this case, our method will leave image intensity varia-
tions of these pixels to the shading map and thus generate undesired
detail shading variations in flat regions (shown in the top row of Fig.
4.b and 4.c). In regions that violate the local shading assumption,
the shading estimation of each material is different from each other
and thus is also different from the shading estimation of the local
region. In this case, our method will compute a biased albedo inten-
sity for each pixel and thus introduce undesired variations in regions
with constant albedo (shown in the bottom row of Fig 4.b and 4.c).
This case often happens in regions where the material distribution
is correlated to large scale geometric structures.

User Strokes We design a user stroke for each type of artifact
for users to quickly specify artifact pixels. Based on sparse strokes
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Figure 5: Comparisons to automatic intrinsic image algorithms.
(a) The color-retinex [Kimmel et al. 2003] has artifacts in the sepa-
rated results. (b) Even if combined with non-local texture cues [Shen
et al. 2008] these artifacts cannot be fully removed. (c) Without user
interaction, our method already produces reasonable results.

Figure 6: Comparisons to user-assisted intrinsic images. Our method
is shown in the top row, while the results of [Bousseau et al. 2009] are
shown in the bottom row. With only 3 interactions, our method can
generate high quality separation results, while [Bousseau et al. 2009]
requires many more input strokes to get a reasonable separation.

specified by the user, our algorithm automatically removes the arti-
facts and refines the separation results.

To fix the artifacts in regions that violate the local albedo assump-
tion, we ask the user to draw albedo correction strokes over artifact
pixels to indicate that locally the underlying geometry is flat and
the shading details of a pixel should be moved to its albedo intensi-
ties. As a result, each albedo correction stroke defines the following
constraint:

ρ
i
d(x) = ES(Ω,x,Ii

d ,ρ
i
d) =

Ii
d(x)

E(Si
d(x
′)|x′ ∈Ω)

=
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ρ i
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and an energy term FS for optimization:
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i
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w(x)||ρ i
d(x)−ES(Ω,x,Ii

d ,ρ
i
d)||

2, (12)

where w(x) = λe−||x−xs||2/σ is a weight function to control the im-
portance of the stroke constraint at x, which is determined by the
distance between x and its closest stroke pixel x′. In practice, we
set λ = 10.0 and σ = 3.0.

To fix artifacts in regions that violate the local shading assumption,
we ask the user to draw shading correction strokes over artifact
pixels to indicate that locally the albedo intensity of a pixel with
chroma c should be the same as the albedo intensity of stroke pixels
that have the same chroma c. If no pixel in the stroke has chroma
c, the pixel keeps its original albedo. So each shading correction
stroke defines the following constraint:

ρ
i
d(x) = EA(Ωs,c,ρ i

d) = E(ρ i
d(x
′)|x′ ∈Ωsc)

=
1

NΩsc
∑
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ρ
i
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′) ρ

c
d(x) = c, (13)

where Ωs is the set of all pixels in the stroke, Ωsc refers to all pixels
in Ωs that have chroma c, and NΩsc is the number of pixels in Ωsc.
We thus define the following energy term FA for optimization:

FA(ρ
i
d(x)) = ∑

Ω∈Ω†

w(x)||ρ i
d(x)−EA(Ωs,ρ

c
d(x),ρ

i
d)||

2. (14)

Result Refinement To refine the separation result with user spec-
ified strokes, we minimize the following energy function that com-
bines the energy terms defined by all strokes and F0:

F0(ρ
i
d(x))+λS

NS

∑
j=0

FS, j(ρ
i
d(x))+λA

NA

∑
k=0

FA,k(ρ
i
d(x)), (15)

where FS, j denotes the for j-th albedo correction stroke, and FA,k is
the k-th shading correction stroke. NS and NA are the numbers of

strokes of the two types. λS and λA weight the constraints specified
by the two types of strokes respectively in optimization, both of
which are set to 1.0 in practice.

We adapt our iterative solver for this new energy function. In the
E-step, we update the albedo intensity ρ i

d(x) by solving the sparse
linear system resulting from the differentiations of the new energy
function with respect to ρ i

d(x). In the M-step, we update the func-
tions E0, ES and EA with the new albedo intensity values according
to Equation 9, 11, and 13 respectively. We repeat these two steps
iteratively until convergence. The spatial weights w for each stroke
are computed before the optimization. Fig. 4.d and 4.e illustrate
refined separation results, where the artifacts are removed with the
help of sparse user strokes.

