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Abstract

Most information visualization systems incorporate little or no spe-
cific support for collaboration. Yet, collaboration has been identi-
fied as a means to deal with the increasing amount and complex-
ity of information available to analysts. Re-implementing existing
applications to fully incorporate our current understanding of com-
puter supported cooperative work could be exhaustive, time con-
suming, and expensive. As a first step, we explored how co-located
collaborative information visualization and analysis environments
can be created in a cost-effective manner. We retrofitted NodeTrix,
a social network analysis tool, by extending it to enable multi-user
interaction in collaborative environments. We present details of the
retrofitting process and results of a user study assessing the usabil-
ity of our retrofitted system. Our results support the effectiveness
of our low-cost collaborative retrofitting for collaborative network
analysis and highlight implications for practitioners.

1 Introduction

Within human-computer interaction, much of the literature con-
cerned with designing and evaluating co-located collaboration, re-
volves around dedicated hardware in forms of touch-sensitive dis-
plays, input devices, or software. Each of these brings a num-
ber of advantages for certain collaboration environments and sit-
uations. It might appear that adapting information software for
co-located collaboration would require specialized hardware and
re-implementing the application to, for example, scale to specific
presentation spaces like large high-resolution wall or tabletop dis-
plays, to make use of head-mounted displays or CAVES, or to react
to other forms of input like direct-touch, gloves, or pens. Combin-
ing these approaches—taking large information visualization and
analysis systems and re-implementing them to fully incorporate
our current understanding of computer supported cooperative work
(CSCW)— is exhaustive, time consuming, and expensive.

Our approach is to explore how collaborative information analy-
sis environments can be created in a cost-effective manner both in
terms of the required hardware and time. We are motivated by the
potential benefits of co-located collaboration around data. Sharing
a single information display may enable new types of interaction
between analysts and enrich existing collaborations—data interpre-
tations can be discussed and negotiated during the collaboration
rather than after, expertise and data analysis skills can be shared,
and peer-learning and peer-teaching are encouraged.

To create a low-cost collaborative environment it is possible to use
multiple off-the-shelf projectors that can be simply pointed at a
blank wall to create a large display, coupled with technical solutions
that replace single mouse or keyboard input streams with multiple
input devices (e. g., [6]) as can be seen in Figure 1. However, it is
not clear to what extent such a simple approach supports collabora-
tive information analysis, what the requirements and challenges are
in practice, or whether a low-cost collaborative environment will
support the representations and tasks typically involved in informa-
tion analysis.

As a first step to answering this broader question, we retrofitted
a version of NodeTrix [3], a single-user graph visualization envi-

Figure 1: An example of a low-cost setup for co-located collabo-
rative data analysis using four mice, two projectors, and a wall for
projection.

ronment, to support multiple independent mice. Then, we con-
ducted an observational study to assess how analysts viewed our
low-cost environment (e. g., Figure 1), and whether it effectively
supported collaborative data analysis among domain experts using
real datasets in the context of social network analysis. To ensure
that our low-cost collaboration setup was effective under different
realistic settings, the observational study was conducted in three re-
search organizations, using technical facilities present in each or-
ganizations. With this research we assess one example for tran-
sitioning from single user to multiple user information visualiza-
tion support for co-located collaboration and we present a number
of hypotheses for generalizing our findings. Our intention is that
from our results and with further research, our knowledge about
retrofitting and hence designing co-located collaboration visualiza-
tion systems will adjust and expand.

2 Collaborative Retrofitting of NodeTrix

2.1 A Short Introduction to NodeTrix

NodeTrix [3] is a hybrid visualization in that it combines a node-
link representation and an adjacency matrix-based representation of
a social network in a single view. This makes it possible to view all
data entities represented as nodes and all inter-node relationships as
links. Alternatively, one can view all data entities as labels in rows
and columns in a matrix and their relationships as the matrix cells.
Most importantly, the two representations can be used in combina-
tion, with part of the data presented in either node-link or matrix
form (Figure 2). Whether a particular entity in the data is shown
in either of these representations is interactively controllable. For
instance, one can group node-link data entities to form a matrix, or
select a data entity and drag it into or out of any given matrix. This
interactive dual representation combines in a single view the bene-
fits of node-link diagrams and adjacency matrix-based representa-
tions, and is conducive to visual data exploration. Figure 2 gives
an overview of the visualization in which communities within a
computer-science department are grouped together in matrices and



connected by links representing co-authorship relations.

Figure 2: NodeTrix Visualization integrating node-link and matrix
visualizations. This image shows the co-authorship network of a
university department in which research labs have been grouped
into matrices.