4.3 Discussion

Different from previous intrinsic images methods [Grosse et al.
2009] mainly designed for natural images, our method targets tex-
ture images with details in both reflectance and shading. On one
hand, our local albedo assumption allows arbitrary chroma vari-
ations in the local region and thus can well handle complicated
reflectance details. On the other hand, our local shading assump-
tion only constrains the average shading of each material in the
local region and thus well preserves the complicated shading de-
tails in the input. Moreover, we design two types of strokes for
the user to quickly remove artifacts and refine results. We compare
our method with two automatic intrinsic images methods [Kimmel
et al. 2003; Shen et al. 2008] in Fig. 5. The color-retinex method
[Kimmel et al. 2003] generates visible artifacts in the separated re-
sults. Although the non-local texture used in [Shen et al. 2008]
improves the results, the separation artifacts still cannot be fully
removed. On the contrary, our method can automatically recover
the shading/albedo in images with both shading and albedo varia-
tions. Fig. 6 compares the results generated by our method with
the ones generated by the user-assisted intrinsic images method in
[Bousseau et al. 2009]. Note that in [Bousseau et al. 2009], the local
reflectance plane assumption cannot guarantee the shading/albedo
to be constant in regions with constant shading/albedo. User inputs
are always necessary for generating reasonable results and become
cumbersome as the detail in the input image increases, while in our
method, the automatic solution already generates convincing results
for most image inputs. User input is only needed to fix artifacts in
the results.



(a) (b) (c)

Figure 7: Two-scale normal reconstruction. (a) Filtered shading
map. (b) Result rendered from the reconstructed height field. (c)
Result rendered from the final normal map.

5 Two-Scale Normal Reconstruction

To model the geometry details of the input surface, we reconstruct a
normal map N(x) from the diffuse shading map Sd(x) and a lighting
direction L roughly specified by the user.

For this purpose, we represent the surface geometry as a height field
with perturbed normals over it and develop a two-scale normal re-
construction algorithm. The key observation of our approach is that
the shading details produced by the normal perturbations in Sd(x)
are always subtle and high-frequency, and as such can be filtered
out by smoothing. Based on this observation, we first filter the in-
put shading map Sd with a 3×3 Gaussian filter (σ = 0.4 in our im-
plementation) and recover a height field H from the filtered shading
map S′d via shape from shading. We follow the method in [Wu et al.
2008] to compute the height field H in our current implementation,
but other shape from shading methods can also be used here. Af-
ter that, we compute the perturbed normals defined over the height
field by minimizing the energy function:

En = ∑
x
||N(x) ·L−Sd(x)||2 +λ ∑ ||N(x)−Nh(x)||2. (16)

The first term constrains the shading result of N under the light-
ing direction L to fit the input shading map Sd , while the second
regularization term minimizes the difference between the resulting
normal N and the normal Nh computed from the height field H. The
weight λ is a regularization term, which is set to 0.001 for all re-
sults shown in the paper. This optimization can be done by solving
a sparse linear system. In practice, we initialize the optimization by
setting N(x) = Nh(x) and compute the normal via a Gauss-Seidel
solver with successive over-relaxation. The results of these two
steps are illustrated in Fig. 7. Note that the normal map recovered
by our method preserves well the geometric details and generates
convincing rendering results under different lighting conditions.

Discussion Our method is not sensitive to the accuracy of the
light direction L specified by the user in that the error of light direc-
tion will only lead to a global rotation of all normals over the surface
but has no effect on the relative normal variations. Since our method
assumes the underlying geometry is almost flat, we rotate the ini-
tial normals and lighting in the first step so that the average normal
of underlying geometry is always upward. Fig. 8 illustrates results
generated from one input shading map but with different lighting
directions specified by the user. As the error of the specified light-
ing direction becomes larger, the error of the resulting normal map
is small and almost unchanged.

In Fig. 9, we compare the result generated by our method (Fig. 9.g)
with the ones generated by other existing normal reconstruction
methods. A straightforward solution would be to directly recon-
struct the normal map from Sd with a regularization term as in
[Horn and Brooks 1989]. Although the resulting normal map well
fits the input shading image, it is biased toward the lighting di-
rection L and generates artifacts under other lighting directions
(Fig. 9.c). Other shape from shading approaches assume the surface
is integrable and reconstruct a height field from the input shading
map. Although these methods can reconstruct the overall surface
geometry, the detailed normal perturbations over the surface are
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Figure 8: Normal maps reconstructed from the same shading map,
but different lighting directions, rotated respectively at 0, 5, 10, and
20 degrees. The rendering results are shown in the top row. The
middle row visualizes the reconstructed normal map. The bottom
row shows the a 5 times magnified reconstruction error, measured
as the length of the cross product between the resulting normal map
and normal map at 0 degrees. Note how our method is robust to the
input light directions.

smoothed out. Fig. 9.d shows a rendering result of the height field
reconstructed by [Wu et al. 2008]. Although the height field gener-
ates reasonable results under different lighting directions, the shad-
ing details caused by detailed normal variations are lost. Fig. 9.e
illustrates the result generated by the shading-as-depth method used
in [Khan et al. 2006]. Although the shading-as-depth method works
well for many smooth surfaces, it fails to model the geometric fea-
tures in this input. We also compare the results generated by our
method with the one (Fig. 9.f) generated by a photometric method
in [Goldman et al. 2010]. While the photometric method can well
recover the normal map, it needs many more images (12 images in
this example) as input, which are not always available in our ap-
plication. Instead, our method generates convincing results from a
single input image.

6 User-Assisted Specular Assignment

In this step, we assign a specular coefficient ρs and lobe shapes fr
to each pixel. Based on the observation that the specular properties
at each pixel mostly depend on the underlying material type (e.g.
whether a pixel is metal or rust) rather than detailed diffuse color
variations, we ask the user to assign the specular BRDF to a sparse
set of pixels, using rough strokes, and then automatically determine
the specular BRDF for other pixels. The user strokes not only de-
termine the specular reflectance of the underlying pixels, but also
assign the same material type to these pixels. With NM BRDFs and
NM corresponding material types assigned by the strokes, we clas-
sify each pixel’s material type by computing the probability that
it belongs to each material type. After that, we assign the specu-
lar BRDF to each pixel based on the material classification results.
This process is illustrated in Fig. 10.

Material Classification Given the set of pixels that belongs to
each material type i (i.e. the pixels in the same-BRDF strokes), we
construct the sets Mi of their diffuse colors. We remove the outliers
in each set Mi by checking each diffuse albedo in the set and finding
whether its k = 10 nearest diffuse albedos are in the same material
set. If more than 50% of them come from material sets other than
Mi, we remove this diffuse color value from Mi. After that, we



(a) Input shading map (b) Reference (d) [Wu et al. 2008]

(e) [Khan et al. 2006]

(c)[Horn and Brooks 1989]

(g) Our result(f) [Goldman et al. 2005]

Figure 9: Comparisons of different normal reconstruction meth-
ods. (a) is the input shading map rendered from a ground truth
normal map. (b) is a reference image rendered from the ground
truth under a novel lighting direction. (c) to (g) are images ren-
dered from the results generated by different normal reconstruction
methods. The lighting directions used in rendering are the same
as the one used in (b). Previous shape from shading methods ei-
ther generate biased results (c), or smooth out the detailed nor-
mal variations (d). (e) Simply taking the shading as depth [Khan
et al. 2006] does not generate a reasonable result. The photometric
stereo method [Goldman et al. 2010] (f) can accurately reconstruct
the normal map, but requires much more input data. Our normal
reconstruction algorithm can well preserve normal details and gen-
erate a convincing result (g) from a single input image.

compute the probability pi(x) that each pixel x belongs to the i-th
material type by using Shepard’s method [1968] as

pi(x) =
di(x)−p

∑
m
j=1 d j(x)−p , (17)

where m is the total number of material types and di(x) is the dis-
tance from pixel x’s diffuse color to the i-th material type’s material
set, which is computed by

di(x) =
1

10

10

∑
j=0
||ρd(m j)−ρd(x)||, (18)

where ρd(m j) is the 10 diffuse albedos in Mi that are closest to
ρd(x). In practice, we pick p = 1 for all the results. Although it is
possible to apply other edit propagation methods [An and Pellacini
2008; Xu et al. 2009] for determining the di for each pixel, we
apply Shepard’s method in our current implementation because of
its simplicity.

Specular coefficient assignment. After material classification,
we assign the specular coefficient ρs(x) and specular roughness
α(x) to each pixel by

ρs(x) =
M

∑
i=1

ρi pi(x), α(x) =
M

∑
i=1

αi pi(x), (19)

where pi(x) is the probability that pixel x belongs to the i-th mate-
rial, and ρi and αi are the specular coefficient and roughness of the
i-th material respectively.

In our implementation, the specular BRDFs are selected from pre-
defined 120 specular BRDFs extracted from measured materials.
We represent the specular lobe shapes fr by using the Ward model
controlled by the roughness parameter α(x) ranging from 0.005 to
0.5. When necessary, the user can fine-tune the parameters as well
as the specular color of the selected BRDF. We use the Ward model
as it can be easily adjusted by the user to fine tune the lobe shape.
Our method itself is not constrained to a parametric specular model.