2.2 Choice of NodeTrix for Collaborative Work

To explore collaborative retrofitting of existing information visual-
ization, we wanted to begin with a tool that seemed a promising
candidate in its existing state. Thus, we first considered published
guidelines for information visualization design for co-located col-
laboration [4]. According to these guidelines we found a promising
candidate in NodeTrix [3]. Specifically, it supports:

• Free categorization of items: Nodes can be grouped into ma-
trices with a lasso gesture. Single matrices can be dissolved
with a single click. Nodes can be added to or removed from
matrices with drag-and-drop. Hence, work on a given item
can be done independently from work on others. This could
support concurrent work.

• Free workspace organization: Data items can be freely reposi-
tioned. This allows individuals to work on the task in different
areas of the display.

• Individual viewing preferences: Through a number of local
changes in the representation, individuals can adapt parts of
the representation to their own preferences.

• Fluid interaction: The number of changes of input modal-
ity, the manipulation of interface widgets, and dialogs is kept
to a minimum and can improve the coordination of activities
within a group.

• Focus on mouse interaction: Almost all actions are mouse
interactive, which makes the tool accessible to retrofitting for
multiple inputs. The keyboard is only required for three tasks:
to type labels, to trigger undo, and to trigger a graph re-layout.

• Minimal global changes: NodeTrix includes only two possi-
bilities for global changes, limiting the possibilities for acci-
dental changes that affect all users which may lead to less
interruption of the group work.

In addition, several practical aspects of NodeTrix made it a good
candidate for our work. It has previously been used successfully
with experts in the context of social network analysis and has been
shown to be useful in single-user work [3]. We also had access to
the underlying source code and could make necessary adjustments

to introduce concurrent inputs. We nick-named our retrofitted co-
located collaborative NodeTrix—CoCoNutrix.

However, some of the guidelines as outlined in [4] are not specif-
ically supported. There is no specific support for communicating
findings or discoveries, solving conflicts of interaction, graphical
history, or maintaining individuals’ awareness of each other’s ef-
forts. Thus, while NodeTrix presents a promising starting point,
it is not clear whether NodeTrix will help group members to col-
laborate effectively. Through an observational study and interviews
we explore how participants utilize our retrofitted collaborative soft-
ware and whether such minimal retrofitting can sufficiently support
collaboration for data analysis. We are interested in the following
questions:

• Is communication between analysts enabled?

• Do interaction conflicts occur that hinder the collaboration?

• Can group members stay aware of each others’ work?

• Are group insights achieved?

• What is the qualitative analysis experience with the system?

2.3 Implementation Details

To implement CoCoNutrix we made adjustments to the underlying
source code. We kept all our re-implementation choices to a min-
imum. Wherever possible we opted to leave things as they were,
as our goal was to study whether a minimal retrofit would accrue
collaboration benefits.

2.3.1 General collaboration support

One of the challenges in re-designing software for collaboration is
that global changes should be kept to a minimum to avoid inter-
rupting group work. Yet, many information visualization systems,
NodeTrix among them, offer a high number of parameters to change
the visualization output. In our retrofitted tool we turned off menu
bars and control panels and chose appropriate default values for all
visual features such as link width, colour, or label size appropriate
for our task and dataset.

Since the main current operating systems do not support multiple
windows to be in focus we chose to provide a fullscreen visualiza-
tion environment, in which no accidental resizing, repositioning, or
a change of focus of the application windows could occur. Since
all control panels were turned off already this was achieved by giv-
ing all available screen space to the rendered visualization. In other
applications in which multiple windows, widgets, or dialogs are
necessary, these may have to be re-implemented to allow more than
one window to be in focus at a given time.

2.3.2 Adding Multiple Inputs

In NodeTrix, since mouse interaction is the most common, we de-
cided to give each collaborator their own. On the other hand, key-
boards were only used for three relatively rare interactions (labeling,
triggering a global re-layout or undo) and take up a lot of physical
space on the table, we decided to provide one shared keyboard.

To capture independent input from any attached mouse, we used
the JInput library [6] and added a GlassPane, a transparent panel,
on top of the application to render the additional mouse cursors and
dispatch modified mouse events to the application. We derived a
new mouse event class that carried individual mouse ids in addition
to the traditional mouse event data. These ids were necessary to be
able to react to user specific input. For instance, user-specific data



structures were put in place to keep track of which items were being
drawn or dragged by which mouse. For example, the lasso gesture
was used to select multiple nodes. To capture this gesture it was
necessary to save a mouse path per user.

In keeping with the spirit of making as few changes as possible in
our retrofitting and because it has been suggested that social pro-
tocols are often the preferred conflict resolution method [11], we
chose to leave the resolution of conflicts to these social protocols.

2.3.3 Changing Representation and Interaction

We made three changes to visual representation and interaction: (i)
We provided additional visual feedback. To differentiate the avail-
able mice, each cursor was enlarged and received an individual
color. Click or drag interaction from these mice created a similarly
colored glow effect on each clicked node or matrix. We extended
the rendering code for both objects and rendered a colored semi-
transparent rectangle on top of them to achieve this effect. (ii) We
changed keyboard input for matrix labels. Previously, labels were
created by selecting a matrix and typing the desired text. In a multi-
user case several matrices can be in focus and, thus, it is unclear to
which one a label should be added once a user starts typing. To cir-
cumvent this problem we created a new label object, representing
the label text. This object was added to the visualization after a user
finished entering text. It could then be dropped on a matrix to create
a label. (iii) Using mice input we provided functionality that was
previously available through selection and control panel interaction.
To allow zooming in and out of rendered matrices, we mapped the
resizing action to the mouse wheel, a simple fix to address the pre-
viously mentioned mouse focus problem. All the interactions are
implemented using “Interactor” objects decoupling the interaction
from the visualization rendering and from the logic of the applica-
tion. This feature of the toolkit made the retrofitting easier.

2.3.4 Retrofitting Cost

Estimating the retrofitting cost is difficult as it relies on the develop-
ers’s knowledge of the underlying code and the number of places to
edit. As an indication, we created ten classes and wrote less than a
thousand lines of code to retrofit NodeTrix.

3 Study

The goal of our study was to determine whether our retrofitted ver-
sion of NodeTrix could support collaborative social network anal-
ysis in realistic settings and examine how users viewed our cost-
effective design decisions. We strove to provide a study environ-
ment as close as possible to (a) real environments, (b) real data, (c)
with domain experts who are (d) performing real social network
analysis tasks.

We studied groups of four experts performing social network anal-
ysis using data from their own organization. Our participants were
experts in the data, not social network analysis experts. To ensure
that our collaboration setup was effective in different realistic set-
tings, the study was conducted in three organizations (Org A, an
educational institution, Org B and Org C, research organizations)
using existing technical facilities.

3.1 Social Network Data

Our three organizations have an interest in determining how their
internal research groups collaborate and how effective these collab-
orations are. We, therefore, decided to use research collaboration
social networks as data for our study. Given that research publica-
tions are a good indication of collaboration, the co-authorship net-

Org. Screen Size Resolution Projectors Distance Figure
A 1.46 m × 1.1 m 2048 × 1536 2 × 2 1 m 3-left
B 4 m × 1.5 m 2560 × 1024 2 × 1 1.5 m 3-right
C 2 m × 0.8 m 2560 × 960 2 × 1 2 m 1

Table 1: The physical study setup in the three organizations.

Figure 3: Study setup in Org A (left) and Org B (right) using dis-
play and computer resources available at each organization.

work of each organizations was used as a dataset. Authors in the
dataset became nodes of the network, and co-authorship relation-
ships became links. Each institution had a high number of authors
(exceeding 800 in all three), making the analysis difficult to com-
plete in less than one hour. To ensure a whole experimental session
could be concluded in approx. 1.5 hours, thus making it easier to
recruit knowledgeable experts with limitied available time, we fil-
tered out authors with a low number of publications. This resulted
in 423 authors for Org A, 327 for Org B, and 430 for Org C.

3.2 Participants

44 participants (14 female) took part in our study. All had been
with their organization for at least 6 months and were experts in ei-
ther parts or the entire social network they were asked to analyze.
Their positions included senior professors/researchers, group and
project leaders, administration, human resources personnel, techni-
cal personnel, and few graduate students. We recruited 4 groups
(16 participants) in Org A and Org C, 3 groups (12 participants) in
Org B. To ensure a realistic and comfortable collaborative setting,
participants were either work collaborators or friends. With one
exception, all participants reported to be familiar with their group.

3.3 Apparatus

Resources in the organizations differed slightly, but an effort was
made to keep the settings as similar as possible. The same visu-
alization software ran on a dual core 3GHz CPU, with 2G RAM,
running Windows Vista. In each setting, the 4 physical mice were
color-coded to match their respective cursors on the screen. The
details of our physical setup can be found in Table 1.

3.4 Task

Participants were presented with a visual representation of a social
network that they had intimate knowledge of in terms of: actors (re-
searchers), their roles and positions in the organizations, and their
working relations. Participants were asked to create a representa-
tive view of the researchers in the organization that could later be
printed in poster form. They were provided with a single shared
network representation using a force-directed layout (LinLog [8]).
For this task they were asked to identify and name the different
communities, defining their own criteria. This type of open-ended
task of identifying communities and examining their connections is
commonly performed in social network analysis [12].