(a) Input strokes (b) Probability map (c) Specular map (d) Roughness map

Figure 10: Specular assignment. We ask the user to assign single
BRDFs to pixels that belong to the same material type by sparse
strokes (a). Our algorithm then classifies the material type of pixels
and determines the probability map (b). Finally, the specular (c)
and roughness (d) coefficient of each pixel are calculated based on
the probability map (b) and assigned BRDFs.

(a) (b) (c)

Figure 11: Images rendered from the results generated with differ-
ent stroke inputs. The user stroke inputs are shown in the bottom
right. Although the stroke inputs are different, the results generated
by our method are similar.

7 Experimental Results

Performance We performed our tests on a PC with an Intel Xeon
2.83GHz CPU and 4GB RAM. For a typical input image of size
768× 768, the albedo and shading separation runs within 1.8 sec-
onds, the two-step normal map reconstruction converges within 1.5
seconds, depending on the input shading map, and the specular as-
signment step takes less than 0.2 seconds for material classification
and reflectance coefficient blending. The fast computations in each
step provide responsive feedback for user interaction.

User Input All results shown in the paper are generated by an
artist in one to five minutes. Depending on the complexity of the
input image, up to 9 strokes were used for diffuse shading separa-
tion, while 1 to 4 strokes were drawn for specular assignment. For
all results shown in Figs. 14 to 18, we display all the strokes used
for modeling in the input image. Different types of strokes are ren-
dered in different colors. Similar to other stroke based methods,
our method does not require accurate user strokes. Fig. 11 illus-
trates the results generated from the same input but with different
input strokes. Provided that the user intention was the same, these
different user strokes generate similar results.

Comparison with Standard Toolsets Fig. 12 compares a
ground truth rendering (12.b) with the result generated by our
method (12.c), a combination of [Bousseau et al. 2009] and [Wu
et al. 2008] (12.d), and CrazyBump (12.e). We use an RGBN
dataset from [Fattal et al. 2007] to render the input image (12.a)
under directional lighting. We then compare the rendering of the
ground truth data and the data reconstructed by the different meth-
ods under a new lighting direction. In generating these images, we
assume that the surface presented by the RGBN data is diffuse and
take the RGB value as the albedo. To generate the result shown in
Fig. 12(d), we applied the algorithm in [Bousseau et al. 2009] to
separate the input image and then computed the normals from the
resulting shading map with [Wu et al. 2008]. As shown in Fig.12,
both CrazyBump and the combination of [Bousseau et al. 2009] and
[Wu et al. 2008] fail to recover the reflectance and normals from
the input. On the contrary, our method recovers the reflectance and
normal details well. We include the shading and reflectance maps
generated by these methods in the supplemental material.



(a) Input

(c) Our result

(d)[Bousseau 09]+[Wu 08] (e) Crazybump

(b) Reference

Figure 12: Comparison with prior work. (a) Input image rendered
from ground truth data [Fattal et al. 2007]. (b) Reference image
rendered from ground truth data lit from different lighting direction.
(c) Rendering results of our method. (d) Results generated by a
combination of [Bousseau et al. 2009] and [Wu et al. 2008]. (e)
Results modeled by an artist using Crazybump. (b)-(e) are rendered
under the same light direction, but different from (a). The result
generated by our method is closer to the ground truth, while other
methods fail to recover the shading and reflectance presented in the
input image.

Fig. 3 illustrates two results generated by an experienced artist,
in about one hour each, using standard image manipulation tools,
including Photoshop and CrazyBump. With our method, the user
generates similar results using few user strokes within five minutes.
Although a more systematic user study would be needed to derive
formal results, we feel that this comparison is typical of our experi-
ence and shows the efficiency of our approach.

Results We tested our system with a wide variety of input im-
ages, shown in Fig. 14-18 together with users strokes and the fi-
nal materials, rendered under different viewing and lighting. We
show user input as yellow strokes for shading correction strokes,
red strokes for albedo correction strokes, and blue ones with dif-
ferent intensity to indicate the strokes that mark the placement of
the different specular BRDFs. In the supplemental material, we in-
clude shading map, albedo map and additional renderings of these
results, as well as additional test cases.

We chose input images that correspond to a wide range of materials,
ranging from man-made materials such as paper (Fig. 15) and wood
carving (Fig. 18-a), to natural materials like wood (Fig. 14-c, 16-
a), stone (Fig. 14-a), asphalt (Fig. 17-c), and rusted metals (Fig.
16-c, 17-a). These input images and corresponding materials show
a wide range of spatial distributions of geometry and reflectance,
demonstrating the wide applicability of our approach.