3.5 Procedure

Each study session lasted 1.5h. Participants were asked to complete
a brief demographic questionnaire eliciting their background, their
familiarity with the rest of the group, the dataset, and their experi-
ence in using social network software. They were then introduced
to the NodeTrix collaborative system and were allowed to experi-
ment with it for 15–20min on a training dataset. After reporting
feeling comfortable using the system, they proceeded into the main
task of organizing and labeling the co-authorship social network of
their organization. The task ended when they completed their label-
ing and grouping of the network, or when they reached the 40min
mark. After a short break, the entire group took part in a semi-
structured group interview eliciting their opinions on the task and
the system. An experimenter was present for the duration of the
study to answer any questions.

3.6 Data Collection and Analysis

Apart from the pre-trial questionnaire, observations, and interview,
a number of other data was collected for later analysis. All ses-
sions were video-captured from two distinct locations focusing on
both the participants and the screen. Moreover, detailed system logs
were stored for each session. Finally, a note taker was present mak-
ing detailed observations on the use of the system and interaction
of the participants. For the analysis we combined our information
from transcribed interview data, notes, and observations and created
affinity diagrams to reveal patterns in the data.

4 Results

In this section we present how our retrofitted collaboration environ-
ment provided collaboration support and assess whether this sup-
port was effective. We group our results according to the mechanics
of collaboration [2], reporting on these low-level actions and inter-
actions that a collaborative system must support in order for group
members to be able to complete a task in a shared manner, as well
as findings relating to our understanding of effective collaborative
data analysis. Similar to [2], we consider the collaboration to have
been effective when activities could be completed successfully, and
no major errors or conflicts arose.

4.1 Explicit Communication

In face-to-face settings like ours, the majority of explicit commu-
nication is verbal and is the main means to establish a common
understanding of the task at hand.

Observations:
We observed frequent verbal communication: in 9/11 groups lively
communication arose around the content of the data. We observed
two types of explicit communication: running commentary and di-
rect discussions. Running commentary was common when partic-
ipants wanted to quickly inform others of an action performed or
planned without an intent to start a conversation. Direct discus-
sions were used to directly contribute to social knowledge building:
groups exchanged rational and argumentation regarding actor place-
ment or grouping choices, group members would agree, disagree,
and negotiate, building a shared understanding of the network they
analyzed.

Since participants were not directly interacting with the display, our
system needed to facilitate deictic references and gesturing for com-
munication in and with a group. Participants performed deictic ref-
erences not only by pointing with their hands at the display and

making verbal references, but also by gesturing and pointing indi-
rectly with their uniquely colored mouse cursors. Moreover, they
repurposed the system to their communication needs, for example
by enlarging an object to attract attention. During phases of joint
visual attention, mice were commonly moved to the joint focus area
to show that attention was given to a specific information item that
was under discussion.

Requests for Improvement:
Participants only requested additional features to support deictic ref-
erences. Three groups asked for a visual feature, such as a user-
controlled glow or animation, that could explicitly draw the visual
attention of the group to a particular mouse cursor.

Summary:
We observed that our system provided adequate support for inten-
tional verbal communication, facilitated mostly through the face-to-
face setting. Participants made creative use of the visual representa-
tion to perform deictic referencing, with few participants asking for
better support. One of the goals of collaborative information visual-
ization tools is to allow groups to come to a common understanding
of the the data through the use of the visualization. Through our
observations of instances of explicit communication we are quite
confident that this goal was reached.

4.2 Consequential communication, monitoring and
group awareness

Information in physical collaborative settings is unintentionally
given off by collaborators and by artifacts as they are being ma-
nipulated, for example seeing hands move in the space or hearing
paper being dragged by others. This consequential form of commu-
nication is very important in digital collaborative tasks as well, as
it is the primary mechanism for gathering awareness information
about what is going on, who is working on what, and where others
are in the workspace.

Observations:
We observed four main visual features with which the representa-
tion mediated consequential communication and enhanced aware-
ness within the group:

Color Coding: Our environment provided a single explicit aware-
ness mechanism in the form of uniquely colored cursors and
matching coloring of selected artifacts. This color coding in-
directly indicated to participants areas of the display and spe-
cific artifacts that others were focusing on.

Labeling: Participants labeled communities to indicate that they
had been analyzed or needed further work, implicitly inform-
ing the group of the work to be done. For example in 9/11
groups participants would only give a community a name once
they felt it was reasonable finalized, while in 2/11 groups un-
known or not finalized communities would be given a prede-
fined default name (e. g. ”unknown 1”).

Location: Participants implicitly communicated their decisions re-
garding communities by placing them at predefined areas of
the display. Some groups (2/11) used the periphery of the dis-
play to place finalized communities, while others used a pre-
defined area of the screen for ”unknown” or ”draft” commu-
nities (2/11). Although in most cases this placement started
out unintentionally, it often became an explicit work practice
(e. g. “I am putting unknowns to the right”).

Scale: In 6/11 groups, matrices representing finished groups were
scaled down in size to communicate that they should not be
edited further.



Participants generally reported to have been aware of group process
on the visualization. Yet, we observed several participants stop their
interaction for moments at a time and watch engaged at the repre-
sentation. When asked about this behavior in the interview, they
reported to have done so to gain an overview of what had changed
in the dataset, what the group strategy was, and what areas they
could work on next.

Requests for Improvement:
One known issue that pertains to awareness is that users easily lose
their mouse cursors on large displays [1]. Participants in 6 groups
reported to have lost their cursors occasionally, even though we had
increased the mouse cursor size to four times that of the standard
Windows desktop and given each cursor a distinct bright color.

During the interview some groups (5/11) also asked for more ex-
plicit ways of labeling and annotating their work to assure that deci-
sions would not get lost in the work process (e. g. changing colors
of communities to indicate they are completed, giving matrices spe-
cific descriptions like “do not merge!”, etc).

Only participants in 4/11 groups requested a feature for viewing the
interaction history of the group, to see each other’s actions and the
history of a specific area of the network.

Summary:
Although our participants were able to collaborate on the retrofitted
setup, half of them felt the colored cursors did not provide enough
awareness of other users’ actions. Annotation functionality was
also requested to mark the state of communities. However, most
felt that although detailed actions were missed, they were globally
aware of the group process and progress. Interaction history was not
frequently requested maybe due to the task and length of our study.
We generally saw the visualization itself being used as the medium
to indirectly capture, represent, and communicate the group under-
standing and knowledge of the communities in the dataset.

4.3 Action coordination, assistance, and protection

An important part of effective and fluid collaboration, is how col-
laborators mediate their actions and share common workspace re-
sources. People organize their actions to avoid conflict with others
and efficiently complete their task.

Observations:
Our participants clearly organized their actions in order not to con-
flict with others. This was achieved by either explicitly dividing the
task and working areas through verbal communication, or by ob-
serving where others were working. Collaborators worked predom-
inantly individually or in pairs in different areas of the workspace,
moving fluidly between closely and loosely-coupled work styles.
When questions arose or global changes had to be negotiated, all
groups came together and evaluated a solution, performing coordi-
nated actions on the workspace. Coordinated actions were also com-
mon when participants helped each other out. Such peer aid would
either be requested (e. g.”Could you remove X from that community
while I ...” or would be voluntarily offered by observing the actions
of others (e. g.”Let me do that”).

In groupware systems accidental conflicts of concurrent input can
be disruptive and special control mechanisms have been suggested
[2, 7]. Since we chose not to provide any conflict control mech-
anism, we logged potential sources of interaction conflicts to vali-
date our choice. These included two or more participants grabbing
the same node or matrix, or trying to lasso select an item that was
currently worked on by another person. These conflicts occurred
rarely. In 10/11 groups a maximum of two conflicts were logged
with concurrent dragging actions being the most common one (4×).

One group had 7 such conflicts, mostly caused by two people in-
teracting with the same matrix concurrently. When discussed in
the interview, none of participants perceived the logged conflicts as
problems. Outside of the logging, we observed conflicts dealing
with inadvertent dropping of elements in matrices or a participant
editing matrices after others considered it finished. All these con-
flicts were solved socially, and some groups even established rules
(e. g. “ask before editing a reduced size matrix” “if you see labels
don’t touch it, that’s the rule”). When interviewed, participants felt
these conflicts were easily solved and did not interfere much with
the task.

Requests for Improvement:
Participants perceived little conflicts of interaction. When asked if
they would have wished for a mechanism to lock control or indicate
ownership of items, all but one group responded negatively.

Summary:
Our participants coordinated their actions very fluidly. We feel that
our choice of not to include specific protection mechanisms was fur-
ther justified as conflicts were resolved socially and mistakes could
be easily reverted through local or global undo.

4.4 Analysis Strategy and Group Insight

One of our original goals, was to determine if our discount environ-
ment supported successful collaboration with the visualization. An
indicator for successful collaborative visualization use is the estab-
lishment of an effective strategy leading to group insight. Group
insight is difficult to measure, but can be visible in interactions be-
tween participants and with the visual representation, or interview
comments like ”we found out that ...”.

Observations:
Although no explicit planning support was given in our environ-
ment, most of our participants verbally negotiated their strategies.
Almost all groups (9/11) started the task with a short group explo-
ration phase in which initial obvious clusters were identified. The
establishment of an analysis strategy seemed to evolve naturally
from conversation and participants observing each others’ actions.

When asked, all 11 groups reported to have gained new insight from
working with the dataset and reported several surprising or confir-
matory findings, such as close collaboration patterns between re-
search groups previously thought unconnected, and even findings
about their close working environment “I had no idea that many
people collaborating in our lab, I even learned things about my own
team!”. Peer-learning and teaching of these insights occurred often
in groups that had an imbalance of shared knowledge. In one group,
for example, a participant helped to identify the initial communities
and taught others about parts of the dataset they were unfamiliar
with, so the work could then commence in parallel.