Fig. 14 shows results of two natural materials with complex geo-
metric details. Note how the large scale geometry variations of the
rock and the sharp cracks in the raw wood are modeled well by our
method.

Fig. 15 shows two results of wrinkled papers, which consist of
sharp color variations and rich geometric details at multiple scales.
Our method captures well these reflectance and normal variations
and generates convincing rendering results.

In many natural materials, such as wood and rust, complex re-
flectance and normal variations are often combined. Fig. 16 shows
two typical images of these material types. Note that with mini-
mal interaction, our method models well the spatially-varying high-

(a)(a) (b)(b) (c)(c) (d)(d)

Figure 13: Failure cases of our method. (a) Image with strong geo-
metric structures. (b) Image containing large regions of highlights.
(c) Grayscale image, where the albedo only has grayscale varia-
tions. (d) Our method fails to separate the black text from shading
variations and generates artifacts in the normal map.

lights of the finished wood and the rich color and reflectance details
in the rust.

Figs. 17 and 18 demonstrate examples of surfaces composed of
multiple material types, each of which exhibits its own spatially-
varying appearance. The rusted metal in Fig. 17 has shiny specular
highlights in the metallic regions, while the rusted parts are nearly
diffuse with strong normal variations. Our result reproduces real-
istic appearance for both the metallic and rusted regions. Note the
natural variations of the highlights in the final rendered images. For
the asphalt in Fig. 17, our method successfully reveals the detailed
bump variations of the surface while preserving the global structure
of the yellow paint.

Fig. 18 shows two materials that have man-made global structure
and detailed natural textures. Our system reproduces the geometry
variations for both man-made carvings and natural textures. In the
wood carving, the specular reflectance of the polished red wood
and matte reflectance of the dusted part are well preserved by our
specular assignment. For the rock wall example, the rich albedo
variations and sharp boundaries between rock and cement are well
modeled in our result.

Limitations Although our system works well for a wide variety
of texture images, we made several assumptions that might be vio-
lated by some input, as shown in Fig. 13. First, we assume that the
input comes from a nearly planar surface lit by directional light-
ing. For images that violate this assumption, our algorithm may
fail to produce convincing results (e.g. Fig. 13.a). Second, our
method mostly uses the diffuse component of the input image for
material modeling. For images that contain large regions of high-
light and shadows (e.g. Fig. 13.b), that are often clamped, the
material variations in these regions cannot be reconstructed well by
our method. Finally, our interactive shading separation method re-
lies on chroma variations during initialization. For materials with
grayscale albedo, our separation method fails to generate the ini-
tial separation result, thus potentially requires too much user input
for diffuse shading separation. Fig. 13.c illustrates a typical case:
an image of a wrinkled paper with greyscale text on it, where our
method generates artifacts in the resulting normal map and albedo
map.

8 Conclusion
In this paper, we present AppGen, an interactive system for mod-
eling materials from a single image. Given an input texture image
of a nearly-planar surface lit by directional lighting, our system lets
artists efficiently model the spatially-varying reflectance and nor-
mals, requiring only a few minutes of interaction to place a few
rough strokes. A diffuse shading separation algorithm and a two-
step normal reconstruction method are presented for deriving the
normal and reflectance details from the texture input. We illustrate
the capability of our method by modeling a wide variety of mate-
rials generated from images with different reflectance and normal
variations. We believe that our system can greatly speed up the



workflow of expert artists and might allow less technically-trained
ones to start modeling materials.

Our method assumes that the input image is lit with directional
lighting. One direction for future work is to extend our system to
model materials from images taken under environmental lighting.
We are also interested in investigating the modeling of materials
with complex meso-structure, that produce images with complex
shadowing and inter-reflection. Finally, we are interested in de-
veloping methods that leverage measured material datasets when
available in order to speed up the material modeling process.
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(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 14: Natural materials with complex geometric details generated by our system. (a)(b) Rock, (c)(d) raw wood.

(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 15: Wrinkled paper results generated by our system.

(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 16: Finished wood (a)(b) and rusted metal (c)(d) generated by our system.

(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 17: Rusted metal (a)(b) and asphalt with yellow paint (c)(d) generated by our system.

(a) Input image and strokes (c) Input image and strokes(b) Our result(b) Our result (d) Our result(d) Our result

Figure 18: Carved wood plate (a)(b) and concrete rock wall (c)(d) generated by our system.