Summary:
We observed participants smoothly establishing an analysis strat-
egy and did not request any additional features for activity plan-
ning. Observations and comments showed that our tool helped the
group gain insight, teach each other facts about the data, and sup-
port knowledge building in the group. We see this as an important
part of a successful collaborative data analysis environment.

4.5 Work preference

As an indication of successful collaboration, we asked participants
whether they preferred conducting this analysis task as a group
rather than individually.

Observations: The majority (40/44) of participants preferred group



work and 4 preferred to do the task alone. Three of the latter were
among the most knowledgeable members of their group and felt that
they could have done a reasonable job on their own, although they
admitted it to be potentially slower. The 4th had a completely differ-
ent opinion than the rest of her group about what criteria to use in
forming communities. The participants who preferred group work
named as reasons for their preference: shared knowledge (27/44),
fun of collaboration (25/44), shared process of forming consensus
(6/44), brainstorming (4/44), efficiency (4/44), and shared working
styles (1/44). One participant commented that “doing it with 3 peo-
ple was fun, doing it by myself would be work.” In addition, 9/11
groups reported feeling happy with the result of their analysis and
the communities they had created.

Requests for Improvement:
Most participants stated that additional time and meta-information
would have helped to resolve questions about unknown people and
improve the visual presentation of the analysis.

Summary:
Groups were generally very happy with their collaboration and re-
sult of their work. We take this as an indication that the retrofitting
was successful for this setting and task and could effectively support
collaborative data analysis as perceived by these participants.

4.6 Reaction to low-cost environment choices

While observations on collaboration and group insight can establish
whether collaboration in our low-cost setup was effective, observa-
tions on the usability of the environment can further inform the ef-
fectiveness of the retrofitted tool in use.

Observations:
One observed strength of the CoCoNutrix visualization was its intu-
itiveness of interaction. All participants were at some point interact-
ing with the information items and over longer periods of time all
mice in a group were in movement concurrently. Participants were
comfortable interacting anywhere on the screen. Even though the
screen sizes were slightly different, this observation was unaffected.
The keyboard as a shared device was typically used by one dedi-
cated scribe who would type in the labels for communities as they
were requested. Groups rarely used features that would have cre-
ated global view changes (undo, redo and a re-layout of the graph),
and when they did it was generally after negotiating and obtaining
group approval. Five groups never made use of these functions, two
groups used them 6×, and the remaining groups used it 2-3×. Partic-
ipants commented that our low-cost setup of mouse input and large
screens supported well their group work.

Suggestions for Improvement:
Three groups expressed the need for a second keyboard to avoid in-
terrupting others’ work process by asking for a label, or handover of
the keyboard. There were 15 requests (from all 44 participants) for
functionality that was originally part of NodeTrix and was removed
during the retrofitting. These requests were mostly for visual fea-
tures mentioned earlier, such as highlights, more meta-data, or for
additional interactions (such as sorting) on matrices. Participants
reported they did not feel the sitting configuration influenced their
collaboration, but to further improve communication some would
have preferred a slightly curved seating arrangement to be able talk
to each other better. In Org C, dealing with a larger network on a
slightly smaller display, participants would have preferred a larger
screen display or functionality to “push nodes to get more space”.
Thus, the ratio between the display and network size used in Org C
was perceived as a threshold condition for comfortable use.

Summary:
While participants requested additional functionality for the system

and physical setup, they generally reported to have been well sup-
ported in their global task. Lack of interaction capability and the
lack of meta-data affected their work efficiency, but the work qual-
ity was not generally compromised. We see this fact as proof that
our discounted interface was a good compromise for this task.

The requested additional visual and interaction features are diffi-
cult problems to solve when multiple users interact with the system.
Selection actions can induce input conflicts and parameterizing ac-
tions requires consensus as they affect the entire representation.
This is the reason we removed them originally in our retrofitting,
but further research is necessary to reduce global changes in visu-
alizations or make them less disruptive. While the actual sitting
position did not seem to interfere with the collaboration, we found
that the display size was very important. Finding the optimal screen
size for visualization tasks requires further research attention.

5 Discussion

To summarize our findings we return to our initial questions in re-
gards to the utilization of our retrofitted collaborative software.

5.1 Assessment of the Results

Communication:
We observed frequent interaction between analysts, with the data
and with the visualization. Analysts slipped in and out of inter-
action with the full group and with varying subgroups as work pro-
gressed. This confirms previous CSCW studies on information visu-
alization in other settings where frequent switching between loosely
and closely-coupled work was observed (e. g., [5, 10]). Active
data interpretations, discussion and negotiations occurred through-
out the collaboration while participants interacted on all areas of
the display. This finding is important as information visualization
analysis requires seeing and interacting with all parts of the rep-
resentation to explore all available data and avoid misleading or
incomplete data analysis.

Conflicts:
Control mechanisms to avoid interaction conflicts have been stud-
ied and suggested [2, 7] for co-located collaboration. Even though
we included no specific control mechanisms, we observed and
logged few interaction conflicts between participants, echoing pre-
vious findings [11] that people naturally avoid interfering with each
other by spatially separating their actions in the workspace. More-
over, participants did not request any additional control mechanism
features, so our decision to leave them out was further justified.

Awareness:
The visualization mediated the awareness of decisions made about
the data and helped group members to build on each others’ work.
Factors like labeling were used to help the group coordinate which
data aspects were decided upon and which were still in flux. Yet,
several additional awareness features were asked for and this is a
promising direction for further work in collaborative visualization.

Group Insight:
The hybrid nature of the visualization helped in facilitating, and
hence observing group insight, as it captured the evolving construc-
tion of knowledge within the group. We noticed that participants
did not simply view a matrix as a different representation of a group
of researchers in the dataset—a matrix expressed a particular re-
search group and together with a label became the result or artifact
of choices made by one or several participants during the collab-
oration. This artifact was then visible to others and facilitated the
emergence of a common understanding of the data within the group.
Thus the visualization evolved and became an archive of the par-



ticipants’ process, what work was completed or needed discussion,
and of the participants’ insight, the interpretations and meaning that
they had given together to specific information in the dataset. Sim-
ilar observations have been made for collaborative communication
and learning in online communities [9]).

Qualitative Feedback:
Both the chosen physical environments (use of a large back pro-
jected display and sitting arrangements) and the use of multiple
mice for interaction was positively received by our participants. To-
gether with other positive responses and feedback regarding the us-
ability of the system, we feel confident that NodeTrix was suffi-
ciently retrofitted to enable effective collaboration.

5.2 Impact for Other InfoVis Systems

The study results have implications for other information visualiza-
tion researchers or designers considering how to adapt their own
single-user applications for co-located collaborative work settings.
Our study looked specifically at supporting participants interacting
at the same time in a low-cost setup with mouse input. We think that
this is a feasible collaborative setup for many different visualization
systems, yet there is an important interplay between the success of
this type of low-cost retrofitting and the types of interaction that
already exist in the system.

One very important aspect that a retrofitted tool needs to support
is the awareness of what has been looked at, analyzed, and about
which data items decisions have been made. In our case, this was
mostly facilitated through the hybrid nature of the visualization.
We, therefore, hypothesize that information visualizations in which
group members can give the data meaning by either transforming
data items into different representations (as in our case), or by anno-
tating and marking them (e. g. through spatial positioning or graph-
ical markers), will not require much additional functionality to be
added. It is likely that a large number of other 2D network and
graph visualizations will benefit from our collaborative retrofitting.
Most such tools already allow for free spatial repositioning, which
could be used to annotate or mark data by changing their position.
Coupled with user-specified visual clustering group insight could
be captured and group coordination and communication helped.

In observing participants using CoCoNutrix, we saw fluid transi-
tions from parallel individual work to group work or negotiation.
The ability to display an overview of a dataset, as well as allow
for detailed work in different areas of this overview contributed to
better parallel work, another crucial aspect to support in retrofitted
tools. Contrary, visualizations where views or global changes need
to be discussed and negotiated often (e. g. 3D visualizations with a
single data view, where navigation is crucial) may benefit less from
this type of collaborative setup.

Finally, one of the attributes of NodeTrix that enabled partici-
pants to collaborate effectively was the reversibility of all actions
(e.g. adding/removing community actors, creating/splitting matri-
ces, etc). This way, our groups avoided using functions that have a
global effect in the layout and disturb the work of others (like undo
and graph layout). It is thus important that the retrofitted informa-
tion visualization tool provides alternative lightweight mechanisms
for correcting errors.

6 Conclusions

In this paper we have reported on challenges and results in extend-
ing a single-user information visualization tool for multiple-users,
for use in a realistic low-cost collaborative environment. Specifi-
cally, we extended NodeTrix, a social network visualization tool,

to enable multi-mouse interaction. Our research indicates that
retrofitting of existing information visualization software to include
discount multi-input interaction is very doable (given appropriate
open source software). The resulting low cost collaborative envi-
ronments can be reasonably functional and well worth assembling.
However, we caution that the overall success of retrofitted collabo-
rative software is very dependent on an identified set of interaction
capabilities of the existing software. To refine our results and to
be able to make further recommendations for low-cost retrofitting,
it needs to be studied how other types of visualizations fair in a
retrofitted scenario, and how they are used in real-life situations
where the outcome of the analysis has a big impact on participants’
everyday work. Our work and existing guidelines for collaborative
information visualization can be a useful starting point. Future stud-
ies may refine this knowledge.
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A Sidebox: Related Work

A.1 Collaborative Retrofitting for Information Visual-
ization

Connecting several mice, keyboards or other input devices to one
desktop computer is limited due to support issues at four levels:

1. Operating systems: some systems such as Windows explicitly
limit the support for multiple-mice and keyboards due to se-
curity issues. Others (including Linux, most flavors of Unix
and MacOs) allow the management of extraneous input de-
vices but with a different level of support than the standard
input devices. For example, these systems do not provide any
cursor feedback for extraneous positional devices so this ca-
pability has to be done by applications or window-manager
extensions.

2. Low-level libraries for access to USB devices or game devices
allow the reading of input devices in system-dependent ways.
In the recent years, there has been some progress in trying
to standardize access to these libraries with projects such as
JInput for Java.1 There are issues raised by these libraries be-
cause the window manager applies many hidden operations to
the standard input devices (acceleration management for rel-
ative positional devices, key mappings for keyboard devices).
These are difficult or impossible to emulate through external li-
braries, except when integrated with the window systems (e. g.
the X Input Extension.2)

3. Graphical Toolkits such as Swing for Java or Qt for C++ pro-
vide support for GUI components (Widgets) and input man-
agements. Like most of the toolkits, they only manage a
limited set of input devices through typed events. Even for
well supported devices, like the mouse, they usually don’t
support more than one predictably. Only recently have there
been attempts at supporting multiple input devices at this level
[10, 3, 11].

4. Applications: applications, like MMM [2], supporting co-
located collaboration have been built from scratch due to the
lack of toolkit and library support. However, newer gener-
ations of co-located applications have been trying to build
toolkits or rely on special toolkits to simplify the design of
this type of applications.

Some researchers have described their process of retrofitting single-
user applications for collaborative use; however, only few have
specifically studied this in the co-located information visualization
context and considered the implications of offering multiple inde-
pendent inputs.

Forelines describes collaborative retrofitting for Jmol for molecular
visualization [6] and Google Earth [5]. Both tools were adapted for
a multi-user and multi-display environment. Their research focuses
on describing how the visualization was adapted to be shown and
interacted with in a co-located scenario using different views on
different display configurations. Problems of concurrent input are
solved through a single-user floor control policy that allows only
one person to interact with a single display at a time.

Comparing distributed and co-located information visualization
work, Mark and Kobsa [12] studied collaborative use of pre-
existing information visualization tools and found that group perfor-
mance increased with the transparency of the system. Collaborative
retrofitting for this study was minimal. While a large shared display

1https://jinput.dev.java.net/
2http://en.wikipedia.org/wiki/DirectInput

was used in the co-located setting, participants also shared a single
input.

Some graphical toolkits managing scene graphs (e. g. [1]) or infor-
mation visualization [4, 7], use the Interactor abstraction to imple-
ment modular interaction techniques. They decouple display man-
agement and interaction, simplifying the retrofitting for multiple
inputs. Moreover, they provide support for a layering mechanism
on which to draw additional cursors and highlights without interfer-
ing with the standard display management. We implemented our
extensions with the Infovis Toolkit [4] on which NodeTrix is imple-
mented.

A.2 Social Network Analysis

Our study is situated in the field of social network analysis. Any col-
lection of persons or organizations connected by relations is a social
network. In the last decade, the popularity of social networking ap-
plications has dramatically increased. Social network analysis tools
are used by intelligence agencies to monitor terrorists networks, by
epidemiologists to study transmission networks and detect and con-
tain disease outbreaks, or company managers and research institutes
to examine the flow of communication between their employees and
the strength of their employees’ collaboration. In our work we fo-
cus on visual analysis of social networks that is more exploratory
in nature.

With the increasing popularity of social networking and the
progress of Internet technologies, many systems emerged to visu-
alize and analyze social networks.3 The two most common types
of representations are node-link diagrams and matrix-based repre-
sentations. Node-link diagrams are commonly used to understand
the global structure of the network while matrices have been shown
to improve readability for detailed community analysis [9].

From trial demonstrations of social network analysis software, we
have empirical evidence of spontaneous analysis sessions of collo-
cated colleagues that came together over a small shared display to
make sense of, discuss, and explore their data. Similar observa-
tions were reported by Heer and boyd [8] in their study of Viszter, a
visualization tool for online social networks in a public setting. So-
cial network analysis can benefit highly from collaborative analysis
through the combination of knowledge, expertise, and skills as well
as the combined cognitive power of several analysts that can tackle
larger networks together.
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